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Abstract

Fog is a frequent phenomenon in the Namib Desert and enables the life of a highly spe-

cialised flora and fauna. The fog day frequency varies from the coast to inland areas

because the offshore stratus is advected at different elevations, becoming fog when touch-

ing the ground. Two situations can be identified from the perspective of a coastal station,

fog occurrence and low cloud occurrence, but the drivers leading to the one or the other

are unknown.

The presented study is a first attempt to fill this knowledge gap and develop a con-

ceptual understanding of the different processes. To identify meteorological drivers, me-

dian composites of reanalysis (ERA5) variables were prepared for fog days and for low

cloud days, using satellite-derived low cloud cover and station measurements as ground

truth. The composites revealed that the main drivers of fog are the synoptic pressure, the

temperature inversion at the Namibian coast and the local wind system. A conceptual

framework was developed for how these drivers lead to fog or low cloud occurrence. In

a second step, the potential of three different machine learning algorithms was assessed,

given the task to differentiate fog and low cloud events based on meteorological data.

The best classification skill was shown by the logistic regression (67% accuracy, 69%

F1-score), followed by random forest (64.21% accuracy, 63% F1-score). A convolutional

neural network overfitted instantly which was attributed to the small sample size.

The presented conceptual framework of the different processes leading to fog and

low cloud occurrence is the first explicit disentangling of mechanistic drivers and seasonal

variation of fog and low clouds in the Namib. The results show that fog and low clouds can

be differentiated based on the drivers by machine learning, which opens the perspective

of modeling the fog regime in the past and future Namib Desert.
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Chapter 1

Introduction

1.1 The relevance of fog in the Namib

From the hyperarid Namib Desert, we know several, partly endemic, species that exploit

fog water by evolutionary adaptations of their bodies or behaviour (Burke, 2007). As rain

events are extremely rare, the only frequent and reliable water source is the nocturnal

fog. Compared to other low clouds, only the ground-touching fog can be reached by the

usually tiny or low-growing organisms that try to avoid wind and radiation. A prominent

example is the fog-basking beetle Onymacris unguicularis that points its backside to the

sky and collects the fog water condensated at its legs (Mitchell et al., 2020). While some

of the Namib plants rely mostly on groundwater and rare rain events (e.g. Welwitschia

mirabilis Henschel et al., 2019) and their long lifespan is a characteristic of the Namib

flora (Schachtschneider and February, 2010), others are specialised on the sparse but

regular water input by fog (e.g. Roth-Nebelsick et al., 2012). The lichen fields, as one

characteristic element of the coastal vegetation (Juergens et al., 2013), are kept alive by

the short but reliable events of night/morning fog that wet the lichens and thus allow

metabolism and photosynthesis (Lange et al., 2007, Warren-Rhodes et al., 2013). Other

plants take up fog water through the soil (Ebner et al., 2011), as a thin layer of a few

centimeters is moistened by fog events (Li et al., 2018). Not only the water input but

also the nutrients transported within the droplets maintain the life of many species, e.g.

of the grass Arthraerua leubnitziae (Gottlieb et al., 2019).

The special adaptations of Namib organisms to collect fog water are not only beautiful

in their diversity but have also inspired technical solutions to harvest fog water for human

purposes (Zhong et al., 2018, J. K. Park and Kim, 2019, Lei and Guo, 2020, Yu et al.,

2021, Yue et al., 2022). The fog season coincides with peak groundwater salinity which

makes fog, as an ion-poor water source, an ideal dilutant to generate drinking water

(Shanyengana et al., 2002). Fog water could also enable local agriculture and thus add to

Namibia’s food supply (Mupambwa et al., 2019).

1



1.1. THE RELEVANCE OF FOG IN THE NAMIB CHAPTER 1. INTRODUCTION

Fog has maintained life in cold deserts like the Namib and the Atacama for millions of

years. With the ongoing rise of atmospheric CO2 and already emerging changes of climate

in some regions of the world (Norris et al., 2016), changes will likely happen also in the

Namib, potentially threatening a unique ecosystem. While the impact of altered evapora-

tion and rainfall on Namibian species has been assessed (Thuiller et al., 2006), predictions

of the future fog regime in the Namib are rare. Fog days might increase at the coast and

decrease inland (Haensler et al., 2011), but the main common pitfall of fog prediction

studies is the scarcity of available validation data. As fog is defined as decreased ground

visibility to lower than 1 km, true validation data can only be obtained on the ground.

With 11 weather stations in the central Namib (fig. 1.3), run by the Southern African

Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL)

initiative, the data situation is comparably comfortable but far away from complete spa-

tial coverage. As a source of spatially continuous data, many studies use satellite-derived

low cloud products as validation. These products cannot, however, distinguish between

low clouds and actually ground-touching fog. As the prediction cannot be better than

the training or validation, the ecologically most important variable of ground-touching

fog can to date not be predicted accurately. A fog occurrence dataset covering the whole

Namib is vitally needed to promote research about the future of the Namib ecosystem.

This study makes a first step to derive such a dataset of actual fog occurrence.

Satellite data offers the advantage of complete spatial coverage compared to station

measurements. Therefore, we see the crucial problem in deriving the cloud base height

from the satellite data to determine if a cloud touches the ground and thus provides water

to the biosphere. While there are several approaches to determine the cloud base height

directly from the imagery on larger scales, e.g. via cloud optical depth or microphysics

(Cermak and Bendix, 2011), no approach has yet emerged that would be able to yield the

required accuracy for the use case of Namib fog detection. We therefore propose to use

meteorological variables from reanalysis to classify the low clouds detected by the satellite

as a low, but not ground-touching, cloud or as fog.

There is a close interplay between the climate, including fog occurrence, and species

richness and abundance (Hachfeld, Jürgens, et al., 2000). The spatial distribution of fog

events determines the abundance of species like the flowering stones Lithops ruschiorum

(Loots et al., 2019) and the grass Arthraerua leubnitziae (Gottlieb et al., 2019) in the

coastal belt of the Namib as well as the amount of harvestable water for human use. The

timing of fog events can have a remarkable influence on the amount of water available

to plants (L. Wang et al., 2019). Despite the fact that Namib flora and fauna depend

on fog occurrence (because of their obvious evolutional adaptations), large-scale evidence

of this dependence could not be explicitly shown by satellite imagery nor could the rele-

vant spatial and temporal patterns of fog occurrence be monitored. This is because the

distinguishing of fog and low clouds is to date inaccurate and has to be approximated

2



1.2. GEOGRAPHY OF THE NAMIB CHAPTER 1. INTRODUCTION

and, in the case of the vegetation dependency, vegetation indices are inadequate to detect

differences in such sparse vegetation as in the Namib (Qiao et al., 2020). Fog is a beautiful

and interesting phenomenon, as is the life it supports, and the rapid climatic changes only

emphasize the need to study it.

1.2 Geography of the Namib

1.2.1 Namib Desert geomorphology

The Namib Desert covers the southwestern coast of the south African subcontinent along

roughly 2000 km, including the whole of Namibia’s coast and parts of the Angolan coast.

It comprises dunes, gravel plains, inselbergs and other landscape features and is bordered

by the Great Escarpment, the beginning of the inland plateau. A major part is captured

by the Namib-Naukluft National Park and the Namib sand sea is declared a UNESCO

heritage site.

The terrain of the Namib is a gently rising flat plain that changes into the rough

mountains (up to 2000 m high) of the Great Escarpment about 140 km from the coast

(see fig. 1.3). North of the Kuiseb River the bedrock makes up the surface, with occasional

gravel fields, deep river gorges and some inselbergs. In the south, the bedrock platform

is buried by sandmasses (Logan, 1960). The so-called Namib Sand Sea is an active dune

system with shifting dunes driven by strong winds and it overlays a second, ancient dune

system.

1.2.2 Climate of the Namib and southern Africa

The Namib is a hyperarid desert with the central part receiving 5-18 mm/year water

input from rain and the northern and southern parts receiving below 50 mm and 100

mm, respectively (Eckardt et al., 2013). There may well be consecutive years without any

rain at all. However, there is water input from the frequently occurring fog, especially

in the so-called fog belt about 20 - 60 km from the coast (up to 87 fog days per year at

Swartbank). From the fog belt, the fog day frequency decreases towards the coast and

inland towards the Great Escarpment (Seely and Henschel, 1998).

The synoptics of Southern Africa are dominated by the two quasi-permanent high-

pressure cells of the subtropical high-pressure belt, the South Atlantic High (SAH) over the

South Atlantic and the Indic High over the Indian Ocean (Weischet and Endlicher, 2000,

fig. 1.1). Both are of dynamic nature and part of the global Hadley circulation and can,

mostly in austral winter, form a joint broad pressure cell covering the whole southern area

of the subcontinent. They originate from tropical air that rises within the intertropical

convergence zone (ITC) and comes down, much drier, in the mid-latitudes. The resulting

high-pressure cells are stable throughout the year but vary in their latitudinal location

3



1.2. GEOGRAPHY OF THE NAMIB CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic synoptics of Africa in austral summer (left) and winter (right),
translated from Baumhauer, 2023, original figure from Weischet and Endlicher, 2000.

Figure 1.2: Schematic synoptics of Southern Africa in austral summer (left) and winter
(right), reprinted from Baumhauer, 2023, original figure from Weischet and Endlicher,
2000. H = high-pressure cell, T = low-pressure cell.

4



1.2. GEOGRAPHY OF THE NAMIB CHAPTER 1. INTRODUCTION

with the annual movement of the ITC. Dry tropical air also comes down between the ITC

and the mid-latitudes, warming on its descent and sitting on the moister and cooler trade

winds, thus installing stability (Baumhauer, 2023). Especially in front of the Namibian

coast, the warm and dry air coming down within the SAH overlays the cold and moist

marine boundary layer with a marked temperature inversion. The inversion is situated at

a shallow height of about 500m and thus prevents convective ascent that could lead to

rain.

Equally important, but of thermal nature, is the winterly thermal high over the south-

east African plateaus that is in summer replaced by an extension of the Indic High (Con-

tinental High, CH) (fig. 1.2,Weischet and Endlicher, 2000). The eastward-traveling

anticyclones from the high latitudes can merge with the CH (Logan, 1960). The cold

airmass is then further distributed by the resulting high-pressure cell. In austral summer,

the CH turns into a thermal low at the ground because of the heating of the land surface

and pulls the ITC southward.

Over the ocean, the wind is driven by the SAH and blows mostly from SSE parallel to

the Namibian coast (Logan, 1960). The coastal area is dominated by a local wind system

driven by temperature differences between the ocean, flat plain, and mountain surface

(Weischet and Endlicher, 2000). During daytime, the land surface is quickly heated by

the sun while the ocean surface heats up slower and is also cool from upwelling arctic

waters of the Benguela current. This gradient generates a moderate SW sea breeze of

5 - 10 m/s (Seely and Henschel, 1998) which brings moist cool air from the ocean to the

land. It begins at the coast during the late morning and occurs later and weaker inland.

Especially in austral summer (December, January, February, DJF), a second temper-

ature gradient develops between the hot mountains of the Great Escarpment and the

cooler flat plain and causes a strong NW wind of 10 - 15 m/s to start blowing in the late

afternoon (Seely and Henschel, 1998). The wind keeps blowing until around midnight

and overlasts the sea breeze which fades off at dusk. With the afternoon NW wind, fog or

low stratus clouds from the ocean creep onto the land (Andersen et al., 2019) and hinder

nocturnal radiative cooling. The bare inland and mountain regions cool down faster, thus

reversing the temperature gradient of the day, especially in austral winter (June, July,

August, JJA). The resulting SE wind blows with 5 - 10 m/s from the Escarpment down

to the sea, increasing until dawn. Also in winter, strong, warm, and dry bergwinds can

occur, blowing from the Escarpment (Seely and Henschel, 1998) and increasing tempera-

ture on the ground by up to 10 K (Weischet and Endlicher, 2000). This situation occurs

when the westerlies swing out poleward, giving place to the SAH ridging zonally over the

whole tip of Africa and shoveling moist air from the Indian Ocean over the subcontinent

to a low over Angola (Weischet and Endlicher, 2000).

The local wind system is overlain by the trade winds of the global Hadley circulation.

They blow from the subtropical high-pressure belt to the ITC and are deflected eastward
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by the Coriolis force over the continent. When going over the Great Escarpment to

the ocean, these winds subside because of divergence and reinforce the shallow inversion

towards the moist and cold marine boundary layer.

1.3 Current knowledge about fog formation and oc-

currence in the Namib

Recent studies make use of satellite data to get a grip on meteorological phenomena in

the Namib. Because the cloud base cannot be determined accurately from space and

because the exact same cloud can occur as a cloud at the coast and as fog further inland,

the category of FLC or FLS is used, bundling fog and low clouds. The coastal fog is

relatively rare compared to the low cloud reaching further inland (Seely and Henschel,

1998), so findings concerning FLC/FLS can - with care - be attributed to low clouds. Most

knowledge about Namib fog comes from the station network of the SASSCAL initiative

(fig. 1.3).

Figure 1.3: Station network in the central Namib, reprinted from Spirig et al., 2019. Black
stations were intensively measured during September 2017 by Spirig et al., 2019. CM =
Coastal Met, VF = Vogelfederberg, GB = Gobabeb.
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1.3.1 Fog types

The cold upwelling cells of the Benguela current at the western African coast are a quasi-

permanent source of a low stratus cloud deck over the Atlantic. At the same time, the

cold ocean surface and the shallow inversion above it prevent the formation of convective

clouds, making rain events extremely rare in the Namib Desert (Logan, 1960).

The ocean cloud deck is driven inland by winds and is recorded as fog where it touches

the land and hence reduces ground visibility. Mainly in the months of April, May, June

(AMJ) the stratus formed over the ocean is low with a base height of below 200m.s.l.

and intercepts the land already at the coast (Andersen et al., 2019). It is transported

inland by the SW sea breeze which starts blowing in the afternoon (Seely and Henschel,

1998, Eckardt et al., 2013). The stratus occurs as fog at the coast on more than 100

days per year, reaching up to 15 km inland (Seely and Henschel, 1998). In an intensive

measuring campaign at Coastal Met station (CM) during September 2017, the nighttime

wind direction during fog events was found to be predominantly N to NNE (Spirig et al.,

2019). This fog type is called ’coastal fog’, ’advected coastal stratus’ or ’advection fog’.

In the following, it will be referred to as ’fog’.

Most of the year, from July to March, the stratus is higher, at 300 - 500 m.s.l (cloud

base height) and has to travel about 20 - 60 km to intercept the rising land, where it is

recorded as fog. Because of the travel time, the interception starts later in the evening at

about 18 - 22UTC (4 - 8PM local time) and the stratus is dissolved in the early morning

(Andersen et al., 2019). On rare occasions, the stratus even reaches the Great Escarpment

(less than 10 days per year (Eckardt et al., 2013)). Annual fog day frequencies (FDF)

from different stations in the central Namib indicate that high fog is more frequent than

coastal fog, as the FDF increases until about 20 - 60 km distance from the coast and then

declines (Lancaster et al., 1984). This type of inland fog is associated with NNE winds

at the surface which was explained as follows by Seely and Henschel, 1998: The cloud

deck is driven inland by NW winds late in the night and mixes with downward easterly

mountain-plain winds from the Escarpment. It cannot escape upwards because of the

inversion layer. The resulting mixed foggy air at the ground moves NNE. The nocturnal

NE to NNE wind direction was confirmed in September 2017 at Gobabeb station (Seely

and Henschel, 1998, GB in fig. 1.3). The phenomenon is called ’high fog’ or ’cloud

interception fog’ and later in this work ’low clouds’ (adopting the perspective of a coastal

station). The peak months of low clouds, March and September, match the coexistence

of the two responsible winds, NW plain-mountain wind and SE mountain-plain wind, as

one dominates in summer and the other in winter, respectively. Satellite imagery revealed

a peak season in September, October, November (SON) (Andersen et al., 2019).

Besides high fog and coastal fog, there are the two occasionally occurring fog types

radiation fog and frontal fog. Radiation fog forms in place over cooling surfaces and is
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mostly found in valleys. Though it is fed by moist coastal air mixing with easterly cold

air from the mountains, it is not termed ’advected’ because the coastal air is clear and

condensation takes place in situ (Spirig, 2022). The last type, frontal fog with drizzle,

is associated with the passage of cold fronts in winter (Eckardt et al., 2013, Seely and

Henschel, 1998).

The debate about the origin and formation of Namib fog has been reawakened by a

study classifying more than half of the fog events as radiation fog (Kaseke et al., 2017).

The number comes from categorising mixed fog as radiation fog, with mixed fog being

Ocean water vapour mixed with local moist air and condensated because of radiative

cooling. Going with the fog type definition of the study, at Gobabeb station which lies

at the edge of the Namib fog zone near Kuiseb river (GB in fig. 1.3), only 40% of the

fog events were ocean water-derived according to isotope analysis. The authors suggest

that the advective fog zone might be retreating towards the coast and that rivers and

groundwater, brought up by vegetation, contribute to the majority of fog events at this

distance from the coast (Kaseke et al., 2017). However, the crucial fog probes were

collected at 8 AM local time when the fog might already be dissolving and altering its

isotope ratio, as was pointed out by Spirig, 2022. Further isotope analyses indicate that

Namib fog can be of mixed type especially from 30 - 50 km inland on, where advected

moisture mixes with local moisture (Kaseke et al., 2018). The isotope method yielded

plausible fog types compared to meteorological conditions during the fog events (Kaseke

and Wang, 2022). Recent findings from the gravel plains, as well as from the dunes near

Gobabeb, also indicate that water vapour from deeper soil layers adds to fog formation

(Adhikari and Wang, 2020). Most studies, however, agree that these two fog types are

rare and that most fog events are of advective nature (Seely and Henschel, 1998, Eckardt

et al., 2013). The evidence comes from meteorological understanding (e.g. Seely and

Henschel, 1998) and satellite imagery (e.g. Andersen et al., 2019). Also, marine bacteria

were found in fog droplets as far as 50 km from the coast (Evans et al., 2019). In line with

most of the literature and because satellite imagery shows the advection of the cloud deck

in most fog cases, this study focuses on fog and low clouds. While most studies agree on

the nature of the Namib fog being advective, the drivers causing the cloud deck to come

in as fog or as low cloud remain unclear.

1.3.2 Potential drivers of coastal fog and low clouds

The seasonalities of low clouds and fog suggest a relation to drivers that expose similar

seasonal patterns. For fog, the drivers should match the peak in AMJ, for low clouds in

SON. As Seely and Henschel, 1998 points out for low clouds, the peak occurrence can also

be matched with the co-existence of two necessary drivers, like the NW plain-mountain

wind and SE mountain-plain wind. Because of the distinct seasonality of both fog types,
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not only the local wind system (which underlies seasonality as well) but also the synoptic-

scale weather situation could be relevant. For the joint category of FLC the linkage to

synoptic patterns has already been shown with satellite data (Andersen et al., 2020).

Based on the qualitative explanation of fog occurrence, drivers on different scales are

necessary to allow for fog and low cloud occurrence. The large-scale prerequisites are: the

high-pressure cells of the subtropical high-pressure belt, sending out trade winds; Cold

sea surface temperatures at the coast to establish a cold marine boundary layer with a

shallow inversion above it; And on a more local scale winds to blow in the stratus deck.

However, the specific necessary interactions between these drivers, leading to fog or to

low clouds, are poorly understood and beg further study. To date, it is not even known

if fog and low clouds are two distinct phenomena triggered by different meteorological

conditions.

The extent of the Benguela upwelling cell was a significant indicator of fog events in

Lüderitz, a coastal city in the South of the Namib (Olivier and Stockton, 1989). Based

on former studies, expert knowledge and their investigations, these authors explain the

formation of fog for Lüderitz as follows: Warm oceanic air is transported by onshore winds

over the cold upwelling strip at the coast, where the stratus forms. For condensation, the

initial air temperature has to be higher than the sea surface temperature. The onshore

wind may come from several sources: On 89% of all fog days in 1984 it came from a

coastal low south of Lüderitz and if the upwelling strip is too broad, the low only reaches

over cold water and no clouds are formed. Coastal lows are also linked to temperature

inversion layers that are necessary to prevent the formed stratus from rising. The onshore

wind may also be associated with the (SAH), with an approaching cold front or it may

be a sea breeze in the afternoon resulting from the local land-ocean wind system. The

cold upwelling itself is driven by offshore winds that push the surface water away from the

coast, making the cold water from below come up. The easterly surface wind may occur

as the rotated southerly geostrophic wind resulting from the large-scale pressure gradient

between the continental low and the oceanic high.

1.3.3 Fog retrieval from space

From the satellite perspective, the topmost cloud can, depending on its opacity, hide

everything underneath, which is why cloudy areas have to be cut out from the image for

many research purposes dealing with ground features. Remote sensing research in some

areas of the world is thus limited, and refining cloud masking algorithms is a flowering field

of research (Skakun et al., 2022). Fog and low clouds (FLC) can hide under higher clouds

and are difficult to identify from space by passive sensors. About 30% of FLC situations

over Europe were not detected from geostationary passive satellite images compared to a

space-based active LIDAR sensor (Cermak, 2018). But also in a study distinguishing fog
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and low clouds in the Namib with active space-based LIDAR (Qiao et al., 2022), imagery

with middle or high clouds was excluded as one of the first steps prior to any analysis.

Assuming that the low cloud is not hidden, the passive satellites still peek on it from

above and can often only see the cloud top. The cloud top height can be determined

from space and gives an estimation of the vertical position of the cloud (Cermak, 2006).

However, low stratus clouds and fog are often treated as one category named broadly ’fog’

or more accurately ’fog and low clouds’ (FLC) or ’fog and low stratus’ (FLS) (Cermak

and Bendix, 2011).

There are several approaches for distinguishing between low clouds and ground fog

(Lakra and Avishek, 2022). The oldest and most obvious approach is to estimate the cloud

base height by subtracting the thickness of the cloud from the cloud top height. The thick-

ness can be estimated roughly by parameterisations of e.g. the brightness–temperature

difference (Ellrod, 1995) or liquid water path (Hutchison, 2002). Assuming an adiabatic

cloud profile, the thickness is related to the root of the liquid water path, but a feasibility

study indicates that this assumption may not hold true for low stratus (Bendix et al.,

2005). Pseudosounding gives insights into vertical structures in cloud optical depth, which

have to be linked to an assumed cloud profile by radiative transfer (Schüller et al., 2005).

For low stratus clouds, the liquid water distribution within the cloud can be optimised

with a microphysical model to match the liquid water content gained from satellite im-

agery (Cermak and Bendix, 2011). With that approach, the cloud base could be estimated

with a hit rate of 81% and a threat score of 62%.

Compared to these passive remote sensing approaches, active sensors offer detailed

information about the vertical atmospheric structure (Cermak, 2018). LIDAR data from

the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) was

recently used to distinguish clear, fog and low cloud situations at nighttime in the Namib

(Qiao et al., 2022). The authors chose a lower detection limit of 30 m which is similar

to ceilometer limits. Fog events showed increased backscatter within 30 - 120 m above

ground with a correlation to fog deposition in 30 - 60 m, and low clouds were linked to

higher backscatter in 100 - 200 m. The polar orbiter crosses the Namib every 16 days and

can therefore not yield a temporally continuous time series of fog and low cloud occurrence.

It is therefore not suitable to gain information on the mechanisms producing fog and low

clouds in the Namib. There is, however, a great potential to combine lidar-derived fog

/ low cloud information with passive sensors mounted on satellites with higher temporal

coverage. Nevertheless this study exposes the current inability to produce temporally

full-coverage datasets of Namib fog and low cloud occurrence from satellite imagery.

Besides the detection of fog and low clouds from satellite data alone, additional meteo-

rological data can support the classification (Lakra and Avishek, 2022). A global-coverage,

since 1940 temporally continuous dataset is the ERA5, the 5th generation reanalysis prod-

uct of the European Centre for Medium-Range Weather Forecasts (ECMWF). This data
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has been used successfully to explore fog formation in Casablanca (Bari et al., 2015) and

to determine atmospheric stability and aerosol interactions with the ocean cloud deck in

front of the Northern Namibian coast (Andersen and Cermak, 2015).

Based on the identified research gaps the question emerges how to fill them. A better

understanding of the mechanisms leading to either fog or low clouds would most likely

inspire the debate on how to map fog occurrence and deduce it from satellite imagery.

The relevant fog and low cloud drivers could be used to refine the umbrella category ’FLC’

on satellite products and specify it as fog or low cloud. To link the drivers and initial

satellite imagery to a specified classification outcome, statistical models are needed.

1.4 The potential of machine learning

Machine learning offers the advantage of taking potentially meaningful variables as input

and, given the true outcome values for these variables, automatically deducing links be-

tween input and output. In simple models like logistic regression (logreg), these links are

transparent and easily understandable for the human user, yet the model skill may be

unsatisfying for complex problems. With increasing complexity of the algorithm, the skill

may increase but the links may not be transparent to the human user anymore. A well-

established algorithm of medium complexity is Random Forest, which has been applied

successfully to classification tasks in many research fields (e.g. Talukdar et al., 2020).

Deep learning, as a subfield of machine learning, has shown the ability to outperform

former approaches like decision trees-based learning (like random forest (RF)), especially

in perceptional tasks like image recognition that are not easy to describe mathematically.

Their learned strategies to solve a classification task, is, though, not easily backtracked

so that they are sometimes called a ’black box’. As processes in the atmosphere are often

very complex and rely on patterns on different temporal and spatial scales, deep learning

has seen a lot of successful applications in the field of atmospheric science (X. Wang et al.,

2023, Ait Ouadil et al., 2023).

In the case of fog, deep learning has mostly served for near-realtime fog prediction

(nowcasting) in air traffic (Lakra and Avishek, 2022). For example, Convolutional Neural

Networks (CNNs) outperformed RF in predicting fog in the next hour from images of the

foregoing hour at Daesan Port, South Korea (J. Park et al., 2022). Fog prediction from

time series of meteorological variables was implemented with an artificial neural network

(ANN) for Canberra Airport, California (Fabbian et al., 2007). A global retrieval of

marine liquid water clouds has been done with an ANN using satellite data and reanalysis

(Andersen et al., 2017). The ANN was trained on different regions and outperformed

bivariate statistics by far and multivariate statistics only slightly and in specific contexts.

With statistical models, the known conceptual relationships can be quantified and

assessed in their importance for the process. This is most easily done in the logreg and
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is also feasible within a RF model. Even in deep learning the learned patterns can be

visualised. Thus, there can be a benefit from modeling for the conceptual understanding

of a problem.

Based on the identification of relevant drivers, fog and low clouds in the Namib could

be modeled by statistical models. The applicability of different model types and the

suitable level of complexity for this case is, however, currently unknown.

1.5 Summary of knowledge gaps, hypotheses, and

outline of thesis

From the given literature review on fog and low clouds in the Namib, it becomes clear

that we still lack detailed knowledge on the drivers of the one or the other situation.

Both the large-scale synoptics (Andersen et al., 2020) and the local wind system (Seely

and Henschel, 1998) have been linked to fog occurrence. Our understanding remains

fragmented though because either only low clouds are focused (Seely and Henschel, 1998)

or fog and low clouds are treated as one group compared to clear days (Andersen et al.,

2020, Veloso et al., 2024). Some research has also been done on single drivers like the

sea surface temperature (Olivier and Stockton, 1989), but a general concept of what

meteorological situation leads to fog versus low clouds is lacking.

To date, there is no satisfying routine for the Namib to classify fog occurrence from

satellite and distinguish it from low clouds. The existing approaches are either inaccurate

or require different datasets for night and day or suffer from other inconveniences. Machine

learning methods have been proven extremely powerful in solving classification tasks.

With a deepened understanding of the meteorological mechanisms leading to fog or low

clouds, the relevant drivers can be used to train a statistical model to predict fog or low

cloud occurrence. Deep learning as a subfield of machine learning has been shown to

outperform simpler models in some perceptual tasks and can therefore be expected to

excel in fog and low cloud prediction.

Hence I propose the following hypotheses:

1. Fog and low clouds are characterised by different patterns of meteorological drivers.

2. These meteorological drivers can be used to distinguish fog and low clouds

2.1 with machine learning approaches

2.2 and even better with Deep Learning.

To treat the hypotheses, Coastal Met station (CM) at the coast of the central Namib

is chosen as a suitable ground truth source. It offers fog records on the ground as well

as eventual ceilometer data from former campaigns (Spirig et al., 2019). For H1, me-

dian composites of several ERA5 variables will be examined for relevant meteorological

12



1.5. SUMMARY OF KNOWLEDGE GAPS, HYPOTHESES, AND OUTLINE OF
THESIS CHAPTER 1. INTRODUCTION

elements. These elements will then be used to train three different machine learning

algorithms on classifying fog and low clouds to address H2.
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Chapter 2

Data

In this section the origin and structure of the raw data is explained, followed by a de-

scription of how the datasets for hypothesis 1 are derived.

2.1 Data sources

Three raw data sources have been used: the satellite-derived fog and low cloud prod-

uct over the central Namib (FLC product), the fog measurements and ceilometer data

from Coastal Met weather station at the central Namib coast, and several meteorological

variables of the ERA5 reanalysis product.

2.1.1 FLC product

The fog and low cloud (FLC) product is a raster of low cloud cover over the Namib

region. is derived from the infrared bands of the geostationary satellite SEVIRI (Spinning

Enhanced Visible and Infrared Imager). FLC are detected with a probability of 94% and

a false-alarm rate of 12%, which was assessed using station data (Andersen and Cermak,

2018). SEVIRI has a nadir resolution of 3 km. The FLC product covers the whole

Namib. I used the FLC product from 01.01.2004 - 31.12.2020 with a temporal resolution

of 15 minutes. The values are empty in 2005-12, 2006-11, 2007-03 and 2007-09 due to

satellite outage.

The algorithm applies spectral thresholds to the satellite image in order to exclude

high ice clouds. It then compares the remaining land surface and low clouds to a monthly

and an annual composite representing cloud-free conditions. The resulting FLC pixels

are checked for context-plausibility by an iterative counting of surrounding FLC pixels

(Andersen and Cermak, 2018).
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2.1.2 Coastal Met station

The Coastal Met weather station is located at 14.62595 E, 23.05631 S near Walvis

Bay in the Namib Desert (see 1.3). The surrounding landscape consists of Arthraerua-

dominated fog belt shrublands with lichen fields further inland and Stipagrostis sabuli-

cola-Cladoraphis-mobile dune grasslands further south.

It is one of 11 FogNet stations and belongs to the Southern African Science Service Cen-

tre for Climate Change and Adaptive Land Management (SASSCAL) initiative. Within

the station network, Coastal Met is one of the nearest stations to the ocean with a distance

to the coast of about 15 km and an elevation of 94 m msl (Spirig et al., 2019). The mete-

orological variables are recorded every minute. The relevant variable for this study is the

fog precipitation, which is measured by Juvik fog collectors (detailed information on the

instrument see Juvik and Nullet, 1995). Fog water is collected by a cylindrical screen and

drips onto a tipping gauge that records 0.1mm per received drop. The exact moment of

when the drop falls is somewhat arbitrary so the measurement is suitable to qualitatively

state a fog event rather than quantitatively determine the exact fog duration or deduce

fog properties. I use station data from 01.07.2014 to 31.12.2020. Additional ceilometer

data is available for Coastal Met station from September 2017 to February 2018. The

ceilometer is an active lidar instrument that measures single-wavelength backscatter. It

can thereby detect the cloud base height (CBH) of one or several clouds, depending on

their transparency. The instrument at CM is a CL31-2 from Vaisala (Wiegner et al.,

2019).

2.1.3 ERA5 reanalysis

The ERA5 is a global coverage reanalysis product with hourly meteorological variables

from 1940 to present and a spatial resolution of 0.25 degrees (Hersbach et al., 2020).

Multiple data sources like station data, radiosondes and satellite imagery are jointly used

to model the weather of the past. The product is maintained by the European Centre

for Medium-Range Weather Forecasts (ECMWF), an intergovernmental organisation sup-

ported by 35 states. The known issues of ERA5 are not of concern in the Namib Desert,

apart from potential jumps in boundary layer wind speed at the transition from one to the

other 12 h assimilation window (Hersbach et al., 2020). The ERA5 variables are available

either on pressure levels with 25 hPa resolution (50 hPa above 750) or on single level,

like the mean sea level pressure (MSLP). In this study, the variables temperature (t),

relative humidity (RH), specific humidity (q), wind components directing east (u), north

(v) and up (w), geopotential (z) on pressure levels up to 500 hPa were downloaded, as

well as mean sea level pressure (MSLP) and sea surface temperature (SST). The ERA5

data can be downloaded in NetCDF format and was handled using the xarray python

library (Hoyer and Hamman, 2017).
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2.2 Derived data

The general workflow to prepare fog and low cloud median composites for hypothesis 1 is

visualised in fig. 2.1. To find discriminative patterns for fog and low clouds at CM, the

first step is to create a dataset of fog and low cloud occurrences at the station. The FLC

product is used to identify low cloud-covered nights which are then divided into fog and

low cloud nights using the ground observations of fog at the station. For these nights,

ERA5 variables are downloaded and reduced to median composites on fog and low cloud

days.

Figure 2.1: General workflow of calculating median composites of ERA5 variables on fog
days and low cloud days at Coastal Met, Namibia. FLC = fog and low cloud product
from Andersen and Cermak, 2018.

2.2.1 Preparing ground truth fog events

A daily time slot was chosen to select days with FLC occurrence from the FLC product.

I took 4 - 6 UTC because 5 UTC was shown as the relevant time point of maximal FLC

occurrence at CM station (Andersen and Cermak, 2018) and 4 - 6 is a suitable time interval

symmetrically around it, capturing the fog precipitation peak (fig. 2.2a). Additionally,

the mean hourly cloud base height is lowest at 5 UTC (fig. 2.2b), indicating the time

of maximal fog occurrence compared to low cloud occurrence. That makes 9 records per

day (4:00, 4:15, 4:30, ..., 5:30, 5:45, 6:00). I chose a robustness criterion of 5 FLC positive

records out of the 9 to accept FLC for that time slot. This conservative criterion shall

minimise the risk of including clear days. In total, 961 FLC-covered days were selected.

The station data was selected at the corresponding time window 4 - 6 UTC on FLC-

positive days. In order to label each day as a fog or low cloud event, the fog days are

determined using the station measurements. Of all measured variables at the station, the
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Figure 2.2: Hourly mean of fog precipitation in drops (2014 - 2021) and cloud base height
from ceilometer (2017 - 2018) at Coastal Met, Namibia.

fog precipitation is the most reliable for detecting fog events, more than net radiation,

longwave downward radiation or surface temperature (Spirig et al., 2019). One drop in

the fog gauge within the two-hour slot (temporal resolution of 1 minute) was considered

enough to make this day a fog day. The station data contained 166 fog days that had

been excluded by the conservative criterion applied to the FLC product. These days were

added to the fog/low cloud dataset because they indicated fog within the 4 - 6 UTC time

frame (fig. 2.3). Consistency of the fog day measure was checked by calculating the sum

Figure 2.3: Schematic illustration of how a dataset of fog and low cloud occurrences at
Coastal Met station was created. Numbers indicate total numbers of days within 2014-
07-01 - 2020-12-31.

of drops at the station from 0 to 8 UTC instead of 4 - 5 UTC for each day, which revealed

additional 175 missed fog nights in total but yielded the same seasonal pattern (fig. 2.4).

These fog nights were not included in the final dataset because it is not sure that there

was fog in the examined 4-6 UTC slot.

The fog / non-fog data set was checked for consistency with the relative humidity

measured at the station (fig. 2.5). Relative humidity during fog conditions is usually

100% but can be slightly under- or oversaturated due to condensation and associated

17



2.2. DERIVED DATA CHAPTER 2. DATA

2015
2016

2017
2018

2019
2020

2021

time

5
10
15
20

da
ys

 p
er

 m
on

th

Figure 2.4: Number of days with fog recorded during 4 - 6 UTC (blue) and during 0 - 8
UTC (orange) at Coastal Met, Namibia.

warming of the surrounding air (Gerber, 1981). During the two considered hours, the

relative humidity can vary, especially in cases of fog dissipation, and can cause low average

humidity. The lowest average relative humidity during a fog event is 79.61%, which was

still considered plausible, so the fog determination proves reasonable and there was no

need to exclude values manually.
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Figure 2.5: Mean relative humidity at 4 - 6 UTC during fog events at Coastal Met,
Namibia.

Consistency check by fog climatology

The climatology of Namib fog events is well described (Seely and Henschel, 1998) so a

good health check for FLC and station data is to compare them to climatology. The

whole available time series of FLC days at Coastal Met is shown in fig. 2.6, displaying
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the number of days where the station pixel was covered by any low cloud, may it be

a cloud or fog, in the early morning from 4 - 6 UTC. A pronounced seasonality can be

seen in 2014 - 2019 with a higher FLC frequency in austral summer than in early austral

winter. This seasonality is less obvious but still present in the other years. For the time

of available station data, the FLC days are, based on fog precipitation measurements,

divided into coastal fog (338 days), and low clouds (623 days) (the latter also referred

to as ’high fog’ in literature), and are additionally enriched by fog days overlooked by

the satellite, 166 days. Low cloud days make up the majority part (623 days) and occur

mainly in austral summer, thus creating the overall seasonality in FLC days. Fog occurs

less (504 days) and with a peak in early winter (fig. 2.7).
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Figure 2.6: Time series of total monthly fog and low cloud (FLC) days at Coastal Met
station, Namibia, as shown by the FLC product created by Andersen and Cermak, 2018.
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The fog day frequency (FDF) which is commonly reported in literature commonly

reported, includes any type of local fog event (that is, also the rare events of radiation fog

and frontal fog) at the reference location. The FDF is reported to be higher in austral

winter (May - Sep) at coastal stations (capturing the coastal fog) and higher in austral

summer (Aug -Oct, Mar) at inland stations (capturing low clouds) (Seely and Henschel,

1998, Lancaster et al., 1984). While not all of the low clouds at Coastal Met might travel

far enough to arrive as fog at the inland stations, we assume that a majority do and that

especially the FDF seasonality is transferable. Our differentiation of fog and low clouds

based on station fog gauges thus yields a plausible target variable.

Based on the findings of Andersen et al., 2019, the data is split into seasons for some of

the analyses. Fig. 2.7 confirms that these seasons appropriately describe different phases

of the annual cycle of fog and low cloud events at Coastal Met station. The April-May-

June season (AMJ) captures the peak coastal fog months while the September-October-

November season (SON) is an equally long (and thus comparable) period capturing the

low cloud occurrence. The time between these two periods is summarised in two further

seasons. The figure also points out that the peak occurrence of fog and low clouds can vary

considerably between two years, as 2017 shows a late fog peak in August and September

compared to an early 2018 peak in May and June. The usual low cloud peak in austral

summer is missing in November / December 2020, which makes 2020, together with

irregular fog peaks, an exceptional year.

Other variables measured at Coastal Met weather station were also analysed to confirm

the reliability of the fog/cloud differentiation. Fig. 2.8 shows that the declared fog events

go with high relative humidity (RH) near the ground (98.2% of fog days over 95% RH)

compared to low cloud days. The net radiation peaks around October to February (fig.

2.9) due to earlier sunrise in austral summer. In austral winter, when 5 UTC (7 AM local

time) is before sunrise, the net radiation during fog events tends to be zero compared

to negative net radiation during low cloud events. At clear sky conditions, the surface

releases longwave radiation to the atmosphere, while during fog the radiation is scattered

back downward. Balanced longwave radiation during nighttime FLC occurrence was also

found by Andersen and Cermak, 2018 and was used to evaluate FLC detection from

satellite.

2.2.2 Preparing ERA5 data for composites

All downloaded ERA5 data was clipped spatially to show the south African subcontinent

with some surrounding, and was clipped temporally to the dates with fog / low cloud

occurrences at CM. The data was clipped to 5 UTC because that is the time of maximum

FLC cover at the station during the daily cycle and it is the center of the time slot used

for assessing the FLC dates.
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The ERA5 data was split into fog days and low cloud days according to the station

data. In each pixel, the median value of each variable was calculated from all fog days

to get a median composite. The same was done for the low-cloud days. The median

composites were produced for the whole time span as well as separately for the different

seasons. The median was chosen as a safe measure for also non-gaussian distributions

because it equals the mean in the case of Gaussian anyway but is also suitable to describe

skewed distributions. Among the distributions of low cloud versus fog day values in each

pixel and for different seasons, it is likely that not all distributions are Gaussian. This

advantage was considered more important than possible distortion due to small sample

size. While one could visually seek for differences between the fog and low cloud composite,

it is convenient to calculate the difference by subtracting one composite from the other.

The low cloud image is subtracted from the fog image, which means that high values in

the resulting image mean higher variable values on fog days and lower values on low cloud

days. Low differences mean lower variable values on fog days.

To further extract the difference between fog and low cloud situations, the annual

variation in the data can be eliminated. Each pixel is therefore standardised with its

climatological monthly mean and standard deviation of the years 2004 - 2020 (Equ. 2.1,

Code-Sn. 2.1), including clear, cloudy and fog days to ensure a representation of the

annual variation of the variables. The data is first standardised and then aggregated into

seasons and split into the fog and low-cloud days. The standardised value x in each pixel

was calculated

xstandardised =
(xi − x̄)

std(x)
(2.1)

with xi, one pixel value within the timeseries and std, the standard deviation.

1 import xarray as xr

2

3 def standardise_months(ds):

4 climatology_mean = ds.groupby("time.month").mean("time")

5 climatology_std = ds.groupby("time.month").std("time")

6 anomalies = xr.apply_ufunc(

7 lambda x, m, s: (x - m) / s,

8 ds.groupby("time.month"),

9 climatology_mean ,

10 climatology_std ,

11 )

12 return anomalies

Listing 2.1: function to standardise each pixel per month.

Fog days occur mostly within a few months in the austral winter (AMJ with 10 -

18 fog days per month) and occur with often less than 5 days in the other months.

So, when calculating a median composite of fog days over the year, the median will be

driven mostly by the winter season. Because of the pronounced seasonality, it cannot
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be excluded that the few fog days in summer are caused by a different constellation of

pressure, temperature, etc and we miss this different pattern in the yearly median. The

patterns found in the overall median can thus not help to distinguish fog and clouds in

summer, which is the goal of this study, as we want to make better predictions than a

mere guess from climatology. To find differences between fog and low cloud situations

that persist throughout the year, separate composites for the seasons are computed.
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Chapter 3

Methods

In this chapter, the methods used to tackle the two hypotheses are treated. The first

hypothesis concerns the conceptual understanding of fog or low clouds occurrence at

Coastal Met. In the second hypothesis, the conceptual understanding is captured in

features which are used to train classification models. Figure 3.1 summarises the workflow

that is explained further in the following subsections.

Figure 3.1: Workflow for treating hypothesis 1 and 2 (H1 and H2, respectively). FLC
= fog and low cloud. cloud = low cloud. Reanalysis variables are temperature, specific
humidity, wind components east, north and up, geopotential, sea surface temperature and
mean sea level pressure.

3.1 H1: Composite analysis and case study

The first hypothesis is treated by visually examining the ERA5 composites (whose prepa-

ration is explained in subsection 2.2.2) for relevant patterns. The understanding is deep-
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ened by a case study of a specific fog night. To take up the research of Spirig et al., 2019,

an exemplary fog event was chosen within the time frame of their intensive field campaign

in September 2017. For that period, ceilometer data is available for CM that can be used

to determine the cloud base height. The ceilometer backscatter reveals a comparably long

interval of intensive near-ground backscatter during the night 22./23.09.2017 (fig. 3.2),

which was chosen for the case study.
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Figure 3.2: Ceilometer backscatter indicating stratus elevation at Coastal Met, Namibia,
in September 2017. The fog event in the early morning of 2017-09-23 is chosen for a case
study.

3.2 H2: Classification

Hypothesis 2 concerns the ability of machine learning models to predict a given FLC event

as fog or low cloud. For that purpose, three model types along a gradient of rising model

complexity are trained on the fog and low cloud data. The first, most simple classification

model is the logistic regression (M1). The second is the ensemble classifier Random Forest

(M2). The third, ’black box’ model is a Convolutional Neural Network (M3).

3.2.1 Feature engineering

Both logistic regression (logreg) and Random Forest (RF) can handle many but 1-dimensional

predictor variables. That means that in our context of spatial predictors, like pressure

patterns, the map (= matrix) of the pressure cannot be given to the model as one predic-

tor, though the spatial pattern may contain the relevant information on fog or low cloud

occurrence.

Deploying the deepened understanding of fog and low cloud drivers gained in H1, the

spatial patterns are in this study reduced to single meaningful values, e.g. by averaging

over a certain region. This approach of capturing complex information in one value

is called feature engineering. The features are used as input to the statistical models.

Alternatively, spatial patterns can be fed to statistical models by entering each pixel as

an independent variable. This was done with MSLP by Andersen et al., 2020 to classify
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FLC versus clear days over the central Namib and yielded a hit rate of 94% and 17%

false alarm rate.

The inversion limiting the stratus vertical height can be captured with a stability

measure. The lower tropospheric stability (LTS) expresses the inversion strength between

the 700 hPa level and the surface by comparing the potential temperatures of the two

levels (Klein and Hartmann, 1993). Based on the findings in 4.1.1, I use the 925 hPa level

to capture the inversion at the Namibian coast and call it Namib Lower Tropospheric

Stability (NLTS):

NLTS = Θ925 hPa −Θsurface (3.1)

with Θ being the potential temperature.

A more elaborate measure of inversion strength is the profile-based estimated inversion

strength EISp, which has been shown to be a better proxy for low cloud cover than LTS

and EIS (Z. Wang et al., 2023). Within the bottom 5 km of the atmosphere, the layer

with the strongest inversion (m) and its lower and upper neighbour (base and top) are

used in the calculation

EISp = Θtop −Θbase − Γm(ztop − zbase) (3.2)

where Θ is the potential temperature and z is the geopotential height. Though it is

recommended to calculate EISp with the full available pressure levels of ERA5 data (up

to 1 hPa), the inversion at the Namibian coast is located below 800 hPa so I refrained

from downloading all pressure levels but used 500 hPa downwards.

The synoptic situation, mainly characterised by the SAH and CH, influences FLC

occurrence (Andersen et al., 2020). To get a grip on the position of each high-pressure

cell, the High Pressure Index (HPI) was calculated, which is the mean longitude of a

pressure cell weighted by the pressure values. This index was successfully applied by Jia

et al., 2015 to characterise the Siberian High in relation to Atmospheric Optical Depth

(AOD) and is formulated

HPI =

∑
Pi · Li∑
Pi

(3.3)

with P being the pressure and L being the longitude at each gridpoint i within a defined

area of P > pborder. The border pressure delineating the high has to be chosen specifically

for the high of interest.

A suitable isobar for the Siberian High was determined to be 1023 in Jia et al., 2015 but

no suitable isobar has yet been determined for the SAH or CH. A low isobar includes too

much area while a high isobar may be missing on some days. Based on visual expectation

of plotted HPIs with different isobars (6.6), 1017 hPa was chosen for the SAH and 1021

hPa for the CH.

The SST has been shown to have a significant impact on fog events at Luderitz, a
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coastal city south of CM (Olivier and Stockton, 1989). To emphasise the SST connection

to CM, the difference between each pixel to a coastal pixel near the station was calculated.

A ridge regression with all pixels as independent variables was then performed to identify

areas that impact the fog occurrence at CM most. The ridge regression is a regression

model where overfitting is prevented by controlling the coefficients via ridge regularisation

(L2-norm). See details about regularisation in 3.2.5. The ridge regression is adapted to

classification tasks by converting the labels into -1, 1.

3.2.2 Train-test split of time series

When the model were trained on the whole available dataset, there would be no unseen

data left to test if the model has learned general rules applicable to unseen data instead

of learning the training data by heart (overfitting). Therefore, a small share of the data

is held back from training and used as a test set. The predictions based on unseen data

are then a measure for the generalisation power of the model.

The train-test split is usually done at the very beginning before preprocessing to ensure

that the test set is truly unseen. The same preprocessing steps must then be carried out

on the train and test set separately, however at some points with care. If the data shall

be standardised during preprocessing, the mean and variance in the standardisation must

be the same for the train and test set to ensure that the values that are passed to the

model mean the same.

The test set must be independent of the training set and is therefore in most cases

randomly drawn. With time series, a random draw would not result in an independent

set, as one randomly drawn day in the test set would very likely resemble the day before

or after in the training set (temporal autocorrelation) and thus be very similar to the

training and easy to predict. That would lead to an overestimated, not representative

test accuracy.

Time series data is therefore usually split into two blocks with a gap in between to avoid

placing consecutive (and highly correlated) days into the train and test set. Intuitively

the future is predicted from the past so the first big block is assigned for training and

the later short block for testing. However, as we assume no trend in the data (3.3) and

are interested in the basic patterns and underlying mechanisms of fog and low cloud

occurrence in the Namib, the order of train and test should be ignorable.

With a pronounced fog and low cloud season, the test block has to cover all seasons

to give a representative evaluation of the model performance. This is easily illustrated:

If the model is biased towards fog (meaning it often confuses a cloud for a fog day) and

is tested with test data from the fog season, it will score better than it actually is - while

tested on cloud data it will score worse.

Bringing together the blockwise split and the requirement to cover all seasons leads
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to holding back the last year of the available 6.5 years of data, which is similar to the

commonly used 4/5 - 1/5 random split in other applications. Because this last year could

be somehow exceptional, it would be nice to use also other years for testing. This issue

of accidentally choosing an exceptional test set is addressed by cross-validation. In cross-

validation, the data is divided into k folds, e.g. 5 folds. Each fold is held back as a test

set once, while a model is trained on the other four folds. The mean test accuracy from

the five models is more robust and representative.

As said before, the explanatory goal of this study allows for splits of the time series

that do not follow the order train (past) - test (future). A cross-validation for time series is

therefore applied, cutting out each whole year from the time series once, training the model

on the rest and testing it on the cut-out year, in the end averaging the performances. A

gap of seven days is inserted around the cut-out test year to rule out temporal correlations

of the train and test set.

This split is currently not implemented in sci-kit learn (sklearn), the commonly used

Python library for machine learning tasks. Available splits are the random split (k-fold

split of shuffled data), k-fold split, and time-series splits that are designed for models

predicting the future from the current state (see fig.3.3). The offered k-fold split splits

Figure 3.3: K-fold split and time series split available in sci-kit learn compared to the time
series split implemented for fog and low cloud classification at Coastal Met, Namibia.

the samples by index, not by date and is therefore not capable of splitting an irregular

time series in regular time intervals. With the sklearn time series split the mean test

accuracy is calculated from models that were trained with different sizes of training data.

The desired split is the sklearn k-fold split, but splitting by date.

The following function performs the desired split and can be wrapped in a cross-

validation procedure:

1

2 import pandas as pd

3 def split_train_val(df , startday , space = 7):

4 ’’’ df is a features dataframe. startday is the startdate of the

year to exclude as test year. space is added (and dropped from

analysis) before and after the val set (in days). ’’’

5 # load sample dates
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6 dates = pd.read_csv(’path -to-csv -with -sample -dates ’)

7 # Days to exclude before and after test year

8 excl = (dates > (startday - pd.Timedelta(space))) & (dates <

startday+pd.Timedelta(days = 365 + space))

9 # one year from startday on is for validation

10 valdates = (dates > startday) & (dates < startday + pd.Timedelta(

days = 365))

11 # select the samples for a validation and training dataset

12 val = df.loc[valdates]

13 train = df.loc[-excl]

14 return train , val

Listing 3.1: Function to split timeseries data into one test year (anywhere within the

timeseries) and the rest (as training data) with optional space before and after the test

year.

The cross-validation procedures in sklearn are implemented as classes with a method

delivering the train and test set for the currently calculated model. The advantage of this

architecture is that the split can be included among other steps within a pipeline. To

make use of that advantage I created a resembling class for the k-fold time series split.

1 class my_cv:

2 def __init__(self , startdays =[’2014 -07 -01’, ’2014 -10 -01’,

3 ’2015 -01 -01’, ’2015 -04 -01’, ..., ’2019 -01 -01’]):

4 self.startdays = startdays

5

6 def split(self , X, y, groups=None):

7 df = X.copy()

8 df[’fog_01 ’] = y # add the labels before splitting

9 for day in self.startdays:

10 train , val = split_train_val(df , day , space = 7)

11 # add further preprocessing here , e.g. balancing

12 trainind = train.index.to_series () # get index

13 valind = val.index.to_series ()

14 yield trainind , valind

15

16 def get_n_splits(self , X, y, groups=None):

17 return len(self.startdays)

Listing 3.2: Cross validation (cv) class with k-fold time series split.

When the predictive ability of the model has been evaluated with test data and the

model is good enough to be used for predictions, it is trained again with all available

data. This procedure is based on the assumption that the final model will be as good as

or better than the tested models.
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3.2.3 Preprocessing

The preprocessing for machine learning includes several techniques, of which not all are

required by every model. The following is an overview of the techniques, while the sections

introducing the models explain which technique is used for which model.

Some models require complete input data without missing values in any predictor.

This can be achieved by removing the data points with missing values, thereby losing

information. The here applied option is filling the gaps by the mean of the predictor.

Different predictors usually come in different units and ranges that would make the

model focus on predictors with larger values (Castillo-Botón et al., 2022). To avoid this,

each predictor can be standardised by subtracting the mean and dividing by the standard

deviation (sd). The standardisation conserves the distribution of the values. Some of the

variation in the data comes from the seasonality which can also be removed before model

training. This ”deseasoning” is done by standardsising with the monthly mean and sd of

all training data. The same mean and sd are used to standardise the test data of which

no information must leak into the training.

In contrast to the deseasoning for the composites in 2.2.2, clear days are not considered

for calculating the mean and sd. The composites are for deducing knowledge on the

mechanisms, therefore a comparison to clear days is plausible, while the deseasoning here

is meant to crystallise differences between fog and low cloud days and make them easily

digestible for the models.

3.2.4 M1: logistic regression

On a gradient of transparency and complexity, the most simple classification algorithm for

a binary classification into fog and low clouds is the logistic regression (logreg), introduced

by Cox, 1958. It resembles the linear regression but uses not a linear function of the form

y(X) = β0 + β1x1 + β2x2 + ... + βnxn but a sigmoid function that yields either 0 or

after a sharp rise 1 as surrogate for the one or the other class (Hosmer Jr et al., 2013).

The logistic regression is fitted by maximum likelihood estimation (MLE) instead of the

ordinary least squares (OLS) used in linear regression. The sigmoid function,

f(x) =
1

1 + e−x
(3.4)

can be fitted to the training data by MLE and its outcome can be interpreted as a class

probability:

p(X) =
1

1 + e−(β0+β1x1+β1x1+...+βnxn)
(3.5)
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3.2.5 Regularisation

When the data is noisy and there are many explaining variables compared to sample size,

the basic form of the logistic regression is prone to overfit. That means, the coefficients are

closely fit to the data (including noise) and thus adapt a wide range of values. To fight the

meaningless heterogeneity of the coefficients, regularisation techniques can be used and

are implemented by default in the logistic regression classifier in sklearn (Pedregosa et al.,

2011). A regularisation is done by a penalty term that is added to the basic formulation in

Eq. 3.5. The penalty term contains the sum of the coefficients and, during optimisation,

forces the model to keep the sum of the coefficients small. With the absolute sum of the

coefficients (L1-regularisation, ”lasso”, Hoerl and Kennard, 1970), the model is forced to

only include the most important predictors, setting the coefficients of all other predictors

to 0. With the sum of squares (L2-regression, ”ridge”, Tibshirani, 1996), the coefficients

β are forced to a low range, thus yielding a balanced set of small coefficients:

λ

p∑
i=1

β2
i (3.6)

The weight of the penalty λ determines how rigorous the model is forced to ignore noise

in the data. A suitable value can be found automatically by bootstrapping. While the

L1 regularisation discards all but one from a group of correlated predictors and thus

throws away meaningful variables, potentially puzzling the user, the L2 method keeps

all predictors including the irrelevant (Akalin, 2020, Friedman et al., 2010). The elastic

net method (Zou and Hastie, 2005) combines both penalty terms but is computationally

more expensive. I use the default L2-regularisation within the logistic regression and in

the ridge regression for the SST feature (3.2.1).

3.2.6 M2: Random Forest

Random Forest (RF) is a popular machine learning technique that ensembles decision

trees (Breiman, 2001). For each of the M trees to build, a random share of size an is

drawn from the total of the data in a bootstrap manner (Biau and Scornet, 2016). The

random draw is implemented with replacement in sklearn (Pedregosa et al., 2011), offering

a data point to eventually occur multiple times in the sample.

Within the tree, the sample is split multiple times and each split is called a node.

The split is done using the Gini impurity on all or a subset of the features (explaining

variables) and selecting a specific criterion from one feature. As a specific example for

the case of fog or low cloud classification, the feature could be the mean relative humidity

at the coast and the criterion could be ”> 0.7”. After the split, the procedure is applied

again and again to the growing number of subsamples. It stops at a subsample that

consists entirely of items with the same value of a feature or when only one item is left
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or when all features have been used for splitting. The depth of the tree is the number

of iterations of the procedure or, synonymously, the number of nodes one would have to

pass to get to one bottommost node, also called a leaf node.

The higher a feature appears within the tree the more impact it has on the final

decision. The converse argument then says that the position of the feature in the tree can

be used as a measure of feature importance, expressing how important that feature is to

decide the class of the sample. The feature importance can be used to identify relevant

drivers of the studied phenomenon.

One decision tree alone can already be used as a classifier. In a random forest, the

predictions of many trees are combined to a final decision. The individual trees look

different because they have been built on an individual, randomly selected portion of

the whole data. They may also differ when trained on the same data sample because two

features can get equally ranked for one node by the Gini impurity and then one is selected

randomly. In a classification task, the final decision of the ensemble was originally found

by a majority vote (Breiman, 2001). However, the current implementation in sklearn

(Pedregosa et al., 2011) combines the final class probabilities of the trees.

Hyperparameters are parameters that specify how the model works and therefore

are not learned during training. Finding suitable hyperparameters (tuning) can improve

the model performance (Castillo-Botón et al., 2022). The trees can be cut to a certain

depth (pruning) to avoid intensive computations. The best number of trees compromises

between better model performance with more trees and less computation costs with fewer

trees. At a certain number of trees the performance increase levels off. The default depth

in sklearn is 100.

3.2.7 Evaluation metrics

The metric is meant to give an impression of how well the model can predict a sample

and must be chosen according to the specific task to solve. Most metrics are calculated

from the confusion matrix that is in our case (declaring fog as 1 and low clouds as 0):

fog predicted low cloud predicted
fog labeled true positives (TP) false negatives (FN)
low cloud labeled false positives (FP) true negatives (TN)

Table 3.1: Confusion matrix for binary classification of fog or low clouds in the Namib.

The widely used accuracy is defined as the percentage of true predicted values on all

predictions: true predictions (TP + TN) / all predictions (TP + TN + FP + FN). As

low clouds are more frequent than fog (higher fog day frequency 20-60 km inland than

at the coast, Seely and Henschel, 1998), a high accuracy could be awarded to a model

that assigns the majority class ’low cloud’ to all samples and has no skill. One metric
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especially designed for unbalanced data is the F1-score:

F1 = (2 · (Precision) · (Recall))/((Precision+Recall)) (3.7)

with

Precision = true predicted fog/all predicted fog (3.8)

Recall = true predicted fog/all fog labeled (3.9)

Another strategy is to use rank-based metrics like the Receiver Operating Characteristic

(ROC) where the True Positive Rate (= Recall) is plotted against the False Positive Rate

(false predicted clouds / all labeled clouds) for different thresholds of classifying ’fog’ or

’low cloud’. The area under the resulting curve (ROC AUC) is a measure of the model

skill and should be maximal.

3.2.8 Recursive feature elimination

The recursive feature elimination (RFE) is a method to determine the most relevant

features for the prediction task. First, the model is trained with all features. Using some

measure of feature importance (e.g. the feature importance based on the Gini impurity in

Random Forest), the least important feature is determined and discarded. This procedure

is repeated until the desired number of most important features remains. Because of

interactions between features, the most or least important feature varies depending on

what features are present in the dataset. That makes RFE more than just selecting the

most important features of a once-trained model.

3.2.9 M3: CNN

Analogies to image recognition

CNNs are extremely successful in image recognition tasks (Wu and Chen, 2015). These

tasks were formerly solved by experts spending large amounts of time for feature engi-

neering, to reduce spatial information on images to one-value features. The hand-crafted

features are created in a try-and-error procedure and cannot be better than their de-

signer. The big advantage of CNNs is that they learn patterns from the raw training

data (end-to-end learning), thus being able to learn even patterns that are unrecognised

by humans (Chollet, 2021). The patterns can be recognised independent of their location

on the image which is a valuable skill for image recognition tasks but also for applica-

tions in nature science. A downside of the approach is, that the learned patterns are in

some cases difficult to extract from the model and thus do not necessarily yield a deeper

understanding of the modeled phenomenon.

The maps of MSLP or SST can be seen as images showing recognisable spatial patterns.
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Like colour images combine three independent (not ordered) channels, three maps of

meteorological variables could be combined. Thus, our classification can be redefined as

classifying meteorological situations on images as fog situations or low cloud situations.

For the feature engineering in 3.2.1, the data within areas of large mean differences of

fog and low cloud days are manually cut out and reduced e.g. by taking the average of

that area. With a CNN the raw maps of e.g. MSLP can be used as input from which

the CNN learns the relevant patterns automatically. Because CNNs recognise patterns

location-invariant, the seasonality-driven varying position of e.g. the high-pressure cells

would not dilute prediction skills.

Fundamentals

Deep learning models, as a subcategory of machine learning algorithms, are characterised

by their structure, many stacked layers of basic blocks (a ”deep” stack). Blocks are

functions with parameterisable weights. The convolutional layers used in CNNs consist of

a set of filters, that slide step by step over the image while performing reducing operations

on the respective image part (convolution).

The weights of the layers are adjusted to the training data via optimisation. Starting

with random values, the weights are updated via gradient descent on a loss function. The

loss measures the difference between the true value of the sample and the value predicted

by the model, and is defined by the user (e.g. cross entropy for binary classification).

Instead of calculating the loss of each sample, the loss can be calculated for a batch of

several samples, thereby accelerating training and avoiding large weight oscillations.

The training data is given to the model in an iterative process, i.e. one sample or

batch passes the layers until a final prediction; the prediction is compared to the true

value which yields a certain loss; the loss function gives the direction in which to adapt

the weights of all the passed layers; the layers are adapted and the next sample or batch

is taken. When the model has seen the whole training data, one epoch is over and a

performance metric, e.g. accuracy or F1-score, can be calculated based on a validation

set.

As each layer operates on the result of the former, the layers ground one over the other

and contain hierarchical information. Bottom layers are sensitive to basic features, upper

layers to complex abstract features. The bottom layers of a model can thus be reused for

training the model on a completely different task (transfer learning).

Implementation

The CNN was built using the keras python library (Chollet et al., 2015) with tensor flow

backend (Abadi et al., 2016). To train a network the data is split into three parts: training

and validation for learning and test data to test the trained model. The training data is
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used to adapt the weights in each layer. The validation data is used to calculate after

each epoch how well the network performs on unseen data, i.e. its generalisation power.

The metric used for training and validation data is the same (here accuracy and F1-score)

but can differ from the loss (binary cross entropy). The loss function quantifies the loss

in each input, the metric quantifies how well the network performs on validation or test

data.

As the network optimises its weights to the training data, the loss will decrease con-

tinuously with each epoch. With enough capacity and epochs, the network can learn

more and more characteristics of the individual training data, in the end learning each

image by heart. Not every characteristic of every single image is helpful in predicting the

target variable and the network loses generalisation power. This phenomenon is called

overfitting and can be dealt with by several strategies.

The loss and the metric of validation and training data can be plotted during training.

Overfitting starts in the epoch where validation loss or validation error starts to increase.

It is good practice to cut the number of epochs in which the training metric still improves

but the validation metric stalls or worsens (Chollet, 2021).

The best option to reduce overfitting is to add more and diverse training samples. The

samples can also be preprocessed to hold only relevant information. For this purpose, the

seasonality was subtracted from the data. A further option is to tune the hyperparameters

of the model. A small capacity (e.g. fewer layers) forces the model to learn only the most

important (general) rules to predict the target values instead of memorizing features that

are characteristic of the single training images. One can start with a small net and increase

the size until overfitting starts. Apart from that, L2-regularisation is a common tool to

force the model to keep only relevant information.

Alternatively to a self-made model from scratch one can use the convolutional base

of a pre-trained model and only train a self-made classifier on top. The convolutional

base contains weights that are already trained on large samples to identify basic visual

structures such as edges. These valuable weights should not be changed, so the base

is frozen while the classifier is trained on the new training data. After the classifier is

trained, the upper layers of the convolutional base can be unfrozen and trained together

with the classifier (fine-tuning). At that point, the classifier must already be trained

because random initial weights would cause large weight changes. These could harm the

pre-trained base via backpropagation. For the same reason, the learning rate has to be

small (Garcia-Garcia et al., 2017).

All available pre-trained networks in keras are trained on the ImageNet database

which holds RGB images mostly of furniture and animals Chollet, 2021. As RGB images

have the three channels red, green, blue, the CNNs are built to take input images with

three channels. Though it is possible to adapt a CNN to other-dimensional input, for

this simple potential assessment, three input variables are selected for training based
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on the findings of H1. The self-made CNN is constructed to take multi-channel input.

MobileNetV2 (Sandler et al., 2018) was chosen as pretrained network. Çevik, 2020 gives an

overview of pre-trained CNNs and their prediction efficiency. MobileNetV2 is a lightweight

network that was considered sufficient for the purpose of this study.

3.2.10 Baseline scenario

The goal of this study is to outperform fog predictions that are solely based on the well-

known climatology. I thus calculate a baseline accuracy from the climatology alone as a

reference for my further models. At first, the mean fog day frequency for each month is

calculated from the available station data (2014-2020). These frequencies are used as fog

probabilities. For each real FLC day in the station data period, a ’fog’ or ’cloud’ event is

randomly drawn with the given fog probability of the respective month. Each real event

is used as truth data and compared to the random draw to compute overall accuracy and

confusion matrix elements. As the procedure contains the random draw as a stochastic

element, it is repeated 1000 times to get a mean baseline accuracy.

3.3 Implicit assumptions

When taking several years of data and analysing them for basic patterns, we implicitly

assume that there is no change in these patterns within the chosen time frame. In this

study, we take five and a half years of data to characterise the synoptic circulation and

SST in the low cloud situation versus the fog situation in Coastal Met by contrasting

them. A poleward shifting of the SAH has been observed for 1980-2014 (Jury, 2018) and

predicted for the future until 2100 (Jury, 2013). This was associated with a rotation to

more easterly surface winds over Namibia from 1980 to 2014. However, I retaliate these

linear trends by assuming that the difference between low cloud and fog situations is

bigger than the temporal shift within the five and a half years.
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Chapter 4

Results

To treat H1, the ERA5 data is analysed in median composites as well as in a case study

to gain insights about the drivers of fog and low cloud occurrence in the central Namib,

specifically at the station Coastal Met (CM). For H2, three models are trained on fog /

low cloud occurrence at CM and the corresponding ERA5 data to assess the potential of

machine learning for fog and low cloud differentiation.

4.1 H1: Discriminative patterns

Based on the literature, the ERA5 variables MSLP, t, q, RH, SST and wind components

u, v, w were selected and investigated for discriminative patterns (find a definition of

the variables in 2.1.3). The median composites indicate general patterns related to fog

and low clouds at CM, while the case study allows a detailed look at the interplay of the

drivers during a specific fog night.

4.1.1 Composite analysis

The reanalysis variables MSLP, t, q, RH and wind components show distinct patterns

on coastal fog days versus low cloud days. If not stated differently, patterns that are

consistent over all seasons are treated. Because of the seasonal peak of fog occurrence

in AMJ, the median fog composite of all data mainly depicts the situation in these peak

months; while the median low cloud situation mainly shows the situation in the peak low

cloud months SON. To account for seasonal differences the time series was grouped into

seasons and median images of the four seasons were plotted separately. The three main

identified drivers of fog and low cloud occurrence are the atmospheric inversion capping

the marine boundary layer, the synoptic scale pressure, and the local wind system.
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Pressure patterns

In fig. 4.1 a-c the overall median of MSLP anomalies (anomalies compared to long-term

monthly MSLP) is shown. The difference between fog anomaly and low cloud anomaly

(fig. 4.1 a) points to interesting areas where the fog and the low cloud situation differ.

The two maps of the separate situations (fig. 4.1 b,c) allow for a characterisation of each

case.

Figure 4.1: Median composites of mean sea level pressure (MSLP) at 5 UTC during fog
and low cloud events at Coastal Met, Namibia. a,b,c anomalies to deseasoned longterm
mean. a difference fog-cloud, b,d fog, c,e low cloud. x indicates Coastal Met station.

The fog and low cloud separate maps show a similar anomaly pattern that is stronger

on low cloud days and weaker on fog days, thus indicating a common reason for the

advection of the stratus deck. Characteristic feature of the common pattern is an anoma-

lously low pressure (blue in fig. 4.1 b,c) over the southern subcontinent compared to

normal (i.e. the total of foggy, cloudy and clear days). The low inland pressure is more

pronounced and also reaches further north and northeast on low cloud days.

Over the Atlantic Ocean, the low cloud situation shows stronger positive anomalies

than the fog situation, indicating overall higher pressure on low cloud days. On fog days

there is a blueish area over the Atlantic Ocean in fig. 4.1 b. It appears in all seasons

(Appendix fig. 6.1), though of varying position and extent. The location suggests a

connection to the SAH that exists throughout the year, shifting north in austral winter

and south in austral summer. In both fog and low cloud situations, the anomaly at the
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location of the SAH is complemented by higher pressure over the northern parts of the

ocean, thus indicating a lesser pressure gradient from the SAH to the equator than usual.

Another general difference in MSLP anomalies holding over all seasons can be seen

within the regional surrounding of Coastal Met. In fog situations, the gradient between

higher pressure on the ocean and lower inland pressure lies close to the coastline. In low

cloud situations, the gradient is much sharper and set back inland towards the Great

Escarpment (blue in fig. 4.1 a-c).

To link the anomalies to real existing pressure features, maps of the median absolute

values are provided (Fig. 4.1 d,e). The high pressure on the Drakensberge and East

African plateau (SE on the continent) is visible in both situations and all seasons, but

stronger on the fog days. Compared to low cloud occurrence, the fog situation is charac-

terised in all seasons either by a stronger CH or by a weaker SAH or both (fig. 4.1 d,e).

The pressure pattern in the Coastal Met region is less obvious but visible in both the fog

and the low cloud median situation.

Inversion

To investigate the behaviour of the temperature inversion capping the marine boundary

layer, latitudinal curtain plots through Coastal Met are provided (fig. 4.2). The inversion

can be seen in (fig. 4.2 d,e) and is located where the cool air of the marine boundary layer

(green) is topped by warmer air (yellow). It is inclined from the ocean towards the coast

and is strongly developed on both fog and low cloud days, with an enhanced temperature

contrast between the cool marine boundary layer (MBL) and the warm subsiding air from

above (fig. 4.2 b,c). The top of the MBL is in both situations exceptionally cool. This

creates especially on fog days a gradient within the MBL, which is warmer than usual at

the sea surface, indicating a greater moisture load and ability to produce a stratus when

cooled. Both fog and low cloud situations show warmer temperatures over land (fig. 4.2

b,c), going with the low-pressure anomaly seen before.

The difference between the fog and the low cloud situation is depicted in fig. 4.2 a,

and highlights the different position of the inversion. The inversion is lower on fog days

than on low cloud days. It is not only marked by a temperature gradient but also by

a gradient of specific humidity q (Appendix fig. 6.2). The exceptionally moist MBL is

overlain by the exceptionally dry free troposphere, capping the stratus at different heights.

Over the year the inversion capping the MBL varies in its westward extent. Most of the

year it is over its full extent lower or higher in fog or low cloud situations, respectively.

In DJFM the elevation difference appears only near the coast. The season DJFM is the

season where the described patterns are mostly weaker than in the other seasons. E.g. the

MBL is moister than usual in both fog and low cloud situations but not so much in DJFM.

However, the dry anomaly above the MBL is more pronounced in DJFM, indicating that

the moisture gradient is the relevant driver (fig. 4.3).
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Figure 4.2: Latitudinal profiles of median temperature (t) at 5 UTC during fog and low
cloud occurrence at Coastal Met, Namibia (x). Grey shaded area indicates the southern
African landmass. a difference of fog and low cloud anomalies b,c anomalies during fog
and low cloud events, respectively d,e median temperature during fog and low cloud
events, respectively. Quivers denote wind (upward component multiplied by 20).

The latitudinal extent of the inversion turns out to be much wider than the local

surrounding of Coastal Met and the Namib (blue in fig. 4.4). On higher pressure levels

the inversion stretches out and mimics the shape of the continent. The shallow inversion

near the coast is more restricted in its extent and does not completely match the coastline;

instead, it follows the cold anomalies in sea surface temperature (fig. 4.5). Meanwhile,

the SST does not show consistent differences between fog and low cloud days.

Besides the inversion height, fog and low cloud days also differ in the behaviour of the

extra warm and dry air subsiding over the continent. On fog days the warm anomaly is

spread over the continent and reaches further to the eastern coast than on low cloud days

(fig. 4.2 a-c), matching the pressure anomalies.

Wind

The wind vectors show that the subsidence of the warm continental air is much greater

on fog and low cloud days than usual, but extremely so on fog days (fig. 4.2 a). It is

complemented by an upward motion at the beginning and top of the Great Escarpment,

which is also stronger on fog days. The latter could be attributed to the local land-

sea-wind system, where a thermally induced upward movement extends the dynamically

developed low pressure over the southern subcontinent. The winds responsible for the

inland advection are not visible on this scale.

The advection can be seen in the anomalies of the horizontal wind components (quivers

in fig. 4.4). In low cloud situations, the wind blows more from the NW than from SW like

in fog situations, this is visible from the surface to about 900 hPA. The inland advection

is on fog days already visible at 1000 hPa, while on low cloud days it becomes apparent
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Figure 4.3: Latitudinal curtains of specific humidity (q) anomalies during fog and low
cloud events at Coastal Met, Namibia (x) in different seasons. AMJ = April, May, June.
SON = September, October, November. DJFM = December, January, February, March.
Grey shaded area indicates the southern African landmass. Quivers denote wind (upward
component multiplied by 20).
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Figure 4.4: Spatial extent of the temperature inversion at different pressure levels. Left
plots are the median temperature (t) anomaly during fog occurrence at Coastal Met,
Namibia (x) at 5 UTC, right plots during low cloud occurrence. White are areas beneath
the land surface, quivers indicate wind.

Figure 4.5: Median sea surface temperature (SST) anomaly during fog (left) and low
cloud (right) events at Coastal Met, Namibia, at 5 UTC. x indicates Coastal Met station.
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Figure 4.6: Ceilometer backscatter during the fog night 22./23.09.2017 at Coastal Met,
Namibia.

Figure 4.7: Mean sea level pressure (MSLP) at 03 UTC during fog occurrence on 2017-
09-23 and one night before and after. Quivers denote the 850 hPa wind.

from 950 hPa upwards.

4.2 Case study

The general findings of the above section can be held against a specific fog event at

CM to gain more detailed knowledge about the interplay of the proposed drivers and

the temporal development of a fog event. In the night 22./23.09.2017 the ceilometer

backscatter indicates fog from about 23 to 6:30 UTC (fig. 4.6).

The large-scale MSLP confirms the pattern found in the previous analysis. In contrast

to the nights before and after, there is a pronounced high pressure over the southern tip

of Africa between 3 and 6 UTC, sending winds towards the Namibian coast (fig. 4.7).

The shown winds at 850 hPa are just high enough to overcome the Great Escarpment and

push down the stratus. A closer look (fig. 4.8) shows the local pressure and wind system

that is driven by the land-sea contrasts. A high pressure over the Great Escarpment

sends winds downward to the coast. Down at Coastal Met it is calm and allows the fog
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Figure 4.8: Mean sea level pressure (MSLP) during the fog night 22./23.09.2017. Quivers
denote the surface wind at 10m.

Figure 4.9: Temperature (t) and relative humidity (RH) at 950 hPa during the fog night
22./23.09.2017 at 3 UTC with corresponding wind (quivers).

to settle (10m wind is shown). The pressure gradient strengthens over night and faints

before noon. While the onset of the fog occurrence around 23:30 UTC is well coordinated

with the appearance of the pressure gradient, the dissipation happens at 4:50 UTC (fig.

4.6) about half an hour after sunrise while the pressure gradient is still present.

The temperature inversion is located at Coastal Met and stretches to the south of the

station. It is accompanied by an even larger area of comparably dry air (fig. 4.9).

The vertical distribution of t and q corresponds to air movement implied by the wind

quivers in (fig. 4.10, detailed figure of q showing advection in Appendix 6.4). At 19 UTC,

before fog occurrence at CM, the air is still rising above the Great Escarpment, probably

a remainder of the earlier thermal uplifting. The air coming from the continent is carried

away by this upward stream and comes down further away roughly over the coastline.

The upward air movement then weakens and its location retails inland during the night

until ceasing completely (Appendix fig. 6.3). Later in the night (from about 0 UTC on)

the wind blows down almost parallel to the gently sloped land surface towards the ocean

but is dismissed by the cold and moist layer covering the ground. The winds warm on

their descent and intensify the gradient between the cold ground layer and warmer air
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Figure 4.10: Temperature (t), specific humidity (q) and relative humidity (RH) at 19 UTC
(before fog event, upper, row) and 3 UTC (during fog event, lower row) at a latitudianl
slice through Coastal Met, Namibia, with corresponding wind (quivers, w is multiplied
by 20).

above. They also seem to push back the layer, as there is much less moisture inland at 3

UTC than at 19 UTC. Moisture and temperature make up a thick layer of high relative

humidity in the evening, situated mostly over the ocean and barely touching the land. At

night, this layer has become thinner and has swapped over on the land, yet not reaching

inland stations like Gobabeb at about 15◦E.

4.3 H2: Classification

In this section, the potential of machine learning for the discrimination of fog and low

clouds is assessed. First, some introductory statistics are shown on the information content

of the features that were designed as input for the logreg and RF. After a comparison

of all three models, logreg and RF are presented together with the best-rated features

followed by the Convolutional Neural Network (CNN) and the baseline.

4.3.1 Feature engineering

With the understanding gained in the foregoing analysis, the drivers of fog and low cloud

occurrence shall be packed into meaningful variables that serve as input for logreg and

RF. Besides several simple features that were created by calculating the mean, maximum

or minimum of a variable in a certain area, special focus was put on the inversion and the

synoptic pressure situation. Additionally, a feature for the SST was designed.
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Pressure patterns

The two subtropical pressure cells SAH and CH have been identified as potential drivers

of fog or low cloud occurrence at CM in 4.1.1. To express the pressure cells in one variable,

the HPI is calculated. The HPI combines the location and strength of a pressure cell by

calculating the pressure-weighted mean location of the high-pressure cell, delineating it

by a border isobar. For all considered isobars from 1016 to 1023 the HPIs on fog days

differed significantly from the HPIs on low cloud days (Kruskal-Wallis test p << 0.01) for

both SAH and CH. Though the HPI shows considerable variation for both pressure cells

when plotted to a map (Appendix fig. 6.6), the variation cannot be directly attributed to

fog or low cloud days from sight. The centers of fog day and low cloud day HPIs overlap

and the overall pattern does not differ from clear day HPI (not shown). Broken down to

the seasons (see Appendix fig. 6.7 and 6.8), only DJFM and AMJ latitudes of the SAH

differed significantly (Kruskal-Wallis p < 0.05) on fog versus low cloud days, and SON

longitudes of the CH. The CH shows a latitudinal position shifting during austral winter
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Figure 4.11: Continental high pressure index (CHPI) with border isobar 1021 hPA in dif-
ferent seasons during fog (red) and low cloud (blue) occurrence at Coastal Met, Namibia.

(JA in fig. 4.11) and a longitudinal shifting in austral summer (DJFM). As fog days

occur mostly in austral winter, the slight westerly bias of fog day CHPIs is probably an

artifact caused by seasonality. Corresponding histograms to fig. 4.11 showed that the

distributions of HPI longitude and latitude vary over the seasons but are similar for fog

and low cloud days within the seasons (Appendix fig. 6.8).

Temperature inversion

A characteristic driver of the stratus elevation at CM is the inversion in front of the

Namibian coast. Both Namib lower tropospheric stability (NLTS) and profile-based es-

timated inversion strength (EISp) are stability measures, the NLTS calculated from two

pressure levels (925 hPa and surface) and the EISp from the strongest layer within the

whole profile up to 500 hPA.

Both variables indicate a stable atmosphere on fog and low cloud days over the ocean

northwest of the central Namib, compared to the greater surrounding. Especially on
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Figure 4.12: Namib Lower Tropospheric Stability (NLTS) median anomalies over the year
on fog days and on low cloud days. The values on the inner continent cannot be safely
interpreted because of the elevated terrain.

fog days, the atmosphere is more stable over a broad region northwest of the continent.

The NLTS draws a pattern very similar to the temperature maps (fig. 4.13). Despite

the deseasoning there are considerable differences between the seasons in the broad scale

anomalies (Appendix fig. 6.5).

The pEIS is stronger NW from CM at fog days but the amplitude and the exact

location of the stronger pEIS varies. In DJF the anomalies are even reverse in some areas

(fig. 4.13).

Sea surface temperature

The SST was shown to impact fog occurrence at Lüderitz, a costal station south of CM

(Olivier and Stockton, 1989), so SST was not completely discarded from analysis, though

the composite analysis for CM has not yielded distinct patterns for fog versus low cloud

days. A ridge regression with deseasoned SST indicates that the area south from CM

is relevant for the fog/low cloud distinction at CM (fig. 4.14). A second relevant area

appears in the East of the subcontinent. Both are positively related to fog occurrence.

4.3.2 Logreg, RF, feature selection

To predict a fog / low cloud event at 5 UTC at Coastal Met station, logreg, RF and CNN

models were used. The best performance was achieved by the logistic regression with

an F1-score of 69.24% and accuracy of 67.69%, followed by Random Forest with F1 of

62.72% and accuracy of 64.21% (fig. 4.16). The CNN did not predict better than the

baseline, which was implicated as random draws from seasonal probabilities.
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Figure 4.13: Profile-based estimated inversion strength (EISp) median anomalies during
fog (left) and low cloud (right) events at Coastal Met, Namibia, in different seasons.
AMJ = April, May, June, SON = September, October, November, DJFM = December,
January, February, March. x indicates Coastal Met station.
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Figure 4.14: Coefficients from a ridge regression of sea surface temperature (SST) differ-
ence to a pixel (red x) near Coastal Met, Namibia (black x). Target factor is fog or low
cloud occurrence at Coastal Met, λ = 100 000.

Logistic regression

The logreg is the most simple method for supervised binary classification. In cross-

validation with the custom time series split (3.2.2), the best mean prediction result was

an F1-score of 69.24%, achieved by standardising the data during preprocessing (65.51%

without standardisation). The F1-score balances between precision and recall, thus as-

suring that the prediction skill for both classes is assessed.

The standardisation is known to improve prediction results because arbitrary range

differences between predictors (e.g. due to different units) are removed (Ait Ouadil et al.,

2023). To crystallise the meteorological drivers from the seasonality, the data was, alter-

natively to the overall standardisation, standardised by the monthly mean and standard

deviation of the training data. This yields a lower cross-validated mean F1-score below

60%. There is no bias towards fog or low clouds.

In fig. 4.16 the test scores of the excluded test years during the cross-validation are

shown. The lowest scores occur at the end of the time series with test year 2020, indicating

exceptional conditions in that year. A periodical variation appears in the test scores when

the SST feature is included.

Random Forest

With randomised search cross-validation (RandomizedSearchCV in sklearn) the best hy-

perparameters for the RF were determined in a cross-validation procedure, yielding a

maximal depth of 21 and a number of trees of 500. With the best RF model, the follow-

ing confusion matrix (CM) was achieved for testing with 2019 and 2020: which means
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Figure 4.15: Best performances of the three model types logistic regression, Random
Forest and Convolutional Neural Network built from scratch, on distinguishing fog and
low cloud occurrence at Coastal Met, Namibia, compared to baseline (random draw with
monthly probabilities).

fog predicted low cloud predicted
fog labeled true fog 90 false clouds 48
low cloud labeled false fog 59 true clouds 102

Table 4.1: Confusion matrix for binary classification of fog and low clouds at Coastal Met,
Namibia.

an accuracy of 64.21%, precision of 65.21% and recall of 60.40%, making an F1-score of

62.72%. Running the cross-validation procedure with F1 or ROC AUC as scoring yielded

no better performing model.

Feature importance

According to feature importance, the 5 most important features of the best RF model

are the HPI longitude of the SAH, the NLTS, the SST relative to a pixel near CM in the

area east from the subcontinent, the HPI latitudes of the SAH and the MSLP (fig. 4.17).

These features were also the chosen features when applying recursive feature elimination

(RFE) with RF estimator. With logreg estimator, the 5 most important features were

NLTS, AHPI lat, eastern relative SST, western relative SST and EISp. A detailed feature

description is given in table 4.2.
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Figure 4.16: Logistic regression with all features, compared to including standardisation in
preprocessing and standardisation with monthly mean and standard deviation of training
data.

Figure 4.17: Feature importance of the best Random Forest model for classifying fog and
low cloud events at Coastal Met, Namibia. Find a detailed description of the features in
table 4.2.
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4.3.3 CNN

Two CNNs were trained on the maps of meteorological variables (instead of the features),

one from scratch and one pre-trained CNN. For training a CNN from scratch, the best

result was a test accuracy of 56.89% and F1-score of 47.57% achieved with a CNN

consisting of one block (fig. 4.18) and trained with deseasoned data (optimizer: adam,

learning rate: 0.001, stride: 3). During training, accuracy and loss of the training data

behave like expected (accuracy going up, loss going down) while validation accuracy is

barely going up (4.19). Based on the curves, the CNN was trained for 5 epochs with

which the named performance was achieved. Predicting the training samples after the

initial 15 epochs yielded perfect prediction of fog and low clouds, indicating together with

the low test accuracy that the model was overfit. From the raw, not standardised data,

the CNN was not able to identify any relevant pattern as it predicts clouds for all samples

of training and test data independent of how many layers are included.

Figure 4.18: Architecture of the convolutional neural network built for a potential analysis
concerning the binary classification of fog and low clouds in the Namib Desert.

The pre-trained CNN (mobileNetV2) takes 3-channel images, so three variables were

selected. Due to their high feature importance in the RF and logreg, the NLTS, MSLP

and SST were chosen. The best learning curves of the classifier on top of the frozen base

were achieved with deseasoned data. However, validation accuracy did not exceed 55%,

and also training accuracy stalled below 60%. Defreezing the top 50 layers of the base

and fine-tuning them yielded no improvement.

4.3.4 Baseline scenario

The baseline scenario was computed by drawing random events from the monthly climato-

logic probability of a fog day and comparing them to the real events of a test year. When

excluding different years for testing the mean baseline accuracy of 1000 trials ranged from

56.82 % for 2020 to 61.46 % for 2017 (see exemplary Fig. 4.20). The total range of
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Figure 4.19: Learning curves of a 1-block CNN built from scratch and trained with desea-
soned ERA5 variable maps to classify fog and low cloud events at Coastal Met, Namibia.

accuracies is 45.62 % to 72.67 %. The mean baseline F1-score of 54.53% was lower than

Figure 4.20: Baseline accuracies of fog classification computed from long-term monthly
fog probability. Probabilities are the mean monthly share of fog days on all fog and low
cloud days from August 2014 to December 2020, while excluding 2018 as the test year.

the mean accuracy of 59.03% and it ranged in total from 23.70% to 73.02%.
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Chapter 5

Discussion

The overall goal of this study was to deepen the understanding of mechanisms that lead

to fog and low cloud occurrence in the central Namib (H1) and to explore the potential

of machine learning to classify a stratus as fog or low cloud, based on meteorological vari-

ables (H2). Both hypotheses could be confirmed, with the only limitation that the CNN

did not outperform the simpler algorithms. So far, the hypotheses have been treated

independently. However, during the evaluation of the machine learning algorithm per-

formances, further insights about relevant drivers emerged, as some features were ranked

more important than others for predicting fog or low clouds. In the following, an extensive

description of processes leading to fog and low cloud occurrence will be given (H1), with

comparisons to literature and eventual consultation of the results from feature engineering

and modeling. Thereafter, the procedure of feature engineering and the performance of

the different machine learning algorithms (H2) will be discussed focusing on the modeling

aspects.

5.1 New perspectives on the formation of fog and low

clouds: conceptual framework

The fog and low cloud occurrence at Coastal Met turned out to be driven by four main

drivers: the inversion capping the marine boundary layer (MBL), the synoptic pressure

pattern, the local wind and the sea surface temperature (SST). The pressure and the

inversion appeared in the composite analysis, the wind system was highlighted by the

case study and the SST was recognised as an important feature by machine learning. The

most direct driver of fog and low clouds is the height of the inversion layer that keeps the

advected stratus down. The height of the inversion layer is on a synoptic scale determined

by the constellation of the two subtropical high-pressure cells, the SAH and the CH. The

large-scale pressure pattern is complemented by the local wind system that is governed

mainly by daily temperature variation. Figure 5.1 broadly visualises the new concept of
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Figure 5.1: Conceptual visualisation of how synoptic pressure drives fog and low cloud
occurrence in the central Namib. Figure modified from Andersen et al., 2019. The arrow
symbolises warm and dry wind.

fog and low cloud situations in the Namib. The SST is apparently essential as well but

its specific role needs further study.

5.1.1 Pressure

Beginning on a large scale, fog and low cloud situations are characterised by similar

anomalies from the usual pressure. The anomaly patterns are more pronounced on low

cloud days, indicating that low clouds are meteorologically an intensified version of fog.

This insight is new to the fog and low cloud research in the Namib, as the different

meteorological situations of fog and low clouds have been described extensively only on

a local scale, based on station observations (Seely and Henschel, 1998, Lancaster et al.,

1984). Large-scale research exists but has focused on the joint category of fog and low

clouds (FLC) (Veloso et al., 2024, Andersen and Cermak, 2018). The finding is plausible

when assuming that both fog and low clouds are advected stratus with the difference that

low clouds are situated higher and are transported further inland. Thus the results also

emphasise the common advective nature of both phenomena, in contrast to dissenting

findings from isotope analysis (Kaseke et al., 2017, Kaseke et al., 2018).

In low cloud situations, a low-pressure anomaly on the land is sharply separated from

the anomalous high-pressure coastal strip by the Great Escarpment. The trade winds,
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that blow along the coast and over the cold Benguela current with its moisture-loaden

marine boundary layer, are probably pulled inland by the low pressure and touch Coastal

Met especially because of the thermal low south of the station. The role of this local low

pressure was already highlighted by Olivier and Stockton, 1989.

Over the ocean, the median composites revealed a weaker pressure gradient from the

SAH to the ITC than usual, so that the trade winds are possibly easier deflected inland.

The local inland deflection of the wind is a known feature of the local climate of the central

Namib (Weischet and Endlicher, 2000, Preston-Whyte and Tyson, 1988), but differences

in its manifestation have not yet been linked to large-scale synoptics and fog and low

cloud occurrence. At the same time the SAH turned out to be stronger in low cloud than

in fog situations, probably producing strong winds that reach up higher in the atmosphere

and also further inland.

The pressure over the southeastern plateau was found to be anomalously low in all

seasons, especially in austral winter when there is normally a thermal high. This indicates

that a pronounced continental high hinders low cloud occurrence. The continental low-

pressure anomaly has already been shown to be related to FLC occurrence in comparison

to clear conditions (Andersen et al., 2020). As the majority of FLC events are low

cloud events, these findings can, cautiously, be compared. Andersen et al., 2020 interpret

synoptic-scale disturbances as the responsible element for FLC occurrence, triggered by

a large-scale gradient of low pressure on the continent and high pressure over the ocean.

Possibly, the weak high pressure sends only weak winds to the ITC in winter or catches the

trade winds in summer by a strong thermal low at the Congo-air-confluence, thus allowing

the stratus deck at the Namibian coast to rise and mount the coast to travel further

inland. Or in other words, a pronounced high continental pressure sends airmasses over

the continent to the central Namib that pushes down the stratus and prevents it from

mounting further inland. The impact of continental air on fog and low clouds in the

Namib was also found by Veloso et al., 2024. They saw in ERA5 data, that the easterly

airmasses that arrive in the Namib are moister during the low cloud season, and suggest

that these airmasses are less subsiding than the dry ones during the fog season.

In fog situations the inland low-pressure anomaly appears to be less pronounced than

on low cloud days and in fog peak months AMJ and JA the border between high-pressure

coast and low-pressure inland is closer to the coastline. The weaker (or nearer to the

ocean) inland low around Coastal Met can probably pull the stratus deck of the MBL

not as far inland as in the low cloud situation. In all seasons except for DJFM, the

pressure of the CH and also of the Indic High is higher than in the low cloud situation.

Complementing the discussed low cloud situation, the southeastern high pressure sends

air masses over the continent, that dry and warm on their way. These air masses probably

push down the moist cool stratus after they get over the barrier of the Great Escarpment.

Supporting this idea, the same explanation was also used by Veloso et al., 2024 to explain
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FLC occurrence in the fog season AMJ. However, the present study is the first one to

apply the conceptual understanding to disentangle the processes leading to fog and low

clouds.

5.1.2 Inversion

A pronounced temperature inversion capping the marine boundary layer (MBL) was ap-

parent in the ERA5 composites of low cloud and fog situations, accompanied by a sharp

gradient in specific humidity. As described by former studies, the warm and dry air over

the cold and moist MBL hinders convective ascent and thus determines the height of the

stratus (Logan, 1960, Eckardt et al., 2013). The inversion could be shown to be lower in

fog situations and higher in low cloud situations, confirming that only the higher inversion

allows the stratus to mount the Namib inland. This has, up to now, only been shown

indirectly by the annual variation of the MBL height. The MBL is thin during the fog

season in early austral winter and thickens during summer (Veloso et al., 2024).

The inversion is not only a local phenomenon, rather it rises from the coast over a

latitudinal extent of more than 1500 km to about 800 hPa over the ocean. The composite

analyses revealed that the inversion is higher over its full extent in low cloud situations,

except during the summer months DJFM. This underlines that it is driven at least par-

tially by large-scale synoptics. Also, the inversion still mimics the shape of the coastline

at higher elevations, again suggesting that it is not only driven by the spatially limited

cold upwellings of the Benguela current.

An anomalously warm and dry free troposphere over the moist MBL was found on both

fog and low cloud days, especially in the austral summer months DJFM and especially

in fog situations. This confirms earlier findings of a dry anomaly associated with FLC

cover derived from satellite imagery (Andersen and Cermak, 2018) and was apparent in

ERA5 data (Veloso et al., 2024). Dry air above the MBL lets the MBL emit longwave

radiation which can lead to a cooling of the MBL top (Adebiyi and Zuidema, 2018). The

cooled MBL top compared to a warm MBL base could be shown in the composites (4.2).

The gradient within the MBL was more pronounced in the fog case, probably leading

to increased condensation within the MBL. Veloso et al., 2024 find that the difference

between the potential temperature of the MBL and the SST is larger in July (2.4 K) than

in January (0.5 K) which supports the idea of increased condensation near the ocean

surface in fog situations.

Bringing together the findings for temperature and specific humidity, the troposphere

above the MBL is drier on low cloud days while it is warmer on fog days. This potentially

indicates a different origin of the air masses that, however, cause the same capping effect.

The resulting gradient in relative humidity and the condensation process might thus be

driven primarily by a temperature gradient on low cloud days and by a humidity gradient
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on fog days. The interplay of temperature and specific humidity was also emphasized by

the case study, as it was shown spots of exceptionally warm air are not congruent with

spots of exceptionally dry air, both in horizontal (fig. 4.9) and vertical extent (fig. 4.10).

The two relevant elements recognised in composite analysis, the pressure and the

inversion, were given to machine learning algorithms in the form of features. The features

related to the SAH and to the inversion were among the 5 most important features, thus

confirming our qualitative explanation for fog and low cloud occurrence at CM because

they capture the impact of the SAH and the local temperature inversion. The SAH

features express the position of the SAH weighted by the pressure and both latitudinal

and longitudinal variations contributed to fog and low cloud occurrence. The high-ranked

feature for the inversion describes the inversion strength between 925 hPa and the surface.

5.1.3 Wind system and case study

The presented results highlight the role of the local wind system especially in the case

study of the 22./23.09.2017 fog night. During the daytime, the mountains of the Great

Escarpment warm up and cause low pressure that deflects some of the cool and moist air

of the trade winds blowing parallel to the coast. In the case study, the inland advection

started in the morning, which is in line with descriptions of the local climate (Seely and

Henschel, 1998, Spirig et al., 2019).

In the case study, the inland air motion ceased at nightfall and it became calm at

Coastal Met around midnight. Between 22 and 23 UTC a temperature-induced pressure

gradient between the mountains of the Great Escarpment and the maritime coastal plains

becomes apparent. The mountain regions cool down fast after sunset and a thermal high

pressure forms. The subsiding air warms on its descent towards the coast and settles

above the cool and moist air from the ocean that was blown in earlier. The downward

air movement from the cooling mountains establishes a shallow inversion and is most

probably the cause for the low elevation of the stratus, occurring at Coastal Met as fog.

Favourable synoptics may promote the local winds that force down the inversion. The

interplay between the synoptic scale and the local scale was found by Andersen et al., 2020

in a ridge regression with MSLP to predict FLC. Regional scale MSLP yielded the best

results, because, according to the author, the regional scale bridges between the local and

synoptic scale. To my understanding, the high pressure over the southern tip of Africa

sends winds over the continent towards the coast that dry down while traveling over the

land. When the local subsidence starts at night, the existing air over the mountains is

already especially dry because of its origin. Station measurements confirm easterly winds

in the early morning (Spirig et al., 2019 during September 2017). The easterly wind

blowing from the continent was visible in our composites at 850 hPa, which is the same

pressure level that was identified by Veloso et al., 2024 to cause low cloud cover in the
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central Namib during the fog season March -August. The large-scale subsidence over the

Namib has been found for FLC during the fog season by other studies (Andersen et al.,

2020, Veloso et al., 2024) but the composites presented here showed that it is greater on

fog days throughout the year. Together with the case study, the results reveal that the

fog events outside the peak season are caused by the same meteorological processes as

within the season.

At the coastline, the anomaly composites showed that the wind blows more from SW

in fog nights and more from NW in low cloud nights. This is in line with early assumptions

about the origin of the stratus: That a southwesterly wind touches the cold ocean surface

and brings fog to the Namib while the higher stratus deck of the MBL is advected inland

by the local sea breeze as low clouds (Seely and Henschel, 1998). However, Spirig et al.,

2019 noted northerly winds at the station during fog events at Coastal Met and NNW

winds during fog events at the inland station Gobabeb (which corresponds to a low cloud

event in the present study). The wind direction at an inland station might, though, not

represent the overall advection wind. The turning of wind directions from NW to NNE

at inland stations during fog events is discussed in detail in Seely and Henschel, 1998. In

a case study of a low cloud event during the night of 2017-09-27 / 28, Spirig et al., 2019

identified stratus advection from the NW which supports the presented findings.

Fog dissipation started in the presented fog night at about 5:30 UTC. Advection

of marine air started again between 9 and 10 UTC but the pressure gradient already

weakened between 5 and 6 UTC, corresponding to the time of fog dissipation. The

dissipation is most likely timed by the rising sun at 4:51 UTC (6:51 AM local time). The

data show a lagged warming in the local temperature at 2m, probably because some solar

energy goes into the process of fog dissipation first.

5.1.4 SST

Another important element for fog and low cloud occurrence was the sea surface tempera-

ture (SST). It was one of the 5 most important features in logreg and RF, which confirms

earlier indications of its essential role for fog and low cloud occurrence in the Namib

(Olivier and Stockton, 1989, Andersen et al., 2020). This role was, however, not further

determined during the composite analysis, because there was no consistent pattern over

all seasons. Two important areas of SST, though, were revealed by ridge regression, one

near the coast south of CM, and one near the eastern coast of southern Africa. In both

areas, SST is positively associated with fog compared to low clouds.

The positive relation near CM is in line with findings from Andersen et al., 2020.

Similarly, they found a positive relation of SST near the coast to FLC occurrence only for

AMJ, which is the fog season. Contrasting findings come from Veloso et al., 2024, who

find that SST and MBL water vapor content is little related, especially in AMJ.
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While many authors have emphasized the role of the cold Benguela upwelling in its

role to lower the inversion directly at the coast (Seely and Henschel, 1998, Eckardt et

al., 2013), warmer SST further south may also have a considerable impact on fog and

low cloud occurrence. Following the argumentation of Olivier and Stockton, 1989 and

Andersen et al., 2020, warm ocean water south of the station might be necessary to

create a temperature gradient towards the station. The air descending within the SAH

is dry and needs to take up moisture on its way to CM. Coming from the south it has

to pass warm water to take up moisture, followed by a cool ocean surface to make the

moisture condensate. Possibly, a steeper gradient of ocean surface temperatures causes

the air to descend even more and lowers the inversion layer. This explanation fits the SW

wind direction anomaly that appeared in the fog composites.

The SST on the eastern coast of southern Africa has not yet been related to fog and

low clouds in the Namib. The warm waters of the Agulhas ocean current might cause the

positive relation to fog occurrence. As a first guess, a warmer SST might act as an energy

source and enhance the discussed processes leading to fog occurrence. More specifically,

the warm SST could steepen the thermal gradient between land and sea, thus adding to

the impact of the CH.

5.2 The potential of machine learning

5.2.1 Feature design and seasonality

To serve as model input for logreg and RF, the 3-dimensional ERA5 data had to be

reduced to single-value features. Based on literature and insights from the composites,

three elements were focused on: the temperature inversion which was captured by the

Namib lower tropospheric stability (NLTS) and profile-based estimated inversion strength

(EISp); the synoptic pressure captured by the SAHPI and CHPI latitudes and longitudes;

and the SST captured by the mean difference of two different areas to a coastal pixel near

CM. Several other variables were given to the models as mean, minimum or maximum of

specific areas determined visually from the composites (table 4.2). The designed features

turned out to be generally more important than the means of raw variables in specific

areas, indicating higher information content.

The comparably simple measure of inversion strength, NLTS, was ranked more impor-

tant than the more elaborated EISp. The NLTS was adapted from the commonly used

LTS by calculating the temperature gradient of the 925 hPa instead of 700 hPa to the

surface. The EISp captures the inversion strength based on the steepest gradient within

a temperature profile up to 500 hPa. EISp has shown better performance than LTS in

global applications on low cloud cover (Z. Wang et al., 2023) and the LTS was shown to be

strong also in clear conditions offshore of the Namib (Veloso et al., 2024). The superiority
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of the NLTS in the present study shows that the pressure level of 925 hPa, compared to

the original LTS with 700 hPa, was a suitable choice together with the area focused by

the feature. Here the simple measure, cautiously adapted to the use case, outperformed

the more complex, universal measure.

Though the SST showed no distinct patterns in the composite analysis, it appeared

among the most important features in logreg and RF. The special part of this feature was

the idea to relate all pixels to a coastal pixel near CM. The high importance of the feature

emphasises the need to work with gradients and relative measures. The applied ridge

regression has proven a suitable tool to determine areas of interest for drivers that evade

examination by simple median composites. Ridge regression has shown good performance

also in classifying FLC and clear days in the Namib from MSLP (Andersen et al., 2020).

Though the discrimination of fog and low clouds is probably more difficult than the

discrimination of FLC and clear days, ridge regression is a promising tool for further

research on fog and low clouds in the Namib.

The HPI was more important for logreg and RF than expected from statistics, and also

simple MSLP was ranked comparably high. This highlights the importance of the synoptic

pressure situation for the occurrence of fog and low clouds in the central Namib. However,

the HPI relies on delineating single pressure cells, which was a successful approach for

the Siberian High (Jia et al., 2015) but might not be the best concept to apply in the

subtropical high-pressure belt. Images of single fog events revealed the frequent presence

of a ridging high when the SAH and the IH merge. The ridging high has been identified

as typical element of austral winter climate (Weischet and Endlicher, 2000) and spoils the

delineation of two discrete high-pressure cells. I suggest treating the high-pressure belt

near the subcontinent as one entire area for HPI calculation in further studies.

Both the HPI features and the SST revealed their importance for fog and low cloud

occurrence only when used in classification models. In contrast to the simple median

composites of each variable, the models can take into account interactions between the

predictors. This suggests that the interaction between the drivers is crucial for fog and

low cloud occurrence. The position of the SAH and CH as well as SST are thus probably

indirectly related to fog and low clouds and their impact relies on other co-occurring

factors. To further design meaningful features for the differentiation of fog and low clouds,

a sound understanding of the driving processes is needed that might not be achievable by

simple statistics.

Capturing the conceptual findings from H1 in useful features for modeling turned out

to be challenged by seasonality. The temperature inversion was displayed in the stability

measures NLTS and EISp which showed differences between fog and low cloud days.

However, the differences were not uniform over the seasons despite standardising the data

by the monthly mean and standard deviation. Although the same general pattern could be

recognised in all seasons, the anomalies varied in their strength and the regions of strong
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anomalies varied in their location. Ideally, the values of the feature should be higher in one

group (e.g. fog) than in all seasons of the other group. Otherwise, the model will hardly

be able to distinguish the two groups without information on the season. The varying

location and strength of the inversion over the seasons complicates the preparation of a

feature that is meaningful in all seasons.

Especially in DJFM the differences between fog and low cloud anomalies of pEIS were

weak or in some regions reversed, which was also the case for other variables, though

less pronounced. Some studies have shown that the LTS and EIS explain only 4% of

near-time LCC variations when the monthly mean is subtracted compared to 12% with

seasonality (Klein, 1997, De Szoeke et al., 2016). This shows that separating causal

relations from coincident co-occurrence due to seasonal variation is difficult in low cloud

research. Accompanied by our study, the general impression forms that the mechanistic

drivers of low clouds are to date only partially understood and little more than can be

deduced from seasonality. This study is a first approach to disentangle seasonality from

causal mechanisms. DJFM is the season with the fewest fog occurrences, so median images

might be less reliable than in other seasons. To get a grip on the meteorological drivers

of fog and low clouds, further study has to focus on fog events within this season.

A periodical variation became visible in the test years scores (see fig. 4.16) when

including the SST feature in the logreg. The variation is not annual but a little more

than two years. This indicates that the SST and its driving forces, the ocean currents,

might follow their own seasonality that is not directly related to the annual movement of

the ITC (as is e.g. the pressure pattern). Such variation would not be caught by monthly

standardisation. The SST is partially driven by the El Nino Southern Oscillation (ENSO)

but no relation was found between the irregularly occurring ENSO phases and SST or fog

and low cloud days (ENSO time series from Alizadeh, 2024). According to Veloso et al.,

2024, the summerly (DJF) moisture transport from the continent to the free troposphere

of the Namib region strengthens during the cold phase of the ENSO. As the ENSO events

occur in irregular intervals of one to several years (Alizadeh, 2024), a longer time series

is needed to study its impact on fog and low clouds in the Namib.

Synthesising the gained conceptual understanding and the reflections on feature en-

gineering yields some ideas for features in further research. As discussed, the height of

the temperature inversion is the most important element in determining the height of the

advected stratus. Both NLTS and EISp measure the strength of the inversion rather than

its height. This may be adequate in studies focusing on FLC as a joint category (Veloso

et al., 2024, Z. Wang et al., 2023). For the differentiation of fog and low clouds, the two

features might not capture the desired information. In the calculation of the EISp, the

ERA5 pressure level of the steepest gradient of the potential temperature is found and

used to calculate the inversion strength. In further research, not the inversion strength

but the pressure level of the inversion could be used as a feature, potentially capturing
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the relevant information. As the MBL is capped by a gradient in humidity as well as

temperature, a feature that combines both variables could inspire further research.

Pre-fog data was not included in this study to keep it a simple potential analysis. The

LTS has been shown to forego LCC change about 24 - 36 hours (Mauger and Norris, 2010).

In the Namib, Andersen et al., 2020 found in a ridge regression with MSLP that FLC

were predicted best with the actual or one-day-before MSLP compared to longer time

lags. However, they attributed the good performance of the pressure of the foregoing day

to temporal autocorrelation of synoptics and FLC events. Conceptually, the fog and low

cloud occurrence might be more related to the meteorological conditions in the foregoing

evening than in the early morning when the fog or the low cloud is already present. This

is especially plausible as we assume an advection process. Especially the highlighted

large-scale synoptics may have delayed local effects.

5.2.2 Comparison of machine learning algorithms

In order to assess the potential of machine learning, three different algorithms were trained

to distinguish fog from low clouds at CM. The skills of the models were compared to a

baseline scenario that represents guessing from season. Logreg and RF showed better

prediction skills than the baseline and will be discussed first, followed by the CNN that

yielded an F1-score below 45%.

With better predictions than the baseline, logreg and RF showed that some relevant

mechanistic information was contained in the features given to the models. It opens

the potential to classify fog and low clouds from meteorological data which is a thrilling

perspective, given that research so far had to rely on the punctual and temporally limited

station data. Large-scale studies have treated fog and low clouds as one joint category

and the responsible drivers for the two situations could only be outlined by characterising

the peak seasons (Andersen et al., 2019, Veloso et al., 2024). With classification by

meteorological parameters, fog occurrence over the last 80 years could be traced back,

because the ERA5 data used in this study is available back to 1940. This could contribute

to filling the knowledge gap around the past and future of the Namib as a fog-dependent

ecosystem, which could so far only be treated by modeling at coarse resolution (Haensler

et al., 2011) or by repeated photography (Rohde et al., 2019).

The achieved model prediction skills of 67% accuracy and 69% F1-score (logreg) and

64% accuracy and 63% F1-score (RF) are promising in the context of potential analysis.

The differentiation of fog and low clouds with meteorological variables at the time of

occurrence has not been attempted so far (Lakra and Avishek, 2022), so that there is

no benchmark to compare the scores. In fact, the results of the present study create

a benchmark for further studies concerning the differentiation of fog and low clouds.

Most studies that classify fog come from now-casting at airports, where the fog event
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is predicted from a time series of foregoing data (J. Park et al., 2022, Fabbian et al.,

2007). In remote sensing, fog and low clouds are jointly treated as FLC (Andersen and

Cermak, 2018, Cermak, 2018) or as low cloud cover (LCC) compared to higher clouds

or clear conditions. Recently, the fog precipitation in the Namib could be approximated

by CALIPSO Lidar data with an R2 of 0.85 (Qiao et al., 2022). The R2 is a metric for

a regression task and cannot be directly compared to classification metrics like accuracy.

However, the presented 67% accuracy is considered a good performance, considering the

complexity of the meteorological processes.

On a gradient of model complexity, the most simple model (logreg) yielded the best

performance. It is usually outperformed by RF, as has been shown in a meta-analysis

of binary classification tasks (RF better in 70% of cases, Couronné et al., 2018). The

logreg can be better than RF when the number of features is small compared to the

number of observations. (Couronné et al., 2018). It yields higher accuracies when applied

to datasets with high variations in the predictors (Kirasich et al., 2018) and can deal

better with imbalanced datasets which was shown for storm prediction (Ruiz and Villa,

2008). Random forest is sensitive to imbalanced data because the Gini impurity favours

the majority class (Cieslak and Chawla, 2008). The number of features here given to

the models is with 15 comparably small to what RF models can handle, which may

be one reason why RF did not outperform the logreg. However, the slight imbalance

of the dataset, consisting of 623 low cloud samples and 504 fog samples might have

caused the lower prediction skill. In the original approach of this study, only FLC-positive

days were included and split into fog and low clouds by station fog measurements. The

obtained dataset was heavily imbalanced towards clouds with about twice as many low

cloud samples than fog samples, which yielded zero-skilled RF models. This indicates a

strong sensitivity of RF to imbalanced data and highlights the challenges associated with

modeling meteorological phenomena with pronounced seasonality.

The logreg showed better skill on generally standardised data than on data standard-

ised with the monthly climatological mean and sd. The standardisation method can have

a significant impact on the model skill (Ait Ouadil et al., 2023). Here, the monthly

standardisation was meant to eliminate seasonality from the data and focus on the mete-

orological mechanisms. This made predictions worsen, indicating that the chosen features

did not represent the meteorological mechanisms alone and that the remaining seasonal-

ity was important to predict the class. It can be concluded that, along with all technical

problems of feature engineering, the meteorological drivers of fog and low cloud occur-

rence in the Namib are to date not entirely understood and need further study. However,

including seasonality enabled the model to distinguish between fog and low clouds with

an F1-score of 66.81% which highlights the potential of predicting fog and low clouds

from meteorological data.

Taking the end of the time series (last year 2020) as test data yielded especially low
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prediction scores of the logreg compared to testing on other years. The low prediction

scores are possibly related to exceptional weather in that period. The numbers of fog

and low cloud days show an unusual fog day peak in January 2020 and little fog during

the year, accompanied by few low cloud days around the turn of the year (2019/2020).

The predictions of the logreg considering seasonality are thus possibly put off by the

unusual fog and low cloud seasonality in 2020, which might be caused by unusual weather

conditions. Hence we interpret the low prediction skill of the meteorology-focused logreg

(with monthly standardisation) to anomalous weather conditions during these periods,

blurring the mechanisms that usually lead to fog or low cloud events. This is even more

plausible having in mind the morphological heterogeneity among the fog events. As the

ceilometer data for the case study demonstrates, fog events can look different and the fog

precipitation is not quantitatively related to the duration of the fog event or the visibility

(as was also shown by Spirig et al., 2019). Those are co-determined by the droplet size

or the density of the stratus etc. (Spirig, 2022).

The CNN yielded low accuracy of about 57%, which was above baseline (54%), but a

low F1-score of 43% (baseline 59%). The F1-score combines recall and precision and can

therefore, in contrast to accuracy, not be fooled by only predicting the majority class. The

low F1-score was caused by overestimating low cloud occurrence. Deep learning models

are extremely complex model architectures that are known to require large amounts of

training data. A CNN was outperformed by simpler machine learning models until a

sample size of 1500 on classifying spectroscopy data (Ng et al., 2020). The benchmark

dataset for image recognition, MNIST handwritten digits, contains 70 000 images (Wu

and Chen, 2015). With 1127 samples of which the minority class, fog, comprises 504

samples, the here used data set is comparably small. Only 112 fog days fall into the low

cloud season SON and 71 into NDJ, further reducing the number of fog and low cloud

samples that are available for direct comparison during the same meteorological setting.

The lack of model skill can thus be attributed to the lack of enough training data.

Compared to logreg and RF, the CNN was given the raw information of the variables

instead of condensed information in the form of features. The overload of explanatory

variables may have caused the instant overfitting of the model. CNNs, like RF, are

sensitive to class imbalance which has initiated research around different dealing strategies

(Pouyanfar et al., 2018, Chen et al., 2021). The sensitivity comes from optimising over

all predictions which drags the model towards predicting the majority class. Possibly,

the slight imbalance in the fog and low cloud dataset affected the CNN even more than

the RF. Unstandardised data yielded completely useless predictions which shows that

the CNN is sensitive to noise. The results of machine learning algorithms can be largely

affected by standardising or normalising the input data (Castillo-Botón et al., 2022).

Two CNN models were trained, a CNN built from scratch and a classifier on top

of the pretrained mobileNetV2. The best CNN trained from scratch showed instant
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overfitting. In contrast, fine-tuning the pre-trained CNN mobileNetV2 yielded a stalling

training and validation accuracy below 60% and was therefore not further tested. The

different behaviour of the scratch CNN and the finetuned CNN can probably be attributed

to the number of input variables given. While the self-made CNN was created to take

eleven variables as input, the pre-trained CNN was given only three variables due to the

pretraining on 3-channel images.

Training the scratch CNN on eleven variables probably allowed the net to adapt its

weights closely to the seen samples, resulting in overfitting. In contrast, the pre-trained

CNN apparently got too few variables to adequately adapt its weights, as it yielded only

low cloud predictions even on the training data. The three variables were chosen based on

the feature importance assessed with RF and logreg: raw SST, MSLP and NLTS. They did

apparently not hold enough information to predict the training samples. This indicates

that more variables are needed to describe fog occurrence in the Namib adequately and

highlights the complexity of the meteorological processes.

The low performance of the CNNs encourages to question the proposed concept of

treating meteorological situations as an image recognition task. Possibly the transfer is

not as straightforward as expected, as recognising an object or pattern within an image

may be in some ways different from recognising a meteorological situation. E.g., different

meteorological conditions could lead to the same phenomenon, like condensation can occur

due to cooling or due to pressure increase. This was thought to be analogue to recognising

an object of different appearances. However, with the limited process understanding of

the current state, there is no knowledge about how diverse the conditions differentiating

fog and low clouds actually are. Also, the absolute positions of e.g. the pressure cells

compared to the continent may indeed matter, while the unique skill of CNNs is to find

patterns in images independent of their location.

There is still great potential in transferring the concept of image recognition to the

classification of atmospheric phenomena by meteorological variables, as only limited time

was put into building the CNN and tuning its hyperparameters. The hyperparameters

have a significant influence on the learning process and thus on the final classification skill.

The number of adjustable hyperparameters is large, like the structure and capacity of the

model, learning rate, optimiser, loss, to name a few, and they cannot be found other than

by try-and-error (Ahmed et al., 2020, Radiuk, 2017). Considering the sensitivity of com-

plex models to imbalanced or noisy datasets and the variety of possible hyperparameter

combinations, more effort has to be invested in the preprocessing and model tuning to

assess the potential of deep learning for distinguishing fog and low clouds in the Namib.

As a potential improvement of the conceptual frame, the latitudinal curtain plots of the

temperature inversion or humidity gradients could be used as input, as they probably

contain more information compared to noise.
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5.3 Other aspects

The drivers of fog occurrence have been examined in this study under the assumption that

they have been stationary within the examination timeframe. However, under climate

change, some drivers are supposed to change which could alter the fog occurrence. The

constellation of the two quasi-permanent high-pressure cells over the South Atlantic and

over the southern continent was shown to be an important factor for the elevation of the

stratus and thus for the spatial pattern of fog occurrence in the Namib. For an A1B

emission scenario until the year 2100, Jury, 2013 gets a poleward drift of the subtropic

high-pressure cells together with a sea level rise of about +1.5 mm/year. Kaseke et al.,

2017 considered an already changing water cycle system when isotope analysis claimed

more than half of the fog events at Gobabeb to originate from evaporated groundwater

and local cooling instead of transported ocean water in 2017.
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Conclusion

This study is the first attempt to explicitly differentiate fog and low clouds in the central

Namib using large-scale meteorological variables. Fragmented knowledge on the processes

that drive fog and low cloud occurrence comes from local observations at weather sta-

tions or from attributing meteorological characteristics of the peak seasons AMJ to fog

occurrence and SON to low cloud occurrence. Two hypotheses guided this work, the first

one concerning the drivers that lead to fog and low cloud occurrence and the second one

addressing the potential of machine learning algorithms to differentiate between the two

cases.

Specifically, the first hypothesis states that fog occurrence is characterised by different

meteorological conditions than low cloud occurrence. This could be confirmed by median

composites of a chosen set of ERA5 variables. Consistent patterns of anomalies from

climatology were found throughout all seasons and were confirmed within a case study.

Three main drivers could be recognised: The synoptic pressure, especially the SAH and

the CH; the height of the temperature inversion at the Namibian coast; and the local

wind system, which is probably enhanced by the synoptic pressure.

The second hypothesis states that machine learning can, based on the relevant mete-

orological drivers, differentiate fog from low cloud events. The hypothesis was confirmed,

as the two machine learning algorithms logistic regression and Random Forest yielded pre-

diction accuracies of 67% and 64%, respectively, and F1-scores of 69% and 63%, which

exceeds guessing from seasonality. As a second part of the hypothesis, deep learning was

expected to outperform the named models. This could not be confirmed, as the chosen

model architecture, a Convolutional Neural Network, could not be sufficiently trained

with the available small dataset.

The presented work founds a new process understanding of fog and low cloud occur-

rence. During low cloud occurrence, the SAH is strong and the CH is weak, which allows

the marine boundary layer to extend higher up. This constellation also allows the local

sea breeze to transport the offshore stratus far inland. During fog events, a stronger CH

sends winds over the continent that subside over the Namib and, merged with the local
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wind, push down the temperature inversion capping the marine boundary layer. Ridge

regression of the SST revealed that it could be another large-scale driver of fog and low

cloud occurrence. Besides a spot south of Coastal Met, logreg and RF gave high feature

importance to SST in a limited region in front of the eastern coast of southern Africa for

which there is currently no qualitative explanation. This highlights the complexity and

interactive nature of the processes that lead to fog or low clouds in the central Namib.

A major challenge was to detangle causal relationships from co-occurrence due to

seasonality. The median composites were prepared separately for the seasons and checked

for common patterns. However, the applied deseasoning by standardisation with monthly

means does not account for positional shifts of e.g. the pressure cells during the year, as

it is applied in each pixel independently. The varying location of spatial patterns also

complicated the feature engineering for logreg and RF. Concerning modeling, the slight

imbalance of the dataset due to more frequent low cloud events was probably the reason

why the RF performed not as well as the simple logreg.

During this work, some specific aspects caught attention that may inspire further re-

search. Apparently, gradients may be more important than the raw variables at specific

locations. A horizontal gradient in SST from the ocean to CM as well as vertical tem-

perature and moisture gradients within the MBL and from the MBL towards the free

troposphere have been recognised. They appear persistently over annual variations and

may thus be an inspiration for further feature engineering. For fog to actually materialise,

the exact ratio of temperature and specific humidity is crucial. The case study has shown

that there can be high q reaching far inland, but without the matching temperature, no

fog appears. So, while it is clear that low temperature and high q make fog occurrence

likely, the specific spatial and temporal interplay of the two, driven by air masses of dif-

ferent nature, wait for further study. The inversion that is relevant for fog and low clouds

at Coastal Met has been shown to extend from the tip of the subcontinent to the Angolan

coast. More studies are needed to investigate if this location of the inversion produces

fog at the whole coastal strip of the Namib or if coastal fog at, say, Lüderitz is linked to

a different spatial pattern of stable conditions.

The presented results highlight the potential of machine learning for classifying fog

and low clouds from given meteorological variables. They open the perspective to model

the Namib fog regime of the past and future which is highly desired information as fog is

the only water source for many organisms in the desert and can also be used to generate

irrigation and drinking water for human purposes. Deep learning can still, with more

data and intensified hyperparameter tuning, hold a great potential for the differentiation

of fog and low clouds in the Namib.
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Figure 6.1: Median composites of ERA5 median sea level pressure anomaly (MSLP) on
fog days (left) and low cloud days (right), over the whole available time series (2014-07 to
2020-12) and broken down to seasons (upper case letters denote the month, e.g. AMJ =
April, May, June). x indicates Coastal Met, Namibia, where the fog or low cloud occurred.
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Figure 6.2: Curtain plots of median specific humidity anomaly (q) on fog days (left)
and low cloud days (rigth), over the whole available time series (2014-07 to 2020-12) and
broken down to seasons (upper case letters denote the month, e.g. AMJ = April, May,
June). The y-axis is elevation in pressure levels (hPa). x indicates Coastal Met, Namibia,
where the fog or low cloud occurred. Grey area indicates the landmass.
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Figure 6.5: Median anomaly composites of the lower tropospheric stability (LTS) calcu-
lated with pressure levels 925 and 1000 hPa (Namib lower tropospheric stability, NLTS),
on fog days (left) and low cloud days (right) and for the whole data and broken down to
seasons (upper case letters denote the month, e.g. AMJ = April, May, June). x indicates
Coastal Met, Namibia, where the fog or low cloud occurred.
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p = 1016 p = 1017 p = 1018 p = 1019

p = 1020 p = 1021 p = 1022 p = 1023

HPI

Figure 6.6: High Pressure Index (HPI) calculated with different border isobars, for South
Atlantic High and Continental High, during fog nights (red) and low cloud nights (blue)
at Coastal Met, Namibia.

Figure 6.7: South Atlantic High Pressure Index (SAHPI) calculated with border isobar
1021 hPa during fog nights (red) and low cloud nights (blue) at Coastal Met, Namibia.
Histograms show the distributions of longitudes and latitudes.
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Figure 6.8: High Pressure Index calculated with different border isobars, for South At-
lantic High and Continental High, during fog nights (red) and low cloud nights (blue) at
Coastal Met, Namibia.
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