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Problemstellung 

In den letzten Jahren ist die Nachfrage im Onlinehandel deutlich gestiegen und zur Erfüllung dieser Nachfrage 

auch der Lieferverkehr. Dieser Trend wurde durch die COVID-19 Pandemie zusätzlich verstärkt. Bei der Pa-

ketlieferung auf der letzten Meile werden heutzutage größtenteils Kleintransporter mit einem zulässigen Ge-

samtgewicht bis 3,5t eingesetzt. Diese konventionellen Lieferfahrzeuge haben einen hohen Emissionsausstoß 

und verursachen vor allem in dicht bebauten Gebieten Platzprobleme. 

Daher sind sowohl Verkehrsplaner als auch KEP-Dienstleister daran interessiert neue Lieferkonzepte einzu-

führen. Unter anderem wurden Ansätze wie Paketschließfächer, Lastenräder, Micro-Hubs und Cargo-Trams 

getestet und teilweise auch schon etabliert. 

Um die Auswirkungen solcher neuen Maßnahmen auf die Verkehrsnachfrage und den Emissionsausstoß zu 

prognostizieren, werden Güterverkehrsmodelle in der Verkehrsplanung verwendet. Verkehrsplaner und politi-

sche Entscheider können damit verschiedene Maßnahmen vor deren tatsächlichen Implementierung bewerten 

und vergleichen. 

Um eine detaillierte Analyse der Güter- und Verkehrsnachfrage, sowie der einzelnen Akteure und deren Be-

ziehungen zu ermöglichen, sind agentenbasierte Modelle im Fokus aktueller Forschung. Es wurden bereits 

diverse Modelle entwickelt, welche den Güterverkehr und den Privatverkehr integriert betrachten, um die In-

teraktionen beider Bereiche abzubilden. Dabei hat jedes dieser Modelle spezifische Anwendungsfälle und ver-

schiedene Stärken und Schwächen. Bedingt durch die hohe Komplexität der Güterverkehrsdomäne wurde 

noch kein vollumfassendes, agentenbasiertes Modell entwickelt. 

Aufgabenstellung 

In dieser Arbeit soll ein Ansatz untersucht werden, der es erlaubt, die Vielfalt an Funktionen mehrerer agen-

tenbasierter Güterverkehrsmodelle zu kombinieren und integriert nutzbar zu machen. Dazu sollen Modelle zur 

Abbildung des Güterverkehrs (mit Fokus auf den KEP-Sektor) analysiert und verglichen werden, um gemein-

same Konzepte und Strukturen zu extrahieren. Basierend darauf sollen Modelltransformationen definiert wer-

den, mit welchen eine beispielhafte Kopplung zweier solcher Modelle umgesetzt werden soll. Für diese Arbeit 

sollen die Güterverkehrsmodelle logiTopp und MATSim-Freight genauer untersucht werden. 



 

 

 

Als Grundlage der Arbeit sollen zunächst verschiedene agentenbasierte Güterverkehrsmodelle recherchiert 

werden. Hierbei sollen die umgesetzten Konzepte und die Anwendungsgebiete der Modelle herausgearbeitet 

werden. Weiter sollen die relevanten Grundlagen aus dem Bereich der Metamodellierung und Modelltransfor-

mation zusammengefasst werden. Unter anderem sollen dabei auch Metriken und Kriterien recherchiert wer-

den, die zur Bewertung von Metamodellen und Modelltransformationen angesetzt werden können. 

 

Basierend darauf sollen (mindestens) die beiden Güterverkehrsmodelle logiTopp und MATSim-Freight detail-

liert analysiert und verglichen werden. Gemeinsame Konzepte und Strukturen sollen in Form eines allgemei-

nen Metamodells extrahiert werden. Auch die Unterschiede der Modelle sollen herausgearbeitet und diskutiert 

werden. Neben der Definition des Metamodells sind die Modelltransformationen zwischen Metamodell und 

den untersuchten Modellen zu definieren. Für die gefundenen Modell-Unterschiede sollen mögliche Lösungen 

für eine konsistente Modellierung im Metamodell erarbeitet und Limitierungen aufgezeigt werden. 

Mit den entwickelten Modelltransformationen soll anschließend eine beispielhafte Kopplung der beiden Mo-

delle logiTopp und MATSim-Freight umgesetzt werden. Welche Anwendungsfälle sich für eine Kopplung eig-

nen, soll in dieser Arbeit erörtert werden. Hierbei sollen auch verkehrliche Kenngrößen evaluiert werden. 

 

Abschließend soll das entwickelte Metamodell, die Modelltransformationen und die Kopplung evaluiert werden. 

Dazu sollen die recherchierten Bewertungskriterien aus der Literatur herangezogen werden unter Beachtung 

ihrer spezifischen Anwendbarkeit. Weiter können eigene Metriken zur Evaluation ergänzt werden. Zur Evalu-

ation der Kopplung soll diese außerdem auf ein vom IfV bereitgestelltes Modell der Region Karlsruhe ange-

wendet werden. Zur Bewertung der Anwendung sollen verkehrliche Kenngrößen auf Plausibilität geprüft wer-

den. 

Die Arbeit ist gebunden (DIN A4) in zweifacher Ausführung einzureichen und nach Möglichkeit ist die For-

matvorlage des Instituts für Verkehrswesen zu verwenden. 
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Abstract

CEP service providers and transport planners are interested in optimizing parcel
transport processes and developing new concepts for this purpose. Freight transport
models play an important role here, as they allow evaluation and comparison of a
variety of new approaches at an early stage and at low costs. A large number of
freight transport models have already been developed for this purpose, each of which is
tailored to specific scenarios and research questions. However, these models generally
use different data models and input data, which requires a major manual effort to
simulate scenarios in different models. Automated coupling of freight transportation
models has so far only been developed for a few individual pairs of models.

This work presents an approach based on model-driven engineering for the automatic
coupling of multiple freight transport models with the aim of combining their variety of
functions and making them usable in an integrated manner. For this purpose, a common
metamodel for the domain was developed, which serves as a central exchange point
for the transformation between the models. This metamodel describes the domain’s
central and common concepts, encapsulates their variability, and defines a common
view. As part of the evaluation of the approach, an example model from the Rastatt area
in Germany was coupled between the logiTopp and MATSim-Freight freight transport
models. It could be shown that the elementary properties of the source model were
correctly transferred to the coupling’s target model.





Zusammenfassung

KEP-Dienstleister und Verkehrsplaner sind daran interessiert, die Prozesse im Trans-
port von Paketen zu optimieren und dafür neue Konzepte zu entwickeln. Dabei spielen
Güterverkehrsmodelle eine entscheidende Rolle, da sie es ermöglichen, eine Vielzahl
von neuen Ansätzen frühzeitig und kostengünstig zu bewerten und zu vergleichen. Da-
zu wurden bereits eine Vielzahl von Güterverkehrsmodellen entwickelt, die jeweils auf
spezifische Anwendungsfälle und Fragestellungen zugeschnitten sind. Jedoch verwen-
den diese Modelle in der Regel unterschiedliche Datenmodelle und Eingabedaten, was
einen hohen manuellen Aufwand erfordert, um Szenarien in verschiedenen Modellen
zu simulieren. Eine automatisierte Kopplung von Güterverkehrsmodellen wurde bisher
nur für vereinzelte Paare von Modellen entwickelt.

Diese Arbeit präsentiert einen Model-Driven Engineering basierten Ansatz zur auto-
matischen Kopplung beliebig vieler Güterverkehrsmodelle mit dem Ziel, die Vielfalt an
Funktionen zu kombinieren und integriert nutzbar zu machen. Dazu wurde ein allgemei-
nes Metamodell für die Domäne entwickelt, das als zentraler Austauschpunkt für die
Transformation zwischen den Modellen dient. Dieses Metamodell beschreibt zentrale
und allgemeingültige Konzepte der Domäne, kapselt deren Variabilität und definiert eine
allgemeine Sichtweise. Im Rahmen der Evaluation des Ansatzes wurde exemplarisch
eine Kopplung eines Beispielmodells aus dem Raum Rastatt, Deutschland, zwischen
den Güterverkehrsmodellen logiTopp und MATSim-Freight durchgeführt. Zudem konn-
te gezeigt werden, dass elementare Eigenschaften des Quellmodells korrekt in das
Zielmodell der Kopplung übertragen wurden.
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1 Introduction

1.1 Motivation

The transportation of parcels has seen a significant increase in recent years. In
Germany alone, the number of parcels handled by courier, express, and parcel (CEP)
service providers reached 4.51 billion in 2021, marking a substantial increase of around
2 billion parcels compared to 2012 [12]. This surge in parcel volumes presents major
challenges for CEP service providers (CEPSPs) and transport planners, particularly
in densely populated areas where last-mile delivery by small vans contributes to
traffic congestion, emissions, and space constraints. Addressing these challenges
requires further optimization of CEP processes and the development of innovative
parcel delivery solutions, such as parcel lockers, drones, cargo bikes, and integrating
public transportation into transport chains.

Freight transport models are valuable tools for developing and evaluating these solutions.
They enable the simulation of various approaches before implementation, allowing us
to analyze their impact on factors like efficiency, costs, and emissions. While various
freight transport models have been developed, current research primarily focuses on
agent-based approaches. In these models, each relevant entity in the domain, such as
delivery vehicles or dispatchers, is represented as an autonomous agent that makes
individual decisions and interacts with infrastructure and other agents.

In the meantime, various freight transport models have been developed. Each freight
transport model focuses on different aspects of the domain and is tailored to specific
research questions. Thus, each model has its strengths and weaknesses. No fully
comprehensive model has been developed due to the domain’s complexity and the
multitude of research questions to be addressed.

Therefore, leveraging the capabilities of different freight transport models is essential
for gaining a comprehensive understanding of new approaches in the freight transport
domain. However, this process is labor-intensive, as researchers must model scenarios
separately in multiple freight transport models and, often manually or with specialized
tools, transfer interim results between models. This requires significant effort and poses
challenges to data integrity and result correctness.

1



1 Introduction

To streamline this process, there is a need for tools that facilitate coupling or automatic
data exchange between various agent-based freight transport models at different stages
of the modeling process. It would also benefit this process to develop a common view
of this domain shared by as many freight transport models as possible. This common
view also can serve as the foundation for the coupling and data exchange.

1.2 Goal of the Thesis

This thesis aims to develop, prototypically implement, and evaluate a concept that
facilitates the usage of multiple freight transport models in an integrated workflow. And
thus utilizing the diverse features and strengths of various freight transport models.

This thesis pursues an approach based on the idea of a common metamodel for the
freight transport domain. This metamodel serves as a unified understanding of the
domain and acts as a central point for coupling and data exchange among different
models. Moreover, metamodeling allows the application of tools and concepts from the
field of model-driven engineering. This common metamodel represents a further key
outcome of this thesis.

To achieve these objectives, an analysis of existing freight transport models will be
conducted to identify commonalities and similarities in their concepts and structures.
Subsequently, based on this analysis, the common metamodel and a concept for
integrating diverse freight transport models will be developed. This framework will be
applied to the logiTopp [31, 49] and MATSim-Freight [53, 54, 61, 62] models through
a prototypical implementation. This implementation will serve as the foundation for
evaluating the efficacy of the developed concept.

1.3 Structure of the Thesis

Chapter 2 introduces relevant foundations for this work. We present the idea of
modeling, metamodeling, and concepts of model-driven engineering. After that, we
briefly introduce software product line engineering and introduce freight transport
models by presenting the general structure and existing models. Further, we present
related work in the field of coupling transport models and models in general.

In Chapter 3, we analyze and compare the metamodels, i.e., the used domain models,
of several freight transport models, mainly of logiTopp and MATSim-Freight. The
developed concept for coupling multiple freight transport models is presented and
discussed in Chapter 4. In Chapter 5, we then present and discuss the developed

Seite 2 von 142



1.3 Structure of the Thesis

common metamodel and the required transformations.

A prototypical implementation of the concept is briefly introduced in Chapter 6. In
Chapter 7, we evaluate our work with a brief case study and testing of preservation of
elementary properties between coupled models.

Finally, in Chapter 8, we close the thesis with a conclusion, which summarizes the
results of our work and gives an overview of possible future work.
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2 Foundations

This chapter introduces the foundations on which this work is based. We begin by
exploring the fundamental principles of model-driven engineering, including metamod-
elling and model transformations, in Section 2.1. Next, we provide a brief overview of
some terms and concepts of software product line engineering in Section 2.2. After that,
we delve into the foundational aspects of freight transport models and examine existing
models, such as logiTopp and MATSim-Freight, in Section 2.3. Finally, we provide a
brief overview of related work in the field of coupling of freight transport models in
Section 2.4.

2.1 Model-Driven Engineering

Model-driven engineering (MDE) is a paradigm that considers models as first-class
entities throughout the entire development and operation of (software) systems [15].
The central idea of this paradigm is to raise the level of abstraction through the use of
models and then apply generative and transformational techniques to reduce complexity
and increase the level of automation. MDE uses a set of well-defined practices such as
metamodeling and model transformation [25].

Model-Driven Development (MDD) and Model-Driven Software Development (MDSD)
are often used interchangeably concerning MDE. Both refer to applying MDE methods
in software development. While encompassing these practices, MDE incorporates a
broader range of concepts, tools, and approaches associated with using models in
engineering practices beyond software development.

This section introduces key concepts of MDE used in this work. Section 2.1.1 describes
the common understanding of the term model in the context of MDE. Next, Section
2.1.2 presents the concept of metamodelling, followed by an introduction to the used
framework for it (see Section 2.1.3). The concept of model transformations is introduced
in Section 2.1.4.
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2 Foundations

2.1.1 Model Term

The term model has various meanings in different scientific contexts. In the context of
MDE, a model is an abstract representation of a (software) system. Which describes
only certain aspects of a system. The high degree of abstraction and the focus
on a reduced set of aspects reduce the complexity of understanding, handling, and
maintaining the model.

A common and in the context of MDE suitable characterization of the term model is
provided by Stachowiak [55], who describes three properties every model fulfills:

• Representation property: Models always represent some originals. These origi-
nals can be natural or artificial nature and even be models themselves.

• Reduction property: Models do not include every property of the represented
original. Instead, they consist only of a reduced subset of properties relevant to
the use case.

• Pragmatic property: Models are designed for a specific context. It acts as a
substitution function tailored for a specific user, during a specific period, and for a
certain set of operations.

Section 2.1.3 gives a brief example of a model that falls into this definition.

2.1.2 Metamodelling

A metamodel describes the allowed structure of models, encompassing their available
elements, attributes, relationships, constraints, and other modeling rules. Models that
adhere to this structure are recognized as instances of the metamodel, establishing
a direct relationship. A metamodel is a model itself. Metamodels commonly undergo
formal specification. Stahl et al. [56] propose that a comprehensive metamodel
specification should encompass an abstract syntax, one or more concrete syntaxes,
static semantics, and dynamic semantics. These individual components are elaborated

M3

M2

M1

M0

meta-metamodel (MOF, Ecore)

metamodel (UML, PCM, ...)

model

original

instance of

instance of

instance of

instance of

represents

represents

represents

represents

Figure 2.1: Layered metamodel architecture of MOF with four layers.
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upon as follows:

• Abstract Syntax: The abstract syntax of a metamodel defines the elements
comprising a model, along with their properties and relationships. This description
remains independent of any specific concrete representation.

• Concrete Syntax: A metamodel encompasses one or more concrete syntaxes that
detail how model elements and their relations are represented. These syntaxes
can take various forms, such as graphical or textual representations, or may
specify a particular file format.

• Static Semantics: The static semantics of a metamodel encapsulate all constraints
and modeling rules that cannot be articulated within the abstract syntax.

• Dynamic Semantics: The dynamic semantics express the meaning behind the
model elements and their relationships. Often expressed in natural language,
dynamic semantics can also manifest through transforming the model into another
formal language with predefined semantics, such as code, an automaton, or petri-
networks.

There are two elementary relations a model has to other models. Every model repre-
sents some kind of original, which can be a real object or a model itself. The instance
of relation establishes a crucial link between a model and its metamodel, stating that
the model conforms to the structure and constraints defined within its associated meta-
model. The metamodel of a metamodel is called a meta-metamodel. Theoretically,
any number of modeling levels can be created following this pattern. However, usually,
there is, at some point, a self-describing modeling level, which ends this cascade. In
most cases, the number of modeling levels is limited to four.

An example of a self-describing meta-metamodel is the Meta-Object Facility (MOF) [43].
Which is used by the UML standard [45] in a four-layer hierarchy. Figure 2.1 shows
the layered metamodel architecture of MOF with four layers. MOF uses the Object
Constraint Language (OCL) [42] to express the static semantics of its metamodels.
OCL allows declarative specifications constraints and invariants on classes, which can
then be evaluated in their instances. It can also be used as a query language, which is
used, for example, in the context of model transformations.

2.1.3 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [57] is an Eclipse-based modeling frame-
work and code generation facility for building tools and other applications based on
metamodels. Its core component is the meta-metamodel Ecore, which is compatible
with the Essential MOF (EMOF) subset of MOF [43], which is tailored to represent-
ing object-oriented constructs. Figure 2.2a shows a simplified subset of the Ecore
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meta-metamodel.

EMF provides various tools and extensions for the handling of Ecore-based metamodels.
These metamodels and their instances can be created and modified through UI editors
or a reflective Java API. EMF also provides tools for generating Java code and persisting
models.

Figure 2.2 presents a simple illustration of an EMF-based metamodel and model,
demonstrating the concepts discussed earlier. We have refrained from showing the
original family (level M0).

The diagram depicts in Level M3 a simplified subset of the Ecore meta-metamodel,
showcasing how classes with attributes of specific data types and references to other
elements are described. The meta-metamodel’s self-describing property is evident,
as all elements used in the meta-metamodel are described by the meta-metamodel
itself. For instance, the meta-metamodel describes classes (EClass) with attributes
(EAttribute) of a type (EDataType) and references (EReference) to other classes,
showcasing its ability to represent its own structure and constraints.

Moving down to Level M2, we encounter the metamodel for describing families, which
is an instance of the Ecore meta-metamodel. For example, the family metamodel
includes an EClass named Family with an EAttribute lastName of type String (str ) and
multiple containment EReferences to the EClass Member, outlining the structure of
family models.

At Level M1, we find the actual model describing the Smith family. While not explicitly
shown, it is clear that the model represents a real family (representation property).
Note that this model does not describe every property of the family and its members
(reduction property). For instance, there is no description of the hair color of family
members. This omission may occur because the model is tailored for a specific
context (pragmatic property). Thus, the missing property is irrelevant in this context.
It potentially serves as part of a larger metamodel describing insurance contracts for
families. In this context, details like hair color may be deemed irrelevant.

2.1.4 Model Transformations

Kleppe et al. [28] define model transformations as "the automatic generation of a target
model from a source model, according to a transformation definition." A transformation
definition is a set of rules describing how source model elements are transformed
into a target model. Model transformations are a key technique of MDE. They can
be employed for various tasks such as generating lower-level models, creating query-
based views, performing model evolution tasks like refactorings, and mapping and
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eAttributes

0..*

eReferences0..*

eAttributeType

1

eReferenceType

1

eSuperTypes

0..*

eOpposite0..*

EClass

name : str

EAttribute

name : str

EDataType

name : str

EReference

name : str
containment : bool
lowerBound : int
upperBound : int

(a) M3: A reduced and simplified subset of the Ecore meta-metamodel (adapted from [57]).

families 0..*

sons0..* daughters0..*
father0..1

mother0..1

Family

lastName : str

Member

firstName : str

FamilyRegister

id : str

(b) M2: A Ecore based metamodel for the description of families (no eOpposite
references are shown).

families

father

mother

daughters

daughters

smithFamily:Family

lastName : "Smith"

m1:Member

firstName : "John"

m2:Member

firstName : "Jane"

m3:Member

firstName : "Emily"

m4:Member

firstName : "Sarah"

root:FamilyRegister

(c) M1: Model of a family that is a instance of the family metamodel (Figure 2.2b).

Figure 2.2: Example of an EMF-based model hierarchy describing families.
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Figure 2.3: Basic schema for model transformations.

synchronizing among models [17].

Figure 2.3 provides an overview of the core principle of model transformations, illustrat-
ing the straightforward scenario of transferring a source model to a corresponding target
model within the same technical space. Both the source and target models adhere to
their respective metamodels, and the transformation is defined by a set of rules specific
to these metamodels. The transformation rules are applied by a transformation engine
on the input model to execute a transformation.

Mens and Van Grop [38] present a taxonomy that categorizes model transformations
along five dimensions:

• Number of source and target models: Transformations may involve multiple source
and target models.

• Technical space: This refers to the model management framework used, deter-
mined by the meta-metamodel of the source and target models. Models can
reside in the same or different technical spaces.

• Endogenous vs. exogenous transformations: Endogenous transformations oper-
ate on instances of the same metamodel, while exogenous transformations map
between different metamodels.

• Horizontal vs. vertical transformations: Horizontal transformations occur within
the same level of abstraction, while vertical transformations map between different
levels of abstraction.

• Syntactical vs. semantical transformations: Syntactical transformations consider
only the syntax of models, while semantical transformations also incorporate
their semantics. Code generation exemplifies syntactical transformations, while
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refactorings and optimizations are semantical transformations.

Mens and Van Gorp [38] also identify several key characteristics of model transforma-
tions, such as their complexity, level of automation (whether manual input is required for
execution), and which aspects of the source model are preserved in the target model.

Another categorization distinguishes between Model-to-Model (M2M), Model-to-Text
(M2T), and Text-to-Model (T2M) transformations. M2M transformations convert one
model to another, conforming to explicitly defined metamodels. M2T transformations
produce textual artifacts, such as code or documentation, from models, whereas T2M
transformations, or reverse engineering, generate models from textual artifacts. While
textual artifacts are often considered separate from models, they mostly conform to the
model term and an, often implicitly given, metamodel in this context.

Many different languages exist to specify model transformations and express transfor-
mation rules. They can be divided into declarative, imperative, and hybrid languages.
Where hybrid languages combine declarative and imperative language constructs.

Declarative model transformation languages specify the desired output rather than pro-
cedural steps. They allow to express relations between the source and target models,
enabling developers to concentrate on the "what" rather than the "how" of the transfor-
mation process. Thereby, details such as rule execution order, target model creation,
and source model navigation are hidden. One benefit of declarative languages is their
ease in creating bidirectional transformations. Because relations inherently express
both forward and backward transformation directions. A commonly used language fam-
ily for model transformations, compatible with MOF, is QVT (Query/View/Transformation)
[44] that provides both a declarative (QVT-R) and imperative (QVT-O) language.

For more information about model transformations, especially regarding their specifica-
tion and implementation, we refer the reader to the works of Czarnecki and Helsen [17]
and Di Ruscio et al. [20].

2.2 Software Product Line Engineering

This section gives a brief overview of some terms and concepts of the field of Software
Product Line Engineering (SPLE) used in this work. Pohl et al. [47] define SPLE as a
"paradigm to develop software applications [...] using platforms and mass customiza-
tion". It involves concepts for managing the commonalities and variabilities across the
products of a software product line.

The terms variability subject and variability object are introduced to describe variability.
Variability subjects are variable items or properties in the analyzed system, while
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variability objects are the particular instances of the variability subject [47]. In the
context of software product lines, a variability subject is called a variation point that has
multiple variants. In contrast to variability subjects and objects, variation points and
their variants are associated with contextual information and domain artifacts [47].

Modeling variability is an essential technique for documenting and managing the
variability of software product lines. A common approach is using feature models,
which are graphically represented as feature diagrams [6]. These models describe
relationships between features and define valid combinations of features. A feature
model is essentially a hierarchical tree structure where each element has specific
semantics, as described by Apel et al. [6]:

• Child features: These can only be selected if their parent is selected.
• Optional and mandatory features: Mandatory features must be selected if their

parent is selected, while optional features may or may not be selected.
• Concrete and abstract features: Concrete features are tied to implementation

artifacts, whereas abstract features serve only for structural organization.
• Or group: At least one child feature within this group must be selected if the

feature is selected.
• Alternative group: Exactly one child feature within this group must be selected if

the feature is selected.
• Cross-tree constraints: These allow expressing relations between features that

cannot be captured within the hierarchical structure of the tree. Propositional
formulas over the features are used to express these relations.

Figure 2.4 depicts the graphical notation of feature diagrams. A set of selected features
from a feature model is called a feature configuration.

Software product lines have their own engineering processes. One such process,
described by Apel et al. [6] and illustrated in Figure 2.5, is feature-oriented software
product line engineering. This process is structured along two dimensions. Firstly,
it distinguishes between domain engineering and application engineering. Domain
engineering is development for reuse, which comprises analyzing the product line’s
domain and developing reusable artifacts. Application engineering then deals with
developing an application adapted to a customer’s needs by analyzing those needs and
creating the application from the reusable artifacts. Secondly, it separates the problem
space from the solution space. The problem space encompasses the stakeholder’s
viewpoints, emphasizing domain problems, requirements, and abstractions represented
by features. In contrast, the solution space caters to developer needs, focusing on
design, implementation, and validation using technical terminology, aiming to enable
systematic reuse. This distinction results in four task clusters:

• Domain Analysis: This is a form of requirements engineering and involves defining
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the scope of the product line by analyzing domain problems and requirements. It
results in a feature model representing the variability of the software product line.

• Requirements Analysis: Here, the needs of a specific customer are analyzed and
mapped to a feature configuration of the feature model. Any missing features are
fed back into the domain analysis.

• Domain implementation: This encompasses the development of reusable artifacts
according to the feature model. It also includes deciding which concepts are
applied to implement the variability.

• Product derivation: In this step, the reusable artifacts are assembled according to
the selected feature configuration to derive a product variant.

2.3 Freight Transport Modelling

Freight transport is a complex domain with many stakeholders and complex interactions
among them. These interactions include the exchange of goods between producers
and consumers within the framework of supply and demand mechanisms intricately
entwined with the realization of supply chains. Additionally, there is the market for
providing logistic services and capacities and the process of orchestrating logistic
solutions, such as mode choice and trip generation. Another crucial interaction involves
the utilization of existing traffic infrastructure. This is usually a shared resource used by
both members of the transport market and entirely different entities, such as private
persons.

Freight transport models describe these processes and interactions. According to
Tavasszy and De Bok [58], their main function is "to provide comprehensive information
to all stakeholders about the current and expected performance of the system under
different future social, economic and technological scenarios: the models are used to
assess the effects of these scenarios." To handle this complexity, freight transport mod-
els usually focus on a subset of the interactions and processes of the freight transport
domain (reduction property). They are designed to assess specific effects of the eval-
uated scenarios (pragmatic property) [58]. This, together with advances in computer
science and modeling, is the reason why a large number of freight transport models
have been developed in the past. To give a brief overview of possible approaches, the
topology for freight transport models proposed by Thaller et al. [60] is presented in the
following. They characterize freight transport models by the following characteristics:

• Level of Aggregation: Aggregated models segment the study area into traf-
fic analysis zones. The demand generation and subsequent steps are then
calculated per traffic analysis zone. In disaggregated models the behavior of indi-
viduals or behavior-homogenous groups considered for the demand calculation.
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An increasingly popular variant of disaggregated models is agent-based modeling,
in which every participant in the freight market is considered an individual agent.
The decisions, interactions, and actions of each agent are simulated separately.

• Scale of Analysis: Macroscopic models make use of aggregated data and
behaviour-homogenous groups. While microscopic models calculate the demand
of individual actors. Mesoscopic models combine both approaches.

• Reference Values: The Reference value is the first occurring value of a model.
This is an indicator of the internal structure and implies which decisions are
modeled implicitly or explicitly. Reference values can either be freight or goods
flow based, vehicle based, or of a hybrid form.

• Study Area: Categories for the size of the study area are national, regional,
urban, or local. The spatial resolution of the model typically depends on the size
of the study area (which is the original category proposed by Thaller et al. [60]).

Further characteristics are the internal architecture and structure of the models (see
Section 2.3.1) as well as the used formal modeling methods. Typical modeling methods
include statistical analysis, statistical simulations, distribution methods, optimization,
equilibria, and temporal simulations. Based on the assignment of this work, we mainly
focus on disaggregated, agent-based, macroscopic models with a focus on regional
study areas.

Section 2.3.1 continues with an introduction to the architecture and structure of freight
transport models. After that, existing freight transport models are presented in Section
2.3.2, starting with the presentation of the models which are examined in this work
in more detail, followed by a short literature review on other existing freight transport
models. For a broader overview of the field of freight transport and city logistics and
their modeling and simulation, we refer the reader to the work of Marcucci et al. [37],
Tavasszy and Jong [59], and Thaller et al. [60].

2.3.1 Model Structure

Due to the wide array of freight transport models, there is no universal model structure
that encapsulates all of them. Thaller et al. [60] attempted to outline and generalize
freight transport modeling steps and structure, which is depicted in Figure 2.6 and elab-
orated further. This attempt is noteworthy for its simplicity and high-level perspective,
making it comprehensible. The 9-step modeling adapt the well-known 4-step approach
used for conventional traffic models. Based on this model, the key modeling steps
and their relation to logistic decisions can be identified. It’s important to recognize that
not every freight transport model integrates all of these modeling steps and logistic
considerations.
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Figure 2.6: Freight transport modelling steps and logistic decisions (adapted from [60]).

The model starts with the generation of the freight demand (Generation), which can be
seen as a model of the commodity market. In this step, the demand is represented in
a monetary or other abstract representation, which is transformed into physical units
such as volume and weight in the value-tons-transformation. Now, the freight transport
volume is distributed spatially in the study area (Distribution), resulting in the amount
of freight that is transported between a single origin and destination or origin and
destination areas. In the logistics chain split, the freight flows are assigned to several
logistic chains and split into single deliveries (Lot size split). After that, the freight flows
are assigned to the available transport chains (Transport chain split)). For every leg
of a transport chain, the used transport mode is chosen (Modal split). In the last two
steps, the single delivery trips are merged into complex tours (tour building), and the
resulting traffic is allocating capacities of the infrastructure network (traffic assignment).
All these presented steps model logistic decisions, which are shown to the right of the
corresponding modeling step in Figure 2.6.
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However, this 9-step model does not take into account some common aspects of freight
transport models. Due to the step-wise approach, only information from previous steps
is taken into account in a modeling step, never information from subsequent decisions.
For example, the tour building step does not consider the actual traffic volumes of the
transport network, which are determined in the traffic assignment step. Thus, the model
lacks representation of iterative processes. In addition, some agent-based approaches
are difficult to describe using this approach, as the agents often live in the simulation
environment and make decisions based on interactions with other agents in a more or
less arbitrary order.

2.3.2 Existing Freight Transport Models

LogiTopp

LogiTopp [31, 49] is a freight transport model focusing on modeling parcel orders and
simulation of last-mile deliveries. It is an extension of the activity and agent-based
travel demand simulation model mobiTopp [35, 36]. Both mobiTopp and logiTopp are
available as open-source projects on GitHub [30, 33]. We start with a short introduction
to the concepts and structure of mobiTopp and then present its extension, logiTopp.

In mobiTopp, every person in the generated population is an agent with specific at-
tributes, such as age, associated household, car ownership, or tickets for public trans-
port services. For every agent, an activity schedule is generated based on its attributes
and then executed dynamically. The execution of the activity schedule includes the
mode and destination choice for each trip. The simulation does not include a traffic
assignment, so there is no notion of interaction between agents through the usage
of the transport infrastructure, e.g., by traffic jams. The used travel times are based
on externally precalculated origin-destination matrices. However, agents can interact
indirectly through the availability or non-availability of cars in the household context,
e.g., if another household member uses the car while the agent makes its next mode
choice. There also exist several extensions, such as the simulation of carsharing and
ridesharing. MobiTopp supports simulation periods of up to one week.

Figure 2.7 shows the structure of mobiTopp. The long-term module covers long-term
aspects of the system, such as population synthesis, assignment of fixed destinations
(e.g., workplaces), generation of activity schedules, and determination of available mo-
bility tools (e.g., car and bike ownership, commuter tickets, or car sharing membership).
These properties are fixed and are the foundation for the simulation of the travel behav-
ior in the short-term module. The short-therm module mainly consists of a destination
and a mode choice model, which is supported by the mode availability model that keeps
track of available transport modes for a given agent at a given time. The activities are
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Figure 2.7: Structure of mobiTopp (adapted from [35]).

then executed, and the rescheduling model adapts the activity schedule to take the
experienced travel times into account and adapt the schedule. Due to this modular
structure and the use of object-oriented programming, all these models can easily be
exchanged or adapted. Making mobiTopp a very flexible framework.

LogiTopp extends mobiTopp by the simulation of last-mile parcel deliveries. One of
the distinctive features of logiTopp is the detailed simulation of the delivery of parcels.
Parcels can be delivered to an agent’s workplace, home, or a selected packstation.
The model takes into account whether the receiving agent, another household member,
or even neighbors are at home during the delivery attempt. If that is not the case,
the parcel will be taken back to the depot and delivered the next day or rerouted to a
packstation. The model has been extended to also simulate packages sent or received
by businesses [9] and takes contractual relations between businesses and CEPSPs
[32] into account. An overview of the supported producer-consumer relations is shown
in Figure 2.8. CEPSPs function as entry and exit points for parcels entering or leaving
the study area. They serve as either the starting or ending points of a parcel’s journey
within the study area. This means that when a parcel is sent within the study area
and handled by a CEPSP, it entails two trips: one from the origin to the CEPSP and
another from the CEPSP to the destination. At the current stage of development, private
persons cannot send parcels. The trips of a CEPSP to pick up parcels directly or from
a post office or similar facility are not simulated. However, a private person’s activity
schedule may include delivering a parcel to a post office or similar facility. Therefore,
only the initial part of a transport chain for sending parcels by private individuals is
implicitly modeled. Additionally, a private individual’s activity schedule might involve
directly delivering a parcel to another private individual without utilizing the services
of a CEPSP. Businesses can send parcels outside the study area using CEPSPs or
to other private individuals and businesses within the study area. This necessitates
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Figure 2.8: Supported parcel producer-consumer relations in logiTopp: green - sup-
ported, red - not supported, gray - irrelevant, blue - implicitly modeled (adapted from [9]).

the company to operate its logistic network. Although this mechanism is theoretically
supported, it hasn’t been studied yet due to insufficient data available to generate the
corresponding demand. Another distinguishing feature of logiTopp is the representation
of complex transport chains. Parcels can be temporarily stored and reloaded several
times at depots and transported on multi-modal transport chains. Which allows the
representation of complex logistic networks.

In terms of structure, logiTopp extends the existing long and short-term modules. Figure
2.9 and 2.10 give an overview of logiTopp’s long, respectively, short-term module. A
high-level overview of the module’s processing steps is shown in the first column. The
second column describes the corresponding program flow in a flowchart-like format and
partially distinguishes between processing steps relevant to business or private parcels.
LogiTopp is an extendable framework and provides various extension points which are
shown in the third column and linked to the point of the program flow where they are
applied. Grayed-out extension points are lazy and thus evaluated in the short-term
module at runtime.

In the long-term module, illustrated in Figure 2.9, the initial population of private and
business agents is created. The preferred packstation for each private agent is also
determined. Subsequently, the module generates the parcels consumed and produced
by both business and private agents throughout the entire simulation period. Each
parcel’s delivery date, delivery location, and size are then determined. However, the
responsible carrier and, consequently, the origin or destination depot are not determined
at this stage. Instead, they are calculated lazily, taking into account market share
distributions, contractual relations, and the current workload of the carriers. Finally, the
module derives the contractual relations between business agents and carriers.

The short-term module (see Figure 2.10) encompasses a dynamic simulation. Within

Seite 19 von 142



2 Foundations

generate agents

generate parcel lockers

generate
parcel demand

select CEPSP
carrier contracts

*for each agent a:

for each parcel p of agent a:

generate private agents generate business agents

select packstation

generate produced parcel
demand*

generate consumed parcel
demand*

generate consumed parcel
demand*

determine participation in e-commerce

determine numbers of parcels per week

determine properties of parcel p

select shipping partners

select delivery partners

packstation model

parcel quantity model

delivery date model

delivery location model

shipment size model

active carrier model

active depot model

carrier relations model

processing step program flow models/extension points

Figure 2.9: Long-term module of logiTopp - processing steps, program flow with therein
used extension points and models (adapted from [30]).
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each time step of the simulation, some parcels are potentially inserted into the simula-
tion. This is where the responsible carrier, and consequently, the origin or destination
depot for the parcels, is determined. Then, the responsible depot gets informed that
the parcel has arrived or needs to be picked up. The depots operate a fleet of delivery
vehicles and periodically plan and dispatch tours to handle the new parcels. A tour
contains several stops where parcels have to be picked up or delivered. The tour is
then carried out over multiple time steps of the simulation. At the beginning, the parcels
are loaded into the vehicle. Then, the planned stops are approached sequentially. It
is decided for each parcel that has to be picked up or delivered at the current stop if
it can be picked up or delivered at the current time step. This takes into account, for
example, whether the recipient, a member of the recipient’s household, or at least a
neighbor is at home. If a delivery is not possible, the parcel remains in the vehicle and
gets returned to the depot or, after some missed attempts, gets redirected to a parcel
locker. The picked-up and returned parcels are unloaded back at the depot, and it’s the
depot’s responsibility to plan further tours to deliver the parcel or transfer it to another
depot. It is also possible that a tour exceeds the driver’s maximum working time and,
therefore, has to be terminated prematurely.

MATSim-Freight

MATSim [2, 7] is an activity-based, extendable, multi-agent simulation framework. It was
initially developed for passenger transport simulation but has been expanded in many
ways. The freight contribution [53, 54, 61, 62] added carrier agents into the simulation.
Joubert et al. [10] extended this further by modeling the behavior of freight receivers.
MATSim and its contributions are publicly available on GitHub [2]. This section begins
with an introduction to MATSim and its basic principles, followed by a brief introduction
to the extensions for freight transportation.

MATSim is an agent-based transport simulation. That means every member of the
population is an agent with a plan, which is a schedule of activities the agent has to
perform during the one-day simulation period. The simulation process is shown in Figure
2.11 and explained briefly in the following. The first step generates the initial demand,
i.e., the agent’s initial plan,. This can be done, for instance, using empirical data. The

Initial demand Mobsim Scoring

Replanning

Analysis

Figure 2.11: MATSim process (adapted from [7]).

Seite 21 von 142



2 Foundations

Mobsim (mobility simulation) step is an execution of the activity schedule in a usually
queue-based traffic flow model. Next, the performance of each plan is determined in the
Scoring step using a scoring function. In the Replanning step, a fraction of the agents
are selected, and their current plan is cloned and replanned by mutation. The mutation
is achieved by applying replanning modules that can change a single-choice dimension
of an existing plan, e.g., destination choice or departure times. An agent has a limited
memory of plans with their associated scores. After the Replanning step, the agent
selects one of the available plans. If the memory is full, the plan with the lowest score
gets removed. This process is repeated by a fixed number of iterations. Afterward, the
Analysis module can be used to display and analyze the results and intermediate results
of the simulation in various forms. This process follows the co-evolutionary principle
[48] where agents repeatably optimize their activity schedule whilst competing with
other agents for space and time resources in the transport network. The result of this
iterative process is a stochastic user equilibrium. MATSim is designed for large-scale
scenarios and provides support for parallel computation. The modular design ensures
that MATSim can be flexibly customized and easily extended.

The freight contribution [53, 54, 61, 62], also referred to as MATSim-Freight or Freight
Transport Lab, adds another type of agents into the simulation to enable more realistic
modeling of freight transport behavior. These carrier agents represent logistic compa-
nies with a fleet, depots, and orders. Orders specify the deliveries to be made by the
carrier with the type and quantity of delivered goods and time windows for pickup and
deliveries. A carrier agent’s plan is a tour schedule for the fleet vehicles, specifying
pickup and delivery times and a route. In the Mobsim step, the carrier vehicles are
inserted into the existing traffic simulation. The Scoring step evaluates the commercial
success of carrier plans by assessing the fulfillment of customer requirements, such as
adherence to time windows, and the costs of executing the plan, e.g., personnel and
transportation costs. Possible mutations applied during the Replanning step involve
rerouting vehicles, switching deliveries between vehicles, or adding or removing a
vehicle from the schedule. For the creation of the initial plans and potentially in the
Replanning step, the external library jsprit [1] is used, which is an implementation of
the algorithm described by Schrimpf et al. [52] with strategies inspired by the work of
Pisinger and Ropke [46].

A further addition to this model has been proposed by Joubert et al. [10], also referred to
as the freight receiver contribution. Instead of modeling the behavior of freight receivers
only statically through their placed orders, the freight receivers become dynamic agents
themselves and can decide on the size, frequency, and timing of their orders. This
is referred to as the plan of a receiver. The degree of freedom of a receiver’s plan is
constrained by the storage capacity and actual demand of a receiver. The selected plan
of a receiver is then translated and inserted as orders into the existing infrastructure
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of the freight contribution. During the Scoring step, the commercial success of a plan
is evaluated. This score is determined as a function of the different carriers’ selected
plan delivery costs. The mutation of receiver plans during the Replanning step involves
the adjustment of delivery time windows, unloading times, or delivery frequency. This
addition adds a new layer of interaction between receivers and carriers. However,
the chosen receiver modeling mainly applies to large industrial receivers or, at least,
businesses in general, but not private receivers. Since it takes some iterations for a
carrier to react and optimize for a new receiver’s plan, the original simulation process
has to be adapted. This is shown in Figure 2.12. Basically, instead of changing its
plan every iteration, a receiver is only allowed to change its plan during a replanning
iteration, e.g., every 10th iteration. After such a change, the new plan is inserted as
orders into the existing infrastructure of the freight contribution, and new initial plans for
the carrier are generated using the jsprit [1] library.

Other Models

In the realm of freight transport modeling, a variety of models have been developed,
each offering unique insights and approaches. In this section, we provide a brief
overview of some notable models, focusing particularly on microscopic, disaggregated,
or agent-based methodologies, with a specific emphasis on their relevance to the CEP
sector. We refer the reader to the previously mentioned overview and fundamental
works for a broader and more complete overview.

One pioneering model in this domain is the GoodTrip model, conceived by Boerkamps
and van Binsbergen [13]. GoodTrip introduced a conceptual framework centered on
goods, transport services, and traffic markets. It employs supply chain formulations to
describe goods flows derived from supply and demand, which are then translated into
traffic flows. The work of Nuzzolo and Comi [41] follows a similar approach. Another
well-known model is MASS-GT, developed by de Bok and Tavasszy [19], which uses

Initial demand

jsprit

Mobsim Scoring

Replanning
Carrier

Replanning
Receiver

Replanning
iteration?

Analysis

no

yes

Figure 2.12: Modified process of the MATSim freight receivers contribution (adapted
from [10]).

Seite 23 von 142



2 Foundations

an extensive commodity flow database.

Fischer et al. [23] proposed a model that integrates logistic chain-based and tour-based
approaches into the modeling framework. Their model allows the representation of
concepts relevant to the CEP market, such as pickup and delivery at households and
distribution centers.

In their work on FREMIS, Cavalante and Roorda [16] presented a detailed concep-
tual framework for the freight transportation domain. Although not implemented, the
framework offers explicit and detailed formulations of contractual relations between
various domain entities, which are gradually refined and transformed into actual de-
mand and tours performed. This allows, for example, the realization of subcontractors
or companies that only act as brokers for transport services.

SimMobility [3] and its freight extension, SimMobility Freight [5, 51], stand out as a
detailed and highly developed model, with a focus on urban settings. Notably, an
interesting dimension they consider is parking choices for delivery vehicles, addressing
spatial constraints in urban areas.

Examples of models explicitly incorporating the CEP sector are the models developed
by Dalla Chiara et al. [18] and Llorca and Moeckel [34]. The latter incorporates a
distinction between origin-to-destination truck trips and transport chains via distribution
centers. Shipments using complex transport chains are then planned in a multi-stage
process explicitly separating long-distance truck trips and trips for urban deliveries with
various transport modes possible.

2.4 Related Work

In this section, we offer an overview of related work. While this foundation chapter has
already provided references to scientific works related to and used in this study, this
section aims to fill any remaining gaps. Therefore, this section focuses on presenting
works with similar goals and explores the foundations of possible alternative approaches
to addressing the investigated problem.

Briem et al. [14] developed in their work a coupling of mobiTopp and MATSim, with
the goal of integrating the mesoscopic traffic simulation of MATSim in mobiTopp. The
coupling allows feedback loops between the short-term module of mobiTopp and the
simulation and optimization of route choices within MATSim. A similar approach is ex-
plored by Bekhor et al. [11] by again integrating a dynamic traffic assignment framework
into an activity-based model. Further, many, primarily commercial transport models,
such as Aimsun Next [4], offer various import and export functionalities to support data
exchange with other models. In their work, Erdelyi et al. [21] explore approaches to
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multi-level model coupling of mesoscopic and microscopic traffic simulations. However,
all these approaches are limited to coupling a single pair of models, and the author
is unaware of any work that explicitly attempts to couple a variety of traffic models in
an integrated approach. Furthermore, no work is known that explicitly couples freight
transport models.

This work realizes the coupling through model transformations and a central common
metamodel. A similar but yet different approach that could potentially employed is
the idea of a virtual single underlying metamodel (V-SUM) used in the VITRUVIUS
approach [27]. Instead of creating a metamodel comprising all aspects of a system, a
V-SUM is composed of several existing metamodels, which are then continuously kept
consistent by using consistency-preserving operations derived from changes to one of
the models. One potential benefit of this approach would be supporting more iterative
and fast processes, as small changes to one model can be propagated very efficiently
to the other integrated models.

Another central property of this work is the explicit formulation of a domain model for
freight transport. Using domain models is a widespread technique, especially in com-
puter science. Many of the previously presented freight transport models incorporate a
conceptual framework for this domain. However, most of these frameworks focus on
formulating relations and processes between the domain’s stakeholders and do not
explicitly handle the data relevant to data exchange. There does not appear to be a
universally valid domain model or exchange format for data and problem definitions
from the freight transport and CEP domains. Other domains have such widely accepted
standards. An example is the railML format [39], used in the railway industry and
research.
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In this chapter, we develop, analyze, and compare metamodels that represent the
structure of logiTopp and MATSim-Freight, as well as selected concepts of other
metamodels. This serves as the basis for the development of a coupling concept (see
Chapter 4), a common metamodel, and the definition of model transformations (see
Chapter 5) in subsequent chapters. We begin by describing the methodology used for
both the development and analysis of the two metamodels. Following this methodology,
we present and analyze the metamodels of logiTopp (Section 3.1) and MATSim-Freight
(Section 3.2). Additionally, in Section 3.3, we briefly describe selected concepts of
metamodels used in further freight transport models. This chapter finishes with a
comparison of the presented metamodels in Section 3.4.

The presented metamodels of logiTopp and MATSim-Freight were reverse-engineered
from the available source code on GitHub [2, 30]. Furthermore, the existing work
on the models provided additional information. In Section 3.3, we solely relied on
work presenting the discussed models. The metamodels are instances of the Ecore
meta-metamodel of the EMF [57]. Only the elements related to freight transport,
along with some foundational concepts from the domain models, were included in the
metamodels. The presented freight transport models use partially dynamic simulation
so that its domain model elements partially describe the state of the simulation. During
the creation of the metamodels, we intentionally excluded elements representing a
state whenever possible. Instead, our focus remained solely on the static data model.
This choice simplified the resulting metamodels, enhancing their comprehension and
manageability. Moreover, the primary aim of this work, model coupling, necessitates
concentrating solely on static data. A coupling of potentially inhomogeneous models
during a simulation, and thus the transfer of stateful data, appears unrealistic or
at least beyond the scope of this work. Furthermore, we simplified the resultant
metamodels by eliminating redundancies, renaming elements, and abstracting from
some implementation-related structures.

We describe the abstract syntax of the metamodels through class diagrams, employing
the notation derived from EMF’s Ecore diagram editor [57]. An example that introduces
parts of this notation is given in Section 2.1.3. The static and dynamic semantics will
be explained using natural language descriptions. However, a complete description of
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the static semantics has been omitted. This would go beyond the scope and would not
contribute to a deeper understanding of the concepts, as a large part of the constraints
can be derived simply from the abstract syntax.

The presentation, analysis, and comparison of the metamodels in this chapter are
based on the concept of viewpoints. A viewpoint is a conceptual perspective that
serves a specific concern [24]. In this work, a set of six viewpoints is utilized and briefly
introduced as follows:

• Network Viewpoint: The network viewpoint focuses on the representation and
structure of the transportation network that can be used by private persons,
businesses, and transport service providers. It includes elements such as nodes,
links, transport modes, and their interconnections. Furthermore, the partitioning
and structuring of the area is part of the network viewpoint.

• Population Viewpoint: The population viewpoint deals with entities involved in
creating demand for freight transport, emphasizing the description and charac-
teristics of individuals and organizations within the model. It aims to capture the
demographic and economic aspects of freight transport demand and includes the
definition of persons, households, businesses, and other relevant entities, along
with their attributes, roles, and relationships.

• Logistic Demand Viewpoint: The logistic demand viewpoint concentrates on the
representation of freight transport demand. It encompasses the definition of
shipment requests, delivery orders, or service requests. This viewpoint addresses
the spatial and temporal aspects of demand, considering factors such as delivery
locations, quantities, and time windows.

• Transport Infrastructure Viewpoint: The transport infrastructure viewpoint focuses
on the physical and organizational aspects of the infrastructure and companies
that handle freight transport. This includes depots, vehicles, and other facilities
that play a role in the transportation process as well as organizational aspects
like the representation of transport chains. It addresses attributes, capacities,
and connections of these infrastructure and organizational elements, providing a
comprehensive understanding of the logistical network.

• Logistic Solution Viewpoint: The logistic solution viewpoint outlines how the
logistical network is utilized to meet the logistic demand. It includes elements
related to the planning and execution of transportation activities, such as carrier
assignment, tour planning, routing decisions, and scheduling.

• Results Viewpoint: The results viewpoint focuses on the output and outcomes
derived from the execution of the freight transport model. It includes metrics,
reports, and data generated during or after the simulation. This viewpoint enables
the analysis and evaluation of the model’s results.
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For each presented metamodel and each viewpoint, we created a view type. A view
type defines a subset of the original metamodel that pertains to the concern addressed
by the viewpoint. Consequently, a view type exclusively encompasses metaclasses,
attributes, and relations related to the specific concern. This implies that a metaclass
might potentially appear in multiple view types, each featuring different attributes.
Further, we omitted the explicit presentation and description of opposite references
during the presentation of the metamodels in order not to overload the diagrams and
descriptions.

3.1 LogiTopp

Before presenting the single view types of the logiTopp metamodel, we discuss some
cross-cutting concerns used in the whole metamodel.

LogiTopp has a typical simulation period of one week, and the smallest unit of time
is a second. In the current implementation, it is convention that the simulation starts
at midnight on Monday morning. Two metaclasses are provided to express times.
Time represents a point in time within the simulation period and provides the attributes
dayOfWeek, hour, minute, and second, collectively representing the day of the week,
hour, minute, and second components in the format dd hh:mm:ss. A special case
is that it is also possible to express a not-yet-defined point in time that lies in the
future. RelativeTime is used to express durations in a similar format than Time. With
RelativeTime, it is also possible to express infinite or undefined durations.

LogiTopp is not fixed on a specific coordinate system, but the use of cartesian coordi-
nates is recommended. The selected unit of the coordinate system is then used as the
base unit for other attributes specifying distances and speeds. A typical selected unit is
meters. LogiTopp uses only volumes to specify parcel dimensions and capacities of
logistic facilities. Volumes are always given in cm3.

LogiTopp uses the id attribute as a unique identifier for instances of a class, enabling dis-
tinct identification and referencing of entities within the model. In logiTopp id attributes
are represented as integer values.

3.1.1 Network View Type

The network model of logiTopp comprises a simple directed graph. A graph is composed
of edges and nodes. Edges are directed, maintaining a fixed traversal direction defined
by their start (from) and endpoint (to). In cases where a link between two nodes
permits travel in both directions, two edges exist, each representing a direction. These
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Figure 3.1: LogiTopp Metamodel: Network View Type - Network graph.

edges reference each other’s opposite edge (twin). Nodes are positioned within the
chosen coordinate system using x and y coordinates (Point2D). Additionally, edges
possess a length attribute, referring to the unit utilized in the coordinate system. This
feature enables the modeling of curved edges, allowing for lengths different from the
Euclidean distance. LogiTopp uses the concept of Locations, which encompasses not
only coordinates but also specifies the point at which to access the network from that
location. This is accomplished by referencing the edge through which the network is
accessed (roadAccessEdge), along with its relative position on that edge (roadPosition),
modeled by a value between zero and one. Figure 3.1 shows the network graph of
logiTopp’s metamodel.

The RoadNetwork used in logiTopp extends the network graph by incorporating the
concept of zones, commonly used in transport modeling. The study area is subdivided
into a set of zones aimed at grouping geographic areas with similar characteristics.
These zones provide aggregated data that can be utilized during simulation. However,
logiTopp only models the geographical extent of the zones and currently does not hold
any aggregated data. The corresponding metamodel elements are shown in Figure 3.2.
Subsequently, we briefly describe these elements:

• A RoadNetwork is a Graph with a set of zones.
• Each Zone has an id and a name. Its geographical extent is described by a

ZoneArea (totalArea). Also, the centroid of a zone is modeled by a Location.
• A ZoneArea describes the geographical extent of a zone by a set of non-

intersecting Polygons (borders). Additionally, the size of the ZoneArea is de-
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Figure 3.2: LogiTopp metamodel: Network View Type - Road network with zones.

scribed by the size attribute.
• Polygons are described by their outline. Thus, they consist of at least three Lines.

The endpoint of a line has to be at the same location as the startpoint of the
subsequent line. Additionally, the endpoint of the last line has to be at the same
location as the startpoint of the first line.

• A Line has a startpoint (start) and an endpoint (end).

Information about travel times is not directly included in the network graph. Instead,
they are represented by a travel time matrix, that represents the time it takes to travel
between different origin-destination pairs (nodes) within the network.

The RoadNetwork serves as the root element for the network-related elements.

3.1.2 Population View Type

The population viewpoint consists of the part of the metamodel that describes entities
responsible for generating demand for the transport network. LogiTopp has two entities
that receive or send packages: businesses and private persons.

Figure 3.3 shows the parts of the logiTopp metamodel representing businesses. Sub-
sequently, we briefly describe these elements:

• The enum Weekday lists the days of the week.
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Figure 3.3: LogiTopp metamodel: Population View Type - Business.

• Branch models the branch categories according to the standardized NACE classi-
fication [22].

• BuildingType is another higher-level sector-based classification of branch or
building categories. The implementation of logiTopp also provides an n : n mapping
between BuildingType and Branch.

• An OpeningHour describes the opening hours of a business. It defines the
dayOfWeek, as well as a time interval during that day when the business is open.
The time interval is defined by its start and end time.

• A Business has an id and a name. It is geographically localized by a Location and
a Zone in which it is situated. The type of business is described by the attributes
branch and buildingType. Additionally, the number of employees (numEmployees)
and the commercial area of the business are given. In terms of openingHours,
just one OpeningHour per day of the week is allowed. Which leads to a maximum
of 7 contained openingHours.

Figure 3.4 shows the parts of the logiTopp metamodel representing private persons
that live together in households. Subsequently, we briefly describe these elements:

• The enum Employment is used to describe the employment status of a person.
It encompasses a wide range of employment and non-employment statuses,
including various work-related states, educational pursuits, household roles, and
stages of life.

• The enum Gender lists possible genders.
• Persons are elementary agents of logiTopp respectively mobiTopp and there-
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Figure 3.4: LogiTopp metamodel: Population View Type - Persons and households.

fore have many attributes. This includes an extensive activity schedule that is
initialized by mobiTopp’s long-term module. LogiTopp allows the use of custom
demand generation models that can make use of all of these attributes. To reduce
complexity, we included only attributes used by current research projects. Some
of these attributes are derived from the generated activity schedule. A Person
as an age and a gender. Also, the employment status as well as the economic
status (income_eur ) is modeled. The attribute hasTransitPass describes whether
a Person owns a transit pass or not. The shopping behavior of a Person is de-
scribed by the number of weekly shopping (weeklyShoppingActivities) and leisure
(weeklyLeisureActivities) activities, whether a person also carries out shopping
activities at weekends (weekendShopping), and whether shopping activities are
integrated into other trips or carried out separately (tripChainShopping). Further,
if a Person is employed, its workplace is located by a workLocation and workZone.

• A Person is a member of exactly one Household. A Household can have multiple
members. It is also geographically localized by a location and a zone in which it
is situated.

Further, a not shown root element (Population) exists that serves as the root element
for all Businesses and Households.
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3.1.3 Logistic Demand View Type

LogiTopp’s logistic demand consists of parcels that need to be delivered or picked
up. Section 2.3.2, respectively Figure 2.8, describes supported producer-consumer
relations supported in logiTopp. Note that parcels sent into or leaving the study area
enter or exit the study area through a CEPSP. It should also be noted that parcels sent
within the study area and handled by a CEPSP result in two separate parcels: one from
the origin to the CEPSP and the second from the CEPSP to the destination.

Figure 3.5 shows the concept of parcel producers and consumers of the logiTopp
metamodel. This can mainly be seen as a role-based concept. A ParcelConsumer
is an entity capable of receiving parcels, while a ParcelProducer can send parcels.
Common characteristics of both are summarized in the superclass ParcelAgent. A
Person only acts as ParcelConsumer, while DistributionCenters and Businesses act
as both: ParcelConsumer and ParcelProducer. Note, that not the CEPSP direct and
instead a DistributionCenter of the CEPSP acts as ParcelAgent. This has the benefit of
providing a concrete location for the origin or destination of the parcel.

The modeling of a parcel is shown in Figure 3.6. Subsequently, we briefly describe the
shown elements:

• The ParcelDestinationType specifies the actual destination of a parcel sent to a
Person, which could be a packstation, the recipient’s household, or their work-
place.

• The ShipmentSize describes the size of a Parcel. The logiTopp implementation
also provides a mapping that assigns a volume range to each category.

• A Parcel is the core unit of demand in logiTopp. Each parcel has an id, a producer,
and a consumer. Additionally, the precise delivery location for the package is
specified by a zone and a location. This specification is necessary because
the delivery location does not always correspond to the consumer’s location,

ParcelAgent

ParcelConsumer

ParcelProducer

Person DistributionCenter Business

Figure 3.5: LogiTopp metamodel: Demand View Type - Parcel consumer and producer.
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parcels0..*

producer

1 consumer

1

Demand

Parcel

id
zone : Zone
location : Location
isPickUp : bool
shipmentSize : ShipmentSize
plannedArrivalDate : Time

ParcelConsumerParcelProducer

BusinessParcel
PrivateParcel

destinationType : ParcelDestinationType

≪enum≫
ShipmentSize

SMALL
MEDIUM
LARGE
EXTRA_LARGE
PALLET
CONTAINER

≪enum≫
ParcelDestinationType

HOME
WORK
PACKSTATION

Figure 3.6: LogiTopp metamodel: Demand View Type - Parcels.

for instance, when delivering to a packstation. The attribute isPickUp denotes
whether a CEPSP needs to pick up the parcel. In this case, the pickup location
can be derived from the consumer’s location. Moreover, it includes information
on the parcel’s volume (shipmentSize) and the time the parcel arrives at its initial
location (plannedArrivalDate).

• PrivateParcels are parcels received by a Person and enter the study area via a
CEPSP. Therefore, the producer and consumer associations are restricted to
DistributionCenters and Persons, respectively. Additionally, a PrivateParcel has a
destinationType that describes the actual destination.

• A BusinessParcel is a parcel sent or received by a Business. The producer
association is restricted to Businesses and DistributionCenters. Every ParcelCon-
sumer is a potential consumer. However, either the producer or the consumer
must be a Business.

• All Parcels are contained in a single root element called Demand.

3.1.4 Transport Infrastructure View Type

The transport infrastructure viewpoint comprises the parts of the metamodel that
describe the logistics network. The central unit for providing logistic services in logiTopp
is the CEPServiceProvider, characterized by its name. LogiTopp explicitly models a
contractual relationship between Businesses and CEPServiceProviders, depicted in
Figure 3.7. The contractual relationships of a Business are differentiated into partners
for sending (pickUpPartners) and receiving (deliveryPartners) parcels.
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deliveryPartners

0..*
pickUpPartners

0..*

Business
CEPServiceProvider
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Figure 3.7: LogiTopp metamodel: Transport Infrastructure View Type - Contractual
relations between businesses and CEPSPs.
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id
name : str

DistributionCenter
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Fleet

vehicleType : VehicleType

DeliveryVehicle

id
vehicleType : VehicleType
capacity : int

≪enum≫
VehicleType

BIKE
TRUCK
TRAM
OTHERS

Figure 3.8: LogiTopp metamodel: Transport Infrastructure View Type - Resources of
CEPSPs.

Figure 3.8 shows the resources operated by a CEPServiceProvider. This includes
DistributionCenters and a fleet of DeliveryVehicles. Subsequently, we briefly describe
these elements:

• The enum VehicleType is used to describe the type of a vehicle.
• A DeliveryVehicle has a vehicleType and a capacity. The capacity corresponds

to the maximum volume of parcels that the vehicle can handle.
• A Fleet consists of a set of DeliveryVehicles. The model is restricted to homoge-

neous fleets concerning the VehicleType of its vehicles, specified in the attribute
vehicleType.

• DistributionCenters contain exactly one Fleet and are geographically localized by
a Location and a Zone in which they are situated. The attribute attempts defines
how often the vehicles of a DistributionCenter attempt to deliver a parcel to the
designated delivery location before it gets redirected to a pack station.

• Every CEPServiceProvider operates and contains a set of DistributionCenters.

LogiTopp allows the modeling of complex logistic networks. A DistributionCenter has a
designated area of responsibility (ServiceArea) where it can deliver parcels. Additionally,
parcels can be transferred between different distribution centers, which forms a logistic
network that implicitly models transport chains. Subsequently, we briefly describe these
elements:
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Figure 3.9: LogiTopp metamodel: Transport Infrastructure View Type - Logistic network
and regional distribution.

• ServiceAreas delineate specific regions within the study area where distribution
centers can both deliver and pick up parcels. These areas are defined by a set of
zones.

• The RegionalReach serves as the fundamental element in describing the transport
network. It defines the serviceArea of a DistributionCenter and its connections
to other DistributionCenters. These connections are represented by two sets:
relatedDeliveryHubs for parcel delivery and relatedPickUpHubs for parcel pickups.
This structure allows a DistributionCenter to plan a direct tour to a parcel’s
destination within its serviceArea or transfer the parcel to a relatedDeliveryHub
for further delivery, by planning a tour to this DistributionCenter. In the case of a
parcel pickup, the behavior is analogous. Each DistributionCenter has exactly
one RegionalReach.

• A Connection describes a tram unidirectional journey between two Distribution-
Centers (from, to), that starts at a defined departure time and has a specific
duration (durationMinutes), which is stated in minutes.

• DistributionCenters that operate trams must adhere to the TimeTable. The
TimeTable is a global entity that contains all tram journeys that potentially can be
used to transport parcels within the study area (connections). There is no distinc-
tion between different weekdays, so the time TimeTable describes all possible
connections within one day. Every planned tour operated by a tram must realize
and comply with the constraints of a Connection. It is also not allowed to plan and
execute multiple tours realizing the same Connection.

Note that the relatedDeliverHubs and relatedPickUpHubs of the RegionalReach are
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not constrained to facilities of the same CEPSP. This flexibility allows multiple CEPSPs
to participate in the handling of a parcel. Shared resources, such as trams, can
be modeled as a separate CEPSP to which all other CEPSPs can transfer parcels.
However, the representation of a RegionalReach cannot distinguish the original CEPSP
that handled a parcel, and consequently, there is no restriction on further transfers to
other hubs based on this information.

The relationships defined by the RegionalReach construct two distinct directed graphs
for the delivery and pickup of parcels. In these graphs, DistributionCenters and their
associated ServiceAreas (when they contain at least one zone) serve as nodes. The
edges represent connections through relatedDeliverHubs and relatedPickUpHubs, as
well as the relationship between DistributionCenters and their ServiceAreas. Both
ServiceAreas and the DistributionCenters through which parcels enter or exit the study
area act as sources and sinks, depending on the direction (delivery or pickup). All
paths between all pairs of sources and skinks represent potential transport chains. It is
a metamodel constraint that the resulting graph must be acyclic.

The logiTopp implementation also has an explicit representation of transport chains.
This is redundant to the previously presented concept of related hubs and, therefore,
has been omitted. Indeed, logiTopp itself is capable of generating transport chains from
the information about related hubs.

Furthermore, there is a root element (TransportInfrastructre) that contains all CEPSer-
viceProder instances and a single TimeTable instance.

3.1.5 Logistic Solution View Type

During the simulation, a DistributionCenter dynamically plans and executes tours to
pick up, transfer, and deliver the parcels it currently contains or is responsible for.
The metamodel elements used to describe these tours are shown in Figure 3.10.
Subsequently, we briefly describe these elements:

• Each DistributionCenter has a DepotStorage, primarily used to track the current
parcels for which a DistributionCenter is responsible. It also maintains records
of the currently plannedTours, which is the sole relevant attribute in the logistic
solution view.

• A PlannedDeliveryTour has an id and describes a planned tour, represented by
an ordered list of stops. It is designed for a specific vehicleType and includes the
start time (plannedAt) and the plannedDuration of the tour. Although there is no
concept of routing through the network graph, the tour planning algorithms rely
on the network graph and given travel times to ensure consistent and realistic
planned travel times.
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Figure 3.10: LogiTopp metamodel: Logistic Solution View Type.

• The stops on a tour are denoted by ParcelActivities. At each stop, a set of Parcels
can be delivered (parcels) and picked up (pickUps). This activity takes time,
described by a deliverDuration in minutes. Each stop is located by a stopLocation
and stopZone. Further attributes include the distance and tripDuration (in minutes)
between the previous and current stops, along with the plannedTime of the stop.

A DistributionCenter is only allowed to plan tours with the vehicle of its fleet. Further,
a tour planned by a DistributionCenter can only deliver or transfer parcels that are
currently at the DistributionCenter, either because they entered the study area here
or they arrived by a previous transfer. The same holds for pick-ups: A tour of a
DistributionCenter can only pick up parcels that are assigned to the distribution center.
Further, the tours of a DistributionCenters must comply with the restrictions specified
by the RegionalReach of the distribution center.

3.1.6 Results View Type

The results of a logiTopp simulation run are documented in a log-based format. This
log comprises various events occurring during the simulation run and decisions made
by models. The data model designed to capture these results is extensible, allowing
for the addition of new events, decisions, and attributes with minor adjustments to the
implementation. The different existing log categories are presented in tabular form.
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event attribute volatile value description
Private
Parcel

Business
Parcel

time - - Time of the state change.
parcelID no no Id of the affected parcel.
producer no no Producer (id) of the parcel.
consumer no no Consumer (id) of the parcel.

destinationType yes - Only for PrivateParcel : currently
set DestinationType.

destinationZone yes no Zone of the parcels destination (for
PrivateParcel this depends on the
DestinationType).

destinationLocation yes no Location of the parcels destination
(for PrivateParcel this depends on
the DestinationType).

state yes yes State of the parcel, possible val-
ues: DELIVERED, RETURNING,
ONDELIVERY , UNDEFINED.

isDeliveryAttempt yes yes True if the state changes occurred
during a delivery attempt; other-
wise, false.

deliveryAttempts yes yes Number of previous delivery at-
tempts.

deliveryVehicleID yes yes Id of the current responsible Deliv-
erVehicle or null.

deliveryTime (no) (no) Actual time of delivery or null if not
yet delivered (fixed after successful
delivery).

recipientType (no) (no) Describes who actually re-
ceived the parcel or null (fixed
after successful delivery), pos-
sible values: PERSONAL,
HOUSEHOLDMEMBER,
NEIGHBOR,
PACKSTATION, BUSINESS,
DISTRIBUTION_CENTER.

Table 3.1: LogiTopp metamodel: Results View Type - Parcel state changed log.
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The parcel state changed log category captures all state changes of a parcel. An initial
log entry is created when a parcel is inserted into the simulation. At this point, the
state of the parcel is UNDEFINED. The state changes to ONDELIVERY when a parcel
is loaded in a delivery vehicle. If the delivery was successful, the state of the parcel
changes to DELIVERED. Otherwise, the parcel will be returned to the distribution center
(RETURNING). In case of a transfer of a parcel between two distribution centers, log
entries are also created when the parcel is loaded into the delivery vehicle and arrives
at the distribution center. Then, the state of the parcel remains unchanged, except that
the distribution center is the final destination of the parcel.

Table 3.1 shows the elements and semantics of the parcel state change log. The table
also distinguishes between attributes that remain constant during the lifetime of a parcel
and attributes that may change during the simulation (volatile attributes). These are
different for business and private parcels, as the destination of private parcels can
change dynamically within the simulation.

In logiTopp, private parcels can be delivered to neighbors if no member of the receiver’s
household is currently at home. If a delivery agent tries to deliver a parcel to a neighbor
an entry in the neighbor delivery log is created. Table 3.2 shows the elements with their
semantics of this log category.

A further log category captures the execution of delivery tours. Table 3.3 shows the
elements with their semantics of this category. Log entries are created at every stop of
a delivery tour, as well as at the start and end of a tour (LOAD and UNLOAD).

Additionally, log categories exist for private and business orders, representing parcels
sent to private individuals and businesses, respectively. Another category, business
production, encompasses parcels sent by businesses. Log categories also cover
the selection of delivery partners and the choice of transport chains. Discussions of
these categories are not included here, as the outcomes of the associated events and
decisions are directly reflected in the entities and relations of the demand, transport
infrastructure, and logistic solution view types.

event attribute description
time Time of the delivery attempt.

parcelID Id of the parcel.
zone Zone of the delivery attempt.

success True if any of the neighbors were at home.
numberOfNeighbors Maximum number of neighbors with whom a delivery

is attempted.
checkedNeighbors Actual number of neighbors with whom a delivery is

attempted.

Table 3.2: LogiTopp metamodel: Results View Type - Neighbor delivery log.
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event attribute description
time Time of the vehicle event.

CEPSP Id of the responsible CEPSP.
distributionCenter Id of the responsible DistributionCenter.

vehicle Id of the vehilce.
event Type of event, possible values: LOAD, STOP,

UNLOAD.

stopNo


LOAD number of stops of the tour
UNLOAD 0
STOP current stop number

zone Zone of the current stop/DistributionCenter.
location Location of the current stop/DistributionCenter.

distance


LOAD total distance of the tour
UNLOAD 0
STOP (planned) distance between the previ-

ous stop and current stop

tripDuration


LOAD total duration of the tour
UNLOAD 0
STOP (planned) trip duration between the pre-

vious stop and current stop

toDeliver



LOAD number of parcels that have to be de-
livered throughout the whole tour

UNLOAD 0
STOP number of parcels that have to be de-

livered at this stop

sucessDeliver


LOAD 0
UNLOAD 0
STOP number of parcels that have been suc-

cessfully delivered

toPickup



LOAD number of parcels that have to be
picked up throughout the whole tour

UNLOAD 0
STOP number of parcels that have to be

picked up at this stop

sucessPickup


LOAD 0
UNLOAD 0
STOP number of parcels that have been suc-

cessfully picked up

deliveryDuration


LOAD total delivery duration of the tour
UNLOAD 0
STOP delivery duration of the stop

numReturning Number of parcels that could not be delivered in the
vehicle.

numCollected Number of picked-up parcels in the vehicle.

Table 3.3: LogiTopp metamodel: Results View Type - Tour stop log.
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3.2 MATSim-Freight

Before introducing the individual view types of the MATSim-Freight metamodel, we
briefly discuss some of its cross-cutting concerns.

MATSim operates within a simulation period spanning an entire day. Absolute times are
represented by the count of seconds from the day’s commencement, whereas relative
times denote the duration in seconds between two timestamps. The count of seconds
is usually represented as a floating point number. Both absolute and relative times can
denote an undefined timestamp or duration through convention, achieved by setting the
value to negative infinity.

Regarding localization, MATSim supports a wide range of coordinate systems and
distance units. The selected coordinate system and distance unit should align and
remain consistent throughout the input data. Typical and preferred choices are cartesian
coordinate systems with meters as distance units. The chosen distance unit also
impacts other input data, such as velocities and lengths.

In terms of capacity and dimension specifications, MATSim uses varying representa-
tions. The metamodel contains both volume and weight specifications. MATSim-Freight
uses another approach: the values used for capacities and dimensions are unit-free
and only need to be in relation to other capacity and dimension values. It is up to the
user or the input data to decide whether capacities and dimensions are specified as
volume or weight and which unit is used.

If not explicitly modeled, monetary and economic evaluations (e.g., scores) are unit-free.
However, monetary values must be considered in relation to each other.

MATSim uses the id attribute as a unique identifier for instances of a class, enabling dis-
tinct identification and referencing of entities within the model. In MATSim id attributes
are represented as strings.

3.2.1 Network View Type

The MATSim network is essentially a simple directed graph comprising nodes and
links that connect two nodes unidirectionally by one or more lanes. The network
model is tailored to the queue-based traffic flow model, by delineating attributes like
capacities, lengths, and free speeds. Figure 3.11 displays the network view of the
MATSim metamodel. Subsequently, we briefly describe the elements shown:

• The enum TransportMode enumerates the allowed modes of transport in MATSim.
• A Network consists of links and nodes, with additional relevant parameters

specified for the entire network. The capacityPeriod is given in seconds, defining
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Figure 3.11: MATSim-Freight metamodel: Network View Type.

the reference value for all capacity values. EffectiveLaneWidth specifies the
default width of all lanes in the network. The effectiveCellSize denotes the
average space occupied by a vehicle under maximum density conditions and,
in conjunction with the number of lanes, establishes the maximum density of
vehicles on a network link.

• A Node represents a specific location or point, such as an intersection, junction,
or endpoint, within the network where Links converge or originate. Every Node
has an id and is located by coordinates (coord).

• Coordinates (Cord) are described by the x and y values, with the possibility of an
additional z value.

• Links connect two nodes unidirectionally, specified by their from and to references.
Each Link has an id and a length. A Link can consist of one or more lanes, with
the number of lanes specified by the lanes attribute. Not every TransportMode is
allowed on every Link, hence, a Link has a set of allowedTransportModes.

3.2.2 Population View Type

The population viewpoint focuses on the description of entities that are possibly respon-
sible for creating any logistic demand. In the MATSim-Freight metamodel, this definition
solely encompasses persons. An essential function attributed to individuals in MATSim
involves their utilization of vehicles. Thus, we start by describing the metamodel for
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vehicles and vehicle types. Subsequently, we proceed by describing persons, their at-
tributes, and their affiliation with a household. It’s important to note that MATSim-Freight
doesn’t inherently include an advanced demand generation mechanism; typically, ini-
tial demand is specified through input data in reviewed studies. Nevertheless, we
opted to incorporate these entities into our analysis. The Freight Receiver contribution
(discussed in Section 3.2.7) fills parts of this gap.

Figure 3.12 shows the metamodel elements related to vehicles and vehicle types.
Subsequently, we briefly describe these elements:

• Vehicles serves as the root object and keeps track of all vehicleTypes and refer-
ences all vehicles in the simulation.

• A VehicleType defines the properties of a vehicle, possessing an id and a de-
scription. Additionally, each VehicleType is linked to a TransportMode of the
network (networkMode), specifying which Links can be utilized. The vehicle’s
dimensions are specified by its width and length, alongside the maximum ve-
locity (maxVelocity). Moreover, details about the engine type and consumption
(engineInformation), data relevant to the scoring module (costInformation), and
information necessary for various traffic flow model implementations (pcuEquiva-
lents and flowEfficiencyFactor ) are available but not further described here.

• VehicleCapacity describes the capacity of a vehicle for transporting persons and
goods. The number of persons is determined by the seating capacity (seats) and
the amount of allowed standing passengers (standingRoom), e.g., in a bus. The
capacity for goods transport is limited either by volume in m3 (volumeCubicMeters)
or by weight in tons (weightTons). The actual attribute used to describe capacity
in MATSim-Freight is the other attribute, which has no fixed unit but must be in
relation to other capacity and dimensional specifications.

• A Vehicle is identified by an id and described by their type.
• A specific instance of a Vehicle, relevant for the population viewpoint, is a Person-

Vehicle, describing a vehicle owned and operated by an ordinary person.

The metamodel elements related to describing persons and households are shown in
Figure 3.13. Subsequently, we briefly describe these elements:

• The basic entity of the population is a Person, identifiable by its id and with no
further attributes.

• A Household consists of a set of Persons (members). Household members can
use a set of vehicles. The economic situation of a household is described by its
income.

• Income is modeled by an amount (income) in a specific currency (currently only
EUR supported) earned within a certain period (period).

• Households serve as a root object and contain all households.
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Figure 3.12: MATSim-Freight metamodel: Population View Type - Vehicles and vehicle
types.
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Figure 3.13: MATSim-Freight metamodel: Population View Type - Persons and house-
holds.
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3.2.3 Logistic Demand View Type

In MATSim, the logistic demand is directly assigned to a carrier responsible for fulfilling
this demand. This demand comprises shipments originating from and destined for
locations within the study area, as well as carrier services representing shipments
where either the origin or the destination lies outside the study area. Figure 3.14 shows
the metamodel elements associated with logistic demand. Subsequently, we briefly
describe these elements:

• A TimeWindow delineates a time span within the simulation period during which
a logistic service must be executed, specifying its start and end times.

• CarrierShipment signifies the transportation of goods from an origin (from) to a
destination (to) within the study area. The shipment dimension (size) doesn’t
have a predefined unit but must correlate with other dimensional and capacity
specifications. Both pickupServiceTime and deliveryServiceTime designate the
time taken for actual pickup and delivery at the origin and destination, respectively.
Additionally, pickup and delivery times are constrained by specific time windows
(pickupTimeWindow and deliveryTimeWindow).

• A CarrierService can be viewed similarly to a CarrierShipment ; however, either
the origin or the destination lies outside the study area, with the carrier’s depot
serving as the shipment’s origin or destination. The dimension of the shipment,
denoted by the capacityDemand attribute, has no predefined unit but is relative to
other capacity and dimension values. The location indicates where the shipment
needs to be picked up or delivered. The serviceDuration specifies the time taken
by the carrier for pickup or delivery, and the timeWindow restricts when the carrier
must carry out the pickup or delivery.

• Within the logistic demand view type, a Carrier is a unit responsible for handling
a series of orders. These orders are divided into CarrierServices (services) and
CarrierShipments (shipments).

Furthermore, there is a root element (Carriers) that contains all Carrier instances.
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Figure 3.14: MATSim-Freight metamodel: Logistic Demand View Type.

3.2.4 Transport Infrastructure View Type

The available logistic transport network in MATSim primarily comprises carriers that
operate a fleet of vehicles. These vehicles can utilize the public transport network.
Implicitly modeled depots only function as origins and destinations for tours executed
by carrier vehicles. A concept of goods handling and, thus, the formation of transport
chains does not exist and can only be modeled implicitly. Figure 3.15 shows the
metamodel elements associated with transport infrastructure. Subsequently, we briefly
describe these elements:

• A Carrier is a business providing logistic services and thus has capabilities to
provide these services (carrierCapabilities).

• CarrierCapabilities primarily comprise the fleet of vehicles operated by the carrier.
This includes the various VehicleTypes within the fleet, specified in the vehicle-
Types set. The fleet can be modeled as either FINITE or INFINITE (fleetSize).
For an INFINITE fleet, the simulation can employ an unlimited number of vehicles
from the defined vehicleTypes. In the case of a FINITE fleet, specific available
vehicles are explicitly modeled (carrierVehicles).

• A CarrierVehicle is a concrete Vehicle within the carrier’s fleet. In addition to the
properties of an abstract Vehicle, it has a location indicating the depot’s location
or the vehicle’s base, where tours must commence and conclude. Further, the
operational timings are constrained by the earliestStartTime and latestEndTime,
allowing to express further limitations such as working-hour restrictions.

Furthermore, there is a root element (Carriers) that contains all Carrier instances.

Seite 48 von 142



3.2 MATSim-Freight

carrierCapabilities1

carrierVehicles

0..*

vehicleTypes

0..*

type
1Carrier

id

CarrierCapabilites

fleetSize : FleetSize

Vehicle

id

CarrierVehicle

earliestStartTime : flt
latestEndTime : flt
location : Link

VehicleType

≪enum≫
FleetSize

INFINITE
FINITE

Figure 3.15: MATSim-Freight metamodel: Transport Infrastructure View Type.

3.2.5 Logistic Solution View Type

The logistic solution view type contains elements that describe how the logistic demand
is handled. Following the paradigm of MATSim, each carrier devises and optimizes a
plan to handle its demand during the simulation. This plan comprises a set of tours
executed by the carrier’s vehicles within specific timeframes. Each tour is a sequence
of activities interconnected by legs. These activities primarily involve the pickup or
delivery of shipments. We commence by describing the metamodel elements related to
describing a tour and subsequently describe the carrier’s plan.

Figure 3.16 shows the metamodel elements used for tour modeling. A Tour is identified
by an id and consists of a list of TourElements (tourElements). These TourElements
can either be a TourActivity or a Leg. A TourActivity represents a stop within the
tour, including the tour’s start and end. Consequently, TourActivities and Legs must
alternate within the tourElements list, with Legs linking the preceding activity to the
subsequent one. The initial item in the tourElements list must be a Start activity, and
the final item should be an End activity. Both the Start and End activities are explicitly
referenced by a Tour via the start and end attributes. We now shortly describe the
different TourActivities and the Leg modeling:

• A Leg connects two TourActivities. It contains the chosen route, whose modeling
we will not go into any further. It also includes the expected travel time for the
route (expectedTransportTime) and the expected time for the start of the leg
(expectedDepartureTime).

• A ServiceActivity is a TourActivity that describes the carrying out of a CarrierSer-
vice (service). Additionally, it specifies the expectedArrivalTime at the stop.

• Delivery and Pickup are both ShipmentBasedActivities, which are also subtypes
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Figure 3.16: MATSim-Freight metamodel: Logistic Solution View Type - Tours.
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of TourActivities. They relate to the handling of a CarrierShipment (shipment). As
in a ServiceActivity, the expectedArrivalTime is specified.

• Special kinds of TourActivities are the Start and End activities. Both have a
location representing the tour’s start and end. These locations must be consistent
with the location of the CarrierVehicle assigned to carry out the tour. The timeWin-
dow describes the allowed time window for the start or end of the tour, usually
limited by the earliest start and latest end time of the assigned CarrierVehicle.
Additionally, the End activity contains information about the expected time for the
end of the Tour (expectedArrivalTime).

The specified times within a Tour have to be consistent. The time required for a
TourActivity is defined by the related CarrierShipment (pickupServiceTime, delivery-
ServiceTime) or CarrierService (serviceDuration). The travel time between stops is
indicated by the expectedTransportTime of the respective Leg. An initial start time within
the timeWindow of the Start activity can be selected and set as the expectedDeparture-
Time of the first Leg. The expectedArrivalTime of each activity can be derived from the
expectedDepartureTime and the expectedTransportTime of its preceding Leg. Similarly,
the expectedDepartureTime of a Leg can be calculated from the expectedArrivalTime
and the time required at its previous TourActivity. Furthermore, it is required for the
expectedArrivalTime of the End activity to fall within its specified timeWindow.

The metamodel elements utilized to describe a carrier’s plan, vehicle assignments to
tours, and tour schedule are illustrated in Figure 3.17. Subsequently, we briefly describe
these elements:

• A CarrierPlan delineates a set of activities, their sequence, schedule, and the
utilization of capabilities to fulfill the demand of a Carrier. This is manifested as a
collection of scheduledTours. Each tour within these must contain corresponding
activities for every demanded CarrierService and CarrierShipment. For the use
of MATSim’s co-evolutionary algorithms, a score of the plan is provided.

• The allocation of a vehicle from the respective Carrier and a departure time to a
tour is modeled by a ScheduledTour, containing attributes such as tour, vehicle,
and departureTime.

• A Carrier is the entity responsible for fulfilling logistic demands and can rely
on specific capabilities. To do so, a Carrier possesses a CarrierPlan. The co-
evolutionary algorithm of MATSim aims to optimize these plans for all agents,
requiring each agent to maintain a set of plans and a reference to the currently
selectedPlan.

Furthermore, there is a root element (Carriers) that contains all Carrier instances.
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Figure 3.17: MATSim-Freight metamodel: Logistic Solution View Type - Carrier plan.

3.2.6 Results View Type

The results of a simulation in MATSim-Freight are recorded in an event-based format.
Figure 3.18 shows the events introduced by the MATSim-Freight contribution. These
focus solely on the execution of delivery tours. It is possible to employ other events from
the MATSim framework to analyze the results of a simulation run. Here, we provide a
brief description of the events within the MATSim-Freight contribution:

• An Event is a generic, abstract MATSim event that occurred at a specific time
during a simulation run.

• The abstract CarrierEvent is an Event and serves as the supertype for all kinds
of events describing the execution of delivery tours. It includes the associated
carrier and carrierVehicle. Additionally, it states the location of the vehicle (link)
at the time the event occured

• CarrierTourEvents describe the start (CarrierTourStartEvent) and end (Carrier-
TourEndEvent) of a tour’s execution. They contain a reference to the correspond-
ing tour.

• A CarrierServiceEvent is used to describe the execution of a CarrierService. Both
the beginning and the end of a stop, related to a CarrierService, are modeled
by the CarrierServiceStartEvent and CarrierServiceEndEvent, respectively. A
CarrierServiceEvent includes a reference to the executed carrierService, its
duration (serviceDuration), and shipment dimension (capacityDemand).

• The execution of a CarrierShipment is depicted by a CarrierShipmentEvent. Sepa-
rate events exist to describe the start and end of both pickup and delivery (Carrier-
ShipmentPickupStartEvent, CarrierShipmentPickupEndEvent, CarrierShipment-
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Figure 3.18: MATSim-Freight metamodel: Results View Type.
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DeliveryStartEvent, CarrierShipmentDeliveryEndEvent). A CarrierShipmentEvent
contains a reference to the corresponding carrierShipment, the duration of the
pickup or delivery, as well as the shipment dimension (capacityDemand).

• CarrierEvents is a root element, that contains all events occurred durring a
simulation run.

3.2.7 Freight Receiver View Type

The freight receiver contribution [10] extends the existing metamodel by introducing
additional elements. The primary entity is the Receiver, which expresses its demand
for specific ProductTypes through ReceiverProduct instances. The actual demand
of a receiver can be modeled interchangeably, and our metamodel incorporates the
currently available SSReorderPolicy. There, the weekly demand for a product type is
determined as the difference between the maximum inventory level (maxLevel) and
the current inventory level (stockOnHand). Demand only exists if the current inventory
level (stockOnHand) is below the minimum (minLevel). This weekly demand is then
evenly divided across several deliveries a week (numberOfWeeklyDeliveries). However,
MATSim supports only a simulation period of one day. Thus, the numberOfWeek-
lyDeliveries has been fixed to 5 days in the current implementation. The Receiver
has a ReceiverPlan consisting of a set of ReceiverOrders to fulfill this demand. The
ReceiverOrders assigns a carrier and a delivery time window to a set of orders. Figure
3.19 shows the metamodel elements introduced by the freight receiver contribution.
Subsequently, we briefly describe these elements:

• The Receivers class acts as the root object and contains a set of receivers and
available productTypes.

• A ProductType represents a specific type of good that can be transported. It
has an id and a description. Every ProductType has a location from where it
has to be delivered to the Receiver (originLink). Further, the required transport
capacity per unit of the product is given (transportCapacity ). However, the unit of
the transport capacity is not predefined but must be in relation to other capacity
and dimensional values as it gets transferred to the size (other ) attribute of a
CarrierShipment.

• Receivers are entities that order products. A Receiver has an id and a single
location. Its demand is determined by a set of ReceiverProducts (products). To
fulfill its demand, the Receiver places orders and commissions carriers. The
entire quantity of orders and delivery assignments is referred to as the plan of a
Receiver. The co-evolutionary algorithm of MATSim aims to optimize these plans
for all agents, requiring each agent to maintain a set of plans and a reference to
the currently selectedPlan.

Seite 54 von 142



3.2 MATSim-Freight

receivers

0..* productTypes

0..*

products

0..*

plans0..*

orders0..*

orders

0..* carrier

1

productType

1

selectedPlan1
receiverProduct 1

Receivers

Receiver

id
monleyBalance : flt
location : Link

ReceiverProduct

stockOnHand : flt
minLevel : flt
maxLevel : flt

ProductType

id
description : str
requiredCapacity : flt
originLink : Link

ReceiverPlan

score : flt

ReceiverOrder

timeWindow : TimeWindow

Order

id
orderQuantity : flt
dailyOrderQuantity : flt
serviceTime : flt
numberOfWeeklyDeliveries : flt

Carrier

Figure 3.19: MATSim-Freight metamodel: Freight receiver contribution.

• ReceiverProducts represent the demand of a single Receiver for a specific Pro-
ductType (productType). The Receiver has an initial quantity of the ProductType
in stock (stockOnHand). Furthermore, his storage capacity is limited (maxLevel),
and an amount of articles is defined, which should not be undercut (minLevel).
As soon as this is reached, a reorder must be placed.

• A ReveiverPlan is a set of ReceiverOrders (orders). For the use of MATSim’s
co-evolutionary algorithms, a score of the plan is provided.

• A ReceiverOrder assigns a set of orders to a carrier and defines a timeWindow
within which the Carrier should deliver the orders.

• An Order is placed by a Receiver and refers to a single ReceiverProduct of the
Receiver (receiverProduct). It has an id and a weekly quantity of ordered units
(orderQuantity). The dailyOrderQuanity is derived from the orderQuantity and
the numberOfWeeklyDeliveries. Further, the time required for the delivery of the
order at the receiver is given (serviceTime).

This modeling allows a Receiver to develop very flexible plans, e.g., by distributing the
deliveries of a single ProductType to different Carriers and time windows.
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3.3 Other Metamodels

In this section, we present selected concepts of other freight transport models, namely
FREMIS [50] and SimMobility Freight [51], that differ from or complement the concepts
presented so far. We refrain from presenting the complete metamodel with all its
elements and attributes and instead present the concepts from a high-level perspective.
Section 3.3.1 starts with concepts from FREMIS, and Section 3.3.2 presents concepts
from SimMobility Freight.

3.3.1 FREMIS

Population View Type:

FREMIS has a two-level structure to represent business entities. Business establish-
ments represent organizations at a specific location that produce, process, and store
commodities or provide business or logistic services. To achieve this, a business can
have various facilities. In the population view, these are commodity production and
business service facilities. A single commodity production facility has a production
capacity and productivity. It is capable of producing a single product or can process
multiple commodities interchangeably. The same applies to business service facilities.
These have a service provision capacity and can provide one or multiple types of
services. The second level of the business structure is a firm that owns and operates
one or more business establishments. Regarding model semantics, this means that
business establishments within a firm are more likely to interact with each other.

Further entities of the population in FREMIS are end consumers. Besides private
persons that are organized in households, FREMIS explicitly states the government in
this category. In the demand generation process, end consumers initiate the demand for
business services and commodities. This demand leads to the production of products
and services, which in turn creates demand for the products and services required by
a business establishment to produce these products. All these processes potentially
require shipment and lead to the generation of logistic demand.

Logistic Demand View Type:

To create logistic demand, firms and business establishments make several decisions
that result in a set of contracts. A business establishment can have multiple commodity
and business service contracts with other business establishments about the provision
of business services and commodities. A commodity contract has a vendor, a customer,
a price, and a list of shipments that are shipped between the vendor and the customer.
A business service contract is modeled similarly, but instead of a list of shipments, it
defines the business services that the vendor provides to the customer. Shipments
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are commodity movements from an origin business establishment to a destination
business establishment or an end consumer. A shipment is further specified by its date,
weight, type of commodity, and price. Optionally, time windows for delivery and pickup,
as well as special handling requirements, can be specified. Business establishments
can act at the same time as customers and vendors, allowing the representation of
complex business relations and commodity flows. While it is clear how commodity
contracts result in demand for transportation, only some kinds of business services
require transportation, e.g., on-site visits to the customer’s establishment. Therefore,
FREMIS only focuses on business services that require transportation and further
assumes that the business establishment’s fleet is capable of handling the required
amount of transportation.

Transport Infrastructure View Type:

FREMIS does not distinguish between regular firms and transportation service
providers. Thus, a business establishment can also have a logistic facility. A logistic
facility can operate vehicles of different types, transshipment centers, warehouses, and
intermodal terminals. All these resources are located at the location of the associated
business establishment. Further, a business establishment may have logistic service
contracts that commission other companies or business establishments to handle
shipments. A logistic service contract consists of a business establishment responsible
for shipments, a logistics business establishment that executes shipments, the list of
shipments to be handled, and a price.

This model allows the representation of a wide range of company constructs. From
regular firms that buy logistic services over own-account carriers that operate a private
fleet to specialized transport service providers. It is also possible to represent compa-
nies that act only or partially as brokers and offer logistics services but delegate these
to third parties through subcontracts. The companies, with their business establish-
ments and associated logistical facilities as well as their contractual relationships, then
represent the transport network.

Another concept is the possibility for companies to own and use parts of the network
exclusively. Companies can exclusively own network links. This, for instance, can
represent own railway tracks or even pipelines.

3.3.2 SimMobility Freight

Logistic Demand View Type:

Comparable to FREMIS, the logistic demand in SimMobility Freight is determined and
represented in a three-level process. In the first level, the estimated annual quantity
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(e.g., weight, number of units) an establishment receives or produces of a commodity
type is represented. The second level breaks down this demand into one or more
contracts. Contracts represent supplier-receiver pairs and specify the amount quantity
covered by the product. In the third level, the contracts are translated into one or more
shipments of a specific size.

Transport Infrastructure View Type:

A distinctive feature of SimMobility Freight is the representation of overnight parking
choices. While most of the investigated models assume that tours start and end at
a depot, tours in SimMobility could also start and end at other parking facilities. A
vehicle can be parked in the depot, in public spaces, in parking spaces provided by
other companies, or in publicly accessible parking spaces.

To determine a parking choice, the network and population views must be extended by
information about available parking spaces, their capabilities, and costs. SimMobility
Freight is capable of evaluating the effects of policies related to parking. Thus, these
must also be modeled.

Logistic Solution View Type:

The logistic solution view of SimMobility Freight, like the already presented model,
uses a tour-based modeling approach. A novelty is the consideration of parking
choices within the tour. The parking choice is based on the availability of suitable
parking infrastructure and effects such as waiting time. Possible parking choices are
(un)loading bay area, public car park, and illegal on-street parking.

Another novel concept of the SimMobility Freight metamodel is shipment records. Be-
sides just modeling the delivery tours, the planned sequence of a shipment’s transport
is explicitly represented in a shipment record. Shipment records and related tours
are linked and consistent. In the metamodels presented so far, the information of a
shipment record could potentially be extracted from the planned tours or in a log-based
result view derived from the event sequence. However, these result-based shipment
records usually represent the actual shipment sequence of the simulation, while this
shipment record represents the initially planned shipment sequence.

3.4 Comparison

In Sections 3.1, 3.2, and 3.3, we introduced the metamodels of logiTopp and MATSim,
along with selected concepts from other metamodels. In this section, we then compare
the logiTopp and MATSim-Freight metamodels, occasionally highlighting distinctions
from other presented metamodels. The focus of this section is on major differences and
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similarities. We start by briefly comparing the model steps and cross-cutting concerns,
and thereafter, we compare each view type of the two metamodels.

The first major difference lies in the model steps and simulation process employed by
logiTopp and MATSim. Both were described in detail in Section 2.3.2. While logiTopp is
structured in a long-term and short-term module with dynamic planning and execution
of logistic processes, MATSim-Freight tries to create and iteratively optimize a logistic
solution for a given logistic demand using a co-evolutionary algorithm. Thus, the MAT-
Sim metamodel contains concepts supporting this co-evolutionary algorithm, which
involves a set of scored plans and a selected plan for each entity. The scores can be
seen as economic values, which are only relative and unit-free. Other metamodels may
also represent economic or monetary values, e.g., to simulate and describe contracts
and use other modeling, but this is not further discussed in this work. Note that logi-
Topp’s metamodel does not represent the concepts supporting its dynamic planning and
simulation approach, also because we omitted representing state-describing properties
in the metamodels.

Regarding cross-cutting concerns, a major difference between logiTopp lies in the
simulated time period. Which is typically a day in MATSim and a whole week in logiTopp.
Even if the exact representation differs, time information can be easily converted, with
the exception of the weekday component, as the granularity is in seconds. Both logiTopp
and MATSim are not constrained to a specific coordinate system but prefer Euclidian
coordinate systems, which have meters as the typical base unit. In terms of dimension
and capacity values, various approaches exist. LogiTopp uses volumes, while other
metamodels employ weights or both. MATSim-Freight does not have defined units for
dimensions and capacities.

3.4.1 Comparing Network View Types

Both logiTopp and MATSim-Freight utilize directed graphs to represent their network
structures. LogiTopp introduces an additional reference to the opposite edge, although
this information can be derived from the existing network.

However, variations exist in both models’ attributes associated with nodes, edges,
and the network. MATSim, with its queue-based traffic simulation, features specific
attributes like capacityPeriod, effectiveCellSize, and effectiveLaneWidth for network
representation. It also considers a link’s number of lanes, capacity, and freespeed,
distinguishing between various transport modes with assigned sets of allowed modes.
All these concepts are not included directly in logiTopp’s metamodel but may be consid-
ered by the external tool that calculates the travel times assumed in the planning and
simulation step of logiTopp.
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An exclusive concept in logiTopp is the use of zones, which are prominently featured in
mobiTopp. In logiTopp, zones only serve the purpose of describing the extent of the
service area covered by a distribution center.

A notable difference lies in the localization of entities within the network. While in
MATSim, locations are defined by referencing a network link without specifying the
precise location along the link, logiTopp provides detailed specifications. LogiTopp
specifies the position of an entity along the edge (or link) and provides coordinates,
indicating the exact position and point in the network from which the position can be
accessed. This information is consolidated in an additional class, namely Location.

3.4.2 Comparing Population View Types

The fundamental structure for describing private persons in logiTopp and MATSim
is quite similar: Both organize private persons into households. Notable differences
include the representation of household locations. In logiTopp, each household is
associated with a zone and a specific location, whereas this information is not explicitly
modeled in MATSim. However, inferring this data from a person’s activity schedule
might be possible.

Regarding attributes, both metamodels capture the economic status of private persons
through their income. In logiTopp, each person has an individual income, while in
MATSim, income is aggregated at the household level. LogiTopp introduces a variety
of attributes describing individual characteristics, such as shopping behavior. Note
that some of these attributes are derived from additional data structures, like activity
schedules, but are included directly as attributes in the presented metamodel for
simplicity. The attributes presented here are, therefore, only a subset of the potential
information available for demand generation.

Another difference lies in the presence of private vehicles in the metamodels. While
vehicle ownership and properties are incorporated in logiTopp (and mobiTopp), we
have excluded them from the metamodel for two reasons. First, private vehicles in
logiTopp currently have no impact on freight transport and demand simulation. Second,
unlike MATSim, private vehicles do not share properties with the vehicles used by the
transport infrastructure.

LogiTopp’s population view type encompasses businesses, incorporating a few cate-
gorizing properties and modeling opening hours. In MATSim-Freight, a business is
not explicitly defined and may only exist implicitly as a location where shipments are
delivered to or from. However, the freight receiver contribution introduces receivers,
potentially representing businesses. Although both involve a location, the properties of
receivers and businesses differ. MATSim’s freight receiver contribution explicitly models
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a receiver’s demand, while in LogiTopp, demand is derived from its properties. Other
freight transport models, such as FREMIS, undertake a significantly more complex
modeling of businesses. FREMIS features a two-level structure of firms and business
facilities, providing detailed information on the capabilities of each business facility.
This allows for the modeling and simulation of complex supply chains and contractual
relations.

These disparities in the level of detail and the included entities arise from the diverse
features of the examined freight transport models in the demand generation step. While
MATSim generally takes demand as a given input, other models employ advanced
demand generation or even detailed market simulation.

3.4.3 Comparing Logistic Demand View Types

In the logistic demand view types, all demand for the transportation of goods and
parcels is included. MATSim distinguishes between services and shipments, indicating
whether the shipment is entirely within the study area or if only one destination or
origin is in the destination area. Conversely, logiTopp distinguishes between business
and private parcels, denoting the type of receiver or sender of the parcel. The main
differences lie in modeling individual concepts or properties of the shipments or parcels,
which are mostly independent of the previously mentioned distinctions. Key distinctions
include:

• Origin/Destination specification: LogiTopp explicitly includes the producer and
consumer of a parcel, allowing derivation of the parcel’s origin and destination. In
MATSim, only the origin and destination location are specified, with no reference
to the entity consuming or producing the parcel.

• Supported Origin/Destination relations: LogiTopp supports a subset of consumer-
producer relations, while MATSim allows shipment between any type of location.

• Delivery/Pick-up time windows: LogiTopp lacks explicit delivery and pick-up
times, with these times modeled implicitly and determined dynamically during
the simulation, e.g., by opening hours of businesses or the activity schedule of
private persons. MATSim, on the other hand, features explicit time windows.

• Delivery/Pickup-Service times: LogiTopp determines service times dynamically
by an exchangeable and dynamic model, while MATSim explicitly models service
times.

• Size and weight: Both metamodels use different concepts to describe the size
and weight of shipments, as already discussed in the cross-cutting concerns.

The freight receiver contribution of MATSim includes additional metaclasses within the
definition of the demand viewpoint. It explicitly models a receiver’s demand, translating
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it into orders and subsequently transferring these orders to shipments.

Similar to MATSim’s freight receivers contribution, other freight transport models also
adopt a multi-level representation of demand. However, the lowest level always consists
of shipments, and their modeling has no significant difference.

3.4.4 Comparing Transport Infrastructure View Types

The comparison of the transport infrastructure view types shows that the basic structure
is similar. Both models incorporate multiple carriers with fleets of vehicles. However,
distinctions arise in the assignment of vehicles: MATSim directly assigns fleets to
carriers, with each vehicle having its own location. Conversely, logiTopp associates
vehicles with distribution centers and their locations. SimMobility uniquely models
overnight parking choices, confined to distribution centers in logiTopp and represented
by vehicle locations in MATSim.

LogiTopp introduces the concept of limited service areas to distribution centers, lacking
a direct counterpart in MATSim. Distribution centers can participate in transport chains,
constituting a transport network — a feature absent in MATSim.

To overcome this difference, multiple shipments forming a chain in space and time
could be created to represent transport chains despite these limitations in MATSim.
Thus, the choice of transport chains and their time dimension would be predefined
in the demand representation, limiting the degrees of freedom of the planning and
optimization algorithms. A further concept that is only included in logiTopp is the
timetable.

Another distinction lies in carrier choice. MATSim directly assigns shipments to carriers,
while logiTopp dynamically determines the responsible CEPSP during simulation, in-
fluenced by contractual relations defined between businesses and CEPSPs. FREMIS
does not differentiate between firms and carriers, allowing each firm to possess or lack
logistic capabilities. Shipments are then distributed among various firms through a
potentially complex network of shipping contracts.

Regarding vehicle modeling, logiTopp includes the vehicle type, its capacity, and the
latest return time. MATSim shares similar properties and additionally includes the
earliest start time. Moreover, MATSim provides a more detailed specification of vehicle
types.
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3.4.5 Comparing Logistic Solution View Types

The representation of logistic solutions is very similar in logiTopp and MATSim. Both
metamodels utilize a tour-based structure, where each tour comprises a list of stops or
tour elements, is scheduled, and is associated with a specific vehicle.

However, differences arise in the specific modeling of stops or tour elements. MATSim
distinguishes between various tour activities and explicitly models legs in between,
incorporating an explicit representation of the taken routing in the network—elements
lacking an equivalent in logiTopp. Although both metamodels provide details about
planned times, travel times, stop times, and location, this information is distributed
differently across various metaclasses and their referenced elements.

A notable distinction lies in logiTopp’s capability to aggregate multiple pickups and
deliveries at a single stop. In contrast, in MATSim, each pickup or delivery requires its
own tour activity, excluding the start and endpoint of a tour.

Although both metamodels are very similar, the solution space differs significantly.
LogiTopp allows parcel transfer at distribution centers, enabling the realization of
transportation of a single parcel by utilizing multiple tours and transport modes. In
contrast, MATSim processes the entire shipment within a single tour. Other metamodels,
such as SimMobility freight, explicitly model parcel transfers by maintaining a shipping
record for each parcel.

3.4.6 Comparing Results View Types

LogiTopp and MATSim both contain a log-based format that captures the simulation
trace. However, the results view types differ partially in which processes are logged
and in terms of the level of detail and contained properties of the logs.

The shared subset of both is the representation of the progress in the execution of
the tours. This structure is quite similar, as each metamodel contains at least one log
entry for every executed stop of the tour. In contrast to logiTopp, MATSim differentiates
between the beginning and end of a stop. The resulting logs further differ in structure
and attributes because of the differences in allowed processes and the modeling of
logistic demand and logistic solutions. Further, there are differences in which attributes
are captured in the logs.

Note that only minor modifications are needed to add further log events or add attributes
to existing log entries and thus align both metamodels more closely.
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In this chapter, we present a concept that allows coupling and data exchange between
several agent-based freight transport models. The primary goal of this concept is to
make use of the variety of functions of several agent-based freight transport models in
an integrated and combined manner. The concept is based on the idea of a common
metamodel for the freight transport domain and the use of model transformations
to transfer between freight transport models and common metamodel. This chapter
provides an overview of the general concept. The developed common metamodel,
along with the required model transformations, are then presented in Chapter 5.

This chapter is structured as follows: We begin by presenting the architecture of the
concept and discuss design considerations as well as the involved components in
Section 4.1. Section 4.2 then defines the assumed model steps and discusses points
in the assumed model process where coupling can take place (referred to as exchange
points). Following this, in Section 4.3, we discuss how the common metamodel and
the entire architecture can handle variability in the employed concepts of the freight
transport models.

4.1 Architecture

In this section, we present the conceptual architecture developed for the coupling of
multiple agent-based freight transport models. We commence by outlining general
considerations and providing an overview of the architecture, followed by a detailed
examination of each component.

Figure 4.1 offers a comprehensive overview of the developed architecture. Metamodels
are represented by blue boxes, while blue arrows signify model-to-model transforma-
tions between them. The green boxes denote the coupled freight transport models.
The coupling process between two models typically involves several steps: initially, the
requisite data for coupling is extracted from the originating model into an instance of a
metamodel reflecting its data structure (simulation-based metamodel). Subsequently,
model transformations from the origin simulation-based metamodel to the common
metamodel and from the common metamodel to the destination simulation-based meta-
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Figure 4.1: Overview of the proposed architecture for the coupling of freight transport
models through a single common-metamodel.

model are applied. Finally, the resulting instance of the destination simulation-based
metamodel is inserted into the destination freight transport model.

The main idea of this work was to develop and employ a common domain model,
referred to as the common metamodel, comprising generally valid or widely accepted
and shared domain concepts to facilitate the coupling process. The utilization of such
a model yields manifold benefits. It fosters the establishment of a common language
and perspective of the domain among all stakeholders, enhances knowledge sharing,
communication, and collaboration, and serves as a standard for data exchange and
problem definitions.

The common metamodel serves as a central component within the architecture. Model
transformations are only necessitated between the common metamodel and each
integrated freight transport model. Consequently, only two additional model transforma-
tions need to be established when integrating a new transport model into an existing
system, effectively reducing the number of required transformations from O(n2) to O(n).
Moreover, for changes to already integrated models, only the transformations between
the modified model and the common metamodel need revision.

Another advantage of a central model is the ability to define operations required by
numerous transformations or applications on the common metamodel, thus enabling
their shared utilization across multiple metamodels. This principle is employed, for
instance, in handling variability, as elaborated in detail in Section 4.3.

We have opted for an explicit metamodel representation of a freight transport models
data model (simulation-based metamodel) rather than a direct transfer between a
freight transport model and the common metamodel. This decision is twofold: first,
employing explicit metamodel representations enables the utilization of methods from
model-driven engineering, resulting in more comprehensible and maintainable trans-
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formations. Model transformation languages are explicitly designed for this task and
result in better understandable and maintainable transformation as they offer adequate
language constructs for expressing these relations. Second, the simulation-based
metamodels provide a more abstract representation of the data model, simplifying
understanding and abstracting from implementation details. Consequently, techni-
cal changes to a freight transport model that do not impact the data model are not
propagated into the simulation-based metamodel and the model transformations and
only affect the extraction and insertion components, leading to a more robust and
maintainable architecture.

Subsequently, the single architecture components are discussed.

Common Metamodel

The common metamodel is a metamodel that encapsulates generally accepted and
widely shared concepts within the freight transport domain. It aims to encompass
all domain elements necessary at the exchange points defined in Section 4.2. This
metamodel should exhibit a well-structured organization in terms of element dependen-
cies, ensuring that elements included in a specific exchange point are independent of
elements from other exchange points. Additionally, the common metamodel must have
the capability to capture variability within the domain concepts, as discussed in Section
4.3.

From a technical perspective, a metamodel can be implemented as an Ecore model
within the EMF framework [57]. Realizing the metamodel in different technical spaces is
also feasible, provided that the common metamodel and simulation-based metamodels
are realized within the same or compatible technical space to ensure interoperabil-
ity. Moreover, the chosen technical space should provide suitable tools for creating,
transforming, and managing metamodels effectively.

Simulation-Based Metamodel

Simulation-based metamodels refer to metamodels that depict the domain model of a
particular freight transport model. These metamodels capture the unique characteristics
of the specific freight transport model, facilitating straightforward extraction and insertion
processes. However, they should abstract from technical implementation details and
may exclude parts of the domain model not included in the utilized exchange points.
Examples of simulation-based metamodels include the domain models developed for
logiTopp (see Section 3.1) and MATSim-Freight (see Section 3.2).
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Model Transformations

Exogen model-to-model transformations are used to transfer data between the
simulation-based metamodel and the common metamodel, as well as vice versa. Given
the potential variance in the level of abstraction and the information contained within
these metamodels, the transformations may need to perform tasks such as aggregating
or disaggregating data, ignoring certain information, or generating default values for
missing elements. Transformations can employ imperative or declarative approaches,
depending on factors such as task complexity and developer preferences.

Extraction and Insertion

The extraction and insertion components are tasked with creating an instance of a
simulation-based metamodel or integrating it back into the freight transport model.
Their implementation heavily relies on the provided interfaces, implementation, and
input/output data of the freight transport model. Consequently, various approaches
exist and must be selected based on the specifics of the existing freight transport model
implementation.

Dynamic approaches involve extending or integrating into the code of the freight
transport model. They collect data during runtime and programmatically generate
a simulation-based model or insert it into the freight transport model dynamically.
File-based approaches utilize model-to-text, text-to-model, or model-to-model transfor-
mations to create simulation-based models from file-based input/output data or vice
versa. Additionally, hybrid and other strategies may be employed to achieve model
extraction and insertion.

4.2 Exchange Points

Exchange points are points in the model process where data exchange and coupling
between different models is possible. This section develops the exchange points and
the underlying model structure used in the presented concept. We begin by defining
criteria for selecting exchange points and then present the used exchange points along
with the underlying model structure used in the presented concept (Section 4.2.1). In
Section 4.2.2 then, possible use cases are presented briefly. We also present possible
extensions to this structure in Section 4.2.3.
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4.2.1 Model structure and Exchange Points

In Section 2.3.1, we presented a generalized model structure applicable to freight
transport models. Furthermore, a discussion on the model structure of existing freight
transport models, specifically logiTopp and MATSim-Freight, was presented in Section
2.3.2. We now define exchange points and a model structure used in the presented
concept. We require the model structure to be compliant with these presented model
structures. The exchange points and the use cases derived from them have to be
defined in such a way, that the user can make use of the variety of functions of the
models through the coupling of the models through these exchange points. So that the
coupling produces a real added value.

We have formulated the following criteria for the selection of exchange points, which
are presented and justified subsequently:

• Natural separation: Exchange points should naturally, in the sense of how the
investigated models are structured, separate the model processes. The modeling
steps between the exchange points should yield problems that are as separate
and isolated as possible. This separation allows for the utilization of various
models, algorithms, and concepts in individual modeling steps. Implementing a
modeling step should afford maximum degrees of freedom, minimizing constraints
and assumptions. Consequently, exchange points serve as input and output
values for separated problems, enabling the interchange of solution algorithms or
strategies without internal data exchange during problem-solving.

• Thin exchange points: A limited quantity and complexity of transferred data
should characterize exchange points. This criterion seeks to streamline the
common metamodel and required transformations, enhancing the manageability,
comprehensibility, and maintainability of the system. Additionally, the performance
of the implementation is a further aspect.

• Common view existent: The concepts employed by freight transport models at
exchange points should align as closely as possible. There should be a common
understanding of the concepts and data to be transferred. This criterion again
aims to reduce the variability and resultant complexity, as differing concepts
require handling of the introduced variability.

Both the selected extension points and the derived model structure are shown in Figure
4.2 and detailed as follows:

• P0: Population Synthesis: Responsible for generating a population comprising
private individuals, businesses, and the network of transport service providers,
this step draws upon various amounts and types of input sources. Additionally, it
generates a representation of the general transport network.
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P0: Population Synthesis

EP0: Population

P1: Demand Generation and Market Simulation

EP1: Logistic Demand

P2: Logistic Solution Generation

EP2: Logistic Solution

P3: Simulation

EP3: Results

P4: Analysis and Evalutation

Figure 4.2: Model steps (P) and exchange points (EP). Gray exchange points are op-
tional and not further elaborated in this work.

• P1: Demand Generation and Market Simulation: The objective of this model
step is to deduce, based on a given population, the demand for transporting
shipments and parcels. This entails specifying actual shipments at specific times,
with assigned sizes, starting points, and destinations. Some models may treat
this as an input parameter, while others employ a complex market simulation to
derive and simulate business relations and supply chains, thereby determining
the demand. Furthermore, this step involves simulating the transport market,
encompassing the assignment of shipments to transport service providers and
the relationships between them.

• P2: Logistic Solution Generation: The logistic solution generation tries to find
an efficient or realistic logistic solution to handle the given demand. This involves
the selection of transport chains, tour planning, and scheduling. Inputs for this
phase primarily include the logistic demand and the logistic network.

• P3: Simulation: The simulation step is responsible for the execution of the
evaluated logistic solution within the simulation environment. It entails a detailed
simulation of logistic processes and interactions with other agents in the simulation
environment, yielding a trace of the simulation (results), such as actual travel
times or information about the success of deliveries.

• P4: Analysis and Evaluation: In this step, the captured simulation traces are
reviewed, analyzed, and evaluated. Several tools could be applied to evaluate
the simulation results, depending on the research questions.
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At each extension point, the data exchanged encompasses the artifact derived from
the preceding model step and the data from all prior extension points for reference. An
extension point can be perceived as a problem definition for the subsequent model step.
For instance, the logistic demand exchange point contains the logistic demand, logistic
network, population, and transport network, defining a logistic solution problem where
an optimal solution must be found for the given demand utilizing the available logistic
network.

Note that carrier choice is distributed across two modeling steps, with market simulation
responsible for simulating the transport market and selecting a carrier. However, logistic
solution generation retains the flexibility to involve multiple carriers by allowing one
carrier to commission one or more other transport service providers for a shipment,
resulting in transport chains with multiple carriers involved.

Based on the evaluated models, the previously established criteria for selecting ex-
change points are largely met for EP1 and EP2. However, in the case of EP0 and EP3,
there is a significant divergence in the common view. For EP0, the subsequent demand
generation and market simulation step exhibit a wide range of strategies, varying from
requiring demand as input data to employing statistical models and complex market
simulations. Consequently, there are diverse requirements for the necessary input data,
and the perceived added value of early model coupling is minimal for the user. A similar
challenge arises with EP3, where the granularity and focus of the simulation step exhibit
considerable variability. The subsequent analysis is again tailored to the main research
questions of the particular model and, at least conceptually, coupled very tightly to the
simulation step. Hence, we have chosen not to conduct a detailed examination of these
exchange points in this work and have identified them as a research question for future
investigations. The relevance of the results exchange point becomes more pronounced
when feedback loops are taken into account. This is discussed in Section 4.2.3.

Nevertheless, certain elements of the data exchanged in EP0 are essential as a foun-
dation for subsequent steps and exchange points. The data exchanged, particularly
representing the general transport network and the population, serves primarily as a
reference point utilized in both the logistic demand and the logistic solution. Conse-
quently, the corresponding metamodel elements can be designed to accommodate
these specific requirements and establish a minimal common view of the employed
concepts. The design of the representation of the logistic network can be predominantly
shaped by the needs of the logistic solution generation and simulation steps, coupled
with the shared understanding of the domain.

It is not absolutely necessary for the sequence of the coupled models to fit exactly into
this structure. In particular, the dynamic implementation of the extraction and insertion
components allows data to be collected or fed back into the target model distributed
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across several process steps.

4.2.2 Supported Use Cases

The model structure presented, with the utilized exchange points EP1 (logistic demand)
and EP2 (logistic solution), offers a wide array of use cases for coupling freight transport
models. To illustrate this versatility, Figure 4.3 showcases four potential use cases when
coupling up to three freight transport models. These use cases are briefly described as
follows:

• Red: Model A utilizes the logistic solution generation strategy of Model B.
• Purple: Model A conducts population synthesis, demand generation, and market

simulation. Subsequently, Model B generates a logistic solution for the determined
demand, which is then simulated, analyzed, and evaluated with Model C.

• Cyan: Model A generates both demand and a corresponding logistic solution.
The logistic solution is then simulated, analyzed, and evaluated with both Model
A and Model B.

• Orange: Given a logistic demand generated by Model C, two logistic solutions
are produced using the strategies of Model B and Model C. These solutions are
then simulated, analyzed, and evaluated with Model C. With the overall goal of
comparing different different logistic solution strategies of Model B and Model C.

These use cases highlight the diverse ways in which freight transport models can be
coupled to leverage their respective strengths and capabilities in addressing various
aspects of the transportation domain.

4.2.3 Extensions: Feedback Loops and Model Merging

In this section, we briefly present two potential extensions to the previously outlined
structure, which broaden the scope of use cases for model coupling. These extensions
include feedback loops and model coupling. It’s important to note that these extensions
are not further elaborated in this work and are, therefore, left as areas for future research
and exploration.

Feedback loops and iterative approaches are widely used concepts in freight transport
models. They allow previous model steps to recompute their results based on the
results of later model steps and therefore help to produce more accurate or optimized
results. An example of the use of a feedback loop is the MATSim process (see Figure
2.11), where the agents optimize their plans based on the simulation results and scores
of previous iterations.
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Model A Model B Model C

P0 & P1 P0 & P1 P0 & P1

P3 & P4 P3 & P4 P3 & P4

EP1:
Logistic Demand

EP2:
Logistic Solution

P2 P2 P2

Figure 4.3: Example of various supported use cases with three coupled freight transport
models.

EP1

EP2

EP3

P0 & P1

P2

P3

P4

Figure 4.4: Possible feedback loops within the proposed model structure.
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Figure 4.4 illustrates potential feedback loops within the proposed model structure.
These are briefly outlined as follows:

• Red: This feedback loop returns simulation results to the logistic solution gener-
ation step. Here, the logistic solution generation could benefit from information
such as experienced travel times and delivery success rates.

• Purple: The magenta feedback loop feeds simulation results back to the demand
generation and market simulation step. This could include data on experienced
travel times or pricing information for logistic services, aiding in more accurate
demand prediction and market simulation.

• Orange: The orange feedback loop returns the generated logistic solution to the
demand generation and market simulation stage. Here, the demand generation
and market simulation could benefit from insights into the effort, costs, and service
quality (e.g., transport times) associated with the found logistic solution.

Further research is required to delve into the specific data beneficial and necessary
for these feedback loops. Additionally, the common domain model must be extended
to include the required information. It must also be determined whether this data can
be derived from existing metamodel representations through the application of model
transformations.

A further extension involves merging metamodels at extension points, where multiple
instances of a common metamodel are merged into a single instance. Figure 4.5
illustrates a potential use case where the generated demand from Model A and Model
B are merged at the logistic demand exchange point. For instance, Model A might
derive demand for private shipments, while Model B focuses on demand for business
shipments. Model-driven engineering offers various tools for metamodel merging, with
the Epsilon Merging Language (EML) being a popular example [29]. However, further
exploration is needed to identify specific use cases for model merging in the domain
of freight transport models. Additionally, it’s important to address challenges such as

Model A Model B

P0 & P1

P2 & P3 & P4

P0 & P1

P2 & P3 & P4

EP1:
Logistic Demand M

Figure 4.5: Example for merging the logistic demand generated by two models.
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detecting and handling duplicated data elements to ensure the integrity and consistency
of the merged metamodel.

4.3 Handling Variability

The common metamodel contains generally accepted and widely used concepts in the
field of freight transportation. However, there are differences between the concepts in
the analyzed domain models, which poses a challenge to compatibility. Consequently,
the developed concept and the common metamodel need to address these differences
and provide some kind of variability, which is discussed in this section.

For the description and handling of variability, we applied and adapted concepts from
the field of Software Product Line Engineering (SPLE). Some fundamental and used
concepts of SPLE are briefly described in Section 2.2.

4.3.1 Development Process

To address variability, we applied an adapted version of the engineering process for
software product lines described by Apel et al. [6]. Instead of developing a specific
product to meet customer needs in the application engineering part, we integrate freight
transport models into the developed system.

In Chapter 3, we conducted a significant portion of the domain and requirements analy-
sis. Following initial observations, commonalities and variability among metamodels are
identified and structured into variation points and variants. The results of this analysis
are presented in Chapter 5 as a feature model.

The domain implementation involves creating the common metamodel, reflecting the
variation points and variants. Ideas for representing such variability are discussed in
Section 4.3.3. The developed metamodel is presented in Chapter 5.

When adding a new freight transport model to the system, a requirement analysis
is conducted, potentially leading to an adaptation of the common metamodel. The
product derivation step includes developing model transformations between the new
simulation-based model and the common metamodel. Additionally, the development of
extraction and insertion components may be necessary.

Product derivation also differs in another aspect: Instead of deriving a product using
the required fragments of the domain implementation, we require the instance of the
common metamodel to fulfill the constraints implied by the required feature configuration
of the metamodel. Therefore, we need further endogen model transformations on the
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common metamodel to transform the metamodel between different variants. This
process is further described in Section 4.3.4.

Note that the number of variation points should be kept small, and the choice of variation
points should be made carefully. Since each variation point potentially adds additional
complexity to the common metamodel and the transformations between the variation
points. Thus, it may also be a valid decision not to map a concept of a freight transport
model completely to avoid a variation point.

4.3.2 Allowed Variabilty

To represent and manage the variability of the common metamodel, we utilize feature
models. To simplify our concept, we focus on a limited subset of feature models. Our
approach involves a root node with three types of children:

• A concrete feature without further children, representing concepts shared among
all models.

• An optional concrete feature without further children, representing concepts
present in some freight transport models. This is referred to as an optional
variation point.

• An abstract, mandatory feature, followed by an alternative group of concrete
features with no further children. This is used to model variability in concepts
representing the same thing but in different ways. This is referred to as an
alternative variation point.

We leave it to further research to explore more complex feature models and how they
could be integrated into our proposed concept.

4.3.3 Realization of Variability in the Common Metamodel

In this section, we briefly present some mechanisms for expressing variation points in
the common metamodel. While a wide array of approaches, strategies, and patterns
exist for this task, we limit our discussion to the mechanisms used in the developed
metamodel in Chapter 5.

One approach is to use an abstract class to represent a variation point and have
concrete subclasses for each variant. Another approach involves using specialized
subclasses to enrich a metamodel element with the information required for a variation
point. Optional variation points can also be realized as additional metamodel elements,
with careful consideration to ensure that non-optional elements do not depend on
optional ones.
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A further strategy is to employ flexible model structures that can represent multiple
variants. The properties of a specific variant can then be described by formal model
constraints.

In general, formal model constraints can be used to specify the invariants of each
variant and to verify if the variant is fulfilled.

4.3.4 Realization of Variability in the Model Coupling

This section outlines the handling of a variable common metamodel in the proposed
concept.

A feature configuration is derived for each simulation-based metamodel, representing
its utilized concepts. This configuration ensures conceptual alignment between the
simulation-based metamodel and the common metamodel. The transformation from the
simulation-based metamodel to the common metamodel then produces an instance of
the common metamodel that is consistent with this feature configuration. The opposite
transformation can assume that the instance of the common metamodel is again
consistent with this feature configuration. This idea of transformations producing and
requiring an instance of the common metamodel with a specific feature configuration is
shown in Figure 4.6.

When coupling two freight transport models, such as Model A and Model B, the
transferred instances of the common metamodel need to be transformed from an
instance that fulfills the produced feature configuration of Model A to an instance
that fulfills the required feature configuration of Model B. Thus, a set of endogen
model transformations on the common metamodel, further referred to as common
transformations, must be defined.

Common transformations cater to different types of variation points:

• Optional variation points require two transformations: one for removing optional
concepts from the metamodel and another for generating and adding the elements
of the optional concept.

• Alternative variation points necessitate transformations to switch between each
alternative. Chaining transformations might be applicable in some cases. For
example, instead of developing a transformation from A→ B, the transformations
A→C and C→ B could be chained to A→C→ B.

It’s important to note that not all the information required to create specific concepts
may be derivable from the source of a common transformation. Strategies like dummy
data creation or user input may be employed in such cases. It also must be noted that
these transformations could potentially lead to a loss of information, as not all variants
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Common
Metamodel

Model A
Metamodel

Model B
Metamodel

Shared Concept

Alternative
Alternative B

Alternative A

Optional Feature

«requires»

«produces»

«create»

Common
Metamodel

Model A
Metamodel

Model B
Metamodel

Shared Concept

Alternative
Alternative A

Alternative B

Optional Feature

Figure 4.6: Example for the produced and required feature configuration of the common
metamodel when coupling two simulation-based metamodels and the required common
transformations (green).

of a variation point contain the same information.

Common transformations should ideally be independent of the configuration of other
variation points and capable of handling various configurations. However, constraints
on some features might be beneficial in certain scenarios.

Common transformations must be defined in such a way that the resulting models
exhibit only minor differences in content, which are not considered significant, regard-
less of the order in which the set of transformations required to map between two
feature configurations is applied. However, in this work, we do not delve further into
examining if this property can hold in all circumstances and which kinds of differences
are permissible. If this property cannot be guaranteed, further investigation is needed
to determine how to establish correct execution orders. We leave the exploration of
both aspects, aided by formal methods, to future work.

We identify three key benefits in the proposed approach of introducing feature configura-
tions for every coupled freight transport model and integrating common transformations
to facilitate the mapping between them:

• Simplified Transformations: The transformations between simulation-based and
common metamodels are expected to become less complex. This is because
the concepts of the source and destination metamodels are aligned through the
application of a feature configuration that reflects the concepts of the simulation-
based metamodel.

• Shared Transformations: Many parts of the transformations that would be required
to map between a simulation-based metamodel and the common metamodel
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without variability are now shared as common transformations. This consolidation
reduces the effort needed for development and maintenance.

• Reduced Information Loss: By avoiding the transfer of all simulation-based
metamodels into a single common metamodel with no variability, the loss of
information can often be minimized. The common metamodel can incorporate
shared concepts, and if both the source and destination simulation-based models
include the concept, the loss of information is minimal. Additionally, specialized
transformations can be developed to map between variants of a variation point
rather than initially constraining the information to a fixed concept of the common
metamodel.
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This chapter introduces the common metamodel developed for the freight transport do-
main, serving as a central component for coupling various simulation-based metamod-
els (refer to Chapter 4). We commence by outlining the feature model that delineates
the variability of the common metamodel. Subsequently, we delineate the elements
of the metamodel organized by several view types, analogously to the presentation
of the metamodels of logiTopp and MATSim-Freight in Chapter 3. Thereby, we briefly
deliberate on the associated design decisions and offer insight into how the concepts
of the common metamodel can be aligned with the examined simulation-based meta-
models and vice versa. Finally, in Section 5.8, we elaborate on the implementation of
transformations for changing variants at the variation points.

The feature model in Figure 5.1 illustrates the variability of the common metamodel
through various variation points and their respective variants. This is the result of a
requirements and domain analysis and includes:

• Shared Concepts: This feature is included for the sake of completeness and
represents all non-variable and, therefore, shared concepts/features of the meta-
model.

• Shipment Records: An optional feature capturing an explicit representation of
shipment records. Although redundant, shipment records serve algorithmic
purposes and can be derived from planned or executed tours. The reason for
making this feature optional is to provide a common transformation for creating
this structure and thereby share the code and knowledge with all transformations
from simulation-based metamodels to the common metamodel.

• Dimension: Describing how capacities and sizes are depicted within the meta-
model, offering volume-based, weight-based, or combined representations.

• Network Access: Describes how the position of locations within a network is
described. Locations can either be connected to a node or an edge of the
network.

• Simulation Period: This variation point describes the length of the simulation
period. It can represent a single day or multiple days (currently constrained to
seven days).

• Transport Chains: Determining whether complex transport chains (including
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Common Metamodel

Shared Concepts

Dimension

Volume-based

Weight-based

Volume-and-Weight-based

Network Access
Edge-based

Node-based

Simulation Period
SingleDay

MultiDay

Transport Chains
Splitted

Combined

Shipment Records

Figure 5.1: Feature diagram of the common metamodel.

multiple hops) are represented as a single entity or split into multiple shipments,
each representing one hop.

The feature configuration produced respectively required for the transformations from
and to the logiTopp metamodel is {Shared Concepts, Volume-based, Edge-based,
MultiDay, Combined}. Analogously, for the MATSim-Freight metamodel, the feature
configuration is {Shared Concepts, Volume-based, Edge-based, SingleDay, Splitted}.
Note that MATSim-Freight would also allow weight-based dimensions.

The common metamodel, developed using EMF’s Ecore metamodel [57], is structured
based on viewpoints defined in Chapter 3, with each viewpoint corresponding to a
package within the metamodel. The packages were assembled so that the packages
required in an exchange point depend only on packages from previous exchange
points. The resulting common metamodel contains the following set of packages P =

{Utils, Network, Population, Logistic Network, Logistc Demand,Logistic Solution, Results}.
The package dependencies are listed below, in your notation A→{B,C} denotes that
Package A depends on both Packages B and C:

• Utils→{}
• Network→{Utils}
• Population→{Utils, Network}
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• Logistic Network→{Utils, Network}
• Logistic Demand→{Utils, Network, Population, Logistic Network}
• Logistic Solution→{Utils, Network, Logistic Network, Logistic Demand}
• Results→{Utils, Network, Logistic Network, Logistic Solution}

Note that certain metamodel elements may appear in multiple viewpoints, or they
might be introduced at points where they are semantically used rather than within
their contained viewpoint. This approach aids clarity and ensures that elements are
presented in context, enhancing understanding for the reader. We commence now by
presenting the resulting view types.

5.1 Utils View Type

The metamodel has a further utils view type and package that encapsulates utility or
helper elements and functionalities that support the main modeling concepts within
the metamodel. The utils view type encompasses elements for describing times and
dimensions in terms of size and capacities. Therefore, it includes major parts of the
realization of dimension and simulation period variation points.

Figure 5.2 shows the metamodel elements related to time, time windows, and durations.
Subsequently, we briefly describe these elements:

• A Duration represents a specific period of time and includes the fields days, hours,
minutes, and seconds to define its duration precisely.

• The abstract classes Timestamp and TimeWindow are used to implement the
simulation period variation point. If the feature MultiDay is selected, only MultiDay-
Timestamps and MultiDayTimeWindows will be allowed. If the feature SingleDay
is selected, only SingleDayTimestamps and SingleDayTimeWindows will be
allowed.

• A (Single/Multi)DayTimestamp is used to specify a point in time during the simula-
tion period and includes the attributes (day,) hour, minute, and second to define
the timestamp precisely.

• A (Single/Multi)DayTimeWindow is used to specify a time window. It starts at a
timestamp (from) and ends at a timestamp (to). Both from and to are optional to
express that the start or end of the TimeWindow is not explicitly defined.

We decided to use an explicit representation for times to enhance readability for the
user. The mapping to the logiTopp and MATSim-Freight metamodel is straightforward.
The precision in seconds is sufficient for most use cases, and the proposed structure is
very flexible and allows for the representation of all kinds of timestamps, time windows,
and durations. If necessary, the flexibility could be reduced through the constraints of
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hour : int
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days : int
hour : int
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Figure 5.2: Common Metamodel: Utils View Type - Times, Timestamps and Durations.

metamodel elements that use these elements.

Figure 5.3 shows the metamodel elements related to the representation of dimen-
sions.

• The abstract class Dimension implements the same named variation point. It
allows either a volume-based, a weight-based, or a combined (VolumeAndWeight-
BasedDimension) representation.

• VolumeBasedDimensions can either have a finite value in m3 or be infinite.
• WeightBasedDimension can either have a finite value in kg or be infinite.
• VolumeAndWeightBasedDimensions have both a volume and a weight. The

semantics for determining if a size s can be handled by a capacity c are to check
both volume and weight. The size s then can be handled by the capacity if the
following holds: s.weight ≤ c.weight and s.volume≤ s.volume.

Volume and weight seem to be the two decisive quantities for describing sizes and ca-
pacities. Mapping between simulation-based models and dimensions is straightforward,
as only units may have to be converted.
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volume 1
weight 1

Dimension

VolumeBased WeightBased

InfiniteVolume

FiniteVolume

volumeCubicMetre : flt

InfiniteWeight

FiniteWeight

weightKg : flt

VolumeAndWeight

Figure 5.3: Common Metamodel: Utils View Type - Dimensions.

5.2 Network View Type

Before introducing the network view type of the common metamodel, we motivate three
major design decisions that were made to create this view type:

• Level of detail of the network: Although basic concepts of most metamodels align
(i.e., graph-based representation), the level of detail and the present properties
of the network metamodels vary significantly. Deriving a common subset poses
challenges. To address this, we opted for a simplistic network representation,
capturing fundamental structure and entities. Each network element is assigned
a unique id, facilitating mapping to more complex representations that can be
transferred separately or are derived from the same source and, therefore, have
matching ids.

• Representation of locations: Locations in networks can be represented diversely,
often including coordinates and references to network elements through which
the network is reached. To accommodate this variability, we introduced a variation
point for location representation, acknowledging the different approaches avail-
able. A heuristic transformation between edge-based and node-based network
accesses is possible.

• Containment of locations: In terms of location containment, we opted for instance
equality over data equality for clarity in modeling. Locations are uniquely identified
and belong to the containment structure of the entity they serve. Tours and
similar elements then reference these locations, ensuring a clear delineation of
relationships.

Figure 5.4 shows the elements representing the directed network graph. A network
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Figure 5.4: Common Metamodel: Network View Type - Network graph.

is composed of Nodes and directed Edges, each having an id. Edges further have a
set of allowedVehicleTypes and a length. The unit for lengths and the specification of
coordinates is set to meters. The VehicleTypes enum encompasses a set of typical used
vehicle types in the CEP domain, and a mapping to the vehicle types of a simulation-
based metamodel must be established. Some simulation-based metamodels contain
zones, which are mainly used in the domain to define the areas of responsibility of
logistic facilities. We have decided not to model zones in the common metamodel, as
we see it as a degree of freedom for the planning algorithms to define the areas of
responsibility of logistic facilities.

The metamodel elements for describing a location are shown in Figure 5.5. Locations

networkAccess1

NetworkAccess

EdgeBasedNetworkAccess

edge : Edge
edgePosition : flt

NodeBasedNetworkAccess

node : Node

Location

id
coordinate: Coordinate

Figure 5.5: Common Metamodel: Network View Type - Locations.
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are characterized by an id and a coordinate. Additionally, they have a networkAccess,
which is an abstract class. Depending on the selected variant, this NetworkAccess can
take two forms: an EdgeBasedNetworkAccess, which points to an edge and includes
a relative position (ranging from 0 to 1) on the edge denoted as edgePosition, or a
NodeBasedNetworkAccess, which points to a node. If no edgePosition is specified, a
default value of 0.5 can be assigned.

Transformations from metamodels that do not contain an instance-based equality
mechanism to the common metamodel can be challenging. This is because multiple
locations of the source metamodel have to be merged into one location, and the
container of the location has to be determined. A suitable strategy is to build a lookup
table that assigns all locations of the source metamodel to the used instance. The
lookup table is built upon an equality comparison of attributes with some tolerance.

5.3 Population View Type

Also, for the population view type, the level of detail had to be decided. We again opted
for a simple and reduced representation as we excluded the EP0 for the exchange
population (see Section 4.2.1). Therefore, the population is mainly used as a reference
for describing producer and consumer relationships in the demand view type and does
not need to contain attributes to derive the logistic demand.

Figure 5.6 shows the metamodel elements related to the population view type. Subse-
quently, we briefly describe these elements:

• The Population encompasses businesses and households.
• Households are characterized by an id, a location, and multiple members. Each

Person has a unique id and belongs to exactly one household.
• We decided to include a distinction between businesses and branches. Busi-

nesses can have multiple branches and serve as a structuring concept. Each
BusinessBranch has its own id, a specific location, and openingHours, which
specify when a CEPSP can deliver or pick up parcels at the branch.

• Additionally, we added the role of a ShipmentConsumerProducer as an abstract
class, indicating whether an entity can send or receive shipments.

This structure aligns with the examined metamodels, although some may not distinguish
between businesses and branches. In such cases, a business with a single branch is
mapped to a business containing one branch. Furthermore, a default value must be set
if certain metamodels do not include opening hours for businesses/branches.
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businesses

0..* households

0..*
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Population

Business

id

BusinessBranch

id
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id
location : Location

Person

id

ShipmentConsumerProducer

Figure 5.6: Common Metamodel: Population View Type.

5.4 Logistic Network View Type

The logistic network view type encompasses all metamodel elements used to describe
the network and capabilities of CEPSPs. Before describing the elements of the logistic
network view type, we motivate some major design decisions that were made to create
this view type:

• Relations between CEPSPs only on the CEPSP level: We opted to model relations
between CEPSPs, which is crucial for defining transport chains, solely at the
CEPSP level for flexibility. This allows planning algorithms to determine useful
transfers between hubs, considering contractual relationships between CEPSPs
rather than prescribing allowed transport chains. Modelers or transformations
can also introduce more CEPSPs to restrict the set of permitted transport chains,
ensuring a flexible structure.

• Separation of logistic hubs and vehicle depots: We clearly distinguished logistic
hubs and vehicle depots in the common metamodel, as they serve different
purposes. This decision prevents complexities in mapping vehicles not located
at logistic hubs, as this distinction is already present in some freight transport
models.

• No representation of timetables: Timetables were omitted from the common meta-
model due to their absence in some metamodels and varying conceptualizations
across models. We leave the representation of timetables as a detail specific to
the network representation of individual models.
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• Explicit representation of public service points: We explicitly represented public
service points in the common metamodel, considering it a central concept in the
CEP domain. The attributes associated with public service points are deemed
important constraints for deriving logistic solutions.

Figure 5.7 shows the metamodel elements related to describing CEPSPs. Subsequently,
we briefly describe these elements:

• The LogisticNetwork serves as the root element of the logistic network and
contains a set of CEPSPs.

• A CEPSP has a name and an id. Every CEPSP can operate multiple vehicleDe-
pots and logisticHubs. Additionally, CEPSPs can cooperate with other CEPSPs,
denoted by the deliveryPartners and pickUpPartners references.

• A VehicleDepot can have multiple vehicles and has a defined location. It also has
an id and operationHours, denoting the time windows during which the vehicles
can be operated.

• Vehicles have a unique id, a type, and storageCapacity. Additionally, a vehi-
cle can only be operated during its operationHours, which must be within the
operationHours of the containing VehicleDepot.

• A LogisticHub serves as a transshipment point of the logistic network. It has a
limited storageCapacity, and shipments take at least the minimumTranshipment-
Time to be processed in the LogisticHub. Furthermore, LogisticHubs serve as
points where shipments can enter or exit the study area if the respective flags are
set (isEntry and isExit). A LogisticHub has an id, a location, and operationHours
during which vehicles can load and unload shipments.

• We further introduced the role of a LogisticFacility as an abstract class.

We now outline the logistic solutions allowed within this structure and the responsibilities
of CEPSPs and logistic hubs. Shipments can be transported between logistic hubs
or from a pickup or delivery location (e.g., a PublicServicePoint, BusinessBranch, or
Household) to a logistic hub or vice versa. For transport between logistic hubs of the
same CEPSP or the final delivery or pickup of shipments, the CEPSP that owns the
respective logistic hub is responsible and must provide the vehicle used. For transport
between logistic hubs of different CEPSPs, the CEPSP of the origin hub is responsible
in delivery direction, and the CEPSP of the destination hub is responsible in pickup
direction. These transports are only allowed if the corresponding delivery or pickup
partner relation exists. In the case of a shipment with an origin and destination within
the study area, the shipment is considered a pickup until it reaches a logistic hub of
the responsible CEPSP, after which it is handled as a delivery. For this, a responsible
CEPSP is assigned for every shipment in the demand view type.

The transformations for transferring the CEPSPs into the common metamodel can be
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LogisticFacility

Figure 5.7: Common Metamodel: Logistic Network View Type - CEPSPs.

quite complex and may require manual intervention or adjustments. Conversely, when
transforming from the common metamodel to other metamodels, it’s often feasible to
omit missing features or transfer properties to child or parent entities if concepts aren’t
modeled at the same level. Since not all metamodels include attributes like operation
hours and minimum transshipment times, defining suitable default values or manually
inputting operation hours may be necessary. Similarly, flags such as isEntry and isExit
are often not explicitly modeled. A viable strategy for automatically deriving them is to
analyze the provided logistic solution and set the flags to true if any shipment enters
or leaves the study area at a respective LogisticHub. The same approaches can be
employed for pickup and delivery partner relations.

The metamodel elements related to describing public service points are shown in Figure
5.8. Subsequently, we briefly describe these elements:

• The abstract class PublicServicePoint acts as a supertype for all public service
points, possessing attributes such as an id, a location, and a limited storageCa-
pacity.

• Concrete implementations of PublicServicePoint include Packstations and Shops.
While shipments can be picked up and delivered at Packstations at any time,
Shops have specified openingHours during which pickup and delivery are possi-
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CEPSPs0..*

publicServicePoints
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Figure 5.8: Common Metamodel: Logistic Network View Type - Public service points.

ble.
• PublicServicePoints are integral parts of the general LogisticNetwork and can be

utilized by CEPSPs. This relationship is expressed through the UsedPublicSer-
vicePoints relation, which also indicates how much of the storageCapacity of a
PublicServicePoint can be utilized by a CEPSP. The sum of the grantedStorage-
Capacity to all CEPSPs that use a specific PublicServicePoint must not exceed
the storageCapacity of the PublicServicePoint.

In many metamodels, UsedPublicServicePoints are not explicitly modeled. However,
a reasonable strategy to derive UsedPublicServicePoints is to analyze the demand,
identify origins and destinations of shipments that are not locations of other receivers or
logistic facilities, and then create a public service point at these locations. UsedPublic-
ServicePoints can also be derived from these shipments. Additionally, reasonable
default values for properties not explicitly contained must be defined.

While the network and population view types align well with other simulation-based
metamodels and are primarily used for referencing, containing minimal semantics, the
logistic network view type provides a framework for deriving logistic solutions, thus
incorporating more sophisticated semantics. Consequently, metamodel concepts may
diverge to a greater extent, increasing the complexity of transformations between them.
To effectively implement these transformations, a comprehensive understanding of
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the mapping and relationships among the source and target metamodels elements is
required. This understanding is paramount as subsequent viewpoints, such as logistic
demand and logistic solution, rely on these foundational concepts and often reference
elements of the logistic network. Maintaining an explicit lookup table detailing mapped
instances can greatly facilitate this process, aiding in the tracking and management of
associations between elements across metamodels.

5.5 Logistic Demand View Type

The logistic demand view type essentially delineates the shipments that need to be
transported by the CEPSPs. We categorize shipments based on whether their origin is
inside or outside the study area and whether their destination is inside or outside the
study area. This categorization results in four types of shipments. However, shipments
with origins and destinations outside the study area are disregarded. Additionally, there
is a requirement to provide an explicit representation for shipments that have been split
or shortened due to the simulation period and transport chain variation points.

The following design decisions and considerations further influenced the modeling of
this view type:

• No fixed origin/destination for entry or exit of the study area: We regard it as a
strategic decision for the logistic solution to determine at which logistic hub a
shipment should enter or leave the study area. Therefore, we do not prescribe
fixed origin or destination locations in this scenario. Instead, the shipment can
enter or exit the study area at any logistic hub of the responsible CEPSP where
entry or exit is permitted.

• Distinction between destination/start location and sender/receiver: We opt to
explicitly differentiate between the sender/receiver and the destination locations.
This allows for dynamic changes to the destination in freight transport models
while also providing fixed destinations to models that require them.

• No fixed service time: Some metamodels explicitly model the time required for
pickup or delivery of a shipment, while others derive it dynamically based on
factors such as recipient accessibility or the number of parcels being delivered
concurrently. Therefore, we choose not to include this property in the common
metamodel and delegate the derivation of these values to the models or transfor-
mations.

The logistic demand view type comprises a set of abstract base classes used to
describe properties according to the previous categorization, from which concrete
shipments are derived. These base classes, shown in Figure 5.9, are briefly described
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ToInsideStudyAreaShipmentBase

destination : Location
arrivalAtDestinationTimeWindow : TimeWindow

FromInsideStudyAreaShipmentBase

origin : Location
arrivalAtOrigin : Timestamp

FromOutsideStudyAreaShipment

arrivalAtOriginDepot : Timestamp

FromInsideStudyAreaShipment

producer : ShipmentConsumerProducer

ToOutsideStudyAreaShipment

arrivalAtDepotTimeWindow : TimeWindow

ToInsideStudyAreaShipment

receiver : ShipmentConsumerProducer

Figure 5.9: Common Metamodel: Logistic Demand View Type - Shipment base classes.

as follows:

• FromOutsideStudyAreaShipment : This shipment can arrive at any logistic hub
of the responsible CEPSP that permits entry. The arrival time at this first logistic
hub is specified by the arrivalAtOriginDepot property.

• FromInsideStudyAreaShipmentBase: This shipment must be picked up at its
origin location at or after the specified arrivalAtOrigin time. The FromInsid-
eStudyAreaShipment extends this base class and includes a reference to the
ShipmentConsumerProducer that sends the shipment (producer ).

• ToOutsideStudyAreaShipment : This shipment can exit the study area at any
logistic hub of the responsible CEPSP that permits entry. Optionally, a time
window can be specified (arrivalAtDepotTimeWindow) to describe when the
shipment must leave the study area.

• ToInsideStudyAreaShipmentBase: This shipment must be delivered at its des-
tination location. Optionally, a time window can be specified to describe when
the shipment must be delivered (arrivalAtDestinationTimeWindow). The ToInsid-
eStudyAreaShipment extends this base class and includes a reference to the
ShipmentConsumerProducer that receives the shipment (receiver ).

The concrete types of shipments are derived from a base class and the base classes of
their respective category, as depicted in Figure 5.10. Each Shipment is characterized by
an id, a size, and a responsibleCEPSP. There are four types of concrete shipments:
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Figure 5.10: Common Metamodel: Logistic Demand View Type - Shipments.

• InsideToInsideShipment : This shipment is sent from a producer to a consumer
within the study area.

• OutsideToInsideShipment : These shipments originate from outside the study
area and are delivered within the study area.

• InsideToOutsideShipment : These shipments originate within the study area and
are delivered outside of it.

• SplittedShipment : Used to describe a subset of a transport chain, a SplittedShip-
ment has no explicit producer and consumer. It may start or end at a logistic hub
that is not available for entry or exit of the study area. To maintain the connection
with the original shipment, a SplittedShipment contains a reference (originalShip-
mentReference) to the original shipment’s id (originalId). Note that a shipment
can potentially be split multiple times, leading to nested references within the
originalShipmentReference.

Transformation of logistic demand between the common metamodel and simulation-
based metamodels and vice versa should be straightforward in most cases. A lookup of
the population locations can determine producers and consumers if they are not explic-
itly modeled. A further challenge may be the determination of arrival time (windows),
where it may be helpful to specify suitable default values.
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5.6 Logistic Solution View Type

The logistic solution view type of the common metamodel comprises two separate but
mostly redundant representations. The mandatory representation views the logistic
solution as the tours planned by the CEPSPs. The second representation, which is
an optional feature, represents the logistic solution in the form of shipment records.
These shipment records point to the planned tours and can be derived from them. This
redundancy was introduced to simplify tracking a shipment’s transport chain for both
the model user and the common transformations. Additionally, it facilitates modeling
and tracking failed pickup and delivery attempts in the results view type with this second
representation.

The metamodel elements describing the planned tours of a logistic solution are shown
in Figure 5.11. Subsequently, we briefly describe these elements:

• The LogisticSolution serves as the root element and contains both a set of
planned tours and, optionally, the shipmentRecords.

• The abstract class Tour describes any kind of tour. A Tour is executed by a
vehicle and has an id. It further consists of a list of stops. A PlannedTour is a
Tour that represents a planned tour, specifies the CEPSP that is executing the
Tour (executingCEPSP), and thus also must provide the vehicle.

• A Stop is the abstract base class for several types of stops and includes an id, a
stop number (no), and a time window during which the stop shall be executed
(stopTimeWindow). Additionally, the location of the stop is specified. These
properties enable the derivation of travel times and distances between stops,
eliminating the need for explicit modeling.

• A StopLocation can be either a ReferenceStopLocation that references a location
of the logistic network or the population or a CustomStopLocation that contains a
new location. This distinction allows for creating stops at any point in the network,
such as when multiple different receivers are served at once. The reference stop
location also facilitates navigation from the stop location to the associated entity
via opposite references or containment relations.

• The first and last stops of a tour must be StartEndStops, specifying at which
vehicle depot a tour starts and ends. The stop location must be identical to the
location of the depot.

• PickupDeliveryStops are stops at which parcels are picked up and delivered.
They contain a set of shipments that shall be unloaded (unloadedShipments)
and loaded (loadedShipments) at the stop. This type of stop can either take
place at a logistic facility (LogisticFacilityStop), where again the locations of the
logistic facility and the stop must be identical, or anywhere within the network
(NormalStop).
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Figure 5.11: Common Metamodel: Logistic Solution View Type - Tours.
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The tour structure generally aligns with the tours found in the examined metamodels.
However, transformations may need to adjust stops by adding, removing, aggregating,
or disaggregating them. For instance, in MATSim-Freight, where only one shipment can
be handled per stop, a PickupDeliveryStop may need to be disaggregated into multiple
stops or vice versa. Another example is the removal or addition of StartEndStops when
mapping between the logiTopp metamodel and the common metamodel, as the latter
lacks an explicit separation between vehicle depots and logistic hubs. Additionally,
deriving stop locations poses a challenge for transformations, often requiring a lookup
to determine if a stop location is already used anywhere in the logistic network or
population.

A shipment record tracks all movements of a shipment, with each entry representing a
tour of where the shipment is moved, essentially depicting one hop of the shipment’s
transport chain. The main metamodel elements for describing shipment records are
shown in Figure 5.12. Subsequently, we briefly describe these elements:

• A ShipmentRecord has an id, a reference to the shipment it pertains to, and the
responsibleCEPSP handling the shipment. Additionally, it encompasses a list of
entries that chronologically detail the movements of the shipment.

• ShipmentRecordEntries have an id and an entry number (no). They establish
links to the tour accountable for the shipment record entry, the executingCEPSP,
and the stops within the tour where the shipment is loaded (pickUpStop) and
unloaded (deliveryStop) from the vehicle. The timeWindow specifies the duration
during which the shipment is transported, spanning from the start of the pick-up
stop’s time window to the end of the delivery stop’s time window. Furthermore,
they contain references to the entity from which the shipment is moved (fromSpec)
and to which it is moved (toSpec).

Note that ShipmentLegStartEndPoints constitute a role-based concept defined within
the utils package. They denote entities from which a shipment can be transported
and to which it can be transported, hence both a ShipmentConsumerProducer and a
LogisticFacility serve as ShipmentLegStartEndPoints.

Shipment records also explicitly represent the entry and exit points for shipments. The
metamodel elements related to this are shown in Figure 5.13. Subsequently, we briefly
describe these elements:

• Within a ShipmentRecord, both an entry and an exit are specified. Each Ship-
mentEntry and ShipmentExit includes a timestamp to denote when the respective
action occurs.

• Three concrete types of ShipmentEntries exist. A LogisticHubEntry signifies that
a shipment enters the study area via a logisticHub. IntermediateEntries reference
the logisticHub where the shipment originates in case it has been split, and this is
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Figure 5.12: Common Metamodel: Logistic Solution View Type - Shipment records.
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Figure 5.13: Common Metamodel: Logistic Solution View Type - Start and end of ship-
ment records.

Seite 98 von 142



5.7 Results View Type

not the original entry point. PickUpEntries denote instances where the shipment
must be picked up initially and include a reference to the corresponding shipment
record (pickUpLeg)

• Similarly structured to ShipmentEntries, ShipmentExits encompass three concrete
types. A LogisticHubExit designates that a shipment exits the study area through
a logisticHub. IntermediateExits refer to the logisticHub where the shipment
terminates, in scenarios where it has been split and this is not the original exit
point. DeliveryExits signify situations where the shipment needs to be delivered
to its final destination and include a reference to the corresponding shipment
record (deliveryLeg).

A description of how shipment records can be derived from planned tours is given in
Section 5.8.

5.7 Results View Type

In Chapter 4, we initially excluded the results exchange point from active use, as
outlined in Section 4.2.3. Furthermore, we acknowledged the necessity for further
investigation to determine the required results for implementing feedback loops and
their appropriate representation, as discussed in Section 4.2.3. However, both logiTopp
and MATSim-Freight feature similar concepts in their result view types, specifically
the representation of executed tours. Therefore, despite initial exclusion, we opted to
include a representation of executed tours in the common metamodel. We demonstrate
how these results can be seamlessly incorporated into the common metamodel with
minimal extension of the logistic solution view type.

Similar to the logistic solution view type, the results view type encompasses both tours
and shipment records. Figure 5.14 outlines the metamodel elements related to the
representation of executed tours.

The Results class serves as the root element, containing both executedTours and
corresponding shipmentRecords. An ExecutedTour describes an actually executed tour
during the simulation, typically referencing the original plannedTour. An ExecutedTour
extends from the abstract class Tour, thereby inheriting the same structure. However,
the semantics of the included elements undergo slight changes.

Rather than specifying when, where, and what should have occurred during a stop, the
elements now describe the actual events that transpired. For instance, an executed stop
may deviate from a planned stop in terms of its actual time, influenced by factors such as
traffic or delays in previous stops. Additionally, it might not have been possible to deliver
a shipment, leading to its return to the logistic hub and, therefore, to an exclusion in the
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Figure 5.14: Common Metamodel: Results View Type - Executed tours.

unloadedShipments at the current stop and an inclusion in the unloadedShipments of
the respective LogisticFacilityStop.

Furthermore, simulations may introduce modifications such as adding, removing, or
altering the order of stops. Consequently, an ExecutedTour contains a mapping (map-
pings) that delineates the relationship between a stop of the planned tour (plannedStop)
and a stop of the ExecutedTour (executedStop) of preserved stops. Additionally, new
tours may be planned during the simulation, in which case the plannedTour reference
remains unset, and the mapping is empty.

The extensions to the shipment records for describing the results of the simulation are
shown in Figure 5.15. Instead of utilizing PickUpEntries and DeliveryExits, the results
view type necessitates the use of ResultPickUpEntries and ResultDeliveryExits. Both
ResultPickUpEntry and ResultDeliveryExit extend the PickUpEntry and DeliveryExit,
respectively, to accommodate failed pickup and delivery attempts. These extensions
include references to the ShipmentRecordEntry of the successful pickup or delivery,
denoted by pickUpLeg and deliveryLeg, respectively. Moreover, the result extension
encompasses a chronological list of references to all previous FailedPickUpAttempts or
FailedDeliveryAttempts, which are themselves subclasses of the ShipmentRecordEntry.
Given that the location of delivery may change following a failed delivery attempt (e.g.,
redirecting a shipment to a public service point), the FailedDeliveryAttempt records the
location where the shipment was initially intended for delivery.

Most simulation-based metamodels do not contain a representation of their results
similar to the shipment record structure and only log the executed tours. The logs of

Seite 100 von 142



5.8 Transformations for Variation Points
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Figure 5.15: Common Metamodel: Results View Type - Shipment records.

executed tours can be used to determine the executed tours of the common metamodel
results. However, the tracing between originally planned tours and actually executed
tours can be quite challenging if the model allows greater differences between them. If
no shipment record-like representation is available, the resulting shipment records can
be derived from the executed tours, similar to the derivation of shipment records from
planned tours. This is described in Section 5.8.3.

5.8 Transformations for Variation Points

In this section, we discuss the implementation of the transformations aimed at altering
variants of the variation points within the common metamodel (also referred to as
common transformations). The transformations presented within this section are tailored
for application at the logistic solution exchange point for understandability reasons.
Adaptations or extensions may be necessary for application at other exchange points.
The transformations are presented in an imperative style, consistent with the imperative
transformation languages used in our implementation discussed in Chapter 6.

We decided to delve into the implementation details of one variation point, namely the
simulation period variation point, to illustrate the complexity of the transformations, the
significance of shipment records as a supporting structure, and the general techniques
and challenges involved in handling variation points. For the other variation points, we
provide a higher-level overview to maintain clarity and focus on key aspects without
overwhelming the reader with excessive detail.
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5.8.1 Dimension

The dimension variation point encompasses three variants and is implemented using
an abstract base class (Dimension). Consequently, a transformation simply involves
replacing an instance of one subclass representing a variant with an instance of another
subclass.

When transitioning to the Volume-and-Weight-based variant, either the volume or the
weight can be copied into the respective attribute, while the other attribute is set to
infinite weight or volume, respectively. Other approaches are possible here. However,
this approach, together with the intended semantics of the Volume-and-Weight-based
variant, seems to retain the constraints of the source model the best. When transitioning
from the Volume-and-Weight-based variant, either the volume or the weight can be
used directly, depending on the selected variant.

Directly transitioning between the Volume-based and Weight-based variants poses a
challenge as there is no fixed relation between volume and weight. Several strategies
could be employed here. A straightforward solution involves using a conversion factor,
such as the average density of a shipment. An example of such a factor is the
dimensional weight proposed by the IATA [26], which is utilized in the context of pricing
lightweight but voluminous shipments in air transport.

5.8.2 Network Access

The network access variation point encompasses two variants and is implemented
using an abstract base class (NetworkAccess). Consequently, a transformation simply
involves replacing an instance of one subclass representing a variant with an instance
of the other subclass.

When transitioning to the Edge-based variant, any outgoing or incoming edge of the
node referenced by the original NodeBasedNetworkAccess could be selected, and the
edge position is set to be as close as possible to the original node. More advanced
strategies may utilize the coordinates of the location to determine the specific edge and
edge position to be used.

Conversely, in the opposite direction, the node of the resulting NodeBasedNetworkAc-
cess is either the origin or destination of the original edge, depending on which node is
closer to the position at the edge.
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5.8.3 Shipment Records

The shipment records variation point determines whether a representation of shipment
records is present in the common metamodel. Thus, additional metamodel elements
are introduced to realize this variant. Removing shipment records is straightforward, as
they are designed in such a way that no other metamodel elements depend on them.

Creating shipment records for a logistic solution requires no additional input, as they
can be derived entirely from the planned tours. For every shipment in the logistic
demand, a corresponding shipment record can be created, and its properties can
be derived straightforwardly from the respective shipment. To create the shipment
record entries, the tours transporting the respective shipment along with the respec-
tive pickup and delivery stop must be determined. A shipment record entry must be
created from each of these triplets, and most of its attributes can be derived straight-
forwardly. The fromSpec and the toSpec of a shipment record reference the entities
(ShipmentLegStartEndPoints) from and to which the shipment is transported in the
tour. If the corresponding tour stop has a reference stop location, this reference can be
derived using the respective location’s containment relation. Final pickup and delivery
can also take place at custom stop locations. In this case, the fromSpec and the toSpec
have to be either the consumer or producer of the shipment, depending on whether the
shipment is delivered or picked up at the stop. Further, the numbering and order of the
shipment record entries must be determined. Which can be achieved by sorting them
according to their time window.

5.8.4 Simulation Period

The simulation period variation point allows the common metamodel to either represent
a simulation period of a single day, from midnight to midnight, or a whole week (seven
days). Consequently, two model transformations are required to map between the
variants.

The variation point is primarily realized by the two abstract base classes, Timestamp
and TimeWindow, along with their respective subclasses. Furthermore, when transi-
tioning to the SingleDay variant, only a subset of the logistic demand and solution can
be represented in the target model. We, therefore, require a parameter (requested-
SimulationDay) to define which day of the simulation should be included in the target
model. In the opposite direction, the source model inherently only includes the logistic
demand and solution for only one day of the simulation period of the target metamodel.
Consequently, the demand and solution for the remaining days must be derived from
this single day.
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Algorithm 1: SingleToMultiDay
1 singleDayDemand← logisticDemand
2 singleDaySoluton← logisticSolution
3 removeAllContent(logisticDemand)
4 removeAllContent(logisticSolution)

// Time windows and opening hours get copied for every simulation day
5 removeAllContent(logisticDemand) removeAllContent(logisticSolution)

6 for simulationDay← 0 to 6 do
7 logisticDemand← logisticDemand∪

mapTimeElementsToReqSimulationDay(singleDayDemand, simulationDay)
8 logisticSolution← logisticSolution∪

mapTimeElementsToReqSimulationDay(singleDaySoluton, simulationDay)
9 end

The pseudocode of a possible transformation from the SingleDay to the MultiDay
variant is outlined in Algorithm 1. In this implementation, the logistic demand and
solution for a planned day are duplicated and inserted into the previously emptied
logistic demand and solution (lines 6-9). Within each duplicate, the time elements
are mapped to the corresponding MultiDay element, where the day value is set to the
current simulationDay. This straightforward approach assumes that shipments are
transported entirely within a single simulation day in the source model.

Additionally, two alternative variants are conceivable for this transformation:

• Creating a MultiDay model by merging multiple SingleDay models. This approach
would overcome the previously mentioned restriction, allowing for the merging
of shipments and shipment records to reconstruct transport chains spanning
multiple days.

• Implementing more sophisticated methods to accommodate demand fluctuations
across weekdays. For example, the input model could represent the day with the
highest demand, and for other days, only a portion of the shipments corresponding
to the demand of each weekday is transferred, with adjustments made to the
corresponding logistic solution.

The pseudocode for possible implementation of the reverse transformation is outlined
in Algorithm 2. The transformation takes the slice of the logistic solution that falls within
the requested simulation day and repairs the logistic solution and demand by modifying
and removing elements. Other view types remain unchanged during this process. A
crucial aspect of the transformation is defining the simulation day slice accurately. In our
proposed implementation, we remove entries from shipment records and corresponding
tours if the shipment is transported over midnight or entirely outside the requested
simulation day. This process is visually depicted in Figure 5.16. The Figure provides a
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Figure 5.16: Example for the slicing during the transformation from MultiDay to Single-
Day variant.

schematic representation of the logistic solution before and after the transformation.
The tour ending at depot 2 falls outside the requested simulation day (marked as the
green part of the timeline) and is thus removed entirely from the model. Within the tour
starting and ending at depot 1, shipment A is removed because it is transported over
midnight. However, the same shipment remains in the tour originating from depot 2.
Additionally, the start of the tour starting at depot 1 has been adjusted to align with the
beginning of the requested simulation day. This heuristic assumption should work well,
as last-mile deliveries rarely occur over midnight.

The algorithm begins by updating the shipment records by deleting entries outside the
requested simulation day slice while tracking the modified elements. Subsequently,
tours and shipments are adjusted to accommodate these changes. Finally, time
representations within the model are transformed to the SingleDay representation. The
algorithm steps are as follows:

• Update shipment records (lines 1-16): Remove entries with time windows outside
the simulation day slice. Track deleted entries and adjust entry numbers and
id’s accordingly. Delete shipment records and corresponding shipments with no
remaining entries, as they are irrelevant for the requested simulation day.

• Update planned tours (lines 17-34): Remove the corresponding shipment from
the tour for each deleted shipment record entry by adjusting loaded and unloaded
shipments at pickup and delivery stops. Remove stops from the tour if they no
longer contain any shipments. Eliminate empty tours and move the stop time
windows of the first and last stops of the remaining tours within the requested
simulation day.
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Algorithm 2: MultiToSingleDay(requestedSimulationDay)
1 deletedEntries←{}
2 modifiedShipmtRecords←{}

3 for shipmtRecord in logisticSolution.shipmtRecords do
4 for entry in shipmtRecord.entries do
5 if entry.timeWindow notCompleltyIn requestedSimulatenDay then
6 shipmtRecord.entries← shipmtRecord.entries\{entry}
7 deletedEntries← deletedEntries∪{entry}
8 modifiedShipmtRecords←modifiedShipmtRecords∪{shipmtRecord}
9 end

10 end
11 restoreNumbersAndIds(shipmtRecord)
12 if shipmtRecord.entries isEmpty then
13 removeFromModel(shipmtRecord.shipmt)
14 removeFromModel(shipmtRecord)
15 end
16 end

17 for deletedEntry in deletedEntries do
18 shipmt← deletedEntry.parent.shipmt
19 tour← deletedEntry.tour
20 pickUpStop← deletedEntry.pickUpStop
21 deliveryStop← deletedEntry.deliveryStop
22 pickUpStop.ldShipmts← pickUpStop.ldShipmts\{shipmt}
23 deliveryStop.unldShipmts← deliveryStop.unldShipmts\{shipmt}
24 if pickUpStop loadedAndUnloadedShipmtsAreEmpty then
25 tour.stops← tour.stops\{pickUpStop}
26 end
27 if deliveryStop loadedAndUnloadedShipmtsAreEmpty then
28 tour.stops← tour.stops\{deliveryStop}
29 end
30 if tour doesNotContainPickUpDeliveryStops then
31 removeFromModel(tour)
32 end
33 moveStartAndEndStopIntoRequestedDay(tour)
34 end

35 for modifiedShipmtRecord in modifiedShipmtRecords do
36 shortendShipmt← createShortendShipmt(modifiedShipmtRecord)
37 replaceInModel(modifiedShipmtRecord.shipmt, shortendShipmt)
38 end
39 for shipmt in logisticDemand.shipmts do
40 moveArrivalAtDestinationAndOriginIntoRequestedDay(shipmt)
41 end

42 replaceMultiDayBySingleDayTimes()
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• Update demand (lines 35-41): Irrelevant shipments for the simulation day have
already been removed from the model. However, adjustments are still neces-
sary for the remaining shipments. If a shipment’s record has been shortened,
the corresponding shipment is replaced within the complete model by a newly
created split shipment. This split shipment is essentially a duplicate of the original
shipment, referencing the original shipment’s id. Further, origin, destination, and
arrival times are adjusted according to the shortened shipment record. Finally, all
remaining shipments have their arrival times at origin and destination moved to
fall within the specified simulation day.

• Update time representing elements (line 42): Convert time specifications in the
whole to the SingleDay representation by removing the day attribute. Time
windows that are partially within the requested simulation day are shortened,
while time windows completely outside the requested simulation day are deleted.

This is an example of a common transformation that necessitates a particular variant of
the common metamodel. Here, the proposed implementation depends on the presence
of shipment records. This highlights how the redundant shipment record structure
within the common metamodel facilitates algorithms and transformations.

5.8.5 Transport Chains

The transport chains variation point determines whether the common metamodel
contains complex transport chains. A shipment has a complex transport chain if
it is transported in more than one tour. Thus, the Splitted variant is fulfilled if the
following constraint holds for all shipment records: shipmentRecord.entries.size ≤ 1.
So, variability is only realized by the flexibility of the model and the constraints enforcing
a variant, and the variation point is only relevant when exchanging logistic solutions.

To maintain the semantics of a complex transport chain described by the logistic
solution in the Splitted configuration, we map each hop of a shipment to a separate
shipment. In contrast, the invariant of the Combined variant is fulfilled by default in the
Splitted configuration. However, in most application scenarios, it is helpful to recombine
shipments that originally represented one shipment again to represent the original
transport chains in the model. In the following, we discuss both transformations and
possible variants in more detail.

To transfer a common metamodel instance into the Splitted configuration, each ship-
ment whose associated shipment record contains more than one entry is split into
several SplittedShipments, one for each shipment record entry. Most properties of
the newly created shipment can be derived from the original shipment and the cor-
responding shipment record entry straightforwardly. Further, the consistency of the
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model must be maintained. This involves replacing references to the original shipments
with the corresponding new shipments in the respective tours. The original shipment
should then be removed from the demand while the new shipments are inserted into it.
Additionally, a new shipment record must be created for each new shipment.

While most properties of the SplittedShipments can be derived straightforwardly, deter-
mining the arrival at origin and arrival at destination time windows presents challenges.
Figure 5.17 illustrates various strategies for handling these time windows. The parts in
purple shows the original shipment’s arrival at the origin (represented by an arrow) and
destination time window (depicted as a time interval with bars at the start and endpoint).
Further, each hop of the original shipment is shown. The time a shipment takes to
be processed at a logistic hub (minimum transshipment time) is denoted curly. Below,
different variants are depicted, each showing the resulting new shipments, with associ-
ated transports, arrival at origin, and arrival at destination time windows, in different
colors. Each variant ensures that the shipment can leave the logistic hub at the earliest
after the minimum transshipment time has passed and reach the next destination within
a timeframe that allows processing. The difference between the presented variants lies
in where, between the arrival and departure of a shipment at a logistic hub within a
logistic solution, the time for processing the shipment is placed. Therefore, the variants
decide whether potential replanning steps can be more flexible, scheduling the inbound
or outbound leg at a logistic hub. Which variant is the most suitable may depend on the
actually use case.

To recombine shipments that originally represented one shipment, SplittedShipments
contain the id of their original shipment. Consequently, all shipments referencing
the same original ID can be merged into one shipment. The merged shipment then
replaces references to the split shipments in tours and demand. Additionally, the
shipment records have to be merged again.

The back-and-forth transformation between the variants is largely loss-free, with the
exception of the arrival time window, which may be shortened depending on the specific
strategy.
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Figure 5.17: Example for splitting a shipment with variants for the determination of the
time windows for the resulting shipments.
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Chapters 4 and 5 presented a concept for the coupling of freight transport metamodels
along with the therefore utilized common metamodels and some comments on the
relationships and transformations between the models studied and created. Additionally,
Chapters 2 and 3 provided insights into the freight transport models logiTopp and
MATSim-Freight, along with their respective data models in the form of metamodels.

This chapter focuses on the prototypical implementation of the coupling between
logiTopp and MATSim-Freight. Specifically, the prototype facilitates the exchange at
the logistic solution exchange point (EP2) from logiTopp to MATSim, enabling the
simulation and refinement of a logistic solution derived by logiTopp in MATSim-Freight.
As discussed in the preceding chapters, minor adjustments could extend this capability
to facilitate coupling at the logistic demand exchange point.

This chapter starts with an overview of the implementation in Section 6.1, followed by a
brief description of each component implementation, supplemented by some technical
details, in Section 6.2.

6.1 Overview

Figure 6.1 provides an overview of the components and process of the implementation,
accompanied by the languages utilized for each component. The freight transport
models, logiTopp and MATSim-Freight, are represented in green. Both generate or
consume a set of files as input and output. The developed components are represented
in grey. Metamodels, their instances, and transformations are represented in blue.

Initially, the files generated by logiTopp are parsed by the LogiToppModelBuilder,
which constructs an instance of the logiTopp metamodel from them. A model-to-model
transformation then transforms this instance into an instance of the common metamodel
(LogiTopp2Common), with corresponding feature configuration. To transition to MATSim-
Freight, the feature configuration of the common metamodel instance must be modified.
For this purpose, three common transformations are executed in the following order:
BuildShipmentRecords, SplitTransportChains, and MultiToSingleDay. Activating the
shipment records feature is a prerequisite for the subsequent common transformations.
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Figure 6.1: Overview of the components and process of the prototypical implementa-
tion.

Subsequently, the common metamodel instance is converted to an instance of the
MATSim-Freight metamodel (Common2MATSimFreight). In the final step, a model-to-
text transformation generates the requisite input data for MATSim-Freight.

6.2 Implementation Details

Subsequently, we describe each component of the developed prototype along with
some technical considerations and implementation details.

LogiTopp and LogiToppModelBuilder

The LogiToppModelBuilder serves as an extraction component within the conceptual
architecture (refer to Section 4.1) and is tasked with generating an instance of the
logiTopp metamodel at the designated exchange point. However, pinpointing these
exchange points in logiTopp poses a challenge due to its dynamic generation of logistic
demand and solution during runtime. LogiTopp dynamically creates parcels and plans
tours within its simulation loop, triggered by agent reactions to events like parcel arrivals
or failed delivery attempts (see also Section 2.3.2). Ultimately, logiTopp generates
simulation traces as a product of the simulation.
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To capture the initial logistic demand and solution, the logiTopp implementation was
slightly modified. The parcel delivery strategy was adjusted to disregard recipient
availability, thus ensuring the generated simulation traces accurately reflect the initial
planned logistic solution.

Subsequently, the LogiToppModelBuilder parses the produced simulation traces and
other logiTopp input data, including network, population, and logistic network represen-
tations, to create a corresponding instance of the logiTopp metamodel programmatically.
Most of this input is provided in CSV format.

Metamodels

The metamodels used within the implementation are the simulation-based metamodels
of LogiTopp and MATSim-Freight, described in Chapter 3, and the common metamodel
described in Chapter 5. All these metamodels are instances of the Ecore meta-
metamodel of the EMF [57].

Model Transformations from and to simulation-based Metamodels

For the implementation, two model-to-model transformations that facilitate the trans-
formation of logiTopp metamodel instances to common metamodel instances (Logi-
Topp2Common) and the transformation of common metamodel instances to instances
of the MATSim-Freight metamodel (Common2MATSimFreight), each with respective
feature configuration, have been developped. Chapter 5 outlined the relationships
between these metamodels and how to implement them from a conceptual point of
view.

1 mapping LOGITOPP::network::Node::node2Node() :

2 COMMON_MM::network::Node {

3 id := self.id;

4 coordinate := self.coord.map point2D2Coordinate();

5 }

6

7 mapping LOGITOPP::network::Point2D::point2D2Coordinate() :

8 COMMON_MM::utils::Coordinate {

9 x := self.x;

10 y := self.y;

11 }

12

13 mapping LOGITOPP::network::Edge::edge2Edge() :

14 COMMON_MM::network::Edge {

15 id := self.id;
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16 from := self.from.resolveone(COMMON_MM::network::Node);

17 to := self.to.resolveone(COMMON_MM::network::Node);

18 length := mapLenght(self.length);

19 }

Listing 6.1: Example of a QVT-O transformation mapping network elements.

From a technical perspective, these transformations have been implemented using QVT
Operational Mappings (QVT-O) [44]. QVT-O enables the expression of relations and
transformations using imperative language constructs and supports various language
constructs and query mechanisms commonly found in other high-level programming
languages. Additionally, it provides useful mechanisms for model transformations, such
as support for object resolution.

One example of a useful feature in QVT-O is the keyword resolveone, which is an
example of object resolution. It can be applied to an object of the source model and
returns the last target object created from the source object through a mapping. An
example usage of resolveone is shown in Listing 6.1, which presents an excerpt of the
implemented transformation from the logiTopp metamodel to the common metamodel.
For more details on the usage of QVT-O, we refer the reader to the work of Nolte [40].

Common Transformations

The prototype includes three common transformations responsible for adjusting the
feature configuration of the common metamodel. The optional shipment records feature
is initially added as a precondition for the subsequent transformations (BuildShipmen-
tRecords). Subsequently, the variants of the transport chains and simulation period
variation points are modified (SplitTransportChains and MultiToSingleDay). Each of
these transformations generates a new instance of the common metamodel, which
serves as the source model for the subsequent transformation. Section 5.8 outlined the
implementation and algorithms for these transformations from a conceptual perspec-
tive.

Although implementing these transformations in a proper model transformation lan-
guage is feasible, they have been implemented in Java Each of them modifies the
loaded model elements in place using the provided API. One significant reason for
this decision is the absence of a suitable copy mechanism in QVT-O. Implementing
these transformations using QVT-O would result in substantial boilerplate code, as
each transformation leaves large portions of the model unchanged. Additionally, many
of these common transformations involve complex semantic changes, and Java offers
convenient methods for supporting these transformations with additional data structures,

Seite 114 von 142



6.2 Implementation Details

enhancing their clarity, conciseness, and maintainability.

MATSim-Freight and MATSimInputGenerator

In the prototypical scenario, MATSim-Freight is responsible for simulating and potentially
optimizing the provided logistic solution. The user can configure this process by
specifying MATSim parameters such as the number of iterations and the allowed
replanning strategies of carriers and other agents. Typically, the simulation environment
includes not only freight processes but also other agents, such as private individuals,
allowing for interactions among them. However, the prototype only provides input data
relevant to MATSim’s freight contribution. These input data include:

• Network file: Describing the network view type of MATSim.
• Carrier vehicle types file: Describing the vehicle types used by carriers.
• Carrier definitions file: Describing carriers with their fleet, the shipments they

have to transport, and their plan.

All these files are in XML format and specified either by a document type definition (DTD)
or an XML schema definition (XSD). As elements of the network file are referenced
by MATSim-Freight-related input files as well as potentially by other input files, the
assumed network of all input data must be consistent. This consistency can be ensured
by obtaining the network files from the same resource and avoiding changes to the ids
during processing.

1 def static generateNetwork(Network network) ’’’

2 <network>

3 <nodes>

4 «FOR node : network.nodes»

5 «generateNode(node)»

6 «ENDFOR»

7 </nodes>

8 <links capperiod="«network.capacityPeriod»"

9 effectivecellsize="«network.effectiveCellSize»"

10 effectivelanewidth="«network.effectiveLaneWidht»">

11 «FOR link : network.links»

12 «generateLink(link)»

13 «ENDFOR»

14 </links>

15 </network>

16 ’’’

17

18 def static generateNode(Node node) ’’’

19 <node id="«node.id»" x="«node.coord.x»" y="«node.coord.y»"/>

20 ’’’
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21

22 def static generateLink(Link link) ’’’

23 <link id="«generateLinkId(link.id)»" from="«link.from.id»"

24 to="«link.to.id»" length="«link.length»"

25 freespeed="«link.freespeed»" capacity="«link.capacity»"

26 permlanes="«link.nofLanes»" oneway="1"

27 modes="truck, bike, pt"/>

28 ’’’

Listing 6.2: Example of a template-based XTend model-to-text transformation for
network elements.

The MATSimInputGenerator is responsible for generating the MATSim-Freight-related
input files from a provided instance of the MATSim-Freight metamodel, performing a
model-to-text transformation. The MATSimInputGenerator is implemented in XTend,
which offers template expressions for creating templates filled with values derived from
the metamodel instance. These templates support expressions for loops and conditions.
An example of the generation of MATSim network elements with XTend is shown in
Listing 6.2.
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In Chapters 4 and 5, a concept for coupling multiple freight transport models along with
the required common metamodel and its transformations was introduced. Furthermore,
Chapter 6 presented a prototypical implementation for the coupling from logiTopp
to MATSim-Freight. This chapter is dedicated to evaluating the presented concepts
and implementation. We demonstrate and discuss the applicability and benefits of
both the concept and implementation by conducting a small case study in Section
7.1. Additionally, we examine the preservation of elementary properties by the model
coupling, thus evaluating the correctness of our implementation in Section 7.2.

The two evaluation methods attempt to answer the following questions:

• Can a coupling between two transport models be realized with the presented
concept and implementation, and can it leverage the advantages of different
transport models?

• Does the coupling preserve elementary properties of the source model in the
target model?

In Section 7.3, we identify further evaluation questions that would contribute to the
overall assessment.

7.1 Case Study: Rastatt

In this section, we conduct a small case study to illustrate the functional capability of
the presented concept and developed implementation. We start by outlining the case
study’s setup and scenario and then examine the results. We showcase the transfer of
an exemplary logiTopp parcel into MATSim and track how MATSim’s iterative algorithm
modifies the transferred logistic solution over time. Finally, we conclude with a brief
discussion of the case study findings.

Setup

In the case study, logiTopp is coupled with MATSim-Freight (in the direction logiTopp to
MATSim-Freight) at the logistic solution exchange point, as described in Chapter 6. The
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coupled model describes CEP transport in the area of Rastatt (Baden-Württemberg,
Germany) and was developed for the research project LogIKTram [8], which evaluates
the usage of existing urban rail infrastructure for the CEP sector via cargo trams. The
model includes an additional CEPSP, called ALL, that operates cargo trams and cargo
bikes, which other CEPSPs can utilize to transport parcels with a cargo tram into the
city and distribute them from there with cargo bikes and vice versa.

Initially, population synthesis, demand generation, market simulation, and logistic solu-
tion generation were performed by logiTopp with a simulation period of one week and
10% of the actual logistic demand. Subsequently, an instance of the logiTopp meta-
model was created with the LogiToppModelBuilder. Below are key figures regarding
the number of model elements of the resulting model:

Rastatt logiTopp Model
Network View Type

– # nodes: 135570
– # edges: 293320 (directed)

Population View Type
– # persons: 33255
– # businesses: 100

Transport Infrastructure View Type
– # CEPSPs: 6 + 1
– # distribution centers: 7 + 7

Logistic Demand View Type
– # private parcels: 5616
– # business parcels: 552

Logistic Solution View Type
– # tours: 527

Thereafter, the model is transformed into several instances of the MATSim-Freight
metamodel, one for each day of the simulation period, by applying several model trans-
formations. In the current implementation, this process is semi-automated, meaning
the user must start each transformation step separately. However, this limitation is
only present in the prototype and can be overcome with minor effort. Additionally, the
resulting models of each intermediate step are available as output and can be examined
with the EMF editors.

The transformations implemented in QVT-O had unexpectedly long runtimes (around
one hour on a standard personal computer). However, we did not investigate this issue
further as it falls outside the scope of this work, and runtime is not a critical factor since
the presented concept currently does not contain loops or iterative processes.

An additional processing step had to be added to the existing implementation to actually
use the resulting model in MATSim. As the input network of the case study provided by
logiTopp is not strongly connected, an analysis of the network’s connectivity was con-
ducted, and additional edges were added between dead ends and their corresponding
components and disconnected components. Once the network of the MATSim-Freight
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models is repaired, the actual input files used by MATSim-Freight are created using the
MATSimInputGenerator for each day of the simulation period.

Apart from the network, carrier, and carrier vehicle files, MATSim-Freight requires an
extensive configuration, which includes the definition of scoring functions and allowed
strategies for replanning the carrier plans, among other parameters. This configuration
heavily depends on the actual use case and research questions for which MATSim-
Freight is used. This case study is limited to demonstrating that MATSim-Freight can
handle given input data and that the source model’s properties are correctly mapped.
Therefore, an exemplary configuration based on the example configuration provided by
MATSim, presumably resulting from the work of Schröder et al. [53], was used. The
configuration is briefly described below:

MATSim-Freight configuration

# iterations: 5
# plans per carrier: 5

Replanning Strategies
Strategy 1 (weight 1.0)

Changes to another plan if that plan is better (probability of change
depends on score difference)

Strategy 2 (weight 0.5)
Changes start time of each tour randomly by ± 1.5h (if within bounds)
Then: reroutes tours in space and time

Scoring
Penalization of experienced travel distances and times
Penalization of vehicle usage (dependent on fixed costs of the vehicle type)
Penalization of missed time windows

Furthermore, the case study does not involve the simulation of private persons or
any other traffic, meaning the freight agents cannot interact with other agents in the
network. To enable this interaction, additional input to MATSim would be necessary,
which could potentially be derived from the mobiTopp parts of the logiTopp model used.
The coupling and transfer of data related to private persons between MATSim and
mobiTopp has been examined by Briem et al. [14].

With the steps mentioned above, the MATSim-Freight simulation could be executed,
and the results examined. Subsequently, we describe the representation and transport
of an exemplary parcel in the LogiTopp model, the transferred MATSim-Freight model,
and the evolved MATSim solution to analyze which properties have changed during
this step. Following this, we briefly investigate how the overall planned tours changed
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during the MATSim iterations. Finally, we summarize and discuss the findings of the
case study.

Transport of an Exemplary Parcel

To demonstrate the transfer of logistic demand and solutions from logiTopp to MATSim-
Freight using the developed prototype, we select an exemplary parcel from the case
study and analyze its representation and transport in both the source and target models
after the transformation. The properties of the selected parcel and its transport in the
logiTopp solution are outlined below:

Parcel 2035 in logiTopp

Parcel∣∣∣∣∣∣∣∣∣∣∣∣

Type: Business Parcel
Repsonsible CEPSP: GLS
Arrival at origin: Tue 00:00:00
Producer: Distribution Center GLS Rheinst. (608730:1)
Consumer: Business "org. yeti" (25511:1)

Transport Tour: 121 (DC: GLS Rheinst. (GLS), Vehicle: 13 (TRUCK))
Pickup: StopNo. 0, Tue 14:00:00 - 14:00:00, 608730:1 (GLS Rheinst.)
Delivery: StopNo. 1, Tue 14:06:00 - 14:11:00, 608730:1 (HUB_IN GLS Rheinst.) Tour: 120 (DC: HUB_IN GLS Rheinst. (ALL), Vehicle: 125 (TRAM))
Pickup: StopNo. 0, Wed 08:06:00 - 08:06:00, 608730:1 (HUB_IN GLS Rheinst.)
Delivery: StopNo. 1, Wed 08:23:00 - 08:28:00, 71175:2 (HUB Rastatt) Tour: 117 (DC: HUB Rastatt (ALL), Vehicle: 31 (BIKE))
Pickup: StopNo. 0, Wed 11:51:00 - 11:51:00, 71175:2 (HUB Rastatt)
Delivery: StopNo. 3, Wed 12:06:00 - 12:08:00, 25511:1 (Business "org. yeti")

The parcel is transported on three legs (separate tours), using several modes of trans-
port to reach its final destination. As MATSim-Freight is not capable of representing
such complex transport chains, the parcel is represented by three shipments in the cor-
responding MATSim representation of the transferred solution. Note that the shipments
are assigned to multiple carriers and only part of the model of the day they are actually
transported. The properties of the shipments corresponding to the examined parcel
and their transport in the MATSim models are outlined below:
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Parcel 2035 in MATSim (initial and iteration 5)

Carrier GLS, Tuesday:
Shipments∣∣∣∣∣∣∣∣∣∣

Id: 2035_0
From: 608730:1, To: 608730:1
Pickup time-window: 00:00:00 - 23:59:59
Delivery time-window: 00:00:00 - 14:11:00

Transport Tour: 121 (Vehicle: 13 (TRUCK))
Pickup: 14:00:00 - 14:00:00 | 12:59:50 - 12:59:50
Delivery: 14:10:30 - 14:10:48 | 13:04:20 - 13:04:38

Carrier ALL, Wednesday:
Shipments∣∣∣∣∣∣∣∣∣∣

Id: 2035_1
From: 608730:1, To: 71175:2
Pickup time-window: 00:00:00 - 23:59:00
Delivery time-window: 00:00:00 - 08:28:00∣∣∣∣∣∣∣∣∣∣
Id: 2035_2
From: 71175:2, To: 25511:1
Pickup time-window: 08:28:00 - 23:59:59
Delivery time-window: 00:00:00 - 23:59:59

Transport Tour: 120 (Vehicle: 125 (TRAM))
Pickup: 08:06:00 - 08:06:00 | 07:30:00 - 07:30:00
Delivery: 08:27:30 - 08:27:48 | 07:34:30 - 07:34:48 Tour: 117 (Vehicle: 31 (BIKE))
Pickup: 11:51:00 - 11:51:00 | 09:49:20 - 09:49:20
Delivery: 12:06:00 - 12:06:00 | 09:53:21 - 09:55:21

This example highlights that the delivery and pickup time windows in the resulting
MATSim model are structured in such a manner that a shipment must always arrive
at an intermediate location before it can be picked up for further transportation. It
is conspicuous that the delivery time window of shipment 2035_0 already ends at
14:11:00. This is a result of the selected strategy of splitting the transport chains (in this
case, variant B of Figure 5.17) and the sequence of applied common transformations
(first SplitTransportChains, then MultiToSingleDay ).

Additionally, the times of the tour stops are provided. In some instances, the stop
duration is shorter than the corresponding stop in logiTopp. This discrepancy arises
because a stop in MATSim can only accommodate one shipment. Consequently, when
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multiple parcels are handled at a stop in logiTopp, the corresponding stop time window
is divided.

Furthermore, the times of the tours optimized by MATSim after iteration 5 are presented
in italics. The MATSim algorithm adjusted the times of the stops while adhering to the
constraints of the respective time windows. This behavior is attributed, among other
things, to the configured scoring function, which penalizes non-compliance with time
windows.

Development of Planned Tours over Multiple Iterations

Figure 7.1 illustrates the evolution of the carrier plans between the initial plan and the
active plan after five iterations by plotting the current active tours of some carriers
against the time axis. A comparison of both plots reveals the impact of the implemented
replanning strategies. Specifically, the tours of certain carriers undergo random shifts
along the time axis, effectively reducing the peaks of concurrently active tours.

Discussion

The case study confirmed the functionality of the developed prototype within the tested
scenario, requiring only minor adjustments to execute, optimize, and analyze the original
logiTopp solution in MATSim-Freight. Most adjustments were necessitated by varying
requirements for network graph connectivity between the coupled models. However,
it remains unclear whether the transformations are responsible for ensuring network
graph connectivity and consistency or if this should be a precondition met by the source
model.

Despite being semi-automated, the process represents a significant improvement over
manually creating a corresponding MATSim model regarding user effort, especially
considering the potential need for repetitive execution in research processes. An easily
achievable enhancement to the prototype would be full automation of the coupling
process.

Furthermore, the example parcel demonstrated that the fundamental properties of the
original logiTopp solution are accurately transferred to the target MATSim model. This
aspect is further explored in Section 7.2.

However, the case study lacked a concrete research scenario, thus failing to illustrate
how coupling both models can benefit an actual research process. Nevertheless, it’s
evident that both models possess distinct strengths and features, suggesting that their
coupling can indeed contribute to addressing real-world research questions.
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(a) Initial plan.

(b) Selected plan after iteration 5.

Figure 7.1: Change of active tours by time of selected carriers between initial plan and
iteration 5 on Wednesday.
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7.2 Relational Constraints Between LogiTopp and
MATSimFreight

This section aims to evaluate the correctness of the presented concept and especially its
implementation. To achieve this, a set of constraints describing relations that must hold
between a logiTopp source model and the corresponding MATSim target model created
through coupling at the logistic solution exchange point, as described in the previous
chapters, is introduced. These constraints should not only benefit the correctness
evaluation but also help to gain a deeper understanding of how elements between
logiTopp and MATSim are mapped and how the change in the feature configuration
influences their relations.

Due to the high effort, the amount of constraints is restricted but should cover the most
essential properties of both models. The selection and definition of constraints were
approached by systematically examining each viewpoint and identifying which concepts
of the source model are contained within or influence the target model. Thereby, the
constraints focus on key elements and concepts, paying particular attention to attributes
affected by the change of the feature configuration, as these areas often have high
complexity and pose a high potential for errors.

Evaluated Constraints

We will now begin by delineating the set of constraints employed for the evaluation,
accompanied by the rationale behind their selection and design. In the formal pre-
sentation of the constraints, we simplified the treatment of time conversions and the
comparison of floating-point numbers. It’s important to note that we assumed the
models under evaluation are valid instances of their respective metamodels, particularly
concerning static semantics. Therefore, we did not explicitly verify them and designed
the constraints under the assumption of valid static semantics.

Regarding the network viewpoint, the elementary concept is the directed network graph
with its edges and nodes. We introduced the constraints 1 and 2 to evaluate their
mapping. After the network view type of the common metamodel is defined in a lean
fashion, no further concepts are transferred and thus have not to be checked. Location
used in the context of other entities will be checked during their verification.

Constraint 1 (Network Nodes)
For every RoadNetwork Node nlogiTopp in logiTopp, there exists a corresponding
Network Node nMATSim in MATSim, and vice versa, such that:

• nlogiTopp.id = nMATSim.id (correspondence)
• nlogiTopp.x = nMATSim.x
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• nlogiTopp.y = nMATSim.y
• 0 = nMATSim.z

Constraint 2 (Network Edges)
For every RoadNetwork Edge elogiTopp in logiTopp, there exists a corresponding
Network Link lMATSim in MATSim, and vice versa, such that:

• elogiTopp.id = lMATSim.id (correspondence)
• elogiTopp.from.id = lMATSim.from.id
• elogiTopp.to.id = lMATSim.to.id
• elogiTopp.length = lMATSim.length

In the implementation, no elements are created from the population viewpoint of
MATSim; thus, their existence must not be checked. However, the location of businesses
and persons is reflected in the origins and destination of shipments. Thus, we added
the constraints 3, 4, and 5 that validate the origins and destinations of shipments if they
should reflect the respective location of the population.

Constraint 3 (Population Location: Person)
For every PrivateParcel plogiTopp received by a Person in logiTopp, the consumer’s
Location in the PrivateParcel is equal to the destination of the corresponding
MATSim CarrierShipment sMATSim describing the final delivery:

• Prefix of sMATSim.id start with plogiTopp.id (correspondence)
• sMATSim must describe the final hop of plogiTopp’s transport chain
• plogiTopp.consumer.location.roadAccessEdge.id = sMATSim.to.id (location

equality)
• Only if:

– plogiTopp.destinationType = HOME
– plogiTopp’s delivery leg is entirely within the requestedSimulationDay

Constraint 4 (Population Location: Business I)
For every BusinessParcel plogiTopp received by a Business in logiTopp, the con-
sumer’s Location in BusinessParcel is equal to the destination of the corresponding
MATSim CarrierShipment sMATSim describing the final delivery:

• Prefix of sMATSim.id start with plogiTopp.id (correspondence)
• sMATSim must describe the final hop of plogiTopp’s transport chain
• plogiTopp.consumer.location.roadAccessEdge.id = sMATSim.to.id (location

equality)
• plogiTopp’s delivery leg is entirely within the requestedSimulationDay
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Constraint 5 (Population Location: Business II)
For every BusinessParcel plogiTopp sent by a Business in logiTopp, the producers
Location in BusinessParcel is equal to the origin of the corresponding MATSim
CarrierShipment sMATSim describing the initial pickup:

• Prefix of sMATSim.id start with plogiTopp.id (correspondence)
• Initial pickup: sMATSim must describe the first hop of plogiTopp’s transport chain
• plogiTopp.producer.location.roadAccessEdge.id = sMATSim.from.id (location

equality)
• Only if: plogiTopp’s pickup leg is entirely within the requestedSimulationDay

Note that these three constraints are influenced by the transformations required to
change the feature configurations as shipments get split, and potentially, not all parts
of a transport chain are included in the destination model. As shipments are split, the
correspondence between parcels of the source model and shipments of the destination
model is a 1..n relation. Thus, the split shipments have an id composed of the original
id and a suffix describing the split shipment’s number. Then, for the test of a shipment’s
initial origin or final destination, only the first or the last corresponding shipment is
required. Further, the pickup or delivery may not fall into the requestedSimulationDay
so that the corresponding shipment has been removed.

Regarding the transport infrastructure viewpoint, the only elements that are contained
in both metamodels are the CEPSPs or carriers and the delivery vehicles or carrier
vehicles. Other concepts, such as distribution centers, vehicle depots, and allowed
transport chains, can only be implicitly represented in MATSim through the logistic
demand and logistic solution view type. This is why we describe the constraints that
check parts of these concepts hereafter. Constraint 6 serves as a basic check for the
accurate mapping of CEPSPs to carriers. Constraint 7 tests the correct mapping of
delivery vehicles and thereby checks some other properties of the transport network.
Despite elementary properties such as correspondence, capacity, vehicle type, and
operation hours, the mapping to the correct CEPSP and the location of the vehicle
is also tested, implicitly testing the mapping of logiTopp elements such as fleets and
distribution centers.

Constraint 6 (CEPSPs)

For every CEPServiceProvider clogiTopp in the logiTopp transport network, a corre-
sponding Carrier cMATSim in MATSim exists and vice versa:

• clogiTopp.id = cMATSim.id (correspondence)
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Constraint 7 (Delivery Vehicles)
For every DeliveryVehicle vlogiTopp in the logiTopp transport network, a correspond-
ing CarrierVehicle vMATSim in MATSim exists and vice versa, such that:

• vlogiTopp.id = vMATSim.id (correspondence)
• vlogiTopp.capacity = vMATSim.type.capacity.other
• vlogiTopp.vehicleType correspondsTo vMATSim.type.networkMode
• vlogiTopp.fleet.distributionCenter.location.roadAccessEdge.id =

vMATSim.location.id
• vlogiTopp.fleet.distributionCenter.CEPServiceProvider.id =

vMATSim.carrierCapabilities.carrier.id

To efficiently evaluate and express the constraints related to the logistic demand and
logistic solution viewpoints, we created a helper data structure similar to the shipment
records in the common metamodel, which is described subsequently.

Data Structure(ParcelRecord and ParcelRecordEntry )

For every Parcel in logiTopp a ParcelRecord is created with the following proper-
ties:

• parcel : Parcel
• entries : list of corresponding ParcelRecordEntries

For every hop of a Parcels transport chain in logiTopp a ParcelRecordEntry is
added to the corresponding ParcelRecord with the following properties:

• record : ParcelRecord
• no : int, number of the entry
• previous : ParcelRecordEntry, previous entry if present
• next : ParcelRecordEntry, next entry if present
• tour : PlannedDeliveryTour
• pickUp : ParcelActivity
• delivery : ParcelActity
• start : Time, start time of the pick-up activity
• end : Time, end time of the delivery activity
• inSlice : boolean, true if start and end are within the requestedSimulationDay

The ParcelRecords are derived from the logistic solution of the logiTopp source model.

Especially through the transformations required for changing the feature configuration,
the information of the transport network, logistic demand, and logistic solution view-
points is diffused around multiple model elements of the respective viewpoints. An
example of this is the transport times assigned by a logistic solution in the planned tours,
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which are distributed through this process to the pickup and delivery time windows of
the respective split shipments. For this reason, the constraints evaluating properties
of target model elements test properties of multiple viewpoints at once. Therefore,
we created constraints on the most essential elements of these viewpoints, namely
shipments, tours, and tour elements.

The constraints 8 and 9 refer to CarrierShipments and CarrierServices in the MATSim
models. Regarding the CarrierShipments, we evaluate a correct mapping of the
shipment size and the origin and destination locations of each hop. Further, the
CarrierShipments must be assigned to the Carrier that is responsible for the transport
of the respective hop. The constraints regarding the pickup and delivery time windows
could be strengthened to assert the concrete variant chosen for the determination of
these time windows during the split of transport chains. The presented formulation
just requires that a shipment arrive at an intermediate point before the subsequent
shipment can be picked up at that point.

Constraint 8 (Shipments)

For every ParcelRecordEntry elogiTopp with elogiTopp.inSlice derived from the logiTopp
model a corresponding CarrierShipment sMATSim exists in MATSim and vice versa,
such that:

• elogiTopp.record.parcel.id+ ”_”+elogiTopp.no = sMATSim.id (correspondence)
• elogiTopp.record.parcel.shipmentSize correspondsTo sMATSim.size
• elogiTopp.pickUp.stopLocation.roadAccessEdge.id = sMATSim.from.id
• elogiTopp.delivery.stopLocation.roadAccessEdge.id = sMATSim.to.id
• elogiTopp.tour.depotStorage.distributionCenter.CEPServiceProvider.id =

sMATSim.carrier.id
• (pickupTimeWindow)

– if elogiTopp.previous present:
elogiTopp.previous.end≤ sMATSim.pickupTimeWindow.start

– else:
elogiTopp.record.parcel.plannedArrivalDate =

sMATSim.pickupTimeWindow.start
• (deliveryTimeWindow)

– if elogiTopp.next present:
elogiTopp.next.start≥ sMATSim.deliveryTimeWindow.end

– else:
sMATSim.deliveryTimeWindow.end > sMATSim.pickupTimeWindow.start

As there is no mapping from any Parcel to a CarrierService, Constraint 9 ensures that
no CarrierServices exists in the target model.
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Constraint 9 (Services)

No CarrierServices exists in MATSim.

Constraint 10 is dedicated to the planned tours of a logistic solution. We require all
and only the tours that transport a Parcel entirely within the requestedSimulationDay to
exist in the MATSim model. Further, the constraint checks for the correct assignment of
the vehicles to the tour. We do not require equivalence of the tour start times, as tours
can be shortened by transforming the simulation period feature.

Constraint 10 (Tours)

For every PlannedDeliveryTour tlogiTopp in the logiTopp model that is referenced
by any ParcelRecordEntry elogiTopp with elogiTopp.inSlice = true a corresponding
ScheduledTour tMATSim in MATSim exists and vice versa, such that:

• tlogiTopp.id = tMATSim.tour.id (correspondence)
• tlogiTopp.stops[1].vehicle.id = tMATSim.vehicle.id

Finally, constraints 11 and 12 test the correct mapping of stops for pickup and delivery of
parcels. The constraints ensure that every relevant but no further stops exist in MATSim.
A stop (ParcelActivity ) of the logiTopp is relevant if it handles a shipment that is entirely
transported within the requestedSimulationDay during the respective tour. Further, the
constraints enforce that the stops are within the correct tour and that the times of the
target model stops are within the boundary of the corresponding source model stop
times without enforcing the detailed implementation of disaggregating ParcelActivities
into MATSim Deliveries and Pickups.

Constraint 11 (Tour Elements: Pickup Stop)

For every ParcelRecordEntry elogiTopp in the logiTopp model with elogiTopp.inSlice =

true a corresponding Pickup pMATSim in MATSim exists and vice versa, such that:
• elogiTopp.record.parcel.id + ”_” + elogiTopp.no = pMATSim.shipment.id (corre-

spondence)
• elogiTopp.tour.id = pMATSim.tour.id
• elogiTopp.pickUp.plannedTime ≤ pMATSim.expectedArrivalTime ≤
(elogiTopp.pickUp.plannedTime+elogiTopp.pickUp.deliveryDuration)

• subsequentLeg(pMATSim).expectedDepartureTime ≤
(elogiTopp.pickUp.plannedTime+elogiTopp.pickUp.deliveryDuration)

Constraint 12 (Tour Elements: Delivery Stop)

For every ParcelRecordEntry elogiTopp in the logiTopp model with elogiTopp.inSlice =

true a corresponding Delivery dMATSim in MATSim exists and vice versa, such
that:

• elogiTopp.record.parcel.id + ”_” + elogiTopp.no = dMATSim.shipment.id (corre-
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spondence)
• elogiTopp.tour.id = dMATSim.tour.id
• elogiTopp.delivery.plannedTime ≤ dMATSim.expectedArrivalTime ≤
(elogiTopp.delivery.plannedTime+elogiTopp.delivery.deliveryDuration)

• subsequentLeg(dMATSim).expectedDepartureTime ≤
(elogiTopp.delivery.plannedTime+elogiTopp.delivery.deliveryDuration)

The constraints have been implemented in Java by querying the source and target
metamodel instances and asserting the constraints.

Results and Discussion

The constraints have been evaluated on the models of the Rastatt case study (see
Section 7.1) on each requestedSimulationDay.

Through this evaluation process, we identified and addressed several minor errors in
the prototype implementation. Furthermore, we uncovered two types of errors in the
input data provided by logiTopp and, consequently, in the logiTopp implementation
itself:

• The tour planning algorithm in logiTopp erroneously clusters parcels with the
same destination solely based on the consumer, disregarding the destination type
of the parcel. This oversight leads to incorrect routing of parcels with different
destination types but the same consumer, such as delivering both parcels to the
consumer’s household instead of directing one to a packstation.

• The logiTopp implementation neglects the delivery duration of parcel activities,
resulting in some parcels being transported immediately after the start of the
arrival parcel activity, even if the delivery duration has not elapsed entirely.

After filtering out these two errors, all described constraints were satisfied across the
evaluated models.

The explicit formulation of the constraints enhanced the comprehension of the relation-
ships between the two coupled models and elucidated which properties are preserved
during the coupling process. However, it is essential to note that while this Unit-Test-like
approach provides valuable insights, it cannot guarantee or conclusively prove the
correctness of the implementation. Nonetheless, the evaluation demonstrated the
correctness of the applied transformations to a significant extent.
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7.3 Further Evaluation Questions

In this section, we briefly elaborate on further research questions that would benefit
the overall evaluation of the concept presented in this work and could not have been
answered with the evaluation methods employed.

A crucial investigation relates to the assessment of the quality and suitability of the
common metamodel introduced in this work. Conducting an extensive literature review
or engaging in expert interviews could provide insights into whether the common
metamodel accurately and adequately captures the CEP or freight transport domain.
Furthermore, evaluating the metamodel’s understandability and level of abstraction is
crucial to ensuring its practical utility. Integrating additional freight transport models
into the proposed approach could yield valuable insights into these aspects, thereby
enhancing the understanding of the metamodel’s effectiveness in fulfilling its pragmatic
property.

A comprehensive quality assessment of the employed metamodels and transformations,
aligned with established EMF best practices and coding standards, is also missing.
While we have demonstrated the correctness of the transformations to some extent,
evaluating aspects such as maintainability and adherence to industry standards is
essential for ensuring the long-term viability of the prototype.

Another area requiring further exploration is the actual applicability of the developed
concept. Does the approach genuinely enhance actual research processes and deliver
the expected added value? It is essential to assess whether the provided exchange
points and the thereby exchanged information are adequate and beneficial for the use
cases. Furthermore, comparing the proposed approach to other existing methodologies
and the current state-of-the-art research processes would provide valuable insights into
its effectiveness and potential advantages.
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8 Conclusion and Future Work

In this final chapter, we conclude the thesis and give an overview of possibilities for
future work.

8.1 Conclusion

This thesis introduced a concept for coupling multiple freight transport models to
leverage their diverse features within an integrated workflow. Central to this concept is
the development of a common metamodel for the freight transport domain, which serves
as a central component for data exchange through model transformations among the
coupled freight transport models.

This work started with a comprehensive analysis of existing freight transport models,
focusing on logiTopp and MATSim-Freight, particularly investigating their processes,
concepts, and underlying data models. Subsequently, we presented the developed
concept and common metamodel, addressing two primary challenges. Firstly, we tack-
led the heterogeneity of processes and incorporated concepts within freight transport
models by defining criteria for suitable exchange points. This facilitated the derivation of
a standardized model process with predefined points and associated content for data
exchange. Secondly, we addressed the challenge of handling the variability in the data
models and employed concepts among coupled freight transport models by introducing
variable components into the common metamodel. Leveraging a set of transformations
on the common metamodel, we ensured that a common metamodel instance was
adapted to the specific needs of both the source and target models, thereby preserving
elementary properties through the coupling process.

A prototype for coupling logiTopp and MATSim-Freight was developed to evaluate the
proposed concept. A case study demonstrated the prototype’s functionality, serving
as a proof of concept. Additionally, a set of constraints describing the preservation
of elementary properties through coupling both models was presented. While the
evaluation provided insights into the prototype’s correctness to some extent, further
investigation is warranted to assess other aspects comprehensively.

In essence, the primary outcome of this work is a concept that aims to couple multiple
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freight transport models instead of just a pair of two models and a common metamodel
that facilitates both coupling and a shared understanding of the domain.

8.2 Future Work

Within the thesis, ideas and research questions for future work have been pointed out,
which are summarized in this section.

Several extensions to the concept are discussed in this thesis. First, the merging of
common metamodels at exchange points. Second, the integration of iterative processes
and feedback loops. Both extensions would enhance the flexibility and support more
use cases within the approach.

Additionally, integrating further freight transport models into the common model and
prototype would provide insights into assessing the quality and applicability of the com-
mon metamodel. For each integrated freight transport model, the common metamodel
must be further developed, clarifying which concepts of the new model are already part
of the common model and which concepts match or mismatch, potentially leading to
additional variability.

Furthermore, the proposed approach’s application to agent-based transport models
in general is of interest and can broaden the concept’s scope. Therefore, it must be
investigated whether these models also have common concepts and viewpoints to
enable coupling through a common metamodel, and further challenges arise in this
area of application. Finally, the research and development of alternative approaches to
the coupling of freight transport models would enrich the field, clarify the advantages
and disadvantages of the developed approach, and offer further perspectives on model
coupling.
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