KIT | KIT-Bibliothek | Impressum | Datenschutz

GraSAME: Injecting Token-Level Structural Information to Pretrained Language Models via Graph-guided Self-Attention Mechanism

Yuan, Shuzhou 1; Färber, Michael ORCID iD icon 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Pretrained Language Models (PLMs) benefit from external knowledge stored in graph structures for various downstream tasks. However, bridging the modality gap between graph structures and text remains a significant challenge. Traditional methods like linearizing graphs for PLMs lose vital graph connectivity, whereas Graph Neural Networks (GNNs) require cumbersome processes for integration into PLMs. In this work, we propose a novel graph-guided self-attention mechanism, GraSAME. GraSAME seamlessly incorporates token-level structural information into PLMs without necessitating additional alignment or concatenation efforts. As an end-to-end, lightweight multimodal module, GraSAME follows a multi-task learning strategy and effectively bridges the gap between graph and textual modalities, facilitating dynamic interactions between GNNs and PLMs. Our experiments on the graph-to-text generation task demonstrate that GraSAME outperforms baseline models and achieves results comparable to state-of-the-art (SOTA) models on WebNLG datasets. Furthermore, compared to SOTA models, GraSAME eliminates the need for extra pre-training tasks to adjust graph inputs and reduces the number of trainable parameters by over 100 million.


Verlagsausgabe §
DOI: 10.5445/IR/1000172732
Veröffentlicht am 30.07.2024
Originalveröffentlichung
DOI: 10.18653/v1/2024.findings-naacl.58
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator ISBN: 979-88-917611-9-3
KITopen-ID: 1000172732
Erschienen in Findings of the Association for Computational Linguistics: NAACL 2024
Veranstaltung Findings of the Association for Computational Linguistics (2024), Mexiko-Stadt, Mexiko, 16.06.2024 – 21.06.2024
Verlag Association for Computational Linguistics (ACL)
Seiten 920 – 933
Nachgewiesen in Scopus
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page