KIT | KIT-Bibliothek | Impressum | Datenschutz

Energy Demand for Pyrolysis of Mixed Thermoplastics and Waste Plastics in Chemical Recycling: Model Prediction and Pilot-Scale Validation

Netsch, Niklas ORCID iD icon 1; Zeller, Michael ORCID iD icon 1; Richter, Frank 1; Bergfeldt, Britta 1; Tavakkol, Salar ORCID iD icon 1; Stapf, Dieter 1
1 Institut für Technische Chemie (ITC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Pyrolysis of plastic waste is a key technology for
closing the anthropogenic carbon cycle. The energy demand (ED)
of this endothermic process is a crucial factor to evaluate its
benefits compared to established recycling pathways. The pyrolysis
ED can be determined experimentally. However, this is elaborate
and limited in transferability. Existing models cover virgin plastics
or hydrocarbon thermoplastic mixtures on a laboratory scale. Here,
a model for calculating the ED of thermoplastic mixtures based on
the superposition of virgin polymer data is developed. The material
data, such as heat capacity, phase transition enthalpy, and reaction
enthalpy, are determined using differential scanning calorimetry.
Pilot-scale experiments are performed in a 1 kg/h screw reactor.
These experimental data are compared to model calculations. The
feedstock-specific ED for pyrolysis is plastic-type independent. It amounts to approximately 4−6% of the feedstocks’ net calorific
value. The validation shows excellent accordance for virgin plastics and hydrocarbon plastics mixtures. The modeled ED of mixtures
including heteroatoms is systematically underestimated, which indicates changes in the degradation mechanism. ... mehr


Originalveröffentlichung
DOI: 10.1021/acssusresmgt.4c00109
Zugehörige Institution(en) am KIT Institut für Technische Chemie (ITC)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 16.07.2024
Sprache Englisch
Identifikator KITopen-ID: 1000172682
HGF-Programm 38.05.01 (POF IV, LK 01) Anthropogenic Carbon Cycle
Erschienen in Sustainable resource Management
Schlagwörter plastic recycling, chemical recycling, pyrolysis, energy demand, thermal degradation, polymer decomposition,, differential scanning calorimetry
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page