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ABSTRACT
Efficient on-device inference of convolutional neural networks
(CNNs) is becoming one of the key challenges for embedded sys-
tems, leading to the integration of specialized hardware accelera-
tors in System-on-Chips (SoCs). Due to the memory-bound nature
of convolution workloads, it is essential to optimize CNN accel-
erators for maximum data re-use to reduce memory bandwidth
requirements. The row-stationary (RS) dataflow enhances data re-
use in CNN processing by storing a subset of input activations,
weights and partial sums locally within the Processing Elements
(PEs). However, designs of RS accelerators are not publicly available,
and many implementation details remain undisclosed. This paper
introduces an open-source implementation of a CNN accelerator
with RS dataflow. The complete VHDL source code is provided as
well as a simulation environment that enables in-depth analysis
of different workloads. We contribute an exploration of various
design parameters and evaluate their impact on performance. Fur-
thermore, we present an enhanced dataflow that is optimized for
parallel processing of convolutions with a high number of channels.
Our optimizations yield a performance improvement of up to 2.3𝑥
for convolutional layers of common neural networks. An FPGA
prototype of the accelerator design, featuring 70 PEs on the Xilinx
UltraScale+ ZCU104 platform, achieves 4.012 GOPS at 100 MHz.
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Figure 1: Architecture overview of a 3x3 CNN accelerator
implementing a row-stationary dataflow. In the standard
configuration, input activations move diagonally, weights to
the right and partial sums upwards within the systolic array.

(GLSVLSI ’24), June 12–14, 2024, Clearwater, FL, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3649476.3658737

1 INTRODUCTION
One trend has been present for many years already and will cer-
tainly persist in the future: the demands on processing power of
computing systems are continuously increasing. In the past, grow-
ing demands on processors could be met through Dennard Scaling
and Moore’s Law that guaranteed a steadily increased performance
of processors by reducing the transistor size. However, neither prin-
ciple still applies to the modern development of semiconductor
engineering. An additional challenge is the gap between processing
power and efficiency in memory access. The so-called memory
bottleneck heavily limits applications when faced with increased
data demands. A prominent area with high memory and process-
ing demands is the field of deep neural networks (DNNs) that in-
clude computationally intensive convolutional layers and frequent
off-chip memory accesses. In the embedded field, neither general-
purpose processors (GPPs) nor graphics processing units (GPUs)
are equipped to handle these requirements due to power limits [1].
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A way to enhance performance and energy efficiency for cer-
tain tasks is the integration of application-specific accelerators. An
example of accelerating data-intensive workloads can be seen in
modern smartphones, where on-device inference such as face de-
tection or voice recognition is supported by neural processing units
(NPUs) on the device. The performance gains are significant: Snap-
dragon Mobile Platforms boosted the performance from 3 TOPS
for the Snapdragon 845 in 2018 to 26 TOPS for the Snapdragon 888
in 2021 [13]. Other examples of AI accelerators from the industry
include the NVDLA on the recent NVIDIA Orin System on Chips
(SoCs) [10] or external add-on modules like the Hailo-8 [6].

The need for specialized accelerators is clear. However, the ma-
jority of existing AI accelerators are either proprietary with undis-
closed implementation details or lack flexibility in their implementa-
tion. One of the primary contributions of this work is an accelerator
design that utilizes the row-stationary (RS) dataflow used in the
closed-source Eyeriss accelerator [2]. We provide comprehensive
implementation details alongside the full HDL sources and offer a
practical approach to implement a high-performance scalable CNN
accelerator. Further, we introduce an enhanced RS dataflow opti-
mized for convolution tasks with a high number of channels. Our
paper concludes with a detailed evaluation of design parameters
and the demonstration of an FPGA prototype.

2 RELATEDWORK
Many efforts have been made to develop versatile and performant
convolutional neural network (CNN) accelerators, given that con-
volutional layers account for 90% of the computational load of
DNNs [1]. Convolutions in DNNs are a memory-bound problem,
making the optimization of data reuse the main target of these ac-
celerators. Most modern CNN accelerators use a systolic array [15]
that is built of processing elements (PEs) organized in a 2-D ar-
ray where data is pushed through as indicated in Figure 1. With
a low complexity in control logic and a high degree of both paral-
lelism and data reuse it is well suited for accelerating CNNs as first
shown in the Google Tensor Processing Unit [9]. The performance of
systolic-based accelerators differs greatly depending on the size of
the array, the mapping of the workload to the PEs and the dataflow
chosen [5, 12]. Depending on the network type and layer size, dif-
ferent choices may be optimal. Therefore, many accelerators offer
ways to configure these characteristics.

The before mentioned NVDLA offers a wide configuration space
including the convolution mode of operation, configurable hard-
ware parameters and the option to include additional SRAM [11].
This tunes the accelerator according to available resources and
given workloads. The dataflow is fixed to an adaption of the weight-
stationary (WS) implementation and cannot be chosen.

This is different for GEMMINI [4], an academic open-source
framework used to generate custom hardware accelerators. Here,
the dataflow can be set to either output-stationary (OS) dataflow or
the WS dataflow. The framework not only generates an accelerator,
but provides a full system-level SoC integration that is RISC-V com-
patible. Tuning the parameters to fit to the given context includes
adjusting the array size of the systolic array and defining properties
of the scratchpad memory and direct memory access (DMA) unit.

Table 1: Parameters of a convolution problemand loop ranges
for parallel and sequential processing.

Variable Description

H, W height / width of the input activations
R, S height / width of the filter kernels
P, Q height / width of the output matrix
C number of input channels
M number of output channels
M0 Number of output channels processed in parallel
C0 Number of channels that fit into the PE line buffers
Q0 Segment of the output width fitting into a line buffer
P0 Segment of the output height fitting the PE array
M1, P1,
Q1, C1

Counterparts to the parallel loop ranges which need
to be processed sequentially

Eyeriss [2] is a closed-source accelerator originating in academia.
It is an energy-efficient reconfigurable accelerator that uses a RS
dataflow. The RS dataflow reduces expensive off-chip memory ac-
cesses by maximizing data reuse utilizing the PE local storage and
inter-PE communication. Eyeriss has been extended as Eyeriss v2 [3]
scaling up the accelerator using a Network-on-Chip (NoC). Unfor-
tunately, most of the internal implementation details are not public
and thus findings cannot be used in the open-source ecosystem.

This paper presents a reconfigurable open-source accelerator
that is based on a fully parameterizable systolic array. The dataflow
can be chosen between the classic Eyeriss RS dataflow and a novel
adaption of the RS dataflow that scales better for networks with
a high number of output channels. We share extensive implemen-
tation details and explore various design parameters to establish
the accelerator as a basis for future projects in need of a versatile
accelerator that implements an energy-efficient RS dataflow.

3 CNN ACCELERATOR DESIGNWITH
ROW-STATIONARY DATAFLOW

This chapter describes the design of a CNN accelerator in the form
of a systolic array. It is dedicated to perform quantized convolution
operations and includes functional units to apply floating-point
scaling, offset biasing and activation functions. To maximize data
re-use, the CNN accelerator implements a RS dataflow. This reduces
memory load caused by reloading input activation data. In addition
to the classic RS dataflow, our PE design implements an alterna-
tive dataflow that is more efficient for high input channel sizes.
Interfaces to other systems include PCI Express (PCIe) and AXI for
integration in FPGA-enabled SoCs. While our initial design targets
field-programmable gate array (FPGA) platforms, care was taken
to avoid FPGA specific IP in favor of an ASIC implementation.

Figure 1 shows an overview of the architecture of the CNN ac-
celerator. It consists of a control block, scratchpad memory and
the configurable PE array, shown with only 9 PEs for clarity. The
accelerator is designed to operate stand-alone as long as possible
in order to reduce communication effort with the host. The con-
trol unit implements all convolution loops in hardware so that a
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Algorithm 1 Loop nest for the SRS dataflow.
Input: input activations I[H,W,C], filter weights W[R,S,C,M]
Output: output feature map O[P,Q,M]

for m1,p1,q1 in range M1,P1,Q1 do
parfor m0 in range M0 ⊲ mapped to PE rows

parfor p0 in range P0 ⊲ mapped to PE columns
for c1,q0 in range C1,Q0 do

parfor r in range R ⊲ mapped to PE rows
for s,c0 in range S,C0 do

𝑝 = 𝑝1 ∗ 𝑃0 + 𝑝0
𝑞 = 𝑞1 ∗𝑄0 + 𝑞0
𝑐 = 𝑐1 ∗𝐶0 + 𝑐0
𝑚 =𝑚1 ∗𝑀0 +𝑚0
𝑤 = 𝑞 + 𝑠
ℎ = 𝑝 + 𝑟
𝑂 [𝑝, 𝑞,𝑚]+ =𝑊 [𝑟, 𝑠, 𝑐,𝑚] ∗ 𝐼 [ℎ,𝑤, 𝑐]

end for
end parfor

end for
end parfor

end parfor
end for

complete image with up to 1024 channels can be processed with
just one command. PEs are arranged as a systolic array, where
input activations are forwarded diagonally from bottom left to top
right, weights left-to-right and (partial) sums bottom-to-top. Each
PE includes a multiplexer to allow using the vertical datapath for
forwarding of input activations as well. The width 𝑋 and height 𝑌
of the PE array can be freely configured to meet workload require-
ments and technical constraints (available space, resources, etc.).
The size of the line buffers within the PEs can also be adjusted. The
memory within the PEs is supplemented by the scratchpad mem-
ory next to the array, which stores input activations, weights and
(partial) sums of convolutions. For most modern CNNs, the scratch-
pad size does not fit a full convolutional layer and tiling is used to
subdivide the problem. The size of the scratchpad memory can be
adapted according to the intended use and the available resources,
so that a balance of logic and memory requirements is achieved.
Configurable clock domain crossing (CDC) is implemented within
the PE array buffers and between the AXI interface and the scratch-
pad memory. This isolates AXI, scratchpad and PE clocks, forming
three independent clock domains to achieve maximum performance
in each region.

Algorithm 1 describes the loop nest for a classic RS dataflow,
which is fully implemented in hardware within the control unit.
Refer to table1 for parameter details. This dataflow, which we call
the spatial row-stationary (SRS) dataflow, maps columns of the
output 𝑃 spatially onto PE columns and both filter height 𝑅 and
output channels𝑀 onto PE rows. Spatially parallelized loops are
identified by the keyword parfor, while the remaining for loops
are processed temporally. Each PE buffers partial sums of an output
row section𝑊 and the corresponding row of filter weights 𝑆 in a
line buffer. Consequentially, one iteration of the loop nest processes
a section of the input activation image which fits into the input
activation line buffer within the PEs and has to be repeated to

Algorithm 2 Loop nest for the TRS dataflow
Input: input activations I[H,W,C], filter weights W[R,S,C,M]
Output: output feature map O[P,Q,M]

for m1,p1,q1 in range M1,P1,Q1 do
parfor m0 in range M0 ⊲ mapped to PE rows

for r,c1,q0 in range R,C1,Q0 do
parfor p0 in range P0 ⊲ mapped to PE columns

for s,c0 in range S,C0 do
𝑝 = 𝑝1 ∗ 𝑃0 + 𝑝0
𝑞 = 𝑞1 ∗𝑄0 + 𝑞0
𝑐 = 𝑐1 ∗𝐶0 + 𝑐0
𝑚 =𝑚1 ∗𝑀0 +𝑚0
𝑤 = 𝑞 + 𝑠
ℎ = 𝑝 + 𝑟
𝑂 [𝑝, 𝑞,𝑚]+ =𝑊 [𝑟, 𝑠, 𝑐,𝑚] ∗ 𝐼 [ℎ,𝑤, 𝑐]

end for
end parfor

end for
end parfor

end for

process the full input image. Convolution parameters 𝑃,𝑄,𝐶,𝑀 are
split into inner loop dimensions 𝑃0, 𝑄0,𝐶0, 𝑀0 which fit the line
buffers and array size, and 𝑃1, 𝑄1,𝐶1, 𝑀1 in the outer loop which
have to be processed sequentially or on another accelerator instance.
PE rows are first allocated to process the current filter in parallel
(height of the filter 𝑅). Afterwards, further filters are mapped to the
remaining rows if possible (number of output channels processed
in parallel𝑀0).

We propose a novel dataflow for RS CNN accelerators, which
improves PE utilization in most cases. It especially suits hidden
layers of CNNs, which often have a high number of output channels
𝑀 . Algorithm 2 shows the altered loop nest for comparison.

Compared to the original SRS dataflow, output channels𝑀 are
mapped spatially to PE rows and output columns 𝑃 are mapped
to PE columns. Filter weights are instead processed in sequence
temporally, which requires the PE line buffers to fit 𝑅𝑥𝑆 instead
of only 𝑆 weights. This overhead is negligible for small filters like
3𝑥3, especially when existing memory primitives like Block RAM
(BRAM) are used. Figure 2 shows a comparison of the SRS and
temporal row-stationary (TRS) dataflows. Note that the case shown
has been constructed for the sake of clarity, but the principle can
be similarly applied to larger dimensions of input activation and
different accelerator sizes. Each color denotes a set of weights for
one filter that is processed on the respective PE. The numbers in
the squares correspond to the input rows being processed in the PE.
On the left, four processing steps of the SRS dataflow are shown
that process a set of six kernels, which maps to processing three
kernels every two iterations. As the PE array size is not a multiple
of the kernel height 𝑅, the bottom row is not used. Due to input
activations travelling diagonally through the array, six PEs do not
contribute to the operation as they apply the filter to rows 10, 11, 1
and 11, 2, 2. Overall, 42 % of PEs are idle. Full utilization of the array

153



GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Lesniak et al.

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 1
7 8 9 10 11 1 2
8 9 10 11 1 2 3
9 10 11 1 2 3 4
10 11 1 2 3 4 5

st
ep

1
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 1
7 8 9 10 11 1 2
8 9 10 11 1 2 3
9 10 11 1 2 3 4
10 11 1 2 3 4 5

st
ep

3

1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7

st
ep

1

2 3 4 5 6 7 8
2 3 4 5 6 7 8
2 3 4 5 6 7 8
2 3 4 5 6 7 8
2 3 4 5 6 7 8
2 3 4 5 6 7 8
2 3 4 5 6 7 8
2 3 4 5 6 7 8
2 3 4 5 6 7 8
2 3 4 5 6 7 8

st
ep

3

3 4 5 6 7 8 9
3 4 5 6 7 8 9
3 4 5 6 7 8 9
3 4 5 6 7 8 9
3 4 5 6 7 8 9
3 4 5 6 7 8 9
3 4 5 6 7 8 9
3 4 5 6 7 8 9
3 4 5 6 7 8 9
3 4 5 6 7 8 9

st
ep

5

8 9 10 11
9 10 11 1
10 11 1 2
11 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8
6 7 8 9

st
ep

2

8 9 10 11
9 10 11 1
10 11 1 2
11 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8
6 7 8 9

st
ep

4

8 9
8 9
8 9
8 9
8 9
8 9
8 9
8 9
8 9
8 9

st
ep

2

9 10
9 10
9 10
9 10
9 10
9 10
9 10
9 10
9 10
9 10

st
ep

4

10 11
10 11
10 11
10 11
10 11
10 11
10 11
10 11
10 11
10 11

st
ep

6

SRS dataflow TRS dataflow

Figure 2: Exemplary mapping of a convolution with input dimensions of 11𝑥𝑊 , kernel size 3𝑥𝑆 and𝐶 = 10 on an accelerator with
10𝑥7 PEs. Each color is one kernel, each square represents one PE and the number inside is the input row being processed in the
current step. The left part shows the first four steps in which six kernels are processed using the SRS dataflow, the remaining
channels are processed likewise. The right part shows six steps in which all ten kernels are processed using the TRS dataflow.

can only be given when the criteria

𝑌 mod 𝑅 = 0
𝐻 mod 𝑋 = 0

are met. In comparison, the right side of figure 2 shows six process-
ing steps of the TRS dataflow, in which a set of 10 kernels is being
processed. Steps 1, 3 and 5 show full utilization of the array, while
steps 2, 4 and 6 have 50 idle PEs each, resulting in 36 % of idle PEs
For full utilization, the criteria are:

𝑌 mod 𝑀 = 0
𝐻 mod 𝑋 = 0

The criteria on 𝑌 is easier to fulfill for the TRS dataflow in most
cases. The number of kernels processed in parallel𝑀 can be set to
𝑌 if enough channels are being processed. In the SRS case, however,
typical filter heights 1, 3, 5 and 7 have a common multiple of 105, so
that very large PE arrays would be required for optimum mapping.
Note that for full utilization, the input activation height 𝐻 shall be
a multiple of the accelerator width𝑋 . In case of a mismatch, the last
step of each iteration has unused PE array columns which is negli-
gible for high input channel counts. The design allows switching
between the two dataflow types during runtime, using the vertical
data path for input activations for the TRS case. Based on the given
criteria, the mapping tool can decide which dataflow is better suited
and program the accelerator accordingly.

A driver library on the host provides software interfaces for
initialization, configuration and control of the accelerator platform.
It allows querying hardware parameters and provides an abstraction
layer for common convolution operations. As a part of the library,
mapping functions are included to map convolution operations to
the accelerator platform, taking the number of available PEs, buffer
sizes and input parameters into account.

4 EVALUATION
4.1 Experimental Setup
The CNN accelerator has been fully implemented in VHDL, in-
cluding AXI and optional PCIe interfaces. Physical implementation
results in this section have been obtained using a Xilinx ZCU104
evaluation board with the Zynq UltraScale+ XCZU7EV FPGA. Xil-
inx Vivado 2023.1 is used for synthesis, implementation and bit-
stream generation. The prototype design of the accelerator uses a
10𝑥7 array and 128 kB of scratchpad memory. Driver library and
benchmarking software is running on the quad-core Cortex-A53
processor on top of Linux 5.15.19.

Simulation results have been obtained using automated cycle-
accurate testing of the RTL model with Siemens Questa Prime
version 2022.4. For each simulation run, random input activation
and weights are generated and mapped to the accelerator using a
greedy scheduling algorithm.

4.2 Evaluation of design parameters
We performed design space exploration for different scenarios to
obtain suitable parameters for the PE array size, line buffer size
within the PE and input/output FIFO depths. Figure 3 shows the
utilization for varying PE array sizes and different convolution
problems. The overall utilization per PE is given relative to the total
number of cycles for the given parameters for both SRS and TRS
dataflows. It can be observed that for small filter sizes of 𝑅 = 𝑆 =

1, the accelerator performance is limited by memory bandwidth
as no input activation data can be reused. The scratchpad clock
frequency is fixed at 10 times the PE array clock throughout all
simulations and uses one interface to the input activation arbiter.
As expected, larger PE arrays, both in 𝑋 and 𝑌 dimension, show
degraded performance due to the memory bandwidth bottleneck. A

154



Accelerator Design for Efficient CNN Processing GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

H=W=16
R=S=1

H=W=16
R=S=3

H=W=16
R=S=5

H=W=32
R=S=1

H=W=32
R=S=3

H=W=32
R=S=5

0

0.25

0.5

0.75

1

5 5 5 5 5 510 10 10 10 10 1015 15 15 15 15 1520 20 20 20 20 2025 25 25 25 25 25

SR
S
da
ta
flo

w
PE

ut
ili
za
tio

n

H=W=16
R=S=1

H=W=16
R=S=3

H=W=16
R=S=5

H=W=32
R=S=1

H=W=32
R=S=3

H=W=32
R=S=5

0

0.25

0.5

0.75

1

5 5 5 5 5 510 10 10 10 10 1015 15 15 15 15 1520 20 20 20 20 2025 25 25 25 25 25

H=W=16
R=S=1

H=W=16
R=S=3

H=W=16
R=S=5

H=W=32
R=S=1

H=W=32
R=S=3

H=W=32
R=S=5

0

0.25

0.5

0.75

1

5 5 5 5 5 510 10 10 10 10 1015 15 15 15 15 1520 20 20 20 20 2025 25 25 25 25 25

𝑋 dimension varied from 5 to 25, 𝑌 set to 10

TR
S
da
ta
flo

w
PE

ut
ili
za
tio

n

H=W=16
R=S=1

H=W=16
R=S=3

H=W=16
R=S=5

H=W=32
R=S=1

H=W=32
R=S=3

H=W=32
R=S=5

0

0.25

0.5

0.75

1

5 5 5 5 5 510 10 10 10 10 1015 15 15 15 15 1520 20 20 20 20 2025 25 25 25 25 25

𝑌 dimension varied from 5 to 25, 𝑋 set to 10

Figure 3: Utilization of the PEs relative to the total number of cycles for varied height and width of the PE array and different
convolution workloads. Original SRS dataflow is shown in the upper graphs, our proposed TRS dataflow in the lower graphs.

single input activation arbiter can efficiently distribute data to the
number of input FIFOs matching the scratchpad/PE clock frequency
ratio. For a high number of input FIFOs, being 𝑋 +𝑌 for SRS and 𝑋
for the TRS dataflow respectively, multiple input arbiters should be
used for maximum performance if the scratchpad frequency can’t
be scaled appropriately.

It shows a reduced performance penalty for large array sizes,
as only the bottom edge of input activation FIFOs is being used.
The impact of limited scratchpad bandwidth is therefore reduced
for the TRS dataflow. As expected, larger kernel sizes result in
higher utilization of the PEs due to increased data re-use. While
1𝑥1 convolutions perform similarly for both dataflows, the TRS
dataflow can maintain higher utilization for 3𝑥3 filters.
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Figure 4: Total number of cycles for processing a 32x32 image,
40 channels, with 3x3 and 5x5 filters on a 10𝑥7 PE array in
TRSmode. The dashed line is theminimumbaseline of cycles
required for the full workload if no stalling occurs.

The size of the input FIFOs at the western and southern edge is
crucial for performance, as the full array needs to be stalled if any
FIFO runs empty. Figure 4 shows the result of an input FIFO size
parameter sweep from 4 to 22 words on a 10𝑥7 array. Sizes lower
than 10 words result in a great increase in processing time, while
more than 16 words hardly reduce the remaining overhead with

respect to the theoretical optimum. Output buffers perform best at
similar sizes, however their impact on the total processing time is
limited due to their brief usage after slice processing.
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Figure 5: Relative utilization of a 10𝑥7 PE array in TRS mode
for different clock ratios with a single scratchpad arbiter.

The design benefits from a high scratchpad clock, as input acti-
vation data is distributed to the array input FIFOs in a round-robin
fashion. A single memory port is used to allow using a monolithic
SRAMblock as scratchpadwithin each tile. However, the scratchpad
could be split into smaller chunks with independent ports if FPGA
BRAM is used, reducing the necessary clock frequency through
parallization. In any case, the maximum scratchpad interface fre-
quency depends on the FPGA technology.We achieved a scratchpad
clock of 250MHz in our design, with potential for further improve-
ment. This results in a clock ratio of 5:1 by running the PE array at
50MHz. While this ratio is not ideal yet, further lowering the PE
array frequency would still degrade performance.

Carefully balancing the trade-off between scratchpad bandwidth,
number of arbiters and input buffer size is essential to maximize
performance for the selected array size and clock frequencies.When
using a single port scratchpad memory, an array size of 10𝑥7 is a
good compromise with sensible clock ratio, small input buffers are
sufficient and common kernels up to 7𝑥7 do not need tiling.
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Table 2: PE utilization for SRS & TRS dataflows for array sizes
10𝑥7 and 14𝑥12. Layers from state-of-the-art neural networks
are chosen (ResNet-50, GoogLeNet, MobileNetV3).

H/W R/S C SRS util TRS util Workload

10
𝑥
7

28 3 256 82.92% 90.27% R50 2nd last layer
14 3 1024 76.99% 85.21% R50 2nd last layer
7 3 512 64.16% 70.71% R50 last layer
14 1 528 99.62% 98.87% GN 3rd last layer
7 1 832 99.05% 99.05% GN last layer
28 5 120 85.71% 85.71% MN IR layer 7
14 3 240 77.14% 85.71% MN IR layer 8
7 5 960 42.86% 42.86% MN IR layer 15

14
𝑥
12

28 3 256 61.90% 69.01% R50 2nd last layer
14 3 1024 42.86% 98.84% R50 2nd last layer
7 3 512 35.71% 42.73% R50 last layer
14 1 528 57.89% 57.89% GN 3rd last layer
7 1 832 57.78% 58.49% GN last layer
28 5 120 47.62% 92.06% MN layer IR 7
14 3 240 42.86% 95.24% MN layer IR 8
7 5 960 17.86% 25.67% MN layer IR 15

4.3 Evaluation of SRS & TRS dataflow
We compare our proposed TRS dataflowwith the original RS dataflow
by Chen et al. [2]. Building a versatile CNN accelerator requires sup-
port for different input activation and kernel sizes. ResNet-50 [7],
GoogLeNet [14] and MobileNetV3 [8] are chosen as a representa-
tive set of CNN models. All these models show the usual procedure
for CNNs: the high resolution at the input is reduced quite quickly
and fanned out over many channels. Further processing is on with
small images and a high number of channels.

Table 2 shows utilization of all PEs for processing of a full higher-
dimensional convolutional layer. The results are obtained using the
mapping tool for our design, set to use the SRS and TRS dataflow,
respectively. As the utilization of a mapping depends heavily on
the accelerator shape, we analyzed both our default 10𝑥7 size and
a larger 14𝑥12 array. It can be seen that the TRS dataflow is at least
on par with SRS and exceeds for most inputs.

We measured an end-to-end throughput of 4.012 GOPS with
a 10𝑥7 array at 100 MHz on a workload with 𝑅 = 𝑆 = 3 and
𝐶 = 𝑀 = 10 using the TRS dataflow. Taking into account that
no workload pipelining was used and time for preload and write-
back of data is included, this already comes close to the theoretical
maximum of 7GOPS for this configuration.

4.4 Resource usage
Table 3 lists the resource usage of a 10𝑥7 and a 14𝑥12 accelerator
on a Xilinx Zynq UltraScale+ FPGA, both for the full design and
for the individual components. This implementation supports both
SRS and TRS dataflows. Removing the multiplexers for dataflow
switching saves 6% LUTs per PE. Implementing the full loop nest in
hardware reduces host communication and the necessary control
and address generation units account for only 4.9% of the resources.
The high level of data reuse comes at a cost, so the RS dataflow
requires a significant amount of distributed storage: In the 10𝑥7

Table 3: Resource utilization both of the complete design and
divided into PE, scratchpad and control unit. Percentages
relative to the available resources on Xilinx XCZU7EV.

Component LUT Regs BRAM

10
𝑥
7

Full design 64.132 (27.8%) 36.501 (7.9%) 201 (64.4%)
Single PE 849 447 1.5
Scratchpad 2662 3869 96
Control Unit 2011 1801 0

14
𝑥
12

Full design 147996 (64.2%) 82338 (17.9%) 264 (84.6%)
Single PE 849 447 1
Scratchpad 3342 5349 96
Control Unit 1993 2352 0

design, 52.2% of used BRAM resources are allocated for the PE array.
Line buffer size is reduced on 14𝑥12 to fit the target FPGA.

5 CONCLUSION
In this work, we showed an FPGA implementation of a systolic
array based convolution hardware accelerator. The RS dataflow is
implemented, which enables a particularly high level of data re-use
within the array. We introduced the TRS dataflow with significantly
improved utilization of the accelerator for most real-world applica-
tions. Various parameters of the hardware design were analyzed
to highlight the adaptability of the accelerator for different use
cases. The HDL design sources are publicly available as part of this
publication, making RS accelerators accessible to a broader scien-
tific community. For future work, we aim to create a NoC-based
tiled accelerator using this work as the base module and interface
High-Bandwidth Memory (HBM) to increase performance.
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A ONLINE RESOURCES
Repository with HDL sources and simulation files available at:
https://github.com/itiv-kit/flexnngine
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