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Abstract

In supply chain operations, inventory management represents a well-

established challenge that involves the trade-off between product avail-

ability and stock holding costs. Research has tackled this topic extensively.

The emergence of reinforcement learning through, for example, influential

contributions such as AlphaGo and AlphaZero, has spurred further inves-

tigation into the application of inventory management for other problem

domains.

The aim of this study was to merge the well-established issue of inventory

management with the state-of-the-art solution approach of reinforcement

learning. Therefore, existing research on this integration was evaluated and

scrutinized to identify any research gaps. A key issue that arose pertained

to the generalization of these models. As machine learning models heavily

rely on the data on which they are trained, the primary concern is how to

create a reinforcement learning model that can withstand shifting environ-

ments, including demand, replenishment time, and cost parameter traits.

Consequently, the fundamental model was enhanced through an adaptable

state and action space, and additional data points supplemented the initial

basic state space. An analysis indicated that this extension facilitates the im-

proved adaptation of the model to fluctuating environmental parameters.

When this study examined beyond a single supply chain location to en-

compass a linear supply chain with multiple locations, an additional ques-

tion arose. A comparison between decentralized and centralized inventory

decisions revealed that the decentralized model performed similarly well

when compared with the central model. Additional findings indicated that

demand shocks did not appear to significantly impact either model when
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Abstract

the bullwhip effects caused with and without a demand shock were com-

pared.

Finally, the developed model was applied to real-world data from a cho-

sen range of products. Promising results were obtained, but they require

validation with further testing.
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Kurzfassung

Das Bestandsmangement ist ein seit langem bekanntes Problem des Supply

Chain Managments. Dabei geht es darum, das Gleichgewicht zwischen Pro-

duktverfügbarkeit und Bestandskosten zu finden. Es gibt eine breite Palette

von Forschungsarbeiten, die sich bereits mit diesem Thema befassen. Mit

dem Bekanntwerden des Reinforcement Learnings durch prominente Ar-

beiten wie AlphaGo und AlphaZero wurden auf der anderen Seite mehr und

mehr Anwendungen des Reinforcement Learnings auf andere Problem-

domänen untersucht.

Das Ziel der vorliegenden Arbeit war es, das bekannte Problem des

Bestandsmanagements mit der innovativen Lösungsmethode des Rein-

forcement Learning zu verbinden. Daher wurden bestehende Arbeiten zu

dieser Kombination gesichtet und auf ihre Forschungslücke hin analysiert.

Eine Frage, die sich dabei stellte, ist diejenige nach der Generalisierbarkeit

dieser Modelle. Da maschinelle Lernmodelle in hohem Maße von den

Daten abhängen, mit welchen sie trainiert werden, ist die erste zu bean-

wortende Frage, wie ein Reinforcement Learning Modell designt werden

kann, so dass es gegenüber veränderlichen Umgebungsparametern wie

Nachfrage, Wiederbeschaffungszeit und Kostenparametern robust agiert.

Dazu wurde das entwickelte Basismodell um einen adaptiven Zustands-

und Aktionsraum erweitert, sowie der erste einfache Zustandsraum um

weitere Datenpunkte ergänzt. Die Analyse und Auswertung anhand ver-

schiedener Datenreihen zeigte, dass diese Erweiterung zu einer besseren

Anpassung des Modells an veränderliche Umweltparameter führte.

Als weitere Fragestellung wurde eine aus mehreren Standorten beste-

hende lineare Lieferkette untersucht. Der Vergleich von dezentral und
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Kurzfassung

zentral getroffenen Bestandsentscheidungen für diese Supply Chain führte

zu dem Ergebnis, dass das dezentrale Modell im Vergleich zum zentralen

erstaunlich gut agierte. Ein weiteres Ergebnisse war, dass beide Modelle

relativ robust gegenüber Nachfrageschocks sind. Dafür wurde der Bullwhip

Effekt in der Supply Chain mit und ohne Nachfrageschock verglichen.

In einem letzten Schritt wurde das entwickelte Modell auf reale Daten

einer Auswahl von Produkten angewendet. Die Ergebnisse sind vielver-

sprechend, müssen aber durch weitere Tests validiert werden.
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1 Introduction

The question is too good to spoil with an answer.

– Robert Koch

This chapter provides a summary of the motivation for this study and the

corresponding research questions. These factors drove the structure of the

work, which is also briefly outlined.

1.1 Motivation and Objective

The problem of inventory management is a well-known and often treated

problem in the field of logistics. Each supply chain (SC) , whether it has a

small decision scope like the grocery store around the corner or a globally

steered SC, must answer the basic question of how to stay at the service of

customers without accumulating too much stock. In particular, during the

current SC disruptions caused by the COVID-19 pandemic and the short-

ages in semiconductors and raw materials, the topic of inventory manage-

ment and its corresponding solutions has generated interest. This interest

is evident from the statistics for the search term “inventory management”

on Google Trends, as depicted in Figure 1.1, which exhibits consistent and

stable popularity with occasional fluctuations. The extensive research con-

ducted on the replenishment problem for all types of SCs, ranging from sim-

ple systems to supply networks that accommodate single or multiple prod-

ucts, with or without due dates, reflects the significant interest in the topic.
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1 Introduction

By contrast , the level of interest in the concept of deep reinforcement

learning (RL) had not been measured for a long time, when it finally began

to emerge in Google searches during the late 2010s. The development of RL

agents continues to create a stir in the media. While academic researchers

had already been working with and advancing RL for a considerable pe-

riod, public attention was mainly directed toward the accomplishments of

DeepMind. For instance, one of the initial models, AlphaGo, was intro-

duced in October 2015 and gained its first victory against a well-regarded

Go player in early 2016, which was reported in the media. Later, this devel-

opment was followed by Master and AlphaGo Zero, which are both agents

that learned to play the traditional game of Go. Furthermore, Alpha Zero

also acquired skills to play chess and shogi, and the latest development of

DeepMind can master visually intricate Atari games. (DeepMind 2021) The

advancement of deep RL, which was previously an unknown field, served as

a catalyst for further research in various application areas. This, in turn,

led to the creation of the work presented in this thesis. The aim of this

study was to address a prevalent logistical issue, namely the replenishment

problem, using a modern technological solution from the machine learning

toolkit—namely RL.
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Figure 1.1: GoogleTrends Report of Term Popularity for the Terms Inventory
Management and Deep Reinforcement Learning Over the Last
Years
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1.2 Structure of the Thesis

1.2 Structure of the Thesis

Providing a framework for the present work, the following research ques-

tions served as the foundation for further studies and the structure of the

thesis, as depicted in Figure 1.2:

How might one develop an RL system for SCs that contend with stochas-

tic demand and stochastic replenishment times and are inclusive of fore-

cast errors? Which SC characteristics are crucial to incorporate? After

conducting a literature review, which is presented in Chapter 3, it became

evident that various approaches exist regarding the implementation of RL

in inventory management. Notably, the amount of information included

in the state space, varying actions taken, and assumed SC models range

widely. Consequently, a basic RL system was developed, which is pre-

sented in Chapter 4. The chapter outlines the model’s design decisions

and abstraction levels, as well as the implementation and setup for future

investigations.

How reliable and robust are the decisions made by the basic model?

How is the dependability affected by the structure of the state and action

space, and how competently does the developed model perform com-

pared with a traditional policy? The conduct of the model was evaluated

and contrasted with a conventional inventory policy. The primary model

was further developed and assessed, as presented in Chapter 5. By adapting

the scaling of the state and action space, the RL model performed effectively

in unfamiliar environmental settings.

How should an RL system be designed for linear SCs that contain sev-

eral stages? How does a central approach perform versus decentrally

trained models and how do they react to demand shocks? The formerly

developed robust model was applied to linear SC structures that contained

several locations. By contrast, the model was expanded to address the re-

plenishment issue in linear SCs with only one RL agent. A comparison of

the models and their reactions to demand shocks is illustrated in Chapter 6.

3



1 Introduction

How would such a previously defined and theoretically tested model

perform on real data? Theoretical research has its advantages, but it is

more interesting to a wider audience when it is successfully applied to real-

world use cases. Therefore, the developed model was applied to several

products and their corresponding demand series. Decisions and resulting

key performance indicators (KPIs) were compared with the results of the

theoretical work as well as with reality in Chapter 7.

Figure 1.2: Structure of the Thesis
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2 Basics

Most of us forget the basics and wonder why the specifics

don’t work.
– Garrison Wynn

In this chapter, the three main topics—SCs, inventory management, and

RL—are addressed. A brief introduction to each topic is provided in the fol-

lowing sections.

2.1 Supply Chains

The Council of Supply Chain Management Professionals (CSCMP) defines

the term supply chain (SC) as the flow of materials and information from

the acquisition of raw materials to the transformation and delivery of fin-

ished products to the end user. In most cases, there are several actors from

different companies working together in an SC. (CSCMP 2013)

By representing SCs in graphs, the different actors and their relation-

ships can be abstracted by the nodes and the directed links between them.

Sources in the context of graphs refer to resources, while sinks character-

ize customers or demand in general. (Arnold et al. 2008, p.6), (Tempelmeier

2015) Looking at different SCs and their locations and material flows, Arnold

et al. (2008, p.161, p934 ff) distinguish three main SC structures, which are

depicted in Figure 2.1. The first is represented by a directed graph that

is convergent so that there are two or more sources, several intermediate

nodes, and a sink. Arnold et al. (2008, p.935) refer to such a network as a

many-to-one network, which fits the structure of procurement and produc-

5



2 Basics

Figure 2.1: Schematic Supply Chain Structures, Based on Arnold et al. (2008,
p.161, 934 ff.)

tion supply networks. By contrast, one-to-many networks are characterized

by one source, several intermediate nodes, and two or more sinks. In the

context of SCs, they are called distribution networks. Real SCs have some

form of the abovementioned networks, or a mixture of them, but they are

often represented in terms of a linear chain clustered around the respective

tasks of making, sourcing, and delivering. (Arnold et al. 2008, p.934 ff.)

In SCs, all kinds of flows exist, including material, information, product,

and financial flows. Therefore, the actors who are closer to the customer are

referred to as downstream actors, while those who are closer to the source

of materials are referred to as upstream actors in an SC (p.3 ff) (Ivanov et

al. 2019) (Stadtler and Kilger 2008)

Such an SC must be managed, which is where the term supply chain

management (SCM) comes in. SCM refers to the coordination and collabo-

ration of actors inside and outside a company in the SC, which includes all

parts from sourcing, procurement, and all logistical matters (CSCMP 2013).

Schuh (2007) describes the concept of a central planning and coordinat-

ing body for managing internal SCs. He highlights that the advantage of

this appears to be the alignment of local decisions with SC-wide objectives

and therefore better overall planning results. However, a central planning

instance leads to a higher coordination effort, which becomes more com-

plicated as the number of instances to be planned increases, and it would

be even higher for SCs that involve multiple companies.

The concept of decentralization replaces the central planning instance

with several autonomous agents. Becker et al. (2015) and McFarlane et

6



2.1 Supply Chains

al. (2003) define a system as decentralized if there is more than one decision-

making instance that is not provided with complete information. The

decision-making units are often linked to physical elements. Decentral-

ized decision making has the advantage of reducing the complexity of local

decisions, such as by allowing simpler methods to be used at one stage of

the SC. (Arnold et al. 2008, p.125)

Zijm et al. (2019), Arnold et al. (2008, p.7 f.) and Schuh (2007) name sev-

eral key aspects of SCM to describe their goals:

• Availability of products, materials and information: This is one of

the main objectives of SCM. As the term SC already implies, the pri-

mary objective of SCs is to ensure the right amount of materials, semi-

finished products, or finished goods at the right time and place. At

each step in the process, material and information are supplied for the

planning instances of the next steps. The availability of information

becomes even more important when one considers SCs with actors

from different companies.

• Cost efficiency: This has long been a determining factor in produc-

tion and logistics planning, where the aim is to achieve maximum out-

put with minimum input. However, the frame of reference for cost

efficiency must be kept in mind. For example, cost efficiency in one

production unit may be achieved through large batch sizes, which in

turn may lead to high levels of work-in-process inventory between SC

units—and therefore to lower cost efficiency in the system as a whole.

• Customer focus: This has become increasingly important in recent

years as customers have demanded product variation and differentia-

tion and the market has moved from a push market to a pull market.

Regarding the main tasks of SCM, Arnold et al. (2008, p.194) identify

three levels of planning: the first and strategic level is the general SC design,

namely the selection of locations and partners. The second, tactical, level

is SC planning at a more detailed level, which includes the timely consid-

eration of demand forecasts, orders, inventories, transport resources, and

more. Lastly, at the operational level of SC execution, the aim is to imple-

7



2 Basics

ment the abovementioned plans, which is facilitated by the information

and communication available. During execution, it is also necessary to

constantly react to the real situation that the SC is confronted with.

2.2 Inventory Management

As mentioned in the previous section, inventory management is a tactical

level of planning. The term inventory management is often used in a general

context to describe the management processes that ensure the availability

of products (CSCMP 2013); thus, it includes one of the main objectives of

SCM. Axsäter (2015) uses the term inventory control to refer to the inven-

tory management decisions that directly affect inventory levels. However,

inventory management is often used synonymously. Other terms are re-

plenishment (Axsäter 2015) and ordering policies (Arnold et al. 2008, p.153),

which often refer to the same thing. Interestingly, because replenishment

policies are planned in advance, they belong to the tactical level of SC plan-

ning. However, with the day-to-day replenishment decisions due to chang-

ing situations, it is of course a large part of operational “doing”.

Inventories exist because of the process characteristics of the different SC

processes, and therefore, they cannot be decoupled from them. Procure-

ment, for example, may want to order in large batch sizes to obtain certain

volume discounts. Transportation, on the other hand, is tied to the capacity

of certain means of transportation, and therefore, it tends to order in dif-

ferent batch sizes. Sales, on the other hand, may want to keep a high level

of stock to be able to respond to any customer request. Finally, the finance

department does not want high levels of inventory because it ties up capital

that is not available in the form of cash. Inventory management balances

all of these different objectives, which can be summarized as ensuring the

availability of materials and products while keeping stock levels sufficiently

low. (Axsäter 2015) (Tempelmeier 2015)

Inventory is also a buffer against all kinds of uncertainties in SCs. Uncer-

tainty comes from all directions—starting with customer demand, which in

8



2.2 Inventory Management

most cases is not deterministic but varies over time. For planning purposes,

demand forecasts are made, which contain the uncertainty of forecast er-

rors, as most forecasting models are not perfect. Another uncertainty arises

from stochastic process times during the replenishment period. These are

caused by machine or transport breakdowns, organizational decisions dur-

ing production (e.g., prioritization), and limited capacities (e.g., material,

machinery, and personnel). Inventory is also held against these uncertain-

ties. (Tempelmeier 2015)

The performance of inventory management is measured against the

abovementioned objectives: the ability to deliver is expressed in terms of

service level. In general, whether an incoming order can be fulfilled from

stock should be measured. As orders consist of one or more units, there

are different methods for calculating the corresponding service levels de-

pending on the focus—that is, whether it is on the ability for an order to

be fulfilled at all or on the quantity of the order that can be fulfilled. (Tem-

pelmeier 2015)

The need for sufficiently low stock levels compared with the achieved ser-

vice levels is often expressed in terms of the associated costs. According to

Axsäter (2015), Berling (2005), Silver et al. (2017) and Zipkin (2000), various

types of costs are associated with inventory management:

• The holding cost per unit and time should be related to the value of

capital tied up in inventory. It is often determined as a percentage of

the unit value. In addition, costs such as material handling, storage,

organizational, and damage costs could be considered.

• Ordering costs are fixed costs for each replenishment, regardless of

the batch size. They may include handling costs such as inspections

and invoices, order forms, or authorizations.

• Shortage costs occur when an ordered product cannot be delivered

to the customer on time. Either the order is backordered and the

customer waits for the order, or sales are lost because the customer

switches to another supplier or product. In the first case, the cost

could be extra administration, extra transport costs, or discounts for

9



2 Basics

late deliveries. In the case of lost sales, the originally planned revenue

contribution is also lost. In most cases, the cost of shortages is difficult

to determine.

The formalized problem of inventory management is the so-called re-

plenishment or inventory control problem. Prestwich et al. (2012) defines

this problem for a set of planning periods T with demand dt arising in each

planning period t. The objective is to find an appropriate replenishment

plan given the planning objectives and constraints. The plan consists of

corresponding orders ot for each period t.

A well-known phenomenon in the field of SCM is the bullwhip effect

(BWE), which Forrester (1961) describes as a small change in demand at the

customer side that leads to more severe changes as it moves up the SC from

retailer to distributor to manufacturer. Lee et al. (1997) define the symp-

toms of the BWE as excess inventory, poor demand forecasting, either in-

sufficient or excessive capacity, poor customer service, uncertain produc-

tion planning, and high costs of correction.

The main causes of BWE lie in four main reasons identified by Lee et

al. (1997):

• Demand forecast updates occur at each stage of the SC and infor-

mation about changes is not shared. This results in individual up-

dates depending on the demand signal received from the downstream

stage. These individual updates include safety stocks and other fac-

tors, such as those below, which simply result in higher demand for

the next stage; however, they are not explained and therefore cannot

be interpreted by the supplier stage.

• Order batching occurs for cost efficiency in transport and production

or for organizational reasons. This can result in orders being piled up

until a certain quantity or date is reached. This naturally distorts the

perception of demand at the upstream node.

• Price fluctuations lead to irregular buying behavior, as low prices may

encourage forward buying and therefore high demand when prices are

10



2.2 Inventory Management

low. When prices rise again, buying stops as the accumulated stock is

first used up. Such fluctuations make planning difficult.

• Rationing and shortage games occur when a supplier is unable to

meet all demand but rather only part of it. Due to rationing, each cus-

tomer may receive only a fraction of what was requested. This leads to

exaggerated and thus distorted demand on the part of the customers,

because they know they will only receive part of the order.

Lee et al. (1997) also suggest solutions to the abovementioned problems,

such as avoiding multiple demand forecasts, reducing order lot sizes, keep-

ing prices stable, and avoiding shortage games by rationing through past

demand figures.

The BWE can be quantified, as Fransoo and Wouters (2000) demonstrate,

by comparing the coefficients of variance of demand in two stages of the

SC. Another possibility is to follow the approach of Chen et al. (2000) by

comparing the variances of customer demand and the resulting demand

at the supplier. Whichever approach is chosen, since the BWE affects the

demand variance, a measure such as one of the two mentioned would be

appropriate.

The BWE can be experienced in a simulation game called the Beer Game,

which was developed at the MIT Sloan Management School in the 1960s.

Goodwin and Franklin (1994) describe it for the use of a computer sim-

ulation to teach managers what happens with their decisions. The struc-

ture resembles a simple linear SC of four stages, namely retailer, wholesaler,

distributor, and factory, facing customer demand. The demand starts out

steady but suddenly changes to another level, which the BWE illustrates

very impressively with all of the aforementioned problems.

There is a broad and impressive research field of mathematical models

for solving the problem of inventory and thus order coordination in SCs. An

attempt to summarize them here is not made; rather, the interested reader

may wish to consult the work of Axsäter (2015) and Tempelmeier (2015).

In addition to the mathematical models mentioned above, there are ap-

proaches such as vendor managed inventory (VMI). This attempts to facil-
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itate the coordination of inventories by shifting the responsibility from the

customer to the supplier. The idea is to reduce information asymmetries

and unite individual interests between SC stages, which in most cases are

independent entities with their own agendas. (Arnold et al. 2008, p.272)

2.3 Reinforcement Learning

Sutton and Barto (2018) define RL very broadly, with the basic idea ex-

plained by the schema in Figure 2.2: An agent interacts with an environ-

ment by performing different actions. The environment processes these

actions and transitions to a new state, which also leads to a corresponding

reward for the action taken. Based on the reward and the new state, the

agent decides on its next action.

The agent’s learning is controlled by the reward signal as it defines the

goal of the RL process. A reward signal is sent from the environment to the

agent after an action has been performed. It depends on the action per-

formed and the current state of the environment. The goal of the agent is to

maximize the rewards received over time. The reward signal therefore de-

fines the learning process by rewarding good and punishing bad actions. As

the reward signal is immediate feedback regarding what is good, the value

function instead indicates what is good in the long run. It can be said to

accumulate rewards starting from a particular state and considering what

states are likely to follow. For example, a state may have a low immedi-

ate reward but a high value because the states that follow it are highly re-

warded. A value function can be a simple function or look-up table, or it

can involve complex calculations and searches. The value function itself

is updated during the training process by a special RL algorithm that com-

bines the old policy with updates of the recently received state–r eward pair.

(Rebala et al. 2019) (Sutton and Barto 2018)

Sutton and Barto (2018) then distinguish between two main methods for

solving RL problems that are illustrated in Figure 2.3 - namely tabular and

approximate methods. Tabular methods enumerate all possible states and
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Figure 2.2: Schematic Representation of RL, Based on Sutton and Barto
(2018)

stores the corresponding value for each possible action. This limits the state

space to known and visited states during training. However, it may not be ef-

ficient for large state spaces, which is why the second family of methods ex-

ists. With approximate methods, one attempts to find a function that maps

states and actions to values. As this requires fewer parameters than a full

enumeration of the state space, this is a major advantage of approximate

methods. A typical function approximator would be an artificial neural net-

work (ANN). Its properties allow generalization to unknown states and ac-

tions, which would overcome one of the limitations of tabular methods.

(Rebala et al. 2019) Solutions for the first family of methods (i.e., tabular)

are often optimal, as policies can be determined in an exact manner. Exam-

ples include dynamic programming, Monte Carlo methods, and temporal

difference learning. For the second family of methods, as the name sug-

gests, solutions are often only approximate. Examples include on and off

policy methods and policy gradient methods. (Sutton and Barto 2018)

The attentive reader may have already recognized the basic idea of RL

from another context—namely that the mathematical model behind RL

is the so-called Markov decision process (MDP). MDPs are time-discrete

stochastic control processes that arise when a decision not only has im-

mediate effects but also influences future decisions. The theory of MDPs

can be found in Waldmann and Stocker (2013). MDPs can be solved using

various methods, such as linear programming as well as value and policy

iteration if the full model of the MDP is known. If, for example, the reward

13
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Figure 2.3: Methods of RL, Based on Sutton and Barto (2018)

function or transition matrix is not known, then this can be overcome by an

RL agent. (Li et al. 2006) (Taylor and Tuyls 2010)

In most of the aforementioned RL methods, the main idea is to learn the

action-value relations to derive an optimal policy. In the context of policy

gradient methods, this is different, as instead of learning the action–value

relations, the policy is learned directly. This means that while the value

function can be used to learn the policy, it is not needed for the action selec-

tion itself when applied. Within the group of policy gradient methods, there

is a subgroup called actor–critic methods, where the actor learns the policy

while the critic learns the value function. (Sutton and Barto 2018) (Rebala

et al. 2019) An advantage of policy-based methods is that they can generate

stochastic policies, which is useful for some types of problems where the

policy is stochastic rather than deterministic. A popular example of this is

poker, where the decision to bluff or not to bluff is best made stochastically.

Another advantage of policy-based methods is their ability to deal with in-

complete state information. When state information is incomplete, as in

the case of poker where one does not know one’s opponent’s hand, the best

deterministic action is stochastic. (Rebala et al. 2019)
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For all kinds of machine learning algorithms, and therefore also for pol-

icy gradient methods in RL, the subject of hyperparameter optimization

is crucial. Learning algorithms are mainly controlled by a number of pa-

rameters that determine the learning rate, step sizes to be taken, discount

factor gamma, clipping factors, and many more, and which are referred to

as hyperparameters. (Rebala et al. 2019) (Schulman et al. 2017) (Zhang et

al. 2021) These parameter settings are known to have a huge impact on the

performance of the model, and therefore, they must be set according to the

specific domain. (Zhang et al. 2021) The choice of the right combination of

hyperparameters can be made by experts through experience as well as trial

and error. Alternatively, there is increasing development in automating the

hyperparameter search through a structured search of the possible settings,

resulting in plug-and-play solutions for implementation.

For more information on RL, policy gradient methods, and machine

learning methods in general, including the principle of ANNs, Rebala et

al. (2019) provide a good overview. For an in-depth introduction to the

working principle of policy gradient methods in particular and RL in gen-

eral, the work of Sutton and Barto (2018) is a good reference.
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3 Existing Approaches towards

Reinforcement Learning for

Inventory Control

Learn from yesterday, live for today, hope for tomorrow.

The important thing is not to stop questioning.

– Albert Einstein

As mentioned in Section 2.2, a wide variety of approaches exist for solv-

ing the replenishment problem. Therefore, this chapter presents a review

of the literature considering the combination of RL and inventory control.

The focus is on replenishment planning, which considers one product to be

planned, as opposed to the joint replenishment problem, which involves a

variety of products. Nevertheless, there are examples of this case, as it con-

tains interesting approaches on other levels and should not be omitted.

A few approaches to solving the replenishment problem using RL already

exist, with promising results. Most of them claim that their models work

well, and in some cases even more effectively than some benchmark poli-

cies. Therefore, the following sections compare the existing approaches in

terms of their modeling of the SC, which represents the environment for

the RL setting; the modeling of the RL setting itself; and the data used for

training and testing.
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3.1 Modeling of the Supply Chain

All authors in the defined literature focus on SCs. The differences lie in the

modeled characteristics of the SCs on the one hand and the centrality of

the planning instance on the other. This seems to be of particular interest

when SCs do not only consist of a single SC location but rather represent

whole supply networks that consist of several stages and a varying number

of nodes at each stage with their own and independent interests. The cen-

trality of planning can therefore be determined by the level at which plan-

ning occurs. Centralized planning refers to a policy that receives input to

make decisions for an entire supply network and makes decisions for all of

the SC nodes that it contains. By contrast, decentralized approaches seek to

incorporate different policies, such as one for each node, that find a good

local decision for each node and work well together in a supply network.

The training of the policies in the decentralized case could be performed

together or separately. The simple assumption for centrally planned SCs is

a shared reward function, whereas for decentralized SCs it is a non-shared

reward function. This favors the advantages of the decentralized models as

they could be trained separately and then assembled into a planning net-

work at runtime.

As Table 3.1 indicates, a variety of approaches exist. Earlier approaches

seem to favor centralized planning models, while more recent publications

seem to favor decentralized planning more often. Nevertheless, earlier ap-

proaches, such as those of Chang Ouk. Kim et al. (2005), Chang Ouk Kim

et al. (2008), Yang and Zhang (2015) and Xu et al. (2009)), have already com-

pared a centralized with a decentralized SC.

‘Classical’ centralized approaches, such as those of Giannoccaro and

Pontrandolfo (2002), Chaharsooghi et al. (2008), Sun and Zhao (2012), Prest-

wich et al. (2012), Hubbs et al. (2020) and Gokhale et al. (2021) model some

kind of master planner who makes decisions for all nodes equally and in-

terdependently. This explains the design of holistic reward functions for the

whole SC, as there is only one decision-making instance.
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The central approach in the studies of Chang Ouk. Kim et al. (2005),

Chang Ouk Kim et al. (2008), Kwon et al. (2008), Sui et al. (2010) and Zarandi

et al. (2013) is similar to VMI in that the second stage decides whether to

ship to the various nodes in the first, more downstream stage. This concept

leads to the abovementioned classical approach, as the authors have only

considered two-stage SCs, in which case a VMI is conceptually a central

planning instance. For larger SCs, the concept would need to be adapted.

In the decentralized case of the other publications, there is a decision

maker for each SC node. Regarding the reward function, there are two pos-

sibilities during training: each agent attempts to optimize its own reward

locally and could therefore be trained separately from the other agents, or

different agents share a reward function similar to the one in the central

case and are therefore trained together. Most of the mentioned studies

have modeled the problem with separate reward functions. The exception

is Meisheri et al. (2019), who model a more complex supply network that

consists of a local distribution center and 1,000 retailers, each selling 220

products. To reduce complexity, a decentralized approach seems appro-

priate in their case. As far as hints could be found in their paper, Meisheri

et al. (2019) train a policy that is implemented for each retailer that orders

from the local distribution center and one of its products. The reward func-

tion for this policy includes a shared parameter that somehow connects the

individual policies, in addition to product-specific rewards such as cost.

The authors call the common parameter the fairness parameter to ensure

similar inventory levels across all products, rather than some with low and

others with high levels.

As Kara and Dogan (2018) consider the simplest SC consisting of one

node at one stage, the distinction between a centralized and a decentral-

ized approach cannot be made.

Regarding the SC models considered, the variety ranges from simple lin-

ear one-stage and one-node models in the study of Kara and Dogan (2018)

to huge divergent models like the one of Meisheri et al. (2019). The SC struc-

ture of the considered models is mostly a linear or divergent one; according

to current knowledge , no one has yet investigated a convergent one. A con-
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vergent SC structure would correspond to an assembly system or similar.

This may be due to the assumption that the development of a linear model

into a convergent one is simply a matter of using the bill of materials and the

product structure itself to calculate the appropriate replenishment quanti-

ties once the general quantity required has been determined.

Speaking of supply networks or even linear chains, the BWE is an interest-

ing topic to investigate. Notably, only Yang and Zhang (2015) have analyzed

the resulting BWE when applying their adaptive inventory control.

Most of the authors listed in Table 3.1 have considered a single prod-

uct case that corresponds to the replenishment problem. Sui et al. (2010),

Meisheri et al. (2019) and Gokhale et al. (2021) consider multiple products

and therefore attempt to find a solution to the so-called joint replenishment

problem.

Thus, differences in SC modeling lie in the consideration of replenish-

ment times between different stages, how to deal with unfulfilled demand,

and whether capacity constraints exist. For replenishment lead times, there

is again a wide range, from zero lead times to stochastic lead times.

In reality, lead times are usually greater than zero due to organizational

processes, such that if an order is placed on day t, in the best case with

order acceptance by telephone, supplier availability, and immediate deliv-

ery processing, then the order will be delivered early the next day. (Tem-

pelmeier 2015) In addition, the assumption of stochastic lead times is use-

ful for events such as stock-outs at the supplier, stochastic process times of

logistics processes, or upstream production processes. (Tempelmeier 2015)

Unmet demand can be dealt with in two ways: In the case of backorder-

ing, it is assumed that the customer is willing to wait for their product when

a stock-out occurs. Backorders are therefore filled as quickly as possible.

For sales organizations, this may not always be the case. This is why the

concept of lost sales exists, which occur when the customer does not find

the desired product available and therefore chooses an alternative. This is

what happens in the study of Dogan and Güner (2015). It can be said that
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it is not always easy to detect lost sales if the customer does not inform the

supplier. (Zijm et al. 2019)

Capacity constraint is considered in some cases and for different objects:

Giannoccaro and Pontrandolfo (2002), Hubbs et al. (2020) and Gokhale et

al. (2021) have considered a warehouse with a limited number of storage lo-

cations, while Kwon et al. (2008) and Zarandi et al. (2013) have considered a

limited production capacity, as do Hubbs et al. (2020). This is also the case

for each node in the beer game setting considered in Mortazavi et al. (2015).

Sui et al. (2010) and Meisheri et al. (2019) have modeled limited transport

capacity (e.g., by the number of trucks), which works like batch sizes in the

former and is expressed by volume and weight limits in the latter publica-

tion.

Regarding the different focus of the approaches, Jiang and Sheng (2009)

and Dogan and Güner (2015) have integrated price sensitivity and pricing

algorithms into their SCs, while Kara and Dogan (2018) integrate the age in-

formation of products and their expiry date. In both areas, namely price and

product perishability, the literature could be expanded; however, it should

be limited to these three to keep the focus on the present problem.
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Replenishment
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Unmet
Demand

Capacitated

Giannoccaro and Pontrandolfo
(2002)

L (1, 1, 1) C Yes 1 L∼U(1, 3) BO Warehouse

Chang Ouk. Kim et al. (2005) D (1, 4) Both Both 1 Determ. LS -

Chaharsooghi et al. (2008) L (1, 1, 1, 1) C Yes 1 L∼U(0, 4) BO -

Chang Ouk Kim et al. (2008) L (1, 1) Both Both 1 Determ. BO -

Kwon et al. (2008) D (1, 4) C Yes 1 Determ. LS Manufacturer

Jiang and Sheng (2009) D (10, 80) DC No 1 Determ. LS -

Chang Ouk Kim et al. (2010) L (1, 1, 1) / (1, 1,
1, 1)

DC No 1 Determ. - -

Sui et al. (2010) D (1, 10) C Yes 2 Determ. LS Transport

Sun and Zhao (2012) L (1, 1, 1, 1) C Yes 1 - BO -

Prestwich et al. (2012) L / D (1, 1, 1) / (1, 2) C Yes 1 L = 0 - -

Zarandi et al. (2013) D (1, 4) C Yes 1 Determ. BO Supplier

Dogan and Güner (2015) D (1, 2) DC No 1 L = 0 LS / BO -

Mortazavi et al. (2015) L (1, 1, 1, 1) DC No 1 L∼U(a, b) BO Each Node

Yang and Zhang (2015) (and Xu
et al. (2009))

L (1, 1) Both Both 1 Determ. - -

Kara and Dogan (2018) L (1) - - 1 Determ. LS -

Meisheri et al. (2019) D (1, 1000) DC Partially 220 - LS Transport

Hubbs et al. (2020) L (1, 1, 1, 1) C Yes 1 Determ. LS / BO Warehouses

Gokhale et al. (2021) D (1, 4) C Yes 100 Determ. BO Warehouses,
Production

Table 3.1: Comparison of Literature Concerning Supply Chain Modeling
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3.2 Modeling of a Reinforcement Learning System

3.2 Modeling of a Reinforcement Learning

System

The general RL setting described in Section 2.3 can be used to distinguish

the different publications in terms of the training algorithm used, the func-

tion approximator for the value function, the design of the reward function,

the action to be taken, and the input state representation.

Some of the approaches focus on the development of a specific train-

ing algorithm that should be adapted to the inventory management set-

ting. This is the case for Chang Ouk Kim et al. (2008)), who develop an

action–reward learning algorithm into an asynchronous one. The asyn-

chronous part considers the fact that rewards for the same action can

change over time. Furthermore, Kwon et al. (2008) extend a myopic RL

algorithm to a case-based one, which they call case-based myopic RL. The

idea behind it is to discretize the state space to more effectively deal with the

otherwise huge state space. Developing this idea further,Jiang and Sheng

(2009) seem to develop a case-based RL approach, which they call case-

based RL. Moreover, Prestwich et al. (2012) develop a training algorithm

based on an evolutionary algorithm to set the weights for the ANN that

represent the value function.

The other group of publications focus on the RL setting and the mod-

eling of the different parts; therefore, they make use of already known al-

gorithms. This is the case for Giannoccaro and Pontrandolfo (2002), who

use the SMART Algorithm of Das et al. (1999) and compare it with a bench-

mark policy. Furthermore, Chang Ouk. Kim et al. (2005), Chang Ouk Kim

et al. (2010) and Yang and Zhang (2015)/Xu et al. (2009) have used an ac-

tion–reward method, but they have not specified it in detail. There is a

large fraction of Q-learning approaches by Chaharsooghi et al. (2008), Sui

et al. (2010), Sun and Zhao (2012), Dogan and Güner (2015), Mortazavi et

al. (2015) and Kara and Dogan (2018), with the latter pair also implement-

ing the SARSA algorithm. Lastly, Zarandi et al. (2013) implement a temporal

difference learning approach.
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The more recent approaches of Meisheri et al. (2019), Hubbs et al. (2020)

and Gokhale et al. (2021) have also incorporated the idea of actor–critic

(A2C) algorithms. Learning algorithms are said to be actor–critic ones if they

are able to learn approximations to both the policy and the value function.

The actor corresponds to the learned policy, while the critic corresponds to

the value function. (Rebala et al. 2019) Meisheri et al. (2019) adapt the A2C

to its parallel computation setting, while Gokhale et al. (2021) compare the

A2C algorithm with two other policy gradient methods, namely trust region

policy optimization (TRPO) and proximal policy optimization (PPO). Hubbs

et al. (2020) use a standard PPO training algorithm.

As explained in Section 2.3, the value function can be calculated exactly

and stored in a table or something similar, or approximated by some kind of

function approximator (e.g., an ANN). For publications where the function

approximator is explicitly specified, the results can again be found in Ta-

ble 3.2. The approach of Zarandi et al. (2013) stands out as they use a fuzzy

rule-based function to approximate the value function.

The approaches can then be distinguished by the action the authors de-

cide to take and the reward function that judges the goodness of the action

taken. In the current literature, there are two main groups of actions taken.

The different groups can be seen in Table 3.2. The first large group decides

directly on the quantity to be ordered from the supplier at the level of the SC

node. Sui et al. (2010) can be assigned to this group, as their model formally

decides on the quantity sent from the distribution center to the retailers.

However, as they assume a VMI approach, this corresponds to the quan-

tities ordered by the retailers when adapted to a non-VMI approach. The

second group decides on the safety lead time of the SC node, the idea be-

hind which is to decide on a certain safety lead time given a certain state

and to adjust the reorder points accordingly. The decision itself can be ex-

pressed in terms of the safety factor that the SC node needs to hold or the

number of stocking units that need to be added to the reorder point.

Those decisions are judged by different measures, where again a distinc-

tion between two main groups can be drawn: the first group judges based

on the cost provoked by the taken action. These cost functions differ in the
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positions they consider. Most of the time, holding costs for stocked items

and penalty costs for late deliveries are considered. Fixed ordering costs

have only been integrated by Giannoccaro and Pontrandolfo (2002), Prest-

wich et al. (2012) and Mortazavi et al. (2015). Giannoccaro and Pontran-

dolfo (2002) and Mortazavi et al. (2015) additionally integrate transporta-

tion costs, whereas Sui et al. (2010) only add transportation cost. Further-

more, Hubbs et al. (2020) integrate ordering costs but not on a fixed ba-

sis and at the unit level. Moreover, Dogan and Güner (2015) and Gokhale

et al. (2021)integrate manufacturing costs alongside additional cost parts,

which when combined with the revenue made sum to the total profit func-

tion they consider as a reward. As Kara and Dogan (2018) and Meisheri et

al. (2019) include the perishability of products, they also reward actions by

the cost for items that have expired. Meisheri et al. (2019) additionally in-

clude a cost factor for a leveled order behavior.

Another way to assess the quality of the action taken is to examine the

resulting service level. Here, the idea is to meet a predefined target service

level, as opposed to generally rating higher service levels higher. This helps

to limit inventory levels, which would otherwise become extremely high.

Chang Ouk. Kim et al. (2005), Kwon et al. (2008), Jiang and Sheng (2009),

Chang Ouk Kim et al. (2010) and Yang and Zhang (2015)/Xu et al. (2009)

have chosen this option. Chang Ouk Kim et al. (2010) use the deviation from

the target service level for the retailer node and the customer waiting time

for order fulfillment for all upstream nodes as a reward signal.

Most of the aforementioned publications have used the stock level at the

different SC nodes as a state description. This has also been done by Gi-

annoccaro and Pontrandolfo (2002), Chaharsooghi et al. (2008), Kwon et

al. (2008), Mortazavi et al. (2015) and Hubbs et al. (2020). The approaches

distinguish between stocks in storage and stocks in transit. Some include

the sum of both, while others include only on-hand stocks.

By contrast, Jiang and Sheng (2009) do not include any stock position

at all, but rather only the actual reorder point and the expected demand.

This is consistent with the approach of not deciding on order quantities,

as many other authors have done, but on the reorder point. Sun and Zhao
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(2012) and Zarandi et al. (2013) ) include the backorder position in addition

to the inventory position in the input state representation, while Prestwich

et al. (2012) include time information in the form of the actual time period.

Chang Ouk. Kim et al. (2005), Jiang and Sheng (2009), Chang Ouk Kim et

al. (2010), Sui et al. (2010) and Yang and Zhang (2015)/Xu et al. (2009) have

included historical demand data in their state description. They mostly use

it to make some kind of time series forecast to derive future demand.

The input state representation advances when authors consider more

specialized problems, such as in the following examples: Dogan and Güner

(2015) consider a mixed ordering and pricing problem, and therefore, they

include the previous term price. Kara and Dogan (2018) consider the per-

ishability of products in their problem setting, and therefore, they include

the age information in the state description. They also compare whether

including age information in addition to stock levels in the input state rep-

resentation improves the results.

Noteworthily, Meisheri et al. (2019) model the states in a much more

elaborate manner than their predecessors. In addition to the inventory lev-

els of each product, since they consider a multi-product problem, and the

aggregated forecast of future demand as product-related inputs, they add a

list of product metadata, such as the standard deviation of the forecast er-

ror, unit volume and weight, and an indicator of product deterioration due

to not being called off by orders. As the last two inputs, the total volume and

total weight of all planned products are modeled. This can be explained by

the constraint of transport volume and weight that the authors add to their

problem.
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Reference
Training Function

Reward Function Action
Input

Algorithm Approximator IP Dhist Other

Giannoccaro and
Pontrandolfo (2002)

Standard - Cost (F, T, H, P) Order
Amount

✓

Chang Ouk. Kim et al. (2005) Standard - Service Level Safety Lead
Time

✓ ✓

Chaharsooghi et al. (2008) Standard Q-Table Cost (H, P) Order
Amount

✓

Chang Ouk Kim et al. (2008) Self-
development

- Cost (H, P) Safety Lead
Time

Kwon et al. (2008) Self-
development

- Service Level Safety Factor ✓

Jiang and Sheng (2009) Self-
development

- Service Level Order-Up-To-
Level

✓ ✓

Chang Ouk Kim et al. (2010) Standard - Target Service Level,
Waiting Time

Safety Lead
Time

✓ ✓

Sui et al. (2010) Standard ANN Profit (H, P, T) Order
Amount

✓ ✓

Sun and Zhao (2012) Standard - Cost (H, P) Order
Amount

✓

Prestwich et al. (2012) Self-
development

ANN Cost (F, H, P) Order
Amount

✓ ✓

Zarandi et al. (2013) Standard Fuzzy Rule-Based
Function

Cost (H, P) Order
Amount

✓

Dogan and Güner (2015) Standard - Profit (H, P, M) Order
Amount, Price

✓ ✓

Mortazavi et al. (2015) Standard Q-Table Cost (F, T, H, P, M) Order
Amount

✓

Yang and Zhang (2015) (and
Xu et al. (2009))

Standard - Service Level Safety Factor ✓ ✓

Kara and Dogan (2018) Standard - Cost (P, E) Order
Amount

✓ ✓

Meisheri et al. (2019) Self-
development

ANN Cost (P, E, N) ✓ ✓ ✓

Hubbs et al. (2020) Standard ANN Profit (F, H, P) Order
Amount

✓

Gokhale et al. (2021) Standard ANN Revenue - Cost (H, P,
M)

Order
Amount

✓

Table 3.2: Comparison of Literature Concerning RL in Inventory Control
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3.3 Data

In most publications, it is not particularly clear which data are used for

training and which are used for evaluation. Therefore, this section refers

to data in general and assumes a reasonable split between training and

evaluation data sets, unless otherwise specified. In all of the publications

mentioned thus far, the demand data are the main varying component

and therefore serve as training data, comparable to training data in su-

pervised or unsupervised learning. The chosen demand scenarios can be

distinguished by the underlying distributions, such as simple stationary,

elaborated stationary, and non-stationary demand. Simple ones use fixed

data sets; for example, Sun and Zhao (2012). Chaharsooghi et al. (2008) and

Sui et al. (2010) use uniformly distributed demand, the latter with varying

intervals, whereas Prestwich et al. (2012) add a stochastic summand to the

deterministic demand, thus creating a discrete distribution of demand.

In addition, Dogan and Güner (2015), Hubbs et al. (2020), Kara and Do-

gan (2018) and Giannoccaro and Pontrandolfo (2002) create their data sets

with two Poisson, one Gamma and one Erlang distributed random vari-

ables, respectively; thus, they fall into the stationary demand group. Gi-

annoccaro and Pontrandolfo (2002) and Kara and Dogan (2018) work with

a fixed mean while varying the shaping and scaling parameters to gener-

ate different demand distributions. Giannoccaro and Pontrandolfo (2002)

also test agents trained on one demand pattern on another for robustness.

Furthermore, Gokhale et al. (2021) use all three distributions to model de-

mand while comparing the effect of the distributions on the convergence

and speed of different training algorithms.

Moreover, Chang Ouk. Kim et al. (2005), Chang Ouk Kim et al. (2008),

Kwon et al. (2008), Jiang and Sheng (2009), Chang Ouk Kim et al. (2010),

Zarandi et al. (2013), Mortazavi et al. (2015), Yang and Zhang (2015) and

Xu et al. (2009) have used non-stationary demand data for training. They

have modeled demand as a random variable following a normal or Poisson

distribution with randomly varying means and variance coefficients. This
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variation is realized by a factor X∼U(a,b)), which is added to the respective

means and applied every T∼U(c,d) intervals with a, b, c, d ∈ N.

Real-world demand data have only been used by Meisheri et al. (2019)),

who use a public data set from the bricks and mortar industry.

Despite the earlier assumption of a reasonable split between training and

test data sets, it remains interesting to see whether the models were trained

on one demand pattern and tested on another for robustness reasons. The

short results are provided in the last column of Table 3.3. The vast major-

ity of studies have used different demand scenarios in the form of non-

stationary demand and/or changing variances or other parameters, such as

lead times and costs. However, in the papers of Chang Ouk Kim et al. (2008),

Kwon et al. (2008), Jiang and Sheng (2009), Chang Ouk Kim et al. (2010), Sui

et al. (2010), Sun and Zhao (2012), Prestwich et al. (2012), Yang and Zhang

(2015) and Kara and Dogan (2018)), it is not clear whether, for each sce-

nario, a separate model was trained on that scenario, or whether a model

was trained on one scenario and tested on others. The uncertainty may

stem from the word simulation, which may be used in some publications as

equivalent to the term training ; however, there is still no clear distinction

between the training and testing phases.

Chaharsooghi et al. (2008) describe how the same model was used for two

scenarios, one with deterministic and the other with uniformly distributed

demand, as well as for Mortazavi et al. (2015) with non-stationary demand.

Some authors have focused on different research questions, such as Dogan

and Güner (2015)), who investigate different retailer sales strategies; Meish-

eri et al. (2019), who use real data; and Gokhale et al. (2021), who focus on

comparing training algorithms in combination with different demand dis-

tributions.

To the best of the present author’s knowledge, only Giannoccaro and Pon-

trandolfo (2002) have explicitly stated that they trained a model on one de-

mand pattern and then tested it on larger variances to test the robustness of

the model.
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Reference Demand Distribution Stationary Testing of
Robustness

Giannoccaro and Pontrandolfo
(2002)

D∼Erl(n
µ

, 1
CV 2 ) Yes Yes

Chang Ouk. Kim et al. (2005) D∼N(50, 10) and
D∼N(50+X, σ)

No -

Chaharsooghi et al. (2008) D∼U(0, 15) Yes No

Chang Ouk Kim et al. (2008) D∼N(100+X, σ) No -

Kwon et al. 2008 D∼N(50+X, σ) No -

Jiang and Sheng (2009) D∼N(20+X, σ) No -

Chang Ouk Kim et al. (2010) D∼N(200+X, σ No -

Sui et al. (2010) D∼Poiλ Yes -

Sun and Zhao (2012) Predefined Demand Time
Series

Yes -

Prestwich et al. (2012) Discrete Demand Yes -

Zarandi et al. (2013) D∼N(50+X, σ) No No

Dogan and Güner (2015) D∼Poiλ=5 Yes No

Mortazavi et al. (2015) D∼Poiλ+X No No

Yang and Zhang (2015) (and Xu
et al. (2009))

D∼N(50, 10) and
D∼N(50+X, σ)

No -

Kara and Dogan (2018) D∼Gamma( 1
CV 2 , p

µ=20
) Yes -

Meisheri et al. (2019) Demand Data from Stores - No

Hubbs et al. (2020) D∼Poiλ=20 Yes No

Gokhale et al. (2021) D∼Poiλ, N(µ, σ) and
Gamma(p, b)

Yes No

Table 3.3: Literature Comparison Data
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3.4 Chapter Conclusion

This chapter has provided a detailed analysis of the current RL approaches

to inventory management. The focus has been less on the algorithms used

than on the modeling of the whole RL setting, such as the environment in

the form of SCs, the input state representation, the design of the training,

and the data. The following research gaps have been determined to exist in

the current state of knowledge:

As far as the representation of the input state is concerned, a wide va-

riety exists between different approaches, as demonstrated in Section 3.2.

However, no investigations or comparisons have been conducted into how

it should be designed for the application of RL in inventory management to

achieve good results. Furthermore, in relation to the design of training and

testing data, which data the models have been trained and then tested on

is not particularly clear in the existing literature. An interesting question is

whether a model trained on one demand scenario learns to abstract from it

to another when tested.

Moving on to SCs and supply networks, some approaches have distin-

guished between centralized and decentralized training approaches. Again,

a comparison of the two systems would be useful, as the possibility of de-

centralized, separate training would allow for easier adaptation to changing

SCs. As the BWE is a well-known problem in SCs, the study of its evolution

under the different approaches is an underrepresented topic in the litera-

ture.

As a final conclusion regarding the data used to test the developed mod-

els, it can be stated with certainty that the literary canon lacks the use of

real data instead of systematically generated data. Created data seem to be

useful because they can be controlled; therefore, certain conclusions can be

drawn on a more artificial and thus solid basis. Nevertheless, models such

as this one should also work for real-world applications. This problem is

addressed later in Chapter 7.
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4 Model Structure of

Reinforcement Learning for

Inventory Control

The secret of modeling is not being perfect.

– Karl Lagerfeld

Following the schematic structure of RL depicted in Figure 2.2 and ex-

plained in Section 2.3, the aim of this chapter is to describe the general set-

ting, assumptions, and modeling choices for using RC for inventory man-

agement. It starts with a short description of the environment, namely the

SC model and the possibility of creating synthetic data to obtain a struc-

tured training and testing scenario later. This is followed by a description

of the agent, the actions it could take, and the corresponding learning al-

gorithm with parameter settings and a reward function. The chapter con-

cludes with a description of the implementation of the whole model and the

analysis set up for the following chapters.

4.1 The Environment

The environment is an SC model, the characteristics of which are described

in Section 4.1.1. Then, the method of generating synthetic training and test

data and the justification of the range of values of the model parameters are

discussed in Section 4.1.2.
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4.1.1 The Supply Chain Model

The underlying theory of SC modeling is based on the understanding of

models of the organization Verein Deutscher Ingenieure (2014), which

states that a model is a simplified representation of an existing or planned

system. Simplifications are made according to the characteristics relevant

to the study. The present model is characterised according to the character-

istics of SC models in Section 3.1. A schematic representation can be found

in Figure 4.1.

In an abstract way, the actors in an SC can be described as individual SC

nodes n, all of which act according to the following properties: each node

faces a demand dn,t from the downstream node in period t and orders ma-

terial, semi-finished or finished goods, hereinafter referred to as material in

general, of size on,t from the upstream node. From a node’s point of view,

upstream nodes are referred to as suppliers, while downstream nodes are

referred to as (internal or external) customers. The stocks at each node In,t

are affected by these material movements such that demands from the cus-

tomer node have a negative effect on stocks while realized orders placed at

the supplier node have a positive effect on stocks.

In the following, the notation for the different types of stocks from Tem-

pelmeier (2015) is used: Ipt is the stock that physically exists in the ware-

house. When demand arrives and is confronted with an on-hand inventory

of zero, this results in backorders. Backlogs are accumulated in the backlog

inventory Ift . Orders that have already been placed but have not yet arrived

are referred to as ordered stock Iot . The calculated available stock Idt then

results from Ipt − Ift + Iot .

External customer demand arrives on a discrete time axis (e.g., daily or

weekly) and follows a discretised gamma distribution. For example, Axsäter

(2015) and Tempelmeier (2015) propose using a gamma distribution for de-

mand modeling. Compared with normally distributed demand, realisations

of gamma-distributed random numbers are non-negative. In addition, the

gamma distribution is highly versatile with its two shape and scale parame-
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ters for modeling other distributions, such as the Erlang distribution, as its

special cases.

Similar to the concept of scheduling agreements in the automotive sec-

tor, the external end customer provides a forecast of its demand for a given

forecast interval. Once a demand amount is forecast, it is not fixed, but

it can still change until the call-off day, which is modeled using the fore-

cast error. The forecast error follows a discretized normal distribution and

is modeled as a function of average demand.

The demand cannot be influenced by marketing promotions or other

similar activities. Demand is fulfilled from stock; therefore, a make-to-stock

model is considered.

Transport times from one node to another, production times, and pos-

sible downtimes are aggregated in the replenishment time. Replenishment

times are stochastic and follow a discretized gamma distribution. As Tem-

pelmeier (2015) mentions, replenishment times are often modeled as a de-

terministic parameter. This is not the case in reality, where lead times are

mostly stochastic and unplanned interruptions occur.

Demand and replenishment lead times are treated as independent ran-

dom variables. Unsatisfied demand does not result in lost sales, but it is

backordered and satisfied as soon as stock levels permit. Partial backorders

are allowed. Warehouse capacity is not limited, allowing for unlimited in-

ventory. The first and most upstream node in the observed SC is faced with

an unlimited supply of material; thus, material availability is guaranteed

and only delayed by replenishment lead times.
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Figure 4.1: Schematic Linear SC Model

By including the possibility of forecast errors as well as stochastic lead

times, the present approach differs from most of the approaches in Sec-

tion 3.1; however, it makes the modeling a little more realistic and the result-

ing model a little more applicable to reality. According to Davis (1993) and

Verwijmeren et al. (1996), the main sources of uncertainty in SCs are those

that arise from supplier performance, manufacturing, transport processes,

and customer demand. Integrating stochastic lead times covers the uncer-

tainties in manufacturing and transportation processes as well as those that

arise from supplier performance. Uncertainty in customer demand is mod-

eled by not only stochastic demand but also forecasting errors, which are

empirical in many SCs.

According to the nature of RL, the simulation of the SC is conducted in

discrete time steps t, starting with the decision taken by the agent and end-

ing with the execution of the same. The aforementioned logic in updating

the different quantities, such as demand, ordered and received quantities,

as well as stock levels, can be observed in the schematic representation of

the simulation process in Figure 4.1.1. Today’s orders on,t are stored as future

stock, also known as order stock.
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Figure 4.2: Time-Discrete Simulation of a SC
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4.1.2 Synthetic Data Creation

Throughout most of the present work, the data are generated synthetically

to control the different characteristics to be analysed during the parameter

study. Nevertheless, the model is applied to a real-world example in Chap-

ter 7. As explained earlier, a gamma distribution is used to model demand

quantities and replenishment times. To obtain a variety of data scenarios,

time series of customer demand and replenishment lead times are created

by inputting the desired mean and coefficient of variation (CV) of the distri-

bution. The input is mapped to the specific shape and scale parameters of

the gamma distribution using Equation 4.3 and Equation 4.4.

With the CV of a distribution of the random variable X being

CV (X) =

√
V ar(X)

E(X)
(4.1)

and the mean and variance of a gamma distribution in dependence of

the gamma-specific shape and scale parameter p and b being

E(X) =
p

b
, V ar(X) =

p

b2
for X∼Gamma(p, b) (4.2)

the shape parameter p and the scale parameter b result in the following:

CV (X) =

√
(V ar(X)

E(X)
=

√
p
b2

p
b

=
1
√
p

⇔ p =
1

CV (X)2
(4.3)

E(X) =
p

b
⇔ b =

p

E(X)
(4.4)

The influence of the mean and CV can be seen in Figure 4.3, which

presents the probability density functions (PDFs) of gamma-distributed

variables. The mean remains the same for all curves, while the CV is var-

ied according to the legend provided. For a constant mean E(X), a lower
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Figure 4.3: PDF of Gamma Distribution with E(X) = 30.0 and Varying CV s

CV (X) implies a lower variance V ar(X) compared with the mean. Con-

versely, a higher CV (X) implies a higher variance compared with the mean.

The discretization of the distributions occurs to account for the discrete

nature of the products demanded or the full time units, such as hours,

days, or weeks, required for replenishment. Discretization is performed by

adding the probabilities to the integers until a certain probability mass 1− ε

is reached. The remaining ε is distributed equally among the m entries of

the probability vector:

P (X = x) = F (x+ 0.5)− F (x− 0.5) +
ε

m
(4.5)

In the case of the gamma-distributed replenishment times, a replenish-

ment time of zero is not considered. The probability is therefore removed

and added to the remaining entries according to their probability ratios:

P (X = x) = P (X = x) + P (X = 0)
P (X = x)∑m
i=1 P (X = i)

(4.6)

The forecast error is modeled as a normally distributed random number

with FE∼N(µ = 0, σ). The limits of the range of values or maximum devi-
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ations that the forecast error takes ∓FEmax are ratios of the mean demand

and determine σ, which satisfies the following relation:

FEmax
!
= F−1(1− ε

2
) (4.7)

4.2 The Agent and its Actions

Using the replenishment problem in Section 2.2 as a theoretical basis, the

agent can be given different decision scopes for different problem instances.

Problem instances differ in the number and connectivity of SC nodes. Var-

ious approaches to the scope of an agent exist. When considering SCs with

more than one SC node, there could be one agent per SC node, which would

result in a scenario with multiple decentralized decisions. Such a scenario

was described along with its advantages and disadvantages in Section 3.1.

The alternative, also described in Section 3.2, is a centralized approach

where one agent orders for several SC nodes.

Regardless of the central planning setting, the actions or decisions taken

by the agent remain the same - they concern the replenishment quantity on,t

for node n in period t. In decentralized approaches, the decision consists

of a single number, whereas the centralized approach outputs a vector of

numbers. Thus, the agent is introduced to the actual state of the SC and

decides according to its developed policy. The action space is limited by a

maximum order amount omax
n,t .

4.3 Training the RL Model

Following the advantages already explained in Section 2.3, the study of

Gokhale et al. (2021) and several previous studies, the agent’s policy in the

present model is trained by the so-called PPO. In terms of the aforemen-

tioned categories, it could be classified as a policy gradient method with an
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actor-critical approach. Gokhale et al. (2021) state that PPO is relatively ro-

bust to different demand distributions when applied in an inventory control

setting. More generally, Schulman et al. (2017) confirm its applicability to

more general problem settings while still performing well. This is achieved

by the stability of a TRPO combined with much simpler implementation

possibilities, which is introduced by Schulman et al. (2017) and called PPO.

In general, the difference between standard supervised learning and RL

is that supervised learning uses a static training data set. RL instead uses

training data that are constantly generated by the agent as it interacts with

the environment. Thus, the training data is constantly changing, which can

lead to instability in the training process. This generally makes training sta-

bility a problem in RL. With instability in the training data, huge changes in

the policy are made, which could destroy the previous training effort. TRPO

is a group of learning algorithms that address this problem. The general

idea is to not overdo the policy updates and thus promote a more stable

training process. For this reason, TRPO implements a so-called KL con-

straint along with the objective function, which limits the updating of the

policy to a narrow, so-called trust region. Instead of a separate constraint,

PPO includes this constraint in the objective function, which is much easier

to implement. (Schulman et al. 2017)

Compared with offline learning, online learning algorithms are not as

sample-efficient. Where offline learning benefits from an experience buffer

that is used multiple times for policy updates, online learning algorithms

use a sample once and then move on to the next sample. (AurelianTactics

2018) PPO additionally approaches this issue through two parallel working

threads and is thus able to act in a more sample-efficient manner: in the

first thread, several agents generate samples of experience episodes. These

sampled episodes are used from occasionally in a second thread for a com-

mon policy update. (Schulman et al. 2017)

These facts have made PPO a state-of-the-art training algorithm in recent

years; therefore, it is the preferred alternative for the present work.
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4.4 Reward Function

Rewards are vital in developing a sound policy that aligns with the problem-

solving objectives. The present model defines rewards on a per-action and

per-step basis in the environment. As in many other approaches described

in Section 3.2, the accumulated SC cost Ct of a single period is the reward

signal. Using a cost function offers the advantage of unifying the inventory

and service level dimensions. Tests have indicated, and the logical explana-

tion suggests, that using only one of the objectives as a reward signal, either

low inventory levels or high service levels, leads the model to satisfy only

that specific objective while ignoring the other. Furthermore, preliminary

studies have demonstrated that, for the current scenario, a detailed reward

system, such as costs, is more effective than simpler rewards, such as ±1

or comparable options. Modeling rewards in this manner could be advan-

tageous in situations where specific requirements exist for a target level of

service, or for a minimum or maximum stock level, for example.

In accordance with experts in the field of inventory control and the over-

all goals of inventory management, the following cost components are in-

corporated: holding costs of hn accrue for every item stocked during plan-

ning period t and each node n, as well as backorder costs of bn for every item

not delivered on time by node n and during period t, resulting in a shortage

of inventory Ifn,t. It is important to acknowledge that placing orders incurs

fixed ordering costs of Kn per order at node n during period t. This cost is

independent of the order quantity and is applied once per order. The cost

for one period is then calculated as the sum of costs for all nodes in the SC:

Ct =
N∑

n=0

hn(I
p
n,t) + bn(I

f
n,t) +Kn ∗ 1{on,t>0}(on,t) (4.8)
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4.5 Implementation

The aforementioned aspects of the RL setting were implemented within the

framework of OpenAI, an organization that conducts research in the field of

artificial intelligence. This non-profit organization is controlled by investors

such as Microsoft. (OpenAI 2021)

OpenAI has created a framework that simplifies the implementation of

various RL applications. This is facilitated by an environment interface,

pre-existing and accelerated training algorithms, and a hyperparameter op-

timization solution. The details of the environment interface are outlined in

Brockman et al. (2016a), and corresponding code examples are available in

Brockman et al. (2016b). A version of the aforementioned PPO by Schul-

man et al. (2017) has already been implemented and tested in Stable Base-

lines, a fork of OpenAI’s baseline algorithms. The related code is available in

the work of Hill et al. (2018). Adopting established running algorithms and

frameworks is considered beneficial for reducing errors and the time spent

on implementing already validated discoveries. The present study specifi-

cally focuses on the use of training algorithms for particular environments,

instead of their further development.

As the policy network, the pre-existing MlpPolicy of Stable Baselines is

used. The activation function used in this network is the tangent hyper-

bolicus (tanh). This network comprises a standard multilayer perceptron

that includes two hidden layers, each of which contains 64 neurons. (Hill

et al. 2018) The goal was to commence with a relatively uncomplicated

and standard network. While larger and more complex networks were also

tested, they did not yield better results.

Hyperparameter optimization for the algorithms of Stable Baselines can

be performed using the Optuna package. The package provides an effi-

cient framework for hyperparameter optimisation studies by defining the

parameters to be optimized and their value ranges. (Akiba et al. 2019) Stable

Baselines RL Zoo, OpenAI’s Spinning Up documentation, and AurelianTac-

tics (2018) served as expert input for the chosen hyperparameters and value

ranges documented in Table 4.1.
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Parameter Distribution Value Range
n_steps Categorical {32, 64, 128, 256}

batch_size Categorical {16, 32, 64, 128, 256, 512, 1024, 2048}
nminibatches - max(1, ⌊ n_steps

batch_size⌋)
noptepochs Categorical {1, 5, 10, 20, 30, 50}

cliprange Log-Uniform [0.1, 0.4]
gamma Log-Uniform [0.9, 0.9999]
lambda Uniform [0.8, 1.0]
ent_coef Log-Uniform [1e-8, 0.1]

learning_rate Log-Uniform [1e-5, 1.0]

Table 4.1: Hyperparameters to Optimize Using Optuna and the Corre-
sponding Value Ranges

When updating a policy, it is crucial to determine how many experience

episodes should be sampled before the policy is updated. This behavior

is guided by the parameters minibatches, n_steps, and noptepochs. Expe-

rience is collected during n_steps, and then a stochastic gradient descent

is performed of minibatches size for noptepochs epochs. (AurelianTactics

2018) (Schulman et al. 2017)

The following hyperparameters govern the progression from the old to

the new policy: cliprange specifies the allowable margin between the new

and old policies, and lambda and gamma are applied in the generalized ad-

vantage estimation to shape rewards further. (Schulman et al. 2015)

The ent_coef parameter determines the entropy term, which fosters ex-

ploration and prevents early convergence. The final optimization is for the

learning_rate, which measures the strength of the weights’ update for the

underlying ANN. (Hill et al. 2018) (Kingma and Ba 2014)

4.6 General Setup for Analysis

This section presents the framework for assessing the model’s performance.

In the following subsections, relevant performance metrics, the validated

statistical structure, and the parameter configurations are delineated.
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4.6.1 Performance Indicators

As introduced in Section 2.1 and Section 2.2, the primary goals for an SC

are to meet customer demand and to maximise efficiency. In subsequent

chapters, the analysis mainly focuses on the achieved service level and the

mean cost per period, while average stock levels, order frequencies, and or-

der sizes are also considered when deemed relevant.

The event-oriented α service level, as defined by Tempelmeier (2000), is

used to measure the service level of each node. This measures the proba-

bility that a customer demand Dt during period t can be fulfilled using the

physical stock Ipt during the same period t.

αt = P (Dt ≤ Ipt ). (4.9)

Mean costs are calculated as the average cost per planning period, de-

noted by t:

C =

∑
t∈T

∑
n∈N Cn,t

T
. (4.10)

In certain instances, the mean demand during the corresponding plan-

ning episode is used to scale the average costs C to obtain the cost efficiency

per requested unit:

CEff =
C

E(D)
. (4.11)

A comparable efficiency may be achieved by dividing the average stock

levels, denoted by Ip, by the mean replenishment time, resulting in a cost

KPI that is independent of replenishment times:

IpEff =
Ip

E(L)
. (4.12)

Both equations (Equation 4.11 and Equation 4.12) allow for the reduction

of the KPI by the influencing factor, resulting in comparable average values.

45



4 Model Structure of Reinforcement Learning for Inventory Control

4.6.2 Presumptions Regarding Model Behavior

For the purpose of system analysis, the developed models are expected to

exhibit specific behavior. Therefore, the following assumptions regarding

the model behavior were defined, taking the various parameters of the SC

into consideration:

(P0): Increasing demand results in a rise in the total average cost as there

are more units within the system that require handling and stocking.

Conversely, decreasing demand results in a decrease in the total av-

erage cost. However, this should not suggest a change in the average

cost per unit. It is expected that the model would induce a stable or

reduced average cost per unit C
E(D)

due to the inclusion of scaling ef-

fects.

(P1): The SC faces a potential risk in the growing variance of demand. A

model would be expected to deal with this risk, such as by stocking ex-

tra units. However, this solution is expected not to result in a reduction

of the service level. On the other hand, in the case of falling demand

variance, a stable service level should be maintained.

(P2): Following Little’s law, the number of items in the system changes with

the time in the system. (Arnold and Furmans 2009) Hence, a longer

or shorter replenishment time would lead to an increase or decrease

in the number of items in the system, respectively. Presently, the in-

ventory system’s units equate to stock levels. However, the system’s

average inventory level per replenishment time unit ( IP

E(L)
) is expected

to remain stable, ensuring a proportionate response of the system.

(P3): A fluctuation in replenishment times presents the next risk to the SC.

The system’s behavior is expected to lead to consistent service levels.

(P4): The cost parameters’ relationship determines the respective signifi-

cance of stock levels, order frequency, and service level. As a result,

the connection of these cost parameters sets targets for how to reduce

expenses:
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(a) High holding costs compared with the other cost parameters lead

to lower inventory levels;

(b) High fixed ordering costs lead to fewer orders, resulting in higher

ordering volumes and inventory levels;

(c) High backorder costs lead to a high level of service.

4.6.3 Statistical Validation of Testing

Here, simulation runs and parameter combinations are considered. A sin-

gle simulation run entails the simulation of one SC system over a predefined

episode that comprises T time periods. Parameter values remain constant

during a given run, with only random number realizations differing due to

the use of several different seed values for the random number generator. A

scenario denotes a distinct parameter combination and is scrutinized over

385 simulation runs. The size of the dataset was collected with a 95% confi-

dence level and a 5% margin of error. The mean performance indicators for

one scenario were derived from 385 runs.

To demonstrate that the sample size of 385 is sufficient for obtaining re-

liable results, the relative standard error of mean is calculated and anal-

ysed for all scenarios and resulting performance indicators in the respective

chapters. The definition of relative standard errors is defined using

SEx =
s

x
√
N

(4.13)

where s is the sample standard deviation, x is the sample mean, and N

equals 385 for each scenario. The considered performance indicators are

the mean cost per period and the service level.
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Letter Parameter Value
Number of SC Locations N {1, 3}

Time Horizon of One Episode T 170
Forecast Interval f 30

For Distribution Discretization ε 0.01

Table 4.2: General SC Settings for the Experiments

4.6.4 Parameter Setting

The SC parameters presented in Table 4.2 determine diverse training and

testing scenarios. These parameters are derived from the SC model speci-

fied in Section 4.1:

The number of nodes included in the linear SC is determined by N . This

value varies depending on the SC under analysis. For the first and basic

scenario when examining the model’s robustness, N is set to 1. However,

when considering a linear SC, N is set to 3. A planning episode, which has

a planning horizon of T periods, comprises customer demand forecast ob-

tained by the agent who has the ability to anticipate f periods ahead. The

time horizon of one episode is set at 170 periods. Assuming that days are

the unit of these periods, this equates to approximately half a year, which is

considered a reasonable planning horizon based on past experience. This

planning horizon coincides with a forecasting horizon of 30 periods or one

month. The chosen horizon is justified by the fact that fixed horizons in

today’s Enterprise Ressource Planning (ERP) systems for certain products

typically vary between two and four weeks.

The threshold for truncating the distributions is 1− ε when determining

the distributions of the unique probabilistic values and discretizing them.

Customer demand is characterized by its mean E(D) and coefficient of

variation CV (D), while the mean E(L) and coefficient of variation CV (L)

describe the replenishment time distribution. A number between 0 and 1

characterizes the ratio at which the forecast error deviates most from the

mean customer demand. Lastly, parameters such as holding cost h, fixed

order cost K, and backorder cost b describe the cost structure; h and b rep-
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resent the monetary amounts (MUs) to be paid per item when in stock or

backordered, respectively; and K denotes the MUs per order.

Two distinct testing scenarios are chosen. The first involves testing on the

parameter combination that the model was trained on, which is referred to

as the original data set. The second scenario involves systematically vary-

ing parameter values in different ranges to assess the model’s response to

changing environmental factors. Certain values for each data set and pa-

rameter are listed in Table 4.3. The purpose of utilizing these two distinct

data sets is to scrutinize the model’s resilience, which is outlined in the fol-

lowing chapter. Research question 2, which investigates the model’s effi-

cacy when the parameter values deviate significantly from the known val-

ues, provided the impetus for this inquiry. Hence, the values selected for

parameter variation mainly differ in terms of the order of magnitude.

The model was trained using the original data set, where the parameter

settings were inspired by numerical examples in various publications but

were chosen randomly. Nevertheless, the specific values were selected in

a manner that accommodated variations in lower and higher dimensions.

The average demand of 30 appears to be a suitable starting point, as de-

mands in the range of 10 or in the hundreds may be lower or higher, respec-

tively. Similarly, average replenishment times were determined: As an aver-

age replenishment time of 7 days might be realistic for scenarios where sup-

pliers and production are based in Europe and products are readily avail-

able, lower replenishment times could be achieved by partnering with lo-

cal SC providers. By contrast, over-sea transport and extended production

times contribute to longer replenishment periods. An appropriate start-

ing point for the CVs would be 1.0, which allows for variability in a lower

and higher value range. The cost parameters were largely influenced by the

works of Axsäter (2015), Tempelmeier (2015), and Goodwin and Franklin

(1994). These were then simplified into the current cost ratios.

The study involved a single- and a two-factorial experiment to investigate

parameter variation. The first experiment focused on single factors to draw

initial conclusions. The latter experiment examined the interdependency
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Assumed
Parameter

Parameter Value
Distribution Original Parameter Variations

Demand Gamma E(D) {30} {1, 5, 10, 50, 100, 500, 1000}
CV (D) {1.0} {0, 0.5, 1.0, 1.5, 2.0, 2.5}

Replenishment Times Gamma E(L) {7} {1, 5, 10, 15, 20, 50}
CV (L) {1.0} {0, 0.5, 1.0, 1.5, 2.0, 2.5}

Holding Cost Deterministic h {1} {0, 1, 10, 50, 100, 500, 1000}
Fixed Order Cost Deterministic K {10} {0, 1, 10, 50, 100, 500, 1000}
Backorder Cost Deterministic b {100} {0, 10, 50, 100, 500, 1000, 5000, 10000}

Table 4.3: SC Parameter Value Ranges for Creating the Original Data Set and
Further Parameter Variations

between certain factors to verify the previous adaptations of the model un-

der more varied circumstances.

4.6.5 Benchmark Algorithm

A variety of different approaches exist for finding a solution to the replen-

ishment problem. Most of them are to be found in the area of operations

research that seeks elaborated mathematical solutions or provides certain

heuristics. Several inventory policies could be considered standard policies

for how much and at what time to restock. These are the fundamental poli-

cies that every student of logistics learns initially, which many ERP systems

continue to rely upon. These policies serve as a basic comparison as they

are well-known, straightforward, and essential.

The policies are defined by four parameters, namely r, s, S, and q. Here,

r and s are responsible for triggering a single order, while S and q specify

the quantity to be ordered. The control of stock levels is based on r time

intervals, and s can be construed as the minimal stock level that activates

order placement once it has fallen below that level. The number of items to

be ordered varies depending on whether it is required to top up the stocks

to reach S or if it follows a standard order amount of q. In various permuta-

tions, the parameters create specific replenishment strategies, such as the

(r, s, q) policy considered here. (Tempelmeier 2015)

Review periods later are set to daily intervals of discrete time, such that

they are equivalent to the conditions of the RL model. An iterative proce-
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dure for fixing the order quantity q and then the reorder point s is recom-

mended by Tempelmeier (2015). Initially, q∗ is determined by the economic

order quantity (EOQ) formula, which depends on the fixed order cost K,

inventory holding cost h, and demand D within the considered time unit.

Axsäter (2015) takes a more lenient approach by assuming that the demand

for the planning interval cannot be predicted. Instead, the expected aver-

age demand in the given time unit is used. Another extension of the classi-

cal EOQ formula integrates backordering costs b per unit and time, which is

introduced in Axsäter (2015). This finally results in q∗:

q∗ =

√
2KE(D)(h+ b)

hb
(4.14)

The reorder point, denoted by s, serves as a safeguard against demand

that may arise during the risk interval of the replenishment time frame. This

occurs when a new order has been triggered due to the falling below of s

while the order has not yet been fulfilled. When the demand and replenish-

ment time are present as two separate distributions, the demand distribu-

tion during replenishment time D′ can be obtained by convolving the de-

mand distribution for every possible replenishment time and then weight-

ing the result with the probability of each replenishment time (Tempelmeier

2015):

P{D′ ≤ d′} =
lmax∑

l=lmin

P{D ≤ d|L = l}P{L = l} (4.15)

A secondary factor must also be considered; that is, when the stock level

falls below s, the available stock does not always match it precisely, and

there may already be a difference. Tempelmeier (2015) refers to this short-

fall as undershoot and suggests adding the probability of undershoot U to

the demand probability during the replenishment time D′ to determine the

final value of s. He calculates the probability of undershoot U as follows:
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P{U = u} =
1− P{D ≤ u}

E(D)
(4.16)

The ultimate probability distribution, denoting the demand during re-

plenishment time and accounting for the likelihood of undershoot, can be

represented by the final random variable D′′ = D′+U , which is constructed

by convolving both random variables D′ and U . (Tempelmeier 2015)

Finally, the service level α∗ to be achieved must be considered when de-

termining the value of s. As a result, s is determined based on the accumu-

lated probability of the vector entry of D′′ that achieves the desired service

level. In contrast to Tempelmeier (2015), the α service level is used in the

present study instead of the β service level. This might result in slightly

worse service levels, as the α service level is known as the stricter service

level measurement.

P{D′′ ≤ s}
!

≥ α∗ (4.17)

Following Tempelmeier (2015), the (r, s, q) policy has advantages due to

its combination of the (s, q) and (r, S) policies. The use of a fixed ordering

amount q stabilises order sizes, while limiting reordering and review points

to discrete values allows coordination with other processes.

However, it should be noted that this inventory policy operates under dif-

ferent framework conditions than the proposed RL approach. The conven-

tional approach uses a target service level as input, which must be met every

time. By contrast, the RL model can prioritize other optimization objectives

over the service level. This is particularly relevant when considering chang-

ing cost parameters during later analysis phases. When backorder costs are

comparatively low in relation to the other two parameters, the (r, s, q) strat-

egy would still endeavour to achieve the target service level at a higher re-

sulting cost. By contrast, the RL approach permits service levels to decrease

to reduce costs. However, this deviation primarily applies in scenarios that

involve changes to cost parameters.
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4.7 Chapter Conclusion

This chapter has outlined the fundamental RL model for inventory control.

Subsequent research and developments build upon these core principles.

The creation of synthetic data facilitates the design of future training and

testing scenarios. However, an intriguing aspect related to the action and

state space remains unexplored, which is addressed in Chapter 5.
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5 A Robust Reinforcement

Learning Model for Inventory

Control

Jeder Mensch hat ein Brett vor dem Kopf – es kommt nur

auf die Entfernung an.

– Marie von Ebner-Eschenbach

Current machine learning models are usually designed for specific use

cases and data sets, resulting in the need for retraining when they are ap-

plied to diverse scenarios or data. Given that adaptation training is time-

intensive, this chapter’s motivation is to develop a model that can adjust

to various SC environments without requiring retraining and could thus be

designated as robust.

First, a brief definition of the term robustness is presented, followed by

various expansions of the fundamental model outlined in Chapter 4.

5.1 Robustness

Following the definition of robust production systems by Stricker and Lanza

(2014), robustness necessitates that a production system can operate at

high performance levels despite disturbances. Disturbances are charac-

terized as changes in customer demand or general variations in process

times due to unforeseen events, which are similar to the aforementioned

variations in demand and replenishment times (Stricker and Lanza 2014).
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Furthermore, this study considers varying cost structures to encompass

a wide range of materials. It is crucial to note that different materials may

have diverse underlying cost structures, such as in cases where the purchase

price and holding cost significantly exceed the transportation cost.

5.2 Extension of the Basic Model Through

Adaptive State and Action Space Scaling

The function of ANNs necessitates the scaling of input and output values for

optimal performance. This is due to the deployment of activation functions,

which are usually assigned within individual neurons, and typically include

the sigmoid or tanh function. The function range of both is constrained to

a relatively small interval, as illustrated by Figure 5.1. The sigmoid function

is mapped to the interval between (0, 1), while the tanh function is mapped

to (−1, 1). As can be seen from the graphs, the interval for the x-axis value

is severely restricted, which makes it difficult to obtain y-values with proper

differentiation. Thus, for either of the two activation functions employed,

preprocessing the input data and the output of the ANNs through scaling,

normalization, or standardization is recommended.

Furthermore, the transformation of inputs enables equal weighting of

originally disparate parameters. By standardizing the input values, the in-

fluence of larger parameters is reduced to prevent a disproportionate influ-

ence on the outcome.

The analysis of this approach is initially conducted using a model whose

state space is solely determined by the inventory level - the computational

available stock in period t. Its composition was explained in Section 4.1.

The aim is to begin with a state space as low-dimensional as possible. The

literature research in Section 3.2 demonstrated that in certain cases, solely

information regarding the inventory level is sufficient for making sound de-

cisions. Taylor and Tuyls (2010) identify the omission of domain informa-

tion in the state space as domain reduction and domain hiding. The avail-
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Figure 5.1: Value and Definition Range of the Sigmoid and Tanh Functions

able computational stock combines information on both on-hand and in-

transit inventory, leading to reduced information. However, environment

information such as demands, replenishment times, and cost parameters

are hidden from the RL model. According to Taylor and Tuyls (2010), these

two methods fall under the category of abstraction, which is seen as a way

to increase the feasibility of RL models in complex environments.

This study proposes the concept of adaptive scaling of state and action

space. It is crucial to transform input parameters for balanced and steady

training procedures. The main aim of the study is to enable the model to

adjust its actions, even when environmental attributes (e.g. demand) and

the replenishment of resources are changing.

There are two common scaling methods, namely standardization and

normalization. Standardization transforms the data into a standard normal

distribution (refer to Equation 5.1); conversely, normalization, also known

as min-max scaling, shifts the data into the desired value range (refer to

Equation 5.2) (Bhandari 2020):

X ′ =
X − µ(X)

σ(X)
(5.1)
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X ′ =
X −Xmin

Xmax −Xmin

(5.2)

Both standardization and normalization require prior knowledge of the

value range of the specified data. Since knowledge regarding inventory lev-

els is unavailable but is rather dependent on process characteristics and

selected actions, the objective is to determine a suitable constant to scale

down inventory levels to a significant interval, wherein the RL model can

differentiate the input more accurately. A similar approach is investigated

for the action space, which is determined by the output of the activation

function. Said output is mapped to either (0, 1) or (−1, 1). A constant limit

is also required for scaling. Defining it as a variable size would help to set

maximal replenishment quantities to values that correspond to changing

demand and replenishment characteristics.

For an adaptive scaling factor, the concept that emerged in Section 4.6.5

is used. Demand during replenishment time for preventing undershoot D”

as a scaling factor would require knowledge of demand and replenishment

time distributions. By using Equation 4.6.5 as the basis, an appropriate

value of α can be chosen such that s(α) is high enough to normalize the

inventory level and action around (−1, 1).

As the computationally available inventory levels can be both positive

and negative, they are scaled by simply dividing the original value by the

positive constant.

Ip
′
=

Ip

s(α)
, with s(α) defined by P{D′′ ≤ s}

!

≥ α (5.3)

The constant stated earlier is also used for the action space. As the ac-

tivation function in Stable Baselines is modeled using a tanh function, the

output corresponds to a range of (−1, 1). (Hill et al. 2018) Therefore, the

constant is used to adjust the output to a positive value range, which can be

interpreted as a corresponding quantity of replenishment.
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a =
(a′ + 1)

2
∗ s(α), with s(α) defined by P{D′′ ≤ s}

!

≥ α (5.4)

To evaluate this scaling method, the model is trained on one specific pa-

rameter setting, previously described as the original data set. The environ-

ment’s unpredictability causes variations in the actual demand, forecast er-

rors, and replenishment times based on the assumed distributions.

To address the randomness of the training process, 10 distinct models are

trained with differing seeds for 3x106 training steps. Before training each

model, hyperparameter optimization is conducted using Optuna, with 50

possible parameter combinations over 3x105 training steps.

The selected model exhibits the lowest mean cost per episode over the

385 tested episodes, with minimal variation; therefore, it meets the criterion

of being the best. The average mean cost per period stands at 308.55 [MU]

with a standard deviation of 105.89, and the corresponding service level is

98% on average with a deviation of 2%.

To assess the impact of the normalization factor, the analysis begins by

testing the previously described parameter variations. Test data are gener-

ated by drawing realizations of the parameters defined by the range of val-

ues. The training was performed on realizations from the original param-

eter combination, but now the parameters vary significantly beyond those

encountered during training. If the results for this expanded data set are

consistent with those of the original parameter combination, then the abil-

ity to adapt to changing environments can be demonstrated.

Therefore, one model named RLBaseline that uses a fixed normalization

factor is compared with another model, RLAdaptive, which uses an adap-

tive normalization factor. The raw data for these results can be found in

Bergmann (2023b).

First, the sample sizes of the test data sets are confirmed by consider-

ing the relative standard errors of the mean. In all scenarios, the following

simulation runs exhibit low relative standard errors of the mean (refer to

Equation 4.6.3), as demonstrated in Figure 5.2. The KPI of mean cost per
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period has a value range of [0, 0.0652], whilst the service level is in the range

of [0, 0.0151], with the majority of 95% being within these intervals.
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Figure 5.2: Relative Standard Errors of the Mean of the KPIs Mean Cost and
Service Level Over All Data Sets Used in the Following

The scaling factor incorporates details on demand and replenishment

attributes. Initially, the demand parameters are assessed. To quantify the

cost’s dependence on each factor, the previously defined KPI of cost effi-

ciency (refer to Equation 4.11) is considered along with the absolute mean

cost per period and service level. The outcomes are depicted in Figure 5.3.

Mean costs per period increase significantly with the rise in mean de-

mand for the RLBaseline model compared with the RLAdaptive model. The first

upper graphic illustrates the KPI of cost efficiency, which remains fairly con-

stant for the RLAdaptive model but varies for the RLBaseline model. The cost

efficiency of both models is similar for the expected demands of 5, 10, and

50. As the models were trained on an expected demand of 30, the KPIs un-

surprisingly differ only marginally for similar values to the original. Instead,

the RLAdaptive model outperforms for demands of 1 and 100 or greater. The

rise in mean cost for the RLBaseline model in the next plot of the upper part

of Figure 5.3 is explained by a drop in service level for larger expected de-

mands. This can be explained by the mean order size depicted in the fol-

lowing graph, which does not adjust to increasing demands for larger val-

ues. The RLAdaptive model follows the bisecting angle and orders on average

what is requested, while the RLBaseline model deviates from it for larger an-

ticipated demands.
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When the CV of the demand is varied, a slightly cheaper performance

of the RLBaseline model for lower CVs is observed. This can be attributed

to lower stock levels initially for the RLBaseline model, which do not lead to

lower service levels and hence appear more efficient. Nonetheless, this ad-

vantage is rapidly depleted as the stock levels decrease excessively, leading

to lower service levels, which in turn results in higher backorder costs as the

CV of demand surpasses CV (D) > 1.0.

Referring to the assumption made in Section 4.6, one can infer that the

RLAdaptive model confirms (P0) as the escalating expected demand does not

lead to an increase in the average cost per unit, which remains quite stable

at a mean of 12.26 [MU] with a standard deviation of 3.32 per period. (P1)

is supported to some extent by the results, where a minor decline in service

level is observed for higher CVs, but only from >99% to >97% when CVs of

2.5 are considered. By contrast, the RLBaseline model does not comply with

assumptions (P0) and (P1).
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Figure 5.3: Comparison of the RLBaseline and RLAdaptive Models in Terms of
Mean Cost, Service Level, and Mean Order Size when Demand
Parameters are Varied

The conclusion drawn after examining the replenishment parameters of

the mean expected replenishment time and its CV are depicted in Figure 5.4.
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According to (P2), an increase in the number of stocks in the system with

higher average replenishment times is anticipated. However, considering

stock efficiency (i.e. stock levels per replenishment time unit), one would

expect the values to be relatively consistent. These findings are illustrated

in the first graph for the RLAdaptive model. The stock efficiency exhibits a

mild positive gradient but remains stable for mean replenishment periods

up to 50. The interpretation of the stock efficiency of the RLBaseline model

must be coupled with the absolute stock levels and the subsequent ser-

vice level graphs. The efficiency declines with higher replenishment times,

which may initially be interpreted as beneficial due to scale effects. How-

ever, it is important to note that when examining the overall stock levels,

negative levels are observed after the 20 replenishment periods. These neg-

ative levels account for the drop in service levels, which occur after only 10

replenishment periods.

Values below the trained seven replenishment periods - in this case, the

replenishment times of one period - are not handled fully adequately by

either model. The RLBaseline model results in excessive overstock, as evi-

denced by the stock efficiency graph, while the RLAdaptive model lowers its

stock to a minimum. Unfortunately, this minimum level does not seem suf-

ficient, and service levels remain relatively low despite its high overall levels.

The thesis formulated in (P3) states that service levels do not decrease as

the CVs increase. The final row of Figure 5.4 reveals a noteworthy pattern,

namely that the RLBaseline model attains superior service levels compared

with the RLAdaptive model for lower CVs. The inflection point is around a

CV of 1.0, where both models were trained; thereafter, the RLAdaptive model

exhibits stability when faced with CVs up to 2.5. Upon examining the fol-

lowing graph, it becomes apparent that the RLAdaptive model’s response to

increasing CVs is due to an increase in inventory levels. This is suitable for

all CVs ≥ 1.0 but results in an excessively large decrease in the low variance

segment where CV < 1.0. For that case, the RLBaseline model performs bet-

ter with no adaptation at all, as it leads to stable service levels and relatively

smaller holding instead of backorder cost.
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Figure 5.4: Comparison of the RLBaseline and RLAdaptive Models in Terms of
Stock and Service Levels when Replenishment Time is Varied in
its Mean and CV

Based on the presented analysis, this study concludes that implementing

an adaptive scaling factor, as opposed to a fixed factor, is conducive to de-
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veloping a robust RL strategy, particularly for the scenario of increasing and

more variable demand and replenishment parameters.

However, upon analyzing the behavior of the RLAdaptive model towards

changes in cost parameters that also impact their mutual ratio, one must

reject the expectations outlined in (P4). As illustrated in Figure 5.5, no iden-

tifiable pattern emerges that would support the notion of model adaptation.

Mean stock levels remain constant despite the significant increase in hold-

ing costs. Fixed order costs also increase without affecting order frequen-

cies. Additionally, varying backordering costs do not result in any changes

in service levels compared with the other two cost parameters.

Therefore, how improvements in this field could be achieved using an

extended state space that incorporates cost information is explored in the

following section.
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Figure 5.5: Adaptations of RLAdaptive to Changing Cost Parameters

5.3 Extension of the Basic Model by Cost

Parameters

The previous section concluded by highlighting the model’s inability to ad-

just to varying cost parameters. As the RLAdaptive model lacks insight into

cost conditions present within the state space, information pertaining to

cost parameters must be incorporated in the next stage. Herein, the model

is referred to as RLAdaptive+Cost.
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The cost parameters are scaled by the ratio of each parameter in relation

to the sum of all cost parameters. Rather than scaling with an arbitrarily

high constant, the dependencies of the different parameters are considered.

To scale each cost parameter p, Equation 5.5 is applied:

p′ =
p∑
p∈P p

, with P = {h,K, b} and ∀p ∈ {h,K, b}. (5.5)

The resulting model with a distinct input state is acquired through the

aforementioned process of hyper-optimizing and training 10 distinct mod-

els before selecting the best one. The chosen model achieves an average

cost per period of 318.95 [MU] with a standard deviation of 61.49 when it is

applied to the original data set. Additionally, it attains an average service

level of 99% with a 1% deviation.

The impact of the supplementary data in the state space can be seen in

the top row of Figure 5.6: The reaction of theRLAdaptive+Cost model to modifi-

cations in cost parameters significantly exceeds that of the RLAdaptive model

for each cost parameter. As the proportion of holding costs increases, the

assumption expressed in (P4a) can be confirmed. In general, inventory lev-

els decrease as holding costs rise. This would result in a decrease in service

levels as demand cannot be reliably met. However, the increasing signifi-

cance of holding costs compared with backorder costs leads to less of a rise

in the mean cost overall than with the RLAdaptive model, resulting in greater

stability. The tipping point at which the performance of the RLAdaptive+Cost

model outstrips that of the RLAdaptive model is noticeable when the holding

cost parameter tops the fixed order cost parameter of 10 and the backorder

cost parameter at a level of 100 [MU].

A comparable scenario is noted for fluctuating backorder costs featured

in the lower row of Figure 5.6: The RLAdaptive+Cost model can adjust its ac-

tions to declining backorder cost parameters that are akin to the ones of a

fixed order cost of 10. Its response is a decrease in service level in case of

backorder costs lower than 50. In this context, the service level is no longer

of significance to the overall cost. By contrast, when the cost of backorders

exceeds the combined costs of holding and fixed order, service levels tend
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to be consistently high, even surpassing those of the RLAdaptive model. This

trend is also evident in the mean cost curve, which is initially similar in both

models, including the trained backorder cost of 100. However, beyond this

point, the mean cost of the RLAdaptive model clearly stands above that of the

other. As a result, P4c can be affirmed.

The image alters when the fixed order cost parameter is modified: The

model’s response to increasing order cost appears to be favourable as the

frequency of orders decreases. However, an examination of the average

overall cost reveals that the RLAdaptive model still incurs lower costs per pe-

riod. The point at which the models’ curves diverge can be located at the

training value of 10 for fixed order costs. The divergence is even greater at

the cost of 100, which relates to backordering costs. As a result, service lev-

els are no longer crucial from this stage onwards. The model can be inferred

to be unable to strike a suitable balance between the still substantial back-

orders and the increasing fixed order costs. While (P4b) can be affirmed, it

must be noted that the treatment of fixed order costs does not align with the

expectations outlined in the introduction of (P4), since the average cost per

period increases.

Overall, further tests demonstrate that the suggested modification to the

state space yields comparable behavior to that of the RLAdaptive model when

confronted with fluctuating mean demands and replenishment times.

Moreover, the overall favourable changes within the policy aimed at chang-

ing cost parameters confirm the usefulness of incorporating such parame-

ters into the model.
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Figure 5.6: Adaptations of RLAdaptive+Cost to Changing Cost Parameters
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5.4 Analysis of System Behavior Compared with

the (r, s, q) Approach

Finally, the performance of the original and amplified data sets is compared

in test episodes using the (r, s, q) inventory policy described earlier. In this

case, the review period is set to discrete points of time with r = 1 to ensure

similar conditions for the RL and conventional approach. For the rest of the

policy, it is referred to as the (s, q) policy; s and q are calculated in accor-

dance with the formulas expressed earlier. The expected demand amount

over a time horizon of T periods determines E(D) in Equation 4.6.5. This is

equivalent to multiplying the expected demand per time period by T . The

(s, q) inventory policy is set to a target service level of α = 0.95.

Figure 5.7 presents a comparison of the three models -RLAdaptive, RLAdaptive+Cost

and the (s, q) model - for the testing scenarios with varying demand and re-

plenishment parameters. Overall, the RL models seem to have lower mean

costs for all possible input parameters. However, as the average demand

and CV of the demand increase, making them highly unpredictable for the

RL approaches, the advantage over the (s, q) model remains but is dimin-

ished. Notably, for the lowest mean replenishment of one period and the

lowest CV of 0.0, almost no replenishment time is required, and the (s, q)

model outperforms both of the RL models. It can be concluded that state-

of-the-art policies are proficient at managing these replenishment times.

Additionally, it is worth noting that there is minimal variation between the

identified models regarding changes in mean replenishment times, while

the CV remains fixed.
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Figure 5.7: Comparison of the RLAdaptive, RLAdaptive+Cost, and (s, q) Models
when Demand and Replenishment Parameters are Varied

When the cost parameters are altered, as illustrated in Figure 5.8, both

the RLAdaptive and (s, q) models exhibit similar trends in behavior. However,

the RLAdaptive model provides lower mean costs than the (s, q) model. No-

tably, the RLAdaptive+Cost model yields even lower mean costs than both of

the aforementioned ones, specifically when variations in holding and back-

order costs are considered. This trend cannot be confirmed in the case

of the RLAdaptive+Cost model’s response to increasing fixed order costs since

they result in costs many times greater than those of the other models. This

behavior has already been explored.
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Figure 5.8: Comparison of the RLAdaptive, RLAdaptive+Cost, and (s, q) Models
when Cost Parameters are Varied

Several two-factorial and one three-factorial test scenarios must be con-

ducted to analyze the system’s behavior further. The aim is to evaluate the

interaction of different factors. The test focuses on demand parameters

such as mean demand and the CV of demand, replenishment parameters

such as mean replenishment time and the CV of replenishment time, and

three cost parameters. These parameters are varied using a full-factorial

approach. The analysis also considers the full-factorial variation of the two

variances, namely the CV of demand and the CV of replenishment time.

Intermediate values are omitted based on single-factorial studies, where

a linear behavior is anticipated. Higher limits are also established for the

CVs. The ensuing comparison is narrowed to the RLAdaptive+Cost and (s, q)

approaches for the sake of clarity.
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Figure 5.9 presents the outcomes for the factors of mean demand and the

CV of demand. One can infer that the RL policy in the left diagram results in

a relatively stable mean cost per period and demanded unit. Additionally,

one can observe that the mean cost is higher for lower mean demands, with

this difference being more significant for lower CVs. Moreover, it should be

noted that a higher CV leads to an increase in mean cost. This can be at-

tributed to the adaptation of the model with more securities, such as higher

stock levels, to account for the increased volatility in demand. Compared

with the (s, q) policy, the RL policy aims for a stable mean cost per period

and unit demanded, while the (s, q) policy results in a declining mean cost

per unit. When the two curves for each CV are compared, the mean costs are

usually lower for the RL approach in all cases except for the scenario of high

variability in demand with CV (D) = 3.0 and a mean demand of E(D) = 100.
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Figure 5.9: Comparison of Mean Cost per Demanded Unit for the
RLAdaptive+Cost and (s, q) Approaches when Demand Parameters
are Varied

Considering the service level as the next KPI of interest, Figure 5.10 por-

trays its variation across different demand parameters. At first glance, the

chart on the left suggests a significant drop in service level for the RL pol-

icy with increasing CV. However, it is important to note that the lower limit

of the y-axis indicates a service level of 97%, which remains satisfactorily

high. It can be stated that increased demand variances result in decreased
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service levels for the RL policy. However, this decline remains within an

acceptable range. On the other hand, the service level of the (s, q) policy

remains relatively stable for higher variances, except when the demand is

high at E(D) = 1000. This decrease in service level could explain the higher

average cost depicted in the preceding figure. Comparing the service level

in relation to the mean and CV of demand reveals that both models display

a trend where scenarios with a lower mean demand are more prone to be-

ing impacted by an increased variability of demand than scenarios with a

higher mean demand.
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Figure 5.10: Comparison of Service Level for the RLAdaptive+Cost and (s, q) Ap-
proaches when Demand Parameters are Varied

The parameters of mean and CV of replenishment times require con-

sideration. The aggregated results are presented in Figure 5.11. The KPI

for this analysis is the mean stock level per period of replenishment time,

which demonstrates that a change in replenishment time does not result

in an over-proportional change in mean stock levels. The initial observa-

tion indicates that for both policies, the mean stock levels increase as the

CV of replenishment time increases. This reaction appears suitable for both

models as additional stock offsets the security against replenishment vari-

ance. The RL policy’s average stock levels remain stable with minimal fluc-

tuations when transitioning from a mean replenishment time of E(L) = 1

to E(L) = 7. For lower CVs (i.e., CV (L) ≤ 2.0), mean stock levels are some-

73



5 A Robust Reinforcement Learning Model for Inventory Control

what higher, whereas for the highest tested CV (i.e., CV (L) = 3.0), it is

slightly lower than those for mean replenishment times above E(L) = 1.

When transitioning to higher unknown mean replenishment times, such as

E(L) = 40, the RL policy maintains a relatively stable mean stock level with

a slight increase, while the (s, q) policy exhibits a slight decrease. The differ-

ence in mean stock levels between the first two replenishment times, where

E(L) = 1 and E(L) = 7, is considerably more marked and less consistent

for the (s, q) policy compared with the RL policy. Upon examining the spe-

cific curves with the same CVs, the mean stock levels for the RL policy are

reported to be generally lower.
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Figure 5.11: Comparison of Mean Stock Level of the RLAdaptive+Cost and (s, q)
Approaches when Replenishment Time Parameters are Varied

Figure 5.12 provides an overview of the development of service levels

when replenishment time parameters are varied. Compared with the RL

policy, the (s, q) policy exhibits consistently high service levels regardless of

E(L) and CV (L). By contrast, CVs lower than CV (L) = 1.0 lead to a drop

in service level for the RL policy, while CV (L) ≥ 1.0 combined with mean

replenishment times greater than the known value of E(L) = 7 result in

stable service levels. On the contrary, the RL model struggles to handle a

significantly shorter mean replenishment time with E(L) = 1, as service

levels only exceed 95% for CV ≥ 2.0. To conclude, the RL model seems to

encounter issues with low replenishment times and variances.
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Figure 5.12: Comparison of Service Level for the RLAdaptive+Cost and (s, q) Ap-
proaches when Replenishment Time Parameters are Varied

Upon examination of the mean cost KPI in Figure 5.13, it becomes ap-

parent that both models display similar behavior. This indicates that the

RL policy offsets higher backorder costs caused by lower service levels with

lower stock holding costs resulting from lower mean stock levels. Only the

curve of CV = 0.0 demonstrates a significantly greater cost for the RL policy

compared with the (s, q) policy. This reflects how the (s, q) policy is a better

fit for "easier" replenishment time settings.
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75



5 A Robust Reinforcement Learning Model for Inventory Control

The combined analysis of holding, fixed order, and backorder costs is

considered in terms of cost parameters. Different stock levels, order fre-

quencies, and service levels are implicated by varying the cost parameter

ratios.

The findings of the single-factor experiments are generally supported by

the three-factor analysis of the cost parameters: As holding costs increase,

mean stock levels tend to decrease when the RL model is applied. This can

be observed in the upper row of Figure 5.14. Additionally, mean stock levels

are generally higher with increased backorder costs, which can be attributed

to the growing significance of high service levels as backorder costs escalate.

Surprisingly, the average stock levels decrease from left to right as the fixed

order costs increase. Usually, one would expect the average stock levels to

increase with rising fixed order costs due to fewer and larger orders. How-

ever, this behavior is due to the anomaly of the RL model described earlier.

For the (s, q) model, a similar trend can generally be seen in the lower row

of Figure 5.14, namely that an increase in holding costs leads to a decrease

in the mean stock level. However, reactions to rising holding and backorder

costs are not as significant as for the RL model. Conversely, the increase

in stock levels with rising fixed order costs confirms the previously stated

expectation.
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Figure 5.14: Comparison of Mean Stock Level for the RLAdaptive+Cost and
(s, q) Approaches when Cost Parameters are Varied

When order frequency is considered as a performance measure that is ex-

pected to respond to increasing fixed order costs, the general trend of both

models is confirmed, as seen in Figure 5.15. That is, as fixed order costs

increase, the order frequency of both models decreases.

It can be stated that the RL model typically has a higher order frequency

than the (s, q) approach. Moreover, it exhibits less adaptation in order fre-

quency than the (s, q) approach when various slopes are examined. With a

higher backorder cost, the frequency is generally greater. The intriguing as-

pect is that an anomaly in the RL model becomes more evident when hold-

ing costs increase. Specifically, as holding costs rise from left to right in the

upper row of Figure 5.15, there is a more pronounced contrast between the

backorder cost curves and lower order frequencies. Thus, the model prefers

lower mean stock levels through manipulating the ordering frequency.

For the (s, q) model, it is evident that elevated fixed order costs reduce

order frequencies, while increased holding costs result in an increase in fre-
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quency, as the goal is to maintain fewer products in stock and order more

frequently. Similarly, for this model, a high backorder cost leads to an uptick

in the order frequency as smaller fixed order amounts q∗ are necessary.
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Figure 5.15: Comparison of Order Frequency for the RLAdaptive+Cost and (s, q)
Approaches when Cost Parameters are Varied

Figure 5.16 illustrates the contrast in service levels for both models when

the cost parameters vary. The lower row of the chart displays the (s, q)

model, which notably maintains a consistent service level. This stems from

the model’s approach, where the reorder point s∗ is fixed based on a singular

target service level. An intriguing observation arises when fixed order costs

are set to 1 whilst holding and backorder costs are set to 100. Examining the

cost parameters in Equation 4.6.5, it is evident that low ordering costs result

in an order amount influenced by the fraction K(h+b)
h∗b = 2

100
. This leads to an

order size that is incapable of meeting the demand in a single time period,

which is illustrated by the order frequency chart in Figure 5.15. The model

places orders during each time period to meet the demand.

Furthermore, service levels for the RL method differ greatly between very

low and very high ones. In general, higher backorders generate an increase
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in service level when no other cost factor dominates the cost ratios with a

very high value. This can be observed, for example, when backorder costs

are under 100 [MU] while holding costs are at 100 [MU], which is represented

by the dotted line and the first two points in each graph of the upper row in

Figure 5.16. Also noteworthy is the prevalence of fixed order costs at 100

[MU] and the lower service levels when fixed order costs are lower.

For cases where all cost parameters hold equal value, a service level of

approximately 67% is achieved.
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Figure 5.16: Comparison of Service Level for the RLAdaptive+Cost and (s, q) Ap-
proaches when Cost Parameters are Varied

Leaving aside the findings that relate to the RL model’s capability to ad-

just to changing cost parameter ratios, an issue remains, namely whether

this feature results in lower costs than conventional methods. The varying

y-axis ranges in Figure 5.17 could provide some insights in this regard: While

the limits for the RL approach extend to 14, 000 [MU], the (s, q) model’s scale

reaches 80, 000 [MU]. Upon comparing the average values and standard

deviations of mean cost per period, displayed in Table 5.1, the visual im-

pression and detailed differences are confirmed to be the same: Whatever
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the cost parameter combination, the average costs are lower for the RL

approach.
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Figure 5.17: Comparison of Mean Cost for the RLAdaptive+Cost and (s, q) Ap-
proaches when Cost Parameters are Varied
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5.4 Analysis of System Behavior Compared with the (r, s, q) Approach

RLAdaptive+Cost (s, q)
Holding-

Cost
FixedOrder-

Cost
Backorder-

Cost
E(MeanCost) Std(MeanCost) E(MeanCost) Std(MeanCost)

1 1 1 111.73 13.37 490.23 35.39
1 1 10 309.49 22.31 470.97 29.03
1 1 100 391.18 25.10 471.02 29.73
1 10 1 131.76 20.96 639.09 59.72
1 10 10 228.39 63.74 583.44 49.25
1 10 100 361.17 33.01 595.26 88.98
1 100 1 193.54 24.92 1128.11 100.39
1 100 10 822.63 203.14 959.73 80.00
1 100 100 769.44 492.24 1,011.14 288.65

10 1 1 652.65 103.52 4,682.26 304.69
10 1 10 1,402.50 155.80 4,293.25 248.20
10 1 100 3,438.79 225.94 3,841.35 451.37
10 10 1 650.54 109.32 5,853.97 473.71
10 10 10 1,119.00 130.27 4,861.23 331.20
10 10 100 3,072.70 221.03 4,674.55 285.69
10 100 1 680.04 107.68 9,450.90 929.66
10 100 10 1,319.62 202.42 6,472.38 539.06
10 100 100 2,191.90 552.21 5,842.92 457.79

100 1 1 7,035.75 1,679.81 46,984.76 2,983.24
100 1 10 6,567.64 1,083.78 37,756.39 5,431.27
100 1 100 14,586.10 1,745.21 80,422.50 17,988.10
100 10 1 7,101.34 1,605.05 57,577.35 4,582.13
100 10 10 6,518.98 1,141.82 47,262.41 2,971.11
100 10 100 13,851.17 1,649.16 42,552.08 2,748.09
100 100 1 6,394.73 1,395.23 92,145.41 8,682.85
100 100 10 6,510.73 1,048.21 58,042.43 4,767.57
100 100 100 11,046.83 1,337.31 48,675.30 3,548.64

Table 5.1: Comparison of Mean Cost for the RLAdaptive+Cost and (s, q) Ap-
proaches when Cost Parameters are Varied
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5 A Robust Reinforcement Learning Model for Inventory Control

As part of the latest factorial testing, the interaction between the two CVs

for demand and replenishment time is analyzed. The findings are presented

in Figure 5.18 and Figure 5.19. Overall, the results in Figure 5.18 reveal a

pattern in the curve for the (s, q) policy: An increase in demand CV or re-

plenishment time CV results in higher costs. Nonetheless, in both models,

the impact of rising CVs of replenishment time appears to outweigh that

of increasing CVs of demand, particularly for CVs ≥ 2.0, where the various

curves converge. The graph on the left reveals anomalies in the RL policy.

It demonstrates that the RL model cannot handle uncomplicated SC set-

tings, which is evidenced by the exorbitant costs for the CV combinations of

CV (D) = 0.0 and CV (L) = 0.0, as well as for CV (D) = 0.5 and CV (L) = 0.0,

which are comparable to the higher CVs. The impact of zero variance in

replenishment times compared with varying CVs of demand can be clearly

seen in the attained service levels in Figure 5.19. The poorest result, lead-

ing to an inferior service level, was brought about by the aforementioned

combination of CV (D) = 0.0 and CV (L) = 0.0. Raising the CV of demand

alongside a constant CV of replenishment time CV (L) = 0 leads to an in-

crease in service levels.
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Figure 5.18: Comparison of Mean Cost for the RLAdaptive+Cost and (s, q) Ap-
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Figure 5.19: Comparison in Service Level for the RLAdaptive+Cost and (s, q) Ap-
proaches when CVs of Demand and Replenishment Time are
Varied

5.5 Chapter Conclusion

Overall, this chapter has presented a one-stage model that demonstrates

stable ordering performance in response to changes in environmental pa-

rameters, including demand, replenishment variables, and cost parame-

ters. The models developed within this study surpassed the effectiveness

of a simple conventional inventory policy when tested on an unfamiliar

data set. This is a noteworthy and optimistic outcome, as the RL model

did not receive training on these value ranges. However, it can still adapt to

the changing surroundings with its adaptable state and scale spaces, which

were introduced in this chapter. The presumptions made in Section 4.6

could be confirmed for almost all cases except the response to fixed order

costs. Additionally, for simple environments, a need exists to restrict the

use of the RL model, as it appears to be more effective for more complex en-

vironments with higher average demands, replenishment times, and vari-

ances. This was particularly noticeable in the final analysis, where the ab-

sence of demand and replenishment variability resulted in poorer outcomes

than a basic, state-of-the-art inventory policy.
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6 Reinforcement Learning for

Inventory Control in Linear

Multi-Stage Suppl Chains

A ship in port is safe, but that’s not what ships are built for.

– Grace Hopper

As the literature suggests, there is growing interest in managing not only

one SC node but also several nodes within the entire SC. Two main planning

paradigms can be distinguished - namely a central planning approach and a

decentralized planning approach. The basic characteristics and advantages

of each approach have already been described in Chapter 2. The previous

chapter’s results and the time-intensive training process of machine learn-

ing models raise the following question: Can several decentral models find

similarly good solutions to a central planning approach, thus saving time

and energy? This chapter presents the two models to be compared, followed

by a comparison of the already known KPIs and the BWE they cause.

6.1 Model Implementation

Two approaches can be distinguished, namely central and decentral plan-

ning. Centrality refers to the location where decisions about order dates

and amounts are made. In a decentralized approach, decisions are made

by several RL agents, one for each SC node and location. In a centralized
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6 RL for Inventory Control in Linear Multi-Stage Supply Chains

approach, one main RL agent makes decisions for all SC nodes simultane-

ously.

Therefore, the central agent’s action space is At = o0,t × o1,t × ...× oN−1,t ×
oN,t including the amount of ordered material on,t for each node n in period

t, while the state space includes the inventory levels Idn,t for each SC node n

in t. It is therefore equal to Idt = Id0,t × Id1,t × ...× IdN−1,t × IdN,t and additionally

includes the corresponding cost parameters. This follows from the findings

for the state space of Chapter 5 and accordingly results in more information

for the centralized agent.

6.2 Analysis of System Behavior of the

Decentral and Central Approaches

To proceed, a linear SC consisting of three actively planned nodes is consid-

ered.

For the decentralized and independent agents, the best performing

model from Chapter 5 is selected and implemented for each of the three

SC nodes.

For the centralized approach, a superior agent is trained that decides for

three SC nodes as a whole; therefore, it is provided with inventory levels

and cost parameters of all SC nodes at once. Following the procedure in

Chapter 5 for leveling the effect of stochastic training processes, 10 agents

are trained on different seeds and the best performing one is selected. In-

stead of 3x105 periods for hyperparameter optimization and 3x106 for train-

ing, experiments have demonstrated that the central model must be opti-

mized and trained with double the number of periods. Since both, the state

space and the action space, grow with the number of considered SC nodes,

the model requires more experience periods to find its policy. The resulting

best agent is compared to N independent RL agents interacting in a linear

SC of N nodes. Tests are performed on the original data set.
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6.2 Analysis of System Behavior of the Decentral and Central Approaches

The resulting model yields a mean cost per period of 839.72 [MU] with an

average standard deviation of 142.79. Service levels of 99% are achieved with

a standard deviation of 1%. All raw data for this and the following results can

be found in the data collection in Bergmann (2023b).

Sample sizes are confirmed by considering the relative standard errors of

the means over the simulation runs of all original and further data sets of

the selected models. Standard errors can be observed in Figure 6.1 and are

generally low. The majority of 95% are in the range of [0, 0.0883] for the mean

cost per period KPI and of [0, 0.0212] for the service level KPI.
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Figure 6.1: Relative Standard Errors of Mean of the KPIs Mean Cost and Ser-
vice Level Over All Data Sets Used in the Following

After comparing the decentral and central models on the original data

set, one can state the following: In general, a decentralized model has been

found that is as successful as the centralized one. Considering the informa-

tion advantage of the central model, this is a rather surprising result. Next,

the results of the mean KPIs and the general tendency of both models are

statistically validated by the results of a Mann-Whitney U test, which indi-

cates a difference in the mean costs but no significance in the level of service

obtained. The exact results can be found in Table 6.1 and the visualization

in Figure 6.2.

Nevertheless, the behavior of the two models is examined below on the

basis of the assumptions made in Section 4.6. The aim is to study the ef-

fects of changing environmental parameters. Therefore, a systematic vari-
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Figure 6.2: Comparison of the RLDecentral and RLCentral Models in Terms of

Mean Cost and Service Level

µ σ U p-value
Mean Cost Decentral Model 869.12 774.13 43,538.0 0.000

Central Model 839.72 142.79
Service Level Decentral Model 0.99 0.02 73,576.0 0.412

Central Model 0.99 0.01

Table 6.1: Comparison of Statistical Measures of the Two Models

ation of certain parameters is performed according to the value ranges in

Section 4.6.

When a change in demand is considered, the graph on the left in Fig-

ure 6.3 depicts the aforementioned cost efficiency. An initial drop in unit

cost is followed by a relatively stable level as demand increases. As the mod-

els have been trained on a mean demand of 30, a first conclusion is that

both models are able to handle mean demands of a much higher magni-

tude. The expected observations of (P0) can thus be confirmed. Compared

with the higher magnitudes, the range below the level of E(D) = 5 becomes

more difficult for both models with a significant increase in the mean cost

per unit. In general, the mean costs per period and per unit are at a similar

level for both models, with them being lower for the decentralized model for

higher demands E(D) ≥ 5 and vice versa for E(D) = 1. Service levels dur-

ing an increase in mean demand are generally at a high level, with only the

edges of the confidence interval reaching values below a 99% service level.
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6.2 Analysis of System Behavior of the Decentral and Central Approaches

Varying the CV of demand reveals a different picture in the second row of

Figure 6.3: For CVs CV (D) ≥ 1.5, the centralized model seems to perform

better in terms of lower average costs with higher service levels. However,

it should be noted that the service level for the decentralized model is still

above 94% for CVs up to 2.5. The results for (P1) are therefore reported in

such a way that service levels do not remain stable with higher variance in

demand, but they still remain at a high level for both models.
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Figure 6.3: Comparison of the RLDecentral and RLCentral Models when Mean
Demand and the CV of Demand are Varied

The next test scenario changes the replenishment characteristics. On

the one hand, the expected replenishment times are varied, while on the

other hand, the corresponding CVs are varied. The assumption (P2) of sta-

ble mean stock levels per replenishment time period is largely confirmed

by the upper-left graph in Figure 6.4. The top-right plot of service level
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against changing mean replenishment lead times indicates a relatively sta-

ble service level at higher mean replenishment lead times. Sticky points are

again found when the mean replenishment time falls below the seven pe-

riods known from training. In this case, the decentralized model seems to

stock too few units, while the centralized policy seems to stock too many

units at the right time. This is reflected in a drop in service level for both

models, although the drop is greater for the decentralized model than that

for the centralized model.

When the variance of replenishment times is considered, the expected

behavior analysed in the direction of (P3) can be observed in the two lower

graphs of Figure 6.4. An increasing variance in replenishment times leads

to higher mean stock levels, with those of the central model generally being

higher. For all CVs greater than the known CV (L) ≥ 1.0, service levels are

stable at a high level. It is only at lower CVs that both models do not seem to

cope so well. This is reflected in the low service levels for the decentralized

model, which are again lower than those for the centralized model.

When the resulting costs of changing the replenishment characteristics

are examined, a similar relationship between the models can be observed

as in the case of the demand parameters: In general, for magnitudes higher

than the known values, the decentralized model seems to lead to lower costs

when the mean values of demand or replenishment time are changed. How-

ever, this is not the case as the variance increases, where the central model

dominates. This is also partially true for the ranges below the known values,

as described above.
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Figure 6.4: Comparison of the RLDecentral and RLCentral Models when Mean
Replenishment Time and the CV of Replenishment Time are Var-
ied

A final test scenario is provided by varying the three different cost param-

eters by a single factor. The results are presented in Figure 6.5. Starting with
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the holding costs, one can observe the expected decrease in the average in-

ventory levels, as anticipated in (P4a). In addition, one sees a drop in service

level when holding costs reach the amount of fixed order costs at a value of

10. Holding costs that exceed the values of 10 and 100 become similar and

greater than the fixed order and backorder costs, respectively. As a result,

the service level is less important than holding costs. This becomes even

more obvious when one examines the last data points that reach holding

costs of > 100 [MU].

With varying fixed order costs, one would expect fewer orders as these

drive up costs. Interestingly, the centralized model seems to have a policy

of ordering less frequently in general than the decentralized model. Never-

theless, for both models, the number of orders during a planning episode

decreases as fixed order costs increase. Again, as fixed order costs approach

the backorder cost range of 100, service levels become less important and

therefore decrease drastically.

A final observation can be made by varying the backorder cost. Backorder

costs have a direct impact on service levels: As soon as they are lower or sim-

ilar to the other cost parameters, the service level is also low. On the other

hand, all tested values that are higher than the other cost parameters lead

to a stable service level in both models at the corresponding and previously

known service level. From this point on, increasing backorder costs only

lead to an increase in total costs because a similar number of backordered

items become more expensive. The first peak in average cost is caused by

the lower service level.
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Figure 6.5: Comparison of the RLDecentral and RLCentral Models when Cost
Parameters are Varied

To summarize the analysis, both models exhibit very similar responses to

changing environmental parameters. The centralized model seems to han-
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dle more variable demand better than the decentralized model. The same

can be said for more variable replenishment times. The cost parameters are

treated very similarly, such that both models adapt to changing cost ratios

and attempt to optimize the costs by considering the dominant cost param-

eter. This would lead to low average inventory levels, low order frequencies,

and high service levels in the face of high holding costs, fixed order costs,

and backorder costs.

6.3 Analysis of the Bullwhip E�ect Caused by a

Demand Shock

As described in Chapter 2, several reasons exist for why the BWE occurs.

In the present scenario, the causes of price fluctuations can be ignored,

as prices are assumed to be fixed. Order bundling occurs naturally, as the

models consider fixed order costs and therefore bundle orders. As a result,

the measure of BWE is expected to be positive regardless of a disruption in

demand. Therefore, the same demand evolution with and without a dis-

ruption is compared to obtain a sense of the inherent BWE due to order

batching. The two main causes investigated are the remaining causes: By

comparing the decentralized and centralized approaches, the effect of in-

formation centrality across the SC is investigated.

Two types of data set are used: Chapter 4’s original data set is used as the

baseline data set, while the data set that models the demand shock is con-

structed in a very similar way, with the exception of an unexpectedly high

demand in the middle of an episode. This unexpectedly high demand is

equal to 10xE(D), as this is a value that will not be reached by the under-

lying demand distribution, which is gamma distributed with E(D)=30 and

CV(D)=1.0.

By comparing several performance indicators of these two data sets, the

BWE and the resulting changes in the KPIs caused by the demand shocks

should be quantified. The first KPI measured is that of the approach pre-
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sented by Chen et al. (2000), which relates the variance in order values to

the variance in demand:

BWEn =
V ar(On,t)

V ar(Dn,t)
,∀n ∈ N, t ∈ T (6.1)

To this end, a high BWE would imply a higher variance of ordered than

demanded quantities. This is exactly the effect that Forrester (1961) ob-

served when describing the BWE.

Examining the results in Figure 6.6 and Table 6.2, one can observe dif-

ferent responses to the demand shock. The decentralized model in the first

node, the one closest to the customer, exhibits an increase in variance when

faced with the demand shock. By contrast, the two subsequent nodes even

exhibit a decrease in the mean of the measured BWE. The situation for the

central model is different for the observation at the first SC node: There, the

unexpected increase in demand leads to a decrease in the measured BWE.

The following two nodes also remain relatively stable. For the second node,

a significant change in the BWE measurement must be rejected, while for

the third node a significant increase can be reported, but at a low level. This

seems to indicate that the first node in the SC is already able to absorb the

demand shock without propagating the demand variance further down the

SC.
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Figure 6.6: BWE Measurement with Equation 6.1 per Node and Model

A further analysis is conducted by examining the KPIs of mean cost per

period and the resulting service level of the SC. Figure 6.7 presents a com-
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6 RL for Inventory Control in Linear Multi-Stage Supply Chains

µ σ U p-value
σ2(O)

σ2(D)
Decentral Model Node 0 Without Demand Shock 0.690 0.364 4470.0 0.000

With Demand Shock 1.516 0.300
Node 1 Without Demand Shock 1.860 1.535 55,430.0 0.000

With Demand Shock 1.684 0.450
Node 2 Without Demand Shock 3.911 4.175 47,656.0 0.000

With Demand Shock 1.758 0.877
σ2(O)

σ2(D)
Central Model Node 0 Without Demand Shock 1.188 0.166 4671.0 0.000

With Demand Shock 0.844 0.103
Node 1 Without Demand Shock 1.711 0.272 73,655.0 0.441

With Demand Shock 1.712 0.280
Node 2 Without Demand Shock 1.987 1.013 59,354.0 0.000

With Demand Shock 2.175 1.006

Table 6.2: Comparison of BWE Measures of the Two Models when Exposed
to a Demand Shock

µ σ U p-
value

Mean
Cost

Decentral
Model

Node
0

Without Demand
Shock

367.37 380.39 8,017.0 0.000

With Demand Shock 3,835.97 5457.24
Node

1
Without Demand

Shock
222.67 170.96 4,394.0 0.000

With Demand Shock 1,765.40 1,988.18
Node

2
Without Demand

Shock
234.92 191.01 4,270.0 0.000

With Demand Shock 1,246.78 872.62
Mean
Cost

Central Model Node
0

Without Demand
Shock

338.49 90.87 47,080.0 0.000

With Demand Shock 493.59 312.07
Node

1
Without Demand

Shock
325.02 13.91 52,213.0 0.000

With Demand Shock 317.78 16.74
Node

2
Without Demand

Shock
179.64 122.27 58,617.0 0.000

With Demand Shock 254.34 272.30

Table 6.3: Comparison of Mean Cost Measures of the Two Models when Ex-
posed to a Demand Shock

parison of mean cost per period and service level before and after the de-

mand shock for each model and node. Comparing the mean costs without

and with the demand shock reveals an increase in the mean costs per period

for both models when a demand shock occurs. Table 6.3 provides means

and standard deviations as well as the results of a Mann-Whitney U test are

given. Nevertheless, the increase in average costs is significantly higher for

the decentralized model than for the centralized one. Looking at the lower

service level graphs, it is clear that the increase in mean cost is caused by a

decrease in service level.
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Figure 6.7: Change in Mean Cost and Service Level per Node and Model
when Confronted by a Demand Shock

The expected increase in demand due to the introduced demand shock

is not unambiguously measurable by Equation 6.1. However, the effect can

be seen in the KPIs used in the system analysis above.
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6.4 Chapter Conclusion

The results of this chapter can be summarized as follows:

It was possible to find a decentralized policy that works similarly well

when plugged into an SC several times compared with a centralized model.

This is promising because the decentralized models were not adapted and

not newly trained, but rather taken as they were trained for a single SC lo-

cation and switched in series for a linear SC. This has the advantage of not

requiring retraining for new SC configurations.

When tested on unknown data, both the centralized and decentralized

models performed quite well, especially when average demand and replen-

ishment times and CVs became higher than the known and trained values.

By contrast, lower values seemed to cause problems in the form of higher

costs. A possible countermeasure would be to attempt to train on gener-

ally lower values or to use conventional models when confronted with less

complex environments.

Demand shocks, as modeled in the present work, seemed to mainly af-

fect service levels and the resulting costs, but they did not involve a high

amplification of demand throughout the SC. It is here that the centralized

model seemed to demonstrate its advantages over the decentralized model,

as the losses in service level and the resulting backorder costs were lower for

the centralized model.
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7 Application to Real-World

Data

Everyone you meet is fighting a battle you know nothing

about. Be kind. Always.

– Ian MacLaren

Given the theoretical basis of the previous three chapters, the aim of this

chapter is to assess the applicability of the model to real-world data. There-

fore, the selection of data and the underlying assumptions are presented

in the first section followed by the presentation of the results when the RL

model is applied to real-world data. Then, the chapter concludes with a

discussion of the objectives achieved and the weaknesses of the approach.

7.1 Selection of the Data and Assumptions

The theoretical examples use data points such as demand data in the form

of realized and forecast demand as well as replenishment data and cost pa-

rameters, such as holding, fixed order, and penalty costs. For the real-world

use case, an equivalent must be found. Today, most companies use ERP sys-

tems to plan their operations. These range from systems for high-level net-

work planning in the SCM area to manufacturing execution system (MESs)

for detailed planning. (Schuh 2007) One of the most commonly used ERP

systems is that provided bySAP™

texttrademarkṪhe SAP™ ERP system is as well used by the company whose

data are used for this real data use case.

99



7 Application to Real-World Data

As the present work deals with the problem of replenishment and the

question of how much and when to reorder material or intermediate prod-

ucts, the field of application falls within SAP™ materials planning, which

takes place towards the supplier. The task is often performed by an inven-

tory and production planner, supported by the MD04 transaction, which

provides an overview of future requirements and orders already placed. The

requirements in this case come in the form of a secondary requirement trig-

gered by a planned or production order. In addition, the SAP™ ERP system

is able to propose a replenishment plan based on the settings that corre-

spond to the SC of the particular material. On this basis, the inventory plan-

ner can accept or adjust the proposed replenishment plan.

The present work picks up at this point: Data from the MD04 transaction

are used as input for the RL policy to generate a replenishment plan. There-

fore, several specific products are considered, and the evolution of the cor-

responding stock levels, demand, and orders placed by the dispatcher are

observed over a certain time interval. Replenishment times play a minor

role in this approach, as the dispatcher usually determines the specific date

on which the material is to be delivered. It is then the responsibility of the

supplier to deliver on time on that particular date. Of course, replenishment

time plays a role in the short-term nature of orders, as the supplier requires

sufficient lead time to be able to deliver on time. Under this assumption,

the results of the RL model’s decisions in this particular case are to be seen

as pre-planning rather than live planning on a daily basis. Therefore, the

lead times are set to the deterministic value of one day.

To select specific materials and their part numbers in specific locations,

the procedure in Figure 7.1 is followed to retrieve a random and heteroge-

neous collection of different products. The database for all the data is a data

lake that contains the raw SAP™ tables. These are listed in the appropriate

sections below.

First, all material-location combinations in the time interval between 01-

Jul-21 and 01-Nov-21 that appear in the demand tables (i.e., the secondary

demand [RESB]) are considered. Secondary demand is generated by pro-

duction orders, which in turn are generated by customer demand; 500 of
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7.1 Selection of the Data and Assumptions

these combinations are chosen arbitrarily. For material-location combina-

tions for which there are at least 10 demand periods and for which price

information is available, the above-mentioned data points of demand, cor-

responding stocks (LQUA), orders manually executed by the MRP controller

(EKET/EKPO), and price information (MBEW) are retrieved. Price informa-

tion is used to calculate holding costs and is therefore mandatory. The re-

quirement of at least ten demand points is based on the need to derive a

reasonably adequate distribution of demand, while also not excluding too

many materials. Another requirement is the availability of stock data for this

specific time interval. Inventory data are important for two reasons: First, it

is necessary to define initial inventory levels for the time interval under con-

sideration; and second, a comparison of average stock levels would at least

be interesting for evaluating the performance of the RL policy. Stock levels

at the specific start date are rarely available. It is therefore assumed that the

initial stock levels correspond to the average stock levels obtained from the

data. This results in a total of 111 unique material-location combinations.

After this preprocessing of the data, the RL agent from Chapter 5 is ap-

plied. It calculates the scaling factors for each material introduced in Chap-

ter 5 and predicts orders for each period and material based on the updated

stock levels and corresponding cost parameters. The agent is not trained on

the described data; rather, it is used as is.
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7 Application to Real-World Data

Figure 7.1: Procedure for Selecting Material-Location Combinations

The cost parameters are known to be difficult to determine and are there-

fore derived from several sources: Holding costs comprise the adminis-

trative costs of warehousing plus handling and capital costs. Reality has

demonstrated that administrative costs are negligible, while capital costs

are known to be the major component. Capital costs are usually deter-

mined as a percentage of the product price, with a percentage higher than

the interest rate charged by a bank. (Axsäter 2015) Arnold et al. (2008, p.232)

suggest a capital cost rate between 4% and 20%; a more tailored rate can be

found with Equation 7.1 from Pulic (2005-2015):

Stock interest rate = interest rate ∗ �storage time
360

(7.1)

A working capital study by Deloitte (2019) reports average holding times

for certain industries, such as 53 days for automotive and 79 days for en-

102



7.2 Results

gineering. Considering the current low interest rates close to zero1 and as-

suming at least 1% for ease of calculation, the capital rate would actually be

between 0.15% and 0.22%. Nevertheless, a comparison is made with a more

traditional capital rate of approximately 10%. Holding costs are therefore

calculated as a fraction of 10% of the material price.

Fixed order costs are highly dependent on the routes and means of

transport used. In addition, each company optimises its transport routes

through a specific system of full truck load (FTL), less than truck load (LTL),

and milk run organization. For the present example, an average value of

400Nper order is assumed, which results from the evaluation of internal

historical and publicly available data on intra-European routes by truck

and different types of charges.

According to Axsäter (2015), backorder costs are difficult to estimate be-

cause they usually consist of a number of different parameters. They could

include the cost of re-organising after a delivery is backordered, the conse-

quences of a missing part on the assembly line, or the cost of buying the

part elsewhere at a higher price. Since backorders should be avoided at all

costs, this is reflected in an arbitrarily high backorder cost of 1000Nper unit.

7.2 Results

The data sample obtained by using the aforementioned procedures consists

of 111 unique material-location combinations from 12 different sites, and it

can be found in Bergmann (2023a). Demand and price data are distributed

as illustrated in Figure 7.2, where the left side of the graph shows the de-

mand characteristics, while the right side shows the distribution of mean

demand and corresponding prices. One can see that the mean demand per

day for a share of approximately 92.8% of the materials lies in the interval

up to 1000 units per day, while the CVs seem to be comparatively high with

1. European Central Bank (ECB) Interest Rates https://www.ecb.europa.eu/stats/
policy_and_exchange_rates/key_ecb_interest_rates/html/index.en.html
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the 90% quantile at 3.05. Prices for 90% of the materials are in the interval

between (0, 228.25).
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Figure 7.2: Distribution of Input Data

After applying the RL policy to the demand series, it can be generally

stated that the service levels for all demand series are 100%, as was achieved

in reality. The focus of interest is now on the comparison with reality for the

resulting KPIs.

First, the average stock levels for the 111 selected materials are examined:

In 90 cases of the selected 111, the mean stock levels can be reported lower

and could be reduced by an average of 1919.42 units when the RL policy

is switched to. The graph to the left of Figure 7.3 presents a histogram of

all absolute reduced stock levels. Putting this absolute number of reduced

stocked units in relation to the corresponding average demand in the right

graph, the reduction is a multiple of up to 40 times the average demand and

on average 8.8 times the average demand.

The following unitless KPI is used as another way to assess the average

cost per unit demanded and price. The general level of demand and price-

dependent holding costs have been identified as the main drivers of abso-

lute costs. Consequently, these should be neutralized by the following for-

mula as an adaptation of Equation 4.11 in Section 4.6:
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Figure 7.3: Histogram of the Yielded Inventory Reduction when the RL Pol-
icy is Applied to the Data

CEff =
Ct

E(D)h
(7.2)

The KPI distribution for the theoretical case when the robust model

RLAdaptive+Cost and the KPI distribution are tested for the current real data

use case can now be compared. The mean KPIs are 27.86 and 14.66, re-

spectively, which promise satisfactory behavior of the RL policy when it is

applied to the real data. The KPIs from the theoretical test scenarios start

at a lower level, with a small peak in the single digits; however, they have a

longer right tail towards worse KPI ranges. This is confirmed by the standard

deviations of 56.54 and 14.92 for theory and reality, respectively.

7.3 Chapter Conclusion

Overall, this small example of applying the RL policy to arbitrary real-world

part numbers demonstrates several things: Under the assumptions made,

inventory could be reduced with similar to better cost efficiency. Due to

the data situation, no one-to-one comparisons could be made. Neverthe-

less, the auxiliary KPIs are suitable for determining the general trend. This

opens up the possibility of applying the model to real use cases; yet, this

does not release one from the obligation to conduct further studies. It is rec-

ommended that the database should be strengthened in terms of cost pa-
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Figure 7.4: Histogram of KPI in Theoretical Experiments and when Applied
to Real-World Examples

rameters and, in particular, time series that are complete in terms of stock

and order information. This would allow a highly accurate comparison of

the model’s behavior with reality. In addition, it might be helpful to add

other data features, such as information on the grouping of the material into

an A, B, or C classification. Such data points could provide an indication of

why the RL policy might not work so well for some of the materials.

If the results are still promising, a next step could be to test the model

not only on historical data but also on a live system. Past data have the dis-

advantage of having states where all of the changes of the day have already

happened and are aggregated into a clear-looking state description of that

particular day. By contrast, data normally change throughout the day, fore-

cast demand changes as it gets closer to the call-off day, and both are subject

to fluctuations that a real-time policy would also face.
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8 Conclusion

I regret nothing in life but the things I have not done.

– Coco Chanel

This chapter summarizes the main findings of this thesis and outlines

further research and applications using extended models.

8.1 Summary

The present research was conducted under the assumptions of mainly three

research questions, which are restated and responded to as follows:

How might one develop an RL system for SCs that contend with stochas-

tic demand and stochastic replenishment times and are inclusive of fore-

cast errors? Which SC characteristics are crucial to incorporate?

The literature review in Chapter 3 revealed how previous approaches

have addressed certain model decisions concerning the underlying SC

model as well as those for the RL part. By describing the SC environment in

Chapter 4, the requirements for the setting became clear: An agent should

decide on the action replenishment quantities and dates. Unlike most pre-

vious approaches in the literature, the SC environment was modeled with

stochastic replenishment times and the probability of forecast errors. The

training algorithm and the policy and value networks chosen are standard

ones from the work of OpenAI, as the focus should be on the design de-

cisions rather than on the development of yet another efficient training

algorithm and policy approximator. After the description of the environ-
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ment and the assumptions about the synthetic training data, the creation

of the test scenarios was clarified in the later sections of Chapter 4.

How reliable and robust are the decisions made by the basic model?

How is the dependability affected by the structure of the state and action

space, and how competently does the developed model perform com-

pared with a traditional policy?

Systematically generated synthetic training and test data helped to an-

swer the second research question in Chapter 5. The aim was to develop a

RL model that could be adapted to different SC environments without fur-

ther training. The major advantage of such a model would be its consistent

performance when applied to different products with lower or higher de-

mand, with more or less variance, different replenishment times, and dif-

ferent cost structures. Thinking of a company, it is easy to imagine a large

number of products that could be planned in this way, and where not hav-

ing to train for each product would save much time. To achieve this, adap-

tive scaling of the state and action space was used. In addition, the state

space consisted of the information points of stock level and cost parame-

ters. Compared with no adaptive scaling, a significant cost reduction was

achieved. The inclusion of the cost parameters also helped the model to

adapt to changing ratios of the cost parameters; for example, when holding

costs increased relative to the other cost parameters, the model attempted

to reduce the average stock levels to reduce costs.

How should an RL system be designed for linear SCs that contain sev-

eral stages? How does a central approach perform versus decentrally

trained models and how do they react to demand shocks?

In Chapter 6, a comparison was made between a decentralized and a cen-

trally controlled linear SC. The best model as determined by the robustness

analysis in Chapter 5 was taken as an agent for each SC node in an SC that

consisted of three nodes. In addition, a central agent was trained to make

decisions for all three nodes simultaneously. The analysis demonstrated

that it is possible to find a decentralized policy that performs at the same

level as the central one when switched in series. In addition, an analysis of
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responses to demand shocks was investigated. Overall, the sudden increase

in demand mainly affected the decentralized model, while the centralized

model seemed to cope well.

How would such a previously defined and theoretically tested model

perform on real data?

Chapter 7 explained how the real-world database was created, which spe-

cific part numbers were chosen, and how the model worked on these time

series. The well-known problem of the lack of sufficient and complete data

necessitated assumptions, which should be reviewed in future work. For

the present work, the results of the analysis point in a promising direction,

as a reduction in average stock levels can be achieved without a reduction

in service levels.

8.2 Outlook

The research does not stop here: As far as SC models are concerned, it is easy

to imagine that they will become more complicated with increasing global-

ization, and that they are not at all represented by the present model. The

number of relationships, suppliers, and customers increases, but the num-

ber of uncertainties could also be modeled more precisely. A useful exten-

sion could be to disaggregate replenishment times as is and instead model

the availability of transport and production resources and failure probabil-

ities.

In these more complex environments, there may be other possible exten-

sions of the state and action space: Of course, research could go in the direc-

tion of giving the model more information up to every available data point

of the SC. Actions could consist not only of the quantity to be ordered on

a given day but perhaps also of a complete replenishment plan for a given

period in the future. Interesting actions could be inspired by the decision

space of today’s schedulers, such as speeding up the delivery of orders by

organizing a special tour, reprioritizing production, or negotiating with dif-

ferent suppliers.
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The example of work such as Hubbs et al. (2020) indicates that the topic

has great potential for future work: The authors developed something like

standard environments for several well-known operations research prob-

lems, including the case of inventory management. Standardizing prob-

lems in the form of implemented code could make these problem instances

more accessible and therefore more widely used in the future.

Finally, there seems to be almost no limit to the extension of the current

model, especially if one considers one of the many studies that have pre-

dicted the possible future of SCs. For example, the KPMG study Road to

Everywhere - Future of SCs 1 and several articles on the future of manufac-

turing 2 have identified the following three main trends defined by often-

quoted buzzwords:

The first trend is that of SC transparency. Driven by the B2C market, the

need for greater SC transparency is also emerging in the B2B market. Cus-

tomers want to know about the status of their delivery, possible disruptions,

and the resulting consequences. Technologies such as sensor data, RFID,

and GPS tracking are bringing an increasing number of devices into the In-

ternet of Things (IoT) age. As a result, there will be many more data points

to process, enabling a more realistic digital twin of supply chains and facto-

ries.

This leads to the second trend in cyber-physical systems, which is that

existing digital copies of reality can be assembled using the collected data.

These could then be combined to form increasingly larger networks of

cyber-physical systems, all of which interact across company boundaries.

In addition to traditional SC players, another emerging group of future

players will be SC platforms that offer SC, manufacturing, or logistics as a

service. The consequence of this is short-term and constantly changing SC

partners.

1. https://home.kpmg/xx/en/home/services/advisory/management-consulting/
optimize-your-sector-operations/future-supply-chain.html

2. https://vdma-verlag.com/home/future_manufacturing_DE.html#
modal-cookiewarning
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Moreover, the sheer volume of data and the sheer number of partners are

leading to increases in complexity and data, while speed and responsive-

ness remain crucial factors. This gives rise to the third trend—namely de-

cision automation. To process the huge amount of data, pre-sort it, handle

standard decisions, and free up human decision makers for more impact-

ful questions, an increasing number of decisions will be made by systems.

These systems, embedded in the aforementioned cyber-physical systems,

will consist of multiple agents, both human and digital, interacting with

each other.

The present work is intended to lay the foundations for dealing with the

aforementioned future trends, and will certainly need to be developed fur-

ther in order to achieve this vision.
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Nomenclature

General

b Scale parameter of the gamma distribution

p Shape parameter of the gamma distribution

A2C Actor-Critic Algorithm

ANN Artificial Neural Network

BWE Bullwhip Effect

CSCMP Council of Supply Chain Management Professionals

CV Coefficient of variation

E(X) Expected value of the randomly distributed variable X

EOQ Economic Order Quantity

ERP Enterprise Resource Planning

IoT Internet of Things

MDP Markov Decision Processes

MES Manufacturing Execution System

MU Monetary units

PDF Probability Density Function

PPO Proximal Policy Optimization
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Nomenclature

RL Reinforcement Learning

SC Supply Chain

SCM Supply Chain Management

tanh Tangent hyperbolicus

TRPO Trust Region Policy Optimization

Var(X) Variance of the randomly distributed variable X

VMI Vendor Managed Inventory

Literature Review

BO Backorders

C Central planning

D Divergent supply chain structure

DC Decentral planning

E Expired Items cost

F Fixed ordering cost

H Holding cost

IP Inventory position

L Linear supply chain structure

LS Lost sales

M Manufacturing cost

N Leveling cost

P Penalty cost

T Transportation cost
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Nomenclature

Model

C Mean cost per period

Ip Mean stock level

bn Backorder cost per unit at node n

Ct Total cost in t

D Random variable of customer demand

dt Realized amount of demand in period t

dn,t Realized amount of demand at node n in period t

FE Random variable of forecast error

fen,t Realized forecast error in period t for node n

hn Holding cost per unit at node n

Ipn,t Physical available inventory at node n in period t

Kn Fixed order cost per order at node n

L Random variable of replenishment time

ln,t Realized replenishment time in period t for node n

N Total number of nodes in the supply chain

n Index for a node in the supply chain

ot Order amount in period t

on,t Ordered amount at node n in period t

T Number of periods in a planning episode

t Index for the planning period
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