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Abstract. Clouds strongly modulate the top-of-the-atmosphere energy budget and are a major source of uncer-
tainty in climate projections. “Cloud controlling factor” (CCF) analysis derives relationships between large-scale
meteorological drivers and cloud radiative anomalies, which can be used to constrain cloud feedback. However,
the choice of meteorological CCFs is crucial for a meaningful constraint. While there is rich literature inves-
tigating ideal CCF setups for low-level clouds, there is a lack of analogous research explicitly targeting high
clouds. Here, we use ridge regression to systematically evaluate the addition of five candidate CCFs to previ-
ously established core CCFs within large spatial domains to predict longwave high-cloud radiative anomalies:
upper-tropospheric static stability (SUT), sub-cloud moist static energy, convective available potential energy,
convective inhibition, and upper-tropospheric wind shear (1U300). We identify an optimal configuration for pre-
dicting high-cloud radiative anomalies that includes SUT and 1U300 and show that spatial domain size is more
important than the selection of CCFs for predictive skill. We also find an important discrepancy between the
optimal domain sizes required for predicting locally and globally aggregated radiative anomalies. Finally, we
scientifically interpret the ridge regression coefficients, where we show that SUT captures physical drivers of
known high-cloud feedbacks and deduce that the inclusion of SUT into observational constraint frameworks may
reduce uncertainty associated with changes in anvil cloud amount as a function of climate change. Therefore, we
highlight SUT as an important CCF for high clouds and longwave cloud feedback.

1 Introduction

Changes in clouds are the primary source of uncertainty in
the quantification of equilibrium climate sensitivity (ECS) –
the long-term global warming response to a doubling of at-
mospheric carbon dioxide (Sherwood et al., 2020; Zelinka et
al., 2022). Cloud-induced radiative anomalies (R) at the top
of the atmosphere (TOA) refer to changes in the balance of
incoming and outgoing radiation caused by interaction with
clouds. While most evidence suggests that the change in R at

the TOA as a function of global warming likely has a positive
effect on Earth’s energy balance and thus amplifies warming
(e.g., Ceppi and Nowack, 2021), the magnitude of this global
cloud feedback remains highly uncertain (Ceppi et al., 2017;
Sherwood et al., 2020; Zelinka et al., 2022).

Motivated by the role of clouds as a key uncertainty fac-
tor, much progress has been made towards understanding
the mechanisms that drive changes in R, considering differ-
ent cloud types under both natural unforced variability and
long-term climate change. In particular, such work includes
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theoretical understanding of cloud feedback processes (e.g.,
Zelinka and Hartmann, 2010; Rieck et al., 2012; Bony et
al., 2016), idealized regional modeling studies (Bretherton,
2015; Siebesma et al., 2003), convection-permitting global
climate models (Hentgen et al., 2019), and climate model
evaluation studies (Zelinka et al., 2022).

Here, we aim to systematically advance an alternative ap-
proach widely used for understanding and constraining un-
certainties in cloud variability and trends in the form of cloud
controlling factor (CCF) analysis. Exploiting observed re-
lationships between large-scale satellite cloud observations
and meteorological predictor variables, CCF analyses have,
for example, been used to derive observational constraints
on cloud-related uncertainty estimates (Myers and Norris,
2016; Andersen et al., 2017, 2022; Fuchs et al., 2018; Ceppi
and Nowack, 2021; Myers et al., 2021). In particular, mete-
orological CCFs for low marine and boundary layer clouds
have been widely assessed (Andersen et al., 2022; Brient and
Schneider, 2016; Klein et al., 2017; Qu et al., 2015; Scott et
al., 2020), with typical frameworks including CCFs such as
surface temperature (Tsfc), temperature advection, estimated
boundary layer inversion strength (EIS), vertical velocity,
700 hPa relative humidity (RH700), and near-surface wind
speed. However, comparatively less research has specifically
targeted the CCFs for high clouds despite their significant –
and highly uncertain – contributions towards the total esti-
mated feedback (Sherwood et al., 2020). A systematic com-
parison of CCF candidates for high clouds within a range of
spatial domains will therefore be the main subject of this pa-
per.

Our work builds on a modification to a previous CCF ap-
proach, which was introduced by Ceppi and Nowack (2021,
hereafter CN21). CN21 used ridge regression for their anal-
yses, which allowed them to consider large spatial domains
of CCF predictor patterns around target grid points in which
cloud radiative anomalies were predicted, with an example
shown in Fig. 1. This approach contrasts with previous CCF
analyses using standard multiple linear regression, which are
constrained to a small number of predictors (typically< 10).
This allowed their analysis to be extended beyond specific
cloud regimes. As shown in CN21, the consideration of
larger-scale CCF patterns led to improvements in predictive
skill for both shortwave (SW) and longwave (LW) global
cloud feedback. The intuition behind using spatial patterns of
CCFs is motivated by the synoptic-scale atmospheric system
within which the life cycle of clouds – from formation to ces-
sation – occurs, resulting in more robust predictions of global
cloud feedback. Non-local features, such as large-scale pat-
terns of sea surface temperature anomalies and changes in the
atmospheric circulation (e.g., convergence and divergence),
are implicitly encoded using large spatial domains, which
are not included in scalar CCF analysis despite their rele-
vance for the context in which cloud development occurs
(when considering monthly averaged data typically used for
CCF analyses; Klein et al., 2017). Altogether, considering

larger-scale patterns resulted in better out-of-sample predic-
tions, which consequentially tightened the cloud-induced un-
certainty in general circulation model (GCM)-modeled ECS.

However, the framework introduced by CN21 highlighted
an important limitation. As the same set of five CCFs were
used for SW and LW analyses, their predictive skill was
markedly stronger for global SW and net feedback compo-
nents than for LW. Given that LW feedback is largely driven
by high clouds while SW feedback is instead predominantly
driven by the oft-studied low clouds, we speculate the per-
formance deficit may be – at least to a degree – a symptom
of CCF choice. Indeed, Zelinka et al. (2022) specifically rec-
ommend that the drivers of high-cloud feedback must be tar-
geted to reduce cloud-related uncertainty in ECS estimates.

To address these open questions, we use ridge regression
to methodically assess candidate CCFs of high clouds within
a range of spatial scales, aiming to inform CCF choice for fu-
ture observational constraints on the ECS uncertainty. Here,
we target LW cloud radiative anomalies (RLW) as they are
more directly associated with high clouds than SW (and con-
sequently net) radiative anomalies. We briefly assess impli-
cations of CCF choices for net anomalies, RNET, noting that,
historically, LW and SW high-cloud radiative anomalies tend
to offset each other, resulting in little net signal for thick
clouds over monthly timescales. We therefore restrict our
analysis to clouds with top pressures smaller than 680 hPa;
future references to “R” are therefore specifically emanat-
ing from these non-low clouds (see Sect. 3.1 for the dataset
used). Though radiative effects from midlevel clouds are also
by definition included in our analysis, we collectively refer
to radiative anomalies as “high” henceforth for simplicity
(Zelinka et al., 2016).

We systematically assess static stability in the upper tro-
posphere (SUT), sub-cloud moist static energy (m), convec-
tive available potential energy (CAPE), convective inhibition
(CIN), and upper-tropospheric wind shear (1U for easterly
shear) as CCFs based on their physical relationships with
high-cloud properties or convection, with an overview pre-
sented in Sect. 2. Aiming to inform choices for future obser-
vational constraint analyses, we only suggest CCFs that are
readily available (or easily calculated from measurable quan-
tities). Alternative variables, such as the radiatively driven
divergence, horizontal mass convergence, and gross moist
stability, may also capture high-cloud properties, but their
derivation requires numerical modeling, and hence we do
not consider them here. Sections 3 and 4 discuss the data
and methods we use, respectively, with combined results
and discussion presented in Sect. 5. We first discern which
CCF combinations can best predict out-of-sample grid-cell-
scale historical internal variability. We then investigate which
combinations best predict out-of-sample globally aggregated
RLW. Based on the results of our statistical testing, we phys-
ically interpret the coefficients for a single (optimal) config-
uration of CCFs and assess whether the spatial pattern, mag-
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Figure 1. CMIP multi-model mean longwave cloud radiative sensitivities for a sample 5°× 5° target grid box (center 2.5° N, 142.5° E
indicated by the black box) to surface temperature (Tsfc), vertical velocity at 300 hPa (ω300), relative humidity at 700 hPa and in the upper
troposphere (RH700 and UTRH, respectively), wind shear at 300 hPa (1U300), and upper-tropospheric static stability (SUT) using a 21× 11
domain of grid boxes around the target (corresponding to 110° longitude× 55° latitude area, centered on the grid box). Radiative anomalies
are normalized for a 1-standard-deviation (σ ) anomaly in the controlling factors based on monthly variability.

nitude, and variability of the cloud properties (i.e., cloud-top
pressure and cloud fraction) are accurately captured.

2 High-cloud controlling factors

Ubiquitously present over the tropics, cirrus, cirrostratus, and
deep convective clouds are responsible for the largest annual
mean changes in global TOA LW flux (Chen et al., 2000).
Tropical cirrus clouds develop through one of two mecha-
nisms: in situ ice formation that is not associated with con-
vection or outflow from deep convective cores (Gasparini et
al., 2023; Kärcher, 2017). Large-scale ascent in the tropi-
cal tropopause layer results in adiabatic cooling and high
relative humidity, creating an ideal environment for in situ
ice formation, typically at heights above the level of deep
convective outflow (Fueglistaler et al., 2009; Gasparini et
al., 2023). Convective outflow cirrus (referred to as “anvil
cirrus”), together with a mature cumulonimbus core, forms
tropical anvil clouds. “Thick” cirrus clouds are both effective
absorbers of upwelling LW radiation and also efficient reflec-
tors of incident SW radiation. Over time, dynamical, radia-
tive, and microphysical processes can spread the thick anvil
cirrus, extending anvil lifetime and resulting in larger cloud
cover than the initial convective core (Gasparini et al., 2019,
2023; Luo and Rossow, 2004). Such processes can result in
the formation of “thin” cirrus clouds, characterized by a rel-
atively smaller SW cloud radiative forcing compared to LW
(Fueglistaler et al., 2009; Jensen et al., 1994; McFarquhar
et al., 2000). Though deep convective clouds presently have

relatively small abundance (compared to other cloud types),
their local radiative effects are large (Chen et al., 2000), and
therefore changes to their frequency of occurrence can have
substantial impacts on cloud feedback. Despite this, most
previous CCF analyses focused on low-cloud regimes so that
the selection and design of CCFs were mainly motivated by
meteorological situations driving cloud formation and cessa-
tion in those cloud regimes (Klein et al., 2017).

In CN21, a compromise was sought by considering clas-
sic CCFs such as Tsfc, EIS, and RH700 (relative humidity at
700 hPa) but by also using the vertical velocity at 500 hPa
(ω500) and upper-tropospheric relative humidity (UTRH, the
vertically averaged relative humidity in the 200 hPa layer be-
low the tropopause) as predictors in an attempt to addition-
ally target high clouds. In the following, we will build on
the CN21 CCF setup, specifically targeting modifications and
additions that are more likely to represent state variables im-
portant for the aforementioned high clouds. One by one we
will examine these CCF candidates physically and formally
define them, before testing the prediction results of possible
CCF combinations for high clouds in Sect. 5.

An overview of all CCFs considered and their scientific
motivations is summarized in Table 1. We keep Tsfc, RH700,
UTRH, and ω (at variable pressure levels) in all configura-
tions, which we refer to as the “core” CCFs, as they jointly
explain a large portion of historical variability inRLW and are
each physically related to high-cloud formation. The large-
scale distribution of tropical deep clouds is closely tied to the
distribution of sea surface temperatures (SSTs) and upper-
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tropospheric relative humidity (Bony et al., 1997; Li et al.,
2014), with research indicating that lower free-tropospheric
relative humidity regulates the mean height of convective
outflow (Sherwood et al., 2004). Vertical velocities (ω) indi-
cate regions of subsidence or ascent, with enhanced ascend-
ing motion supporting thicker, higher cloud layers (Ge et al.,
2021). Andersen et al. (2023) find that the magnitude of (lo-
cal) sensitivity to ω is largest at 300 hPa; hence we test ver-
tical velocity at both 300 and 500 hPa (used in CN21) in this
study.

Estimated boundary layer inversion strength (EIS) is not
typically regarded as a controlling factor for high clouds
specifically despite its wide use in general and low-cloud
CCF analyses. This results in relatively little literature inter-
preting high-cloud sensitivities to EIS. Despite this, CN21
used only the Tsfc and EIS sensitivities to observationally
constrain global cloud feedback for both SW and LW com-
ponents. These sensitivities are suitably decoupled from the
clouds and still achieve good (albeit poorer than SW and net)
predictions for global LW feedback. We therefore suggest
five candidate CCFs as replacements for EIS that more di-
rectly represent convective processes or high-cloud forma-
tion and that are also sufficiently external to the clouds them-
selves and may be similarly used in constraints.

We list candidate CCFs (and EIS) and discuss them in turn
below, with the exact definitions provided in Sect. 3.2:

– Static stability is the vertical gradient of potential tem-
perature, measuring the stratification of the atmosphere
(Grise et al., 2010). Upper-tropospheric static stabil-
ity is robustly (negatively) correlated with upper-level
cloud incidence over much of the global ocean (Li et al.,
2014) and has been observationally linked with changes
in tropical anvil cloud fraction through the “anvil iris”
thermodynamic mechanism (Bony et al., 2016; Saint-Lu
et al., 2020, 2022). We expect increases in local upper-
tropospheric static stability to result in local reductions
in high-cloud fraction, with suppressed vertical motion.

– Moist static energy characterizes the energy of an air
parcel in a moist environment, considering its internal
energy (latent and sensible heat) and potential energy
due to its elevation. Sub-cloud moist static energy (m)
may affect cloud formation, as higher levels ofm signify
increased potential for uplift and condensation. Addi-
tionally, when buoyant air from the boundary layer fills
the free troposphere, it can inhibit the initiation of con-
vection in colder regions, setting a threshold that hinders
further upward movement (Srinivasan and Smith, 1996;
Zhang and Fueglistaler, 2020). We suggest that high m
increases local high cloudiness, while in contrast, we
hypothesize that non-localm can either decrease (due to
convective thresholds) or increase cloudiness (depend-
ing on horizontal transport).

– Convective available potential energy (CAPE) is a mea-
sure of deep instability, describing the amount of energy
available for an air parcel to rise freely through the at-
mosphere. CAPE offers insights into the onset, genesis,
and scale of atmospheric deep convection and has been
described as the fuel for a thunderstorm (Donner and
Phillips, 2003; Jensen and Delgenio, 2006; Riemann-
Campe et al., 2009). We speculate increased CAPE sug-
gests an environment conducive to sustaining deep con-
vection and thus more high cloud.

– Convective inhibition (CIN), a form of conditional insta-
bility and CAPE’s opposing parameter, is a measure of
the amount of energy required for a parcel to overcome
a stable layer of air and initiate the development of deep
convection. A large absolute value of CIN may indicate
a stable atmosphere and thus unfavorable conditions for
the development of deep convective clouds (Louf et al.,
2019). Note that high CIN is a required precursor for
the buildup of CAPE. Once CIN has been overcome,
conditions are favorable for deep convection.

– Wind shear, defined here as the vertical change in hori-
zontal wind speed, is an important dynamical character-
istic of the upper troposphere. Wind shear influences the
organization of convective storms and mesoscale con-
vective systems in various ways, though understanding
its relationship with cloud properties has proven histor-
ically challenging (Anber et al., 2014). However, stud-
ies suggest that wind shear can increase cloud-top tur-
bulence, spread and stretch clouds horizontally through
the advection of air at different levels and speeds, and
hasten cirrus cloud dissipation (Jensen et al., 2011; Lin
and Mapes, 2004; Marsham and Dobbie, 2005). We
speculate wind shear mainly affects high-cloud fraction.

– Estimated inversion strength (EIS) describes the
strength of the boundary layer, is a dominant control
for low clouds (Andersen et al., 2022, 2023; Wood and
Bretherton, 2006), and is widely used in general CCF
analysis (CN21; Klein et al., 2017). However, EIS is not
considered a driver of high-cloud incidence, but CN21
suggested that EIS may function as a proxy for factors
relating to deep convection.

Note that several candidate CCFs are not independent. For
example, high values of CIN are required for a buildup of
CAPE, and a stable boundary layer may be represented by
both high CIN and high EIS.

3 Data

We use monthly-mean (unless explicitly mentioned other-
wise) cloud property and CCF data, re-gridded to a com-
mon 5°× 5° resolution. At these spatial and temporal scales,
we expect the clouds to be approximately in equilibrium
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Table 1. High-cloud controlling factors used in CN21 and proposed here, physical explanations connecting them to high clouds or convection,
and the key studies supporting them. References to “clouds” in this table are for high clouds only. EIS is not a core CCF, and therefore for
conciseness we include EIS under the “Candidate CCFs” subheading.

Cloud controlling factor Physical explanation Key studies

Core cloud controlling factors

Surface temperature (Tsfc) Warming surface temperature heats atmo-
spheric column; large-scale distribution of
clouds is tied to atmospheric profile of tem-
perature; anvil clouds approximately rise with
isotherms.

Bony et al. (1997); Fueglistaler
(2019); Zelinka and Hartmann
(2011)

Free-tropospheric relative humidity (RH700) Regulates mean height of convective outflow. Sherwood et al. (2004)

Upper-tropospheric relative humidity (UTRH) Tropical clouds tied to spatial distribution of
UTRH and lifetime of anvil clouds. A two-way
relationship may exist; UTRH modulated by de-
trainment.

Bony et al. (1997); Li et al.
(2014)

Vertical pressure velocity (ω) Indicates regions of ascent and subsidence.
Enhanced ascending motion supports thicker
clouds.

Ge et al. (2021)

Candidate CCFs

Estimated boundary layer inversion strength (EIS) Limited literature; perhaps serves as a proxy for
deep convective processes; strength of bound-
ary layer inhibits convection.

CN21

Upper-tropospheric static stability (SUT) Static stability associated with radiatively
driven convergence; anvil altitude and amount
collocate with peak convergence.

Bony et al. (2016); Li et al.
(2014); Saint-Lu et al. (2020,
2022); Zelinka and Hartmann
(2010)

Convective available potential energy (CAPE) Measure of deep instability; indicates energy
available for convection.

Chakraborty et al. (2016); Don-
ner and Phillips (2003); Jensen
and Delgenio (2006); Louf et al.
(2019)

Convective inhibition (CIN) Shallow instability; indicates the energy re-
quired to leave stable boundary layer.

Louf et al. (2019)

Sub-cloud moist static energy (m) Moisture content of sub-cloud atmosphere fuels
convection.

Zhang and Fueglistaler (2020)

Upper-tropospheric wind shear (1U300) Influences organization of convective storms;
affects cloud-top turbulence and mesoscale
anvil formation; affects cloud cover.

Jensen et al. (2011); Lin and
Mapes (2004); Marsham and
Dobbie (2005)

with their environment (Klein et al., 2017). To represent ob-
served cloud radiative data, we use combined Moderate Res-
olution Imaging Spectroradiometer (MODIS) retrievals from
both Aqua and Terra instruments, identified as MCD06COSP
(Pincus et al., 2023). These retrievals are included as part
of the CFMIP Observation Simulator Package (COSP, where
CFMIP refers to the Cloud Feedback Model Intercomparison
Project), which facilitates the evaluation of models against
observations in a consistent manner (Bodas-Salcedo et al.,
2011). For climate model data, we use 18 GCMs that have
run the International Satellite Cloud Climatology Project (IS-
CCP) simulator (Zelinka et al., 2012a) from the Coupled

Model Intercomparison Project phases 5 and 6 (CMIP5/6).
For a full list of CMIP models used in this research, see Sup-
plement Sect. S1. For the meteorological CCFs we use ERA5
reanalysis data at monthly resolution, except for CAPE and
CIN, which we first calculate using daily air temperature and
relative humidity profiles and then take the monthly mean.
We use reanalysis data as a proxy for direct observations;
henceforth, when “observed” results are discussed, we refer
to predictions made for observed radiative anomalies using
ERA5 meteorological CCFs.

We restrict the CMIP datasets to 20 years, aligned with
the length of the available observational record, though with
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slightly different time periods. For observations, data are
available from July 2002 to June 2022. For the CMIP models,
we use historical data from January 1981 to December 2000.
We use this period because it is close to the present-day cli-
mate, under the constraint of availability of historical CMIP
data (and noting that only a small set of models provide
satellite simulator output for the Regional Climate Projec-
tion (RCP) and Shared Socioeconomic Pathway (SSP) sce-
narios). For predictions of observed and modeled RLW, we
restrict our analysis from 60° S–60° N. As is commonplace in
CCF analysis, the seasonal cycles (climatological averages of
each month) have been removed from the CCFs and radiative
anomalies (Andersen et al., 2022; Myers et al., 2021). Prior
to analysis, predictor variables are scaled to unit variance and
zero mean to weight signals equally in the optimization pro-
cess (Scott et al., 2020; CN21).

3.1 Cloud property histograms

Our analysis is based on histograms of cloud fraction as a
joint function of cloud-top pressure (CTP) and cloud op-
tical depth (τ ). Cloud radiative kernels are used to con-
vert binned cloud amount anomalies into top-of-atmosphere
radiative flux anomalies and to partition these into contri-
butions from changes in cloud-top pressure (CTP), cloud
fraction (CF), and optical depth (τ ), with a small resid-
ual contribution (Zelinka et al., 2012a, b, 2016). The cloud
radiative kernels we use here were first introduced in
Zelinka et al. (2012a), with an improved decomposition
method presented in Zelinka et al. (2016). Note that the
same kernels (developed using ERA5 temperature, humid-
ity, and ozone profiles) are used to decompose both the
observed and modeled radiative anomalies. Cloud radia-
tive kernels are available from https://github.com/mzelinka/
cloud-radiative-kernels (Zelinka, 2024).

3.2 Meteorological cloud controlling factors

Static stability is calculated using an interpolated monthly
air temperature, T , and pressure, p, profile. The CMIP and
ERA5 T –p profiles are interpolated to 100 vertical levels us-
ing cubic spline interpolation from standard pressure levels.
The static stability, Sp, at pressure level p is hence calculated
using

Sp =
RC

C

Tp

p
−

dT
dp
, (1)

where C is the specific heat at constant pressure and RC
the gas constant. We define upper-tropospheric static stabil-
ity, SUT, as an average over the interpolated pressure levels
from the tropopause height in pressure units plus 50 and plus
200 hPa, where the monthly-mean tropopause is calculated
using the standard WMO definition (Reichler et al., 2003).
We interpolate the T –p profile, as standard pressure lev-
els are too coarse to accurately calculate the second term in

Eq. (1). We vary the exact pressure levels that we average
SUT over to ensure that our definition accounts for the zonal
distribution of tropopause height.

Moist static energy, CAPE, and CIN are calculated us-
ing the MetPy V1.3.1 Python package (May et al., 2024).
Moist static energy is calculated at standard pressure levels
using monthly air temperature and relative humidity datasets.
To approximate sub-cloud moist static energy, m, we aver-
age moist static energy from the surface to (and including)
700 hPa. We use MetPy’s “most unstable” CAPE and CIN
function, which we calculate for all available CMIP mod-
els and ERA5. This involves calculating the most unstable
air parcel from the temperature and humidity profiles and
hence calculating CAPE and CIN using this parcel. CAPE
and CIN are first calculated using daily temperature, humid-
ity, and pressure values at standard CMIP pressure levels and
then averaged for each month. Of the 18 CMIP models, daily
datasets for atmospheric temperature and humidity are only
readily available for 14 of the models (see Sect. S1).

Free-tropospheric vertical wind shear is calculated as the
difference in 925 and 300 hPa easterly wind speeds, U , stan-
dardized by the change in geopotential height, z, where

1U300 =
U300−U925

z300− z925
, (2)

with subscripts referring to the pressure levels for each vari-
able (Chakraborty et al., 2016). Both easterly and northerly
wind shear has been assessed, though we only discuss east-
erly shear here as overall performance metrics are relatively
consistent between the directions of shear.
Tsfc,ω300,ω500, and RH700 are directly observable or mod-

eled quantities. We define EIS and UTRH consistently with
CN21. EIS is a measure of lower-tropospheric stability,
defined relative to the temperature-dependent moist adia-
batic lapse rate (Wood and Bretherton, 2006) over global
oceans. Over land, this is simply defined as the difference
between the potential temperature at 700 hPa and the surface
(Klein and Hartmann, 1993). UTRH is the vertically aver-
aged relative humidity within the 200 hPa layer below the
tropopause (again defined using the WMO standard defini-
tion). Monthly-mean climatologies for all CCFs can be found
in Supplement Fig. S1.

4 Method

4.1 Ridge regression

We use ridge regression to estimate sensitivities of cloud
radiative anomalies to changes in surrounding meteorolog-
ical CCFs within two-dimensional spatial domains. While
still being a linear least-squares regression approach, the in-
clusion of an L2 regularization penalty term means that the
method can more effectively deal with high-dimensional re-
gression problems than unregularized multiple linear regres-
sion (Hoerl and Kennard, 1970; CN21; Nowack et al., 2021).
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This, in turn, allows us to consider larger domains of CCFs
as predictors in the first place, leading to improved general-
ized predictive skill. The spatial domain within which CCFs
are used to predict R at a central grid cell, r , is referred to by
the number of grid cells in a longitude× latitude space (i.e.,
a 7× 3 domain corresponds to 35° longitude× 15° latitude;
see also Fig. 1). Five domain sizes are tested: 1× 1, 7× 3,
11× 5, 15× 9, and 21× 11.

Statistical cross-validation is used to optimize the regres-
sion fit by minimizing the cost function,

Jridge =

n∑
t=1

(
R(r)t −

M∑
i=1

ciXi,t

)2

+ α

M∑
i=1

c2
i , (3)

which puts a penalty on overly large regression coefficients,
ci , where n is the number of data points,Xi,t is the ith CCF at
time t ,M is the number of dimensions in the model (i.e., for a
7×3 domain using five unique CCFs,M = 7×3×5= 105), r
is the central grid cell, and α is the regularization parameter.

The first term in Eq. (3) is the ordinary least-squares re-
gression error. We classically approximate R(r) by a linear
function of anomalies in the set of M cloud controlling fac-
tors:

dR(r)≈
M∑
i=1

∂R (r)
∂Xi

dXi . (4)

We refer to

2i (r)=
∂R (r)
∂Xi

(5)

as the sensitivities, 2i (r), of R(r) to anomalies in the ith
CCF. See Fig. 1 for an example of the spatial pattern of six
CCFs using a 21× 11 domain.

Using fivefold cross-validation, we determine the optimal
value for the regularization parameter, α, where the second
term on the right-hand side of Eq. (3) is the L2 regularization
penalty. We split the time series into five ordered time slices
and optimize α by fitting Eq. (3) to each of four slices at a
time. Optimal α is hence found by evaluating predictions on
the fifth time slice using the R2 score independently for each
location in the observed and modeled datasets.

For Sect. 5.1, 5.2, and 5.4 we use sensitivities to predict a
2-year validation dataset. We repeat this process, rotating the
withheld data every 2 years, resulting in 10 unique training
validation dataset combinations (see Fig. S2 for a schematic
of this process). Each of the 10 2-year validation datasets are
subsequently concatenated, resulting in a continuous 20-year
time series predicted “out-of-sample”. The rotation of train-
ing validation datasets results in no data point having been
predicted using the same dataset that the model was trained
on. Standard performance metrics (Pearson r correlation co-
efficient; R2 score; and root mean squared error, RMSE) are
calculated using the concatenated predictions and the orig-
inal 20-year dataset. For Sect. 5.3, we use the sensitivities

estimated from a full 20-year dataset to visualize spatial dis-
tributions.

5 Results and discussion

Here we present results for the CCF analyses for RLW, in-
cluding a systematic assessment and intercomparison of pos-
sible CCF configurations and domain sizes. “CCF configura-
tion” refers to the combination of meteorological variables
used to predict RLW. Configurations are labeled based on
which of the proposed CCFs (shown in Table 1) are used
in addition to the following core retained factors Tsfc, ω300,
RH700, and UTRH (i.e., configuration SUT refers to predic-
tions made using Tsfc, ω300, RH700, UTRH, and SUT). Where
EIS is used as a CCF, we compare vertical velocities at 500
and 300 hPa, denoted by an additional bracket (e.g., config-
uration EIS (ω300)). Finally, where appropriate, we point to
the corresponding RNET results in the Supplement.

We first compare CCF configurations using standard per-
formance metrics for time series predictions. Since we learn
separate CCF functions to predict RLW at each 5°× 5° grid
point, we briefly evaluate prediction performance of those
functions individually, which we refer to as “local” pre-
dictions. We then average local performance metrics near-
globally (i.e., for all available predictions, 60° S–60° N inclu-
sive), henceforth simply referred to as “globally” averaged,
with grid cells weighted by the cosine of their latitude. We
also average metrics in the tropical ascent regions, which we
define as grid cells with observed climatological EIS< 1 K,
ω500< 0 hPa s−1, and latitude equatorward of 30° (Medeiros
and Stevens, 2011).

Using the CCF framework, an observational constraint on
global cloud feedback can be made using local RLW predic-
tions under a forcing (such as 4xCO2) that are aggregated
globally and normalized by the change in global mean sur-
face temperature. Though we do not predict feedback here,
we instead assess which CCF configuration best estimates
the globally aggregated RLW by spatially averaging each lo-
cal prediction and target value globally (and in tropical as-
cent regions) first and then calculating the performance met-
rics. Henceforth, note a distinction between globally aver-
aged metrics for local predictions (e.g., Fig. 2a–b) and met-
rics for globally aggregated RLW (e.g., Fig. 2c–d).

5.1 Predictive skill on observations

We first assess CCF configuration skill for local predictions,
with results shown in Fig. 2a–b (with columns c–d show-
ing globally aggregated results). Using ridge regression, we
confirm that all configurations predict out-of-sample local
RLW well at all domain sizes (with correlation matrices qual-
itatively consistent using R2 and RMSE, not shown). To
demonstrate the strengths of ridge regression while using
collinear predictors in high dimensions, we briefly compare
our results to the traditional multiple linear regression (MLR)
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Figure 2. Matrices showing Pearson r for predictions made for the observed RLW time series at each domain size using different CCF
configurations. A “CCF configuration” refers to the selection of cloud controlling factors used to predict RLW. Each configuration uses
Tsfc, RH700, UTRH, and ω300 (with the exception of the first column, where ω500 is used instead) and a candidate CCF (or CCFs) (e.g.,
SUT), which is used to label each column. Predictions are made locally, with the Pearson r averaged (a) globally and (b) in tropical ascent
regions defined as grid cells with observed climatological EIS< 1 K and ω500< 0 hPa s−1. Metrics are weighted by the cosine of latitude
and monthly standard deviation of RLW of each grid cell (see Sect. S2). Pearson r is also shown for aggregated predictions, (c) globally and
(d) in the tropical ascent regions, and compared to similarly aggregated observations. All predictions are made using ridge regression, except
for rows 1×1 (MLR), 7×3 (MLR), and 11×5 (MLR) in panels (a) and (b), which are made using multiple linear regression. Note different
scales for each color bar.

approach. Using a 1× 1 domain, there is little difference
in skill between predictions made with MLR and ridge re-
gression. Beyond 7× 3, MLR coefficients become unstable,
resulting in predictions that are not correlated with the ob-
served results (e.g., 11× 5; results for larger domain sizes
are not shown).

We find local performance only slightly depends on the
CCF configuration, with EIS (ω500) exhibiting the weak-
est performance (note that EIS (ω500) is the configuration
used in CN21). This is likely because a large proportion
of the monthly variability is already explained using only
Tsfc, ω300, RH700, and UTRH without the inclusion of addi-
tional CCFs (i.e., for 7×3, R2

= 0.64 using core CCFs, com-
pared with R2

= 0.69 using EIS (w300) in addition). Though
changes in local skill (when globally averaged) between the
CCF configurations are subtle, we find qualitatively consis-
tent results for the CMIP models, reaffirming that changes
are robust. Predictive skill is instead more dependent on do-

main size, with metrics peaking at the 7× 3 domain. We in-
vestigate this dependency on domain size in more detail in
Sect. 5.1.1.

In line with Andersen et al. (2023) (though note high-
cloud radiative anomalies are not isolated in their study), we
find the single largest improvement in RLW predictive skill is
achieved through changingω from 500 to 300 hPa, reflected
by a large positive shift in the distributions shown in Fig. 3a.
This suggests ω300 more effectively predicts deep convective
and cirrus cloud radiative effects than ω500, as we would ex-
pect (Ge et al., 2021). We do find that this results in a slight
drop in performance for RNET (Fig. S3); this is likely be-
cause 500 hPa instead better targets midlevel clouds, which
drive a shortwave contribution to RNET that is not present for
RLW. However, comparing across configurations using the
same vertical velocity reveals qualitatively similar heatmaps
for RNET and RLW (note m performs slightly better for RNET
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Figure 3. Box and whisker plots (left panels) showing the distribution of observed predictive skill based on 100 bootstrapped samples of
RLW for a selection of the CCF configurations. Crosses show the means, notches show the medians, and circles show the outliers. A “CCF
configuration” refers to the selection of cloud controlling factors used to predict RLW, where each configuration uses Tsfc, RH700, UTRH,
and ω300 (with the exception of the first box and whisker, where ω500 is used instead) and a candidate CCF(s) (e.g., SUT), which is used to
label each configuration. The right panels show the shapes of the distributions using a kernel density estimator. The top panels (a) show the
distributions for local predictions at the 7×3 optimal domain size (analogous to Fig. 2a), and the bottom panels (b) show the distributions for
the 21×11 globally aggregated optimal domain size (analogous to Fig. 2c). EIS (ω300) is highlighted in black to facilitate easier comparison
between configurations.

than RLW). An additional prominent shift to the distribution
arises through the inclusion of 1U300.

Given that raising the vertical pressure velocity results in
a strong positive shift, we henceforth choose to replace ω500
with ω300 and compare further candidate CCF configurations
with EIS (ω300) as a new baseline for comparison (high-
lighted in black in Fig. 3). At the optimal 7× 3 domain, we
find configuration SUT+ 1U300 to reproduce observed local
RLW with the highest skill, and we hence show the spatial
distributions for predictive skill in Fig. S4.

To quantify whether differences between configurations
are statistically significant for the observed anomalies, we
generate a distribution of Pearson r values using bootstrap-

ping (Davison and Hinkley, 1997). We randomly sample
the observed data (with replacement) 100 times, creating
datasets equivalent in length to 18 years. Any remaining
months are used as a validation dataset, where r is deter-
mined against predicted values. This process results in a dis-
tribution of 100 r values for each configuration, providing an
estimate of predictive skill uncertainty, with a selection of the
configurations shown in Fig. 3. The non-parametric Kruskal–
Wallis test is hence used to identify statistical differences be-
tween all of the distributions. We find highly significant dif-
ferences between all of the configurations (p < 10−30). Ac-
counting for its highest global median r , we pairwise-test the
predictive skill distribution for SUT+1U300 with all other
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configurations (using an adjusted significance level of 0.5 %
to account for multiple hypothesis testing). We find statisti-
cal similarity with onlym+1U300 and1U300 (p = 0.06 and
p = 0.01, respectively).

We now focus on predictive performance for the globally
aggregated RLW time series, with results shown in Figs. 2c–
d and 3b. While local prediction performance peaks at 7× 3
and is followed by a drop in skill, we find a discrepancy
with the globally aggregated performance, which instead in-
creases with domain size. For some configurations, r contin-
ues to increase beyond 21× 11, though this begins to tail off
(not shown). The relationship between domain size and pre-
dictive skill now aligns with the findings of CN21, where
they show that the correlation between observed and pre-
dicted global cloud feedback increases with domain size.
However, as domain size increases, so too do the model di-
mensions and thus the complexity. Owing to the trade-off
between small improvements at even larger domain sizes
and increased complexity, we restrict our analysis to 21×11
and below and discuss globally aggregated results using the
21× 11 domain.

Here we find more marked improvements in predictive
skill for most of the CCF configurations compared to EIS
(ω500), with performance again strongly dependent on do-
main size (Fig. 2c–d). However, we now find that changing
the pressure level of ω no longer results in a substantial posi-
tive shift in the skill distributions, though inclusion of1U300
still results in improvements (Fig. 3b). We also note that per-
formance metrics for globally aggregated RLW are compar-
atively worse than the globally averaged local metrics. This
is in line with accumulation of local errors and reduced vari-
ability in the globally aggregated anomalies. In a compari-
son of all globally aggregated distributions shown in Fig. 3b,
there is evidence showing statistical differences at the 5 %
significance level (with p < 10−40). Here, m+ 1U300 has
the highest median r . In a pairwise comparison ofm+1U300
with each other distribution, we find statistical differences
with all configurations except SUT+1U300 (p = 0.02) and
1U300(p = 0.03), again using an adjusted 0.5 % significance
level owing to multiple statistical tests.

Neither CAPE nor CIN improves predictive skill at either
scale compared to alternative candidate CCFs for most do-
main sizes. CAPE and CIN have been included as a CCF
for their links to deep convection, which is not frequent out-
side of the warm tropics, resulting in their being particularly
poor predictors in the high-latitude extratropics (Fig. S4; for
CMIP see Fig. S5). Additionally, the literature hints at a
potentially nonlinear relationship between CAPE, CIN, and
high cloudiness that would not be captured by the linear
ridge regression. For example, in high-CAPE environments
it is thought that there may generally be enough CAPE for
convection to occur, indicating that the exact magnitude of
CAPE is less important than passing a threshold for the on-
set of deep convection (Sherwood, 1999). The distribution
of predictive skill also suggests there is a more complex re-

lationship between CAPE (and CIN, not shown) and RLW.
Given that the distributions are calculated using randomly
resampled datasets through bootstrapping with replacement,
data points will be repeated. This reduces the diversity of the
training data, which can result in the poorer generalization of
more complex or noisy relationships.

5.1.1 CCF importance at different spatial scales

We investigate the evolution of predictive skill with domain
size for locally and globally aggregated predictions. Owing
to the linearity of ridge regression, we can partition the pre-
dicted local RLW signal into contributions from each CCF,
such that (for example)

RLW = RLW(Tsfc)+RLW(RH700)+ . . .+RLW(1U300), (6)

where RLW(Tsfc) is the component of RLW predicted using
only Tsfc within the specified domain size and so on for
each CCF in the configuration. For each CCF, we calculate
the explained variance fraction (EVF) for RLW at each grid
cell. Equation (6) is repeated for the global RLW predictions,
where local predictions are first globally aggregated for each
CCF and then summed. CCFs with higher EVFs are referred
to as more “important” for the predicted values (i.e., UTRH
is typically the most important predictor for both locally and
globally aggregated predictions; shown in Fig. 4). Note that it
is plausible that this may show bidirectional causality, where
the presence of high cloud influences UTRH by modulating
the moisture content in the upper troposphere (i.e., outflow
from convective anvils), though our analysis cannot separate
the direction.

The interaction between domain size, cloud controlling
factors, and predictive skill is complex. We summarize key
points below:

– There is an emergent distinction between “local” and
“non-local” predictors. For example, EVF for UTRH
decreases with increasing domain size, and, accord-
ingly, we find that local UTRH sensitivities typically
have strong magnitudes close to the target grid cell, with
noisy, spatially incoherent coefficients further afield
(see Fig. S6a–b for an example); thus, we describe
UTRH as a local CCF (similarly for ω300 and RH700).

– EVF for Tsfc, 1U300, and SUT increases with domain
size (i.e., non-local predictors), and each contributes a
greater proportion of the globally aggregated predic-
tions compared to local predictions (Fig. S6c–d).

– Predictive skill is likely a trade-off between adding rele-
vant information from non-local CCFs while adding su-
perfluous information from local CCFs; i.e., informa-
tion that is too distant does not provide additional pre-
dictive skill, at least to the degree that it would outweigh
the corresponding increase in dimensionality of the re-
gression problem.
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Figure 4. Maps showing the explained variance fraction (EVF) as a percentage for local predictions of RLW using a 21× 11 domain and
using configuration S+1U300 (with Tsfc, RH700, UTRH, and ω300). “Global mean local EVF” refers to the global mean EVF from local
predictions, weighted by the cosine of each grid cell’s latitude. “Global EVF” refers to the EVF for each CCF’s contribution to the globally
aggregated RLW.

– For globally aggregated predictions, ω300 is the least
important predictor (compared to the second most im-
portant for local predictions), thus explaining why the
choice of pressure level of ω is less relevant at global
scales (shown in Fig. 4) than locally.

Our first three points involve the interaction between in-
creasing model dimensions and the addition of potentially
relevant context provided by the larger spatial domain. We
discuss these points in more detail in Sect. S3. Addressing
the last point, we note that several studies point to ther-
modynamic changes dominating over dynamical effects for
global cloud feedback, likely because dynamical effects can-
cel out at sufficiently large scales (Bony et al., 2004; Byrne
and Schneider, 2018; Xu and Cheng, 2016). Conversely, ther-
modynamic and dynamical feedbacks have more comparable
importance at more local scales. We find our results broadly
analogous to this. The relatively large EVF for ω at local
scales (17.9 %, the second highest in Fig. 4) explains why re-
placing ω500 with ω300 results in a positive shift to the skill

distributions (Fig. 3a). In contrast, globally aggregated EVF
for ω300 is comparatively smaller (12.4 %, the lowest value in
Fig. 4). This points to the cancellation of large-scale dynam-
ically driven signals when globally aggregated, thus explain-
ing why there is little difference between the performance of
ω300 and ω500 in Fig. 2c–d despite resulting in a large im-
provement for a single CCF change at local scales. Finally,
given thatω, an important local predictor, cancels out at glob-
ally aggregated scales, the non-local predictors – such as Tsfc
– contribute a larger proportion of the total predicted RLW,
thus explaining – at least in part – the discrepancy between
globally aggregated and local anomalies.

5.2 Predictive skill on CMIP models

Now, we briefly present results for the CCF configurations
using the CMIP5/6 models. Key questions are whether the
CCF approach performs similarly between models and ob-
servations and if there are any obvious discrepancies that
could point towards the analysis framework being less appli-
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cable than in observations. Performance metrics are first cal-
culated locally for each GCM. Independently for each GCM,
the means of the local metrics are calculated globally and
in tropical ascent regions. The multi-model median result
is then taken, with results analogous to Fig. 2a–b shown in
Fig. S7a–b. Finally, we aggregate predictions (globally and
in tropical ascent regions) independently for each GCM. The
predicted globally and tropical-ascent-aggregated time series
are compared against the similarly aggregated target values.
Again, note a distinction between globally averaged, local
performance metrics and globally aggregated RLW through-
out this discussion.

The CMIP Pearson r correlation matrices are broadly anal-
ogous to the observed results, where general patterns found
in Fig. 2 are also present in Fig. S7. We once again find
a discrepancy in optimal domain size, with local perfor-
mance peaking at 7× 3 and globally aggregated RLW peak-
ing at 21× 11. Differences include higher multi-model me-
dian skill metrics compared to the observations, which may
be expected due to intrinsic knowledge of the meteorological
conditions embedded within the CMIP models. Additionally,
suppressed metrics for observed RLW could be caused by
slight mismatches between the observed radiative anomalies
and the reanalysis meteorological variables. This therefore
results in metrics that are more consistent between CCF con-
figurations than for the observed RLW. In addition, smaller
differences between configurations may in part be caused by
higher metrics in the first place, leaving less room for im-
provement. We also find that CAPE performs comparatively
better for the CMIP models than in the observations. This
may be due to the way in which convection is parameterized
in GCMs, thus resulting in stronger modeled relationships
between cloud radiative anomalies and CAPE than exist in
the observations.

Highlighting uncertainties within the CMIP models them-
selves, there is a large spread in the skill metrics, shown for
aggregated predictions in Fig. 5a–b. We find that changes to
the globally aggregated performance do not imply similar
changes to the tropical-ascent-aggregated performance. For
example, SUT shows a slight decrease in the global multi-
model median r compared to EIS (ω300) despite showing a
positive shift for predictions aggregated in the tropical ascent
regions. Secondly, improvements to the multi-model median
r do not imply that each GCM shows improvements indepen-
dently. For example, the multi-model median r for tropical-
ascent-aggregated predictions made using configuration SUT
has improved compared to configuration EIS (ω300); models
such as MRI-CGCM3, GFDL-CM4, and IPSL-CM5A-MR
have large leaps in Pearson r . Conversely, MIROC-ESM,
CanESM5, and HadGEM2-ES show decreases. Opposing
improvements and deteriorations of predictive skill are par-
tially responsible for the relatively small change in multi-
model r between the configurations for the CMIP models.

In Sect. 5.1, we highlighted SUT+1U300 as a possible
optimal configuration. Here we identify whether differences

between the CMIP-modeled predictive skill distributions for
EIS (ω300) and SUT+1U300 are statistically significant. In
a pairwise Kruskal–Wallis test on the combined Pearson r
scores from all 18 models (n= 1800), we find a signifi-
cantly higher predictive skill distribution for SUT+1U300
than EIS (ω300) with p < 10−11 (distributions not shown).
This is unsurprising; 15 of the 18 individual CMIP models
have a higher median r using SUT+1U300 compared with
EIS (ω300).

Despite a slightly lower multi-model median, we find that
the globally aggregated distributions for all models combined
are statistically similar at the 5 % significance level (shown in
Fig. 5c; p = 0.13). Here, only half of the CMIP models have
a higher median r using SUT+1U300 compared with EIS
(ω300). However, visual inspection of the distributions for
predictions aggregated in the tropical ascent regions (Fig. 5d)
suggests that improvements found using SUT+1U300 in-
stead of EIS (ω300) are more pronounced than any deterio-
rations. In summary, while the mean evolution of predictive
skill within the CMIP models is broadly aligned with the ob-
servations, there are nuances which likely depend on the pa-
rameterization within the models themselves (Li et al., 2012;
Qu et al., 2014; Rio et al., 2019). This leads to a slightly
different evolution of predictive skill with the configuration
between the CMIP models.

5.3 Physical interpretation of the cloud radiative
sensitivities

In addition to the statistical performance metrics, we study
the spatial distribution and magnitude of the sensitivities.
Interpreting spatial sensitivities can be used in CCF analy-
sis to justify predictor selection that is grounded in phys-
ical reasoning and can be done for any of the CCF con-
figurations (e.g., Andersen et al., 2023). Though our anal-
ysis has identified two strong configurations, SUT+1U300
and m+ 1U300, we only physically interpret the sensitivi-
ties of RLW to the CCFs in configuration SUT+1U300 in this
section. We choose SUT+1U300 over m+ 1U300 based on
the wider literature examining the relationship between high-
cloud occurrence and static stability (e.g., Li et al., 2014) and
due to the link between static stability and changes in tropical
anvil cloud fraction through the “anvil iris” thermodynamic
mechanism (Bony et al., 2016; Saint-Lu et al., 2020, 2022).
We recommend a similar physical interpretation of sensitiv-
ities be performed should alternative configurations be used
in similar CCF applications, such as constraining cloud feed-
back.

For each CCF in the configuration, we sum each contribu-
tion 2i within the entire spatial domain (e.g., Eq. 5 for RLW)
and plot the total for each grid cell. This is the spatial sensi-
tivity of the cloud radiative anomaly to a given CCF, normal-
ized for a 1-standard-deviation anomaly. Here, we derive the
sensitivities using the full 20-year datasets (with no dataset
rotation or bootstrapping). There are several studies inter-
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Figure 5. Pearson r scores for (a) globally and (b) tropical-ascent-aggregated predictions made at the 21× 11 domain size using different
CCF configurations. A “CCF configuration” refers to the selection of cloud controlling factors used to predict RLW. Each configuration uses
Tsfc, RH700, UTRH, and ω300 (with the exception of the first column, where ω500 is used instead) and a candidate CCF(s) (e.g., SUT).
The multi-model median Pearson r is shown from the 14 CMIP models where CAPE and CIN are calculated. The bootstrapped (n= 100)
predictive skill distributions for EIS (ω300) and SUT+1U300 are shown at the optimal 21× 11 domain size for (c) globally aggregated
predictions and (d) tropical-ascent-aggregated predictions.

preting relationships between cloud radiative anomalies and
the core CCFs (e.g., CN21; Andersen et al., 2023), though
not explicitly for high clouds. Therefore, we first briefly in-
terpret our sensitivities to the core CCFs, shown in Fig. 6a–
d. We then assess the sensitivities for cloud properties (i.e.,
cloud-top pressure and cloud fraction) before interpreting
sensitivities for the additional CCFs, SUT+ 1U300.

The observed and multi-model mean spatial distributions
for the core CCFs – Tsfc, ω300, UTRH, and RH700 – broadly
align with what we expect and are qualitatively similar be-
tween the observations and multi-model means. We note that
the observed global median regularization parameter, α, lies

towards the upper end of the inter-model spread (not shown).
We speculate that the CCFs in the CMIP models typically
capture the variability in RLW with greater skill than the
observations, meaning less regularization is required on av-
erage. For all CCFs except UTRH, the magnitudes of the
modeled sensitivities are smaller than the observed results
(tropical ascent sensitivities shown in Fig. 7). It is known
that (CMIP5) GCMs underestimate the frequency of tropical
anvil cloud and extratropical cirrus occurrence (Ceppi et al.,
2017; Tsushima et al., 2013) and thus their radiative effects,
which can also explain smaller sensitivities on average.
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Figure 6. RLW sensitivities (
∑
2i ) to the cloud controlling factors in configuration SUT+1U300 (also with Tsfc, RH700, UTRH, and ω300),

derived using a 21× 11 domain and defined for a 1-standard-deviation anomaly in each CCF (scaled using ERA5 CCFs for visualization
purposes). To produce the maps, we sum all elements of the sensitivity vectors at each point r . The column (a) shows observed sensitivities,
and column (b) shows the multi-model mean. Column (c) shows zonal average sensitivity for the observations (dashed line), the multi-model
mean (dark solid line), and individual CMIP model sensitivities. The Pearson r correlation coefficient for the zonal mean sensitivities is
shown in the bottom corner of each panel.

The RLW – Tsfc sensitivities (i.e., Eq. 5 summed for all
X = Tsfc) shown in Fig. 6a are generally small in magni-
tude, with regions of positive sensitivity in the central and
east Pacific (responsible for a slight positive peak in observed
zonal mean sensitivity) and with negative (or, for the CMIP
models, reduced magnitude) sensitivity over the Maritime
Continent. The RLW – UTRH sensitivities are ubiquitously
positive and large in magnitude, consistent with increasing
high cloudiness with humidity, though Fig. 6d shows that
CMIP-modeled sensitivities are consistently larger in mag-
nitude than what is observed. This is possibly due to stronger
coupling between upper-tropospheric humidity and cloud in-
cidence in the CMIP models than in the observations, owing
to the parameterization of clouds in the models themselves

(Li et al., 2012; Qu et al., 2014). The RH700 sensitivities are
also widely positive (though negative at high latitudes), with
smaller magnitude than UTRH (as we would expect for high
clouds) and with the largest magnitudes in the deep tropics.
Indicating increased high cloudiness with increased ascent,
the ω300 sensitivities are nearly ubiquitously negative, with
the strongest magnitudes broadly aligning with the tropical
ascent regions in both observations and the CMIP models.

We use the decomposition of RLW into its linear sum
of contributions from changes in cloud-top pressure (CTP),
cloud fraction (CF), and optical depth and a small residual
(with other components held fixed) to further interpret our
sensitivities (Zelinka et al., 2012a, b, 2016). We do not show
optical depth sensitivities here, owing to their small role in
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Figure 7. Observed and CMIP sensitivities to the cloud controlling factors in configuration SUT+1U300 (with Tsfc, RH700, UTRH, and
ω300), derived using a 21× 11 domain and defined for a 1-standard-deviation anomaly for each CCF, averaged over all tropical ascent grid
cells for (a) RLW, (b) RLW,CF, and (c) RLW,CTP. The standard deviation used to scale each CCF has been calculated from the observed
CCFs.

driving LW high-cloud radiative anomalies (see Fig. S10).
LW radiative anomalies caused by changes in the cloud prop-
erties are henceforth referred to using an additional sub-
script; i.e.,RLW,CTP is the contribution that changes in cloud-
top pressure (with no change in τ or CF) have to the total
RLW. Sensitivities for the decompositions can be found in
Figs. S8–S9. We average the domain-summed sensitivities in
the tropical ascent regions, shown in Fig. 7.

The RLW−Tsfc sensitivities average to approximately zero
in the tropical ascent regions for the observations (Fig. 7a)
with good agreement globally between the CMIP models
and observations (zonal mean r = 0.52). Figure 6a shows a
distinct positive sensitivity present over the Pacific Ocean,
which we ascribe to an increase in high cloud-top pres-
sure that is associated with warming sea surface tempera-
ture anomalies, thus radiating heat to space at cooler tem-
peratures. We find that the spatial patterns of RLW,CTP−Tsfc
sensitivities in the tropics are widespread positive (Fig. S9),
as we would expect (though more strongly positive in the
models than the observations). Accordingly, the observed
RLW,CTP−Tsfc sensitivities in the tropical ascent regions are
positive, with a larger magnitude than the similarly aver-
aged and opposite-signed RLW,CF−Tsfc sensitivities (Fig. 7).
This is despite a much smaller monthly signal for observed
RLW,CTP thanRLW,CF. The modeledRLW,CTP−Tsfc sensitivi-
ties are stronger than theRLW,CF−Tsfc counterparts, resulting
in the slightly more positive CMIP RLW− Tsfc sensitivities.

The RLW−1U300 sensitivity, shown in Fig. 6f, is more
challenging to interpret than the core CCFs (Anber et al.,
2014). This is partially due to the dynamic nature of wind
shear; coefficients within the spatial domain capture dynamic
variability signals, which may result in a range of positive

and negative sensitivities, therefore being canceled in the
summation over the 21×11 domain. There is also less agree-
ment between the observed and multi-model mean spatial
distributions than all other CCFs, which may partially be
caused by offset circulation cells in the CMIP models, re-
sulting in different local sensitivities and dynamic signals
(zonal mean r =−0.01). Here, we suggest reasons for both
positive and negative sensitivities. Over the Maritime Con-
tinent and Indian Ocean, observed sensitivities are broadly
negative. It is known that wind shear can hasten the dis-
sipation of tropical tropopause cirrus (Jensen et al., 2011),
which would result in decreased cloudiness and thus LW
cooling. Conversely, there are many regions where the sensi-
tivity is positive (such as the central Pacific), which indicates
LW warming with increased shear. This may be a result of
shear spreading the high cloud, thus increasing cloud frac-
tion (Lin and Mapes, 2004) and in turn reducing outgoing
LW radiation. The role of wind shear may be sensitive to the
pressure level relative to the tropopause (Chakraborty et al.,
2016; Nelson et al., 2022). Given that we use the same shear
height (i.e., the difference in 300 and 925 hPa wind speeds)
globally, it is likely that the zonal distribution of tropopause
heights may cause the differing relationships. Despite differ-
ences between the spatial distributions, both observed and the
multi-model mean sensitivities in the tropical ascent regions
are consistent with each other and average to approximately
zero. We suspect this may due to shear being important for
the organization of convection, which is not represented in
GCMs.

Finally, we address the SUT sensitivities. Both the ob-
served and multi-model meanRLW−SUT sensitivities, shown
in Fig. 6e, are predominantly negative in the tropics, with
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the largest magnitudes over the central and west Pacific and
Maritime Continent (though more markedly so for the obser-
vations). Therefore, in the absence of changes in the other
CCFs, anomalies in high cloud associated with an increase
in SUT would result in increased longwave emission to space
over the tropics. This is what we expect, given the negative
relationship between upper-tropospheric cloud incidence and
static stability over tropical oceans (Li et al., 2014).

The observed RLW,CF− SUT sensitivities are negative
across the tropics – most strongly in regions with high
RLW,CF signals (see Fig. S8). This reveals that LW cooling
arises – at least in part – from a reduction in high-cloud frac-
tion, qualitatively resembling the anvil iris mechanism (Bony
et al., 2016; Saint-Lu et al., 2020). As anvil clouds rise in re-
sponse to global warming, their environment becomes more
stable, owing to the dependency of static stability on atmo-
spheric pressure (Saint-Lu et al., 2020, 2022). In a more sta-
ble atmosphere, the vertical pressure gradient associated with
subsidence in clear-sky conditions is reduced. Owing to mass
conservation, a reduction in the subsidence pressure gradi-
ent results in a reduction in anvil cloud fraction, caused by
a decrease in horizontal convergence (Saint-Lu et al., 2020,
2022).

We find that the mean CMIP RLW− SUT sensitivity in the
tropical ascent regions is smaller in magnitude than the ob-
served results, with considerable disagreement in sign (rang-
ing from −1.0 to 0.44 W m−2 σ−1; Fig. 7a). Most of the
total RLW− SUT sensitivity arises from the CF component
(Fig. 7b), where the CMIP model mean approaches zero,
though with a similarly large range. Though it is thought
to be small in magnitude, the anvil cloud area feedback is
subject to much uncertainty and underestimated by GCMs
(Zelinka et al., 2022), consistent with our results. CMIP mod-
els are known to predict a wide range of anvil cloud frac-
tion feedbacks, including “unlikely” very positive feedback
(Zelinka et al., 2022), which is perhaps reflected by strong
positive tropical RLW− SUT sensitivities for two GCMs
(Fig. S8e). Given that static stability has been shown to ro-
bustly control high-cloud fraction (Saint-Lu et al., 2022), and
based on our results, we propose that the addition of SUT into
observational constraint frameworks may reduce some of the
uncertainty arising from the anvil fraction feedback.

We also find that the spatial distributions for the
RLW,CTP−SUT observed and multi-model mean sensitivities
are broadly similar with zonal mean correlation r = 0.60. For
observations, the RLW,CTP−SUT sensitivity is negative in the
west Pacific and Maritime Continent, indicating that an in-
crease in SUT results in LW cooling, arising from a change
(i.e., a decrease) in cloud-top pressure. Increased static sta-
bility results in suppressed vertical motion, which in turn pre-
vents cloud tops from rising as high as they might in a more
unstable environment (Saint-Lu et al., 2022; Zelinka and
Hartmann, 2010, 2011). Negative sensitivities in the tropical
ascent regions are less prevalent for the models, with negative
sensitivities more widespread in the subtropics. This results

in a smaller magnitude of the CMIP RLW,CTP− SUT sensi-
tivities in the tropical ascent regions (Fig. 7c).

As well as absorbing upwelling LW radiation, high clouds
can reflect incident SW radiation depending on their opti-
cal depth. While RLW (and thus the sensitivities) is primar-
ily driven by CF and CTP changes, RNET is also driven by
changes in optical depth, which predominantly affects SW
radiative anomalies that we have not directly assessed. Thus,
the net high-cloud radiative anomaly is comprised of com-
plex interplay between competing LW and SW effects. The
magnitude of the observed RNET− SUT sensitivity is much
smaller than the RLW− SUT component in the tropical as-
cent regions, though the spatial distribution is broadly simi-
lar (Fig. S11) and negative in many high-cloud regions. This
suggests that, assuming an increase in SUT with warming
(Bony et al., 2016), high clouds exert a negative (though
weak) net feedback. However, the observed CMIP mean
tropical ascent RNET,CF− SUT sensitivities average to ap-
proximately zero, indicating a very weak anvil cloud area
feedback with increasing SUT. While a weak anvil cloud
feedback may be expected (McKim et al., 2024), it is also
thought CMIP models tend to underestimate a negative anvil
cloud fraction feedback (Zelinka et al., 2022). Additionally,
Zelinka et al. (2022) show that eight CMIP models (includ-
ing six of those used in this research) predict an “unlikely”
positive feedback arising from changes in anvil cloud frac-
tion. Therefore, the near-zero multi-model sensitivities may
also arise due to cancellation of local sensitivities between
the models.

5.4 Predicting radiative anomalies from cloud fraction
and cloud-top pressure changes

Based on the physical interpretation of the sensitivities, our
results – combined with the previous literature and theory –
thus far support the use of SUT+1U300 in high-cloud con-
trolling factor frameworks. We have shown that SUT+1U300
reproduces the locally and globally aggregated RLW with
high skill for observations and performs well for the CMIP
models. Additionally, the sensitivities shown in Fig. 6 sug-
gest that the mechanisms driving high-cloud feedback – ris-
ing free-tropospheric clouds and reduction in anvil cloud
fraction (Ceppi et al., 2017) – are captured by this selection
of CCFs at the 21×11 domain. Finally, we question whether
our approach captures the spatial pattern, temporal variabil-
ity, and magnitude of these properties.

We predict 20 years of cloud radiative anomalies induced
by CF and CTP changes (with other components held fixed)
for both observations and CMIP models, again using rotat-
ing 18-year datasets. We globally aggregate the predicted
anomalies (e.g., as in Fig. 2c) and compare against similarly
aggregated target values using the Pearson r correlation co-
efficient. We do not assess optical-depth-induced changes,
owing to their small historical LW signal (see Fig. S10).
Though optical depth is important for historical SW (and
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consequently net) radiative anomalies, the high-cloud optical
depth feedback is thought to be relatively small (Zelinka et
al., 2022), and so we focus on CF and CTP. We place partic-
ular emphasis on the observations here, as the El Niño phase
of the El Niño–Southern Oscillation (ENSO) from July 2015
to June 2016 saw anomalous warming in the east Pacific (see
Fig. 8, top panel). ENSO is a dominant driver of natural
ocean–atmosphere variability, resulting in regional tropical
temperature and circulation anomalies that are accompanied
by changes in cloud properties and the TOA radiation bud-
get (Ceppi and Fueglistaler, 2021). Accordingly, July 2015
to June 2016 has one of the most anomalously warm annual
mean surface temperatures in the 20-year record. We only
highlight this El Niño event for the observed cloud prop-
erties, as it will be absent from the coupled historical sim-
ulations, and Atmospheric Model Intercomparison Project
(AMIP) simulations do not reach 2016.

Out-of-sample globally aggregated RLW,CF is well pre-
dicted by configuration SUT+1U300 with a correlation coef-
ficient of 0.63. The spatial distribution of the El Niño CF
anomalies closely follows the RLW distribution owing to
its large signal and is reproduced accurately with a corre-
lation coefficient of r = 0.93 (Fig. 8). There is a positive
RLW,CF anomaly in the east Pacific, overlapping the region of
anomalous sea surface warming, indicating increased cloud
fraction. Warmer SSTs enhance convection, resulting in in-
creased upward motion and thus increased high cloudiness.
In the west Pacific, the SST anomaly is negative and smaller
in magnitude, though there is a strong, negative RLW,CF
anomaly, indicating a reduction in cloud fraction. Owing
to the shift in circulation, suppressed convection can result
in anomalous subsidence, hence reducing high cloudiness.
Our configuration predicts RLW,CF with slight negative er-
ror in the east Pacific, indicating an underestimation of the
increased cloud fraction. In the west Pacific, where there is
an observed reduction in cloud fraction, our predictions have
little error.

We also predict observed, globally aggregated RLW,CTP
well, though with slightly reduced correlation coefficients
compared to RLW,CF (r = 0.68). Figure 9b shows that the
magnitudes of strong positive and negative anomalies are
slightly underestimated; this may be caused by a small sig-
nal for the regression model to learn from (see Fig. S10).
Alternatively, this may hint towards a nonlinear relationship
between cloud-top pressure and the CCFs, which would not
be captured by ridge regression and (in addition to CCF se-
lection) could explain poorer skill for predicting LW cloud
feedback (CN21). Regardless, the spatial distribution of pre-
dicted El Niño RLW,CTP is again strongly correlated to the
observed results, here with r = 0.80 (Fig. 9a). Strong positive
anomalies are present over the east Pacific, which we ascribe
to a rise in cloud-top pressure due to enhanced convection.
As the atmosphere warms, a shift in the RLW,CTP distribution
towards higher values, particularly in the tropics, may be ex-
pected owing to the rising of free-tropospheric clouds (Ceppi

et al., 2017). We note that the globally aggregated, annual
mean RLW,CTP during this El Niño event is the most extreme
positive anomaly in the observed 20-year record and is re-
produced with small absolute error (−0.01 W m−2). Accord-
ingly, we predict the most positive RNET,CTP annual anomaly
with similarly small absolute error and correlation coefficient
(absolute error −0.01 W m−2, r = 0.57; see Fig. S12). This
is consistent with the extreme warmth during that period and
the associated rise of the tropopause. Despite potentially un-
derestimating the amplitude of the monthly variability, our
method does an excellent job capturing the most extreme
(positive) annual anomaly out-of-sample (Fig. 9b). We also
find that configurations SUT and SUT+1U300 predict the
tropical mean El Niño RLW,CTP with the smallest absolute
error (not shown).

We additionally confirm that our framework predicts out-
of-sample globally aggregated RLW,CF and RLW,CTP with
good skill in the CMIP models, once again with slightly
higher correlation coefficients than the observed results
(multi-model medians of r = 0.75 and 0.77, respectively).
To summarize, we have shown that the spatial distributions
of the observed El Niño anomalies are captured well, in-
cluding the most extreme positive RLW,CTP annual anomaly,
thus highlighting the strength of our proposed configuration
SUT+1U300. We reiterate that the SUT sensitivities (Figs. 6e,
S8e–S9e) are physically congruent with the previous litera-
ture and appear to directly target the drivers of high-cloud
feedback.

6 Conclusion

Few studies directly assess cloud controlling factors for high
clouds despite their substantial contributions to cloud feed-
back. Here, a selection of candidate cloud controlling fac-
tors (CCFs) have been used to predict high-cloud radiative
anomalies using ridge regression. We investigate five candi-
date CCFs – static stability in the upper troposphere, sub-
cloud moist static energy, wind shear, convective available
potential energy, and convective inhibition – using the addi-
tional “core” meteorological drivers of surface temperature,
lower- and upper-tropospheric relative humidity, and upper-
tropospheric vertical pressure velocity in each configuration.
CCFs are used within a two-dimensional spatial domain to
predict out-of-sample longwave cloud radiative anomalies,
RLW. We assess configurations from local to globally aggre-
gated spatial scales and physically interpret the spatial distri-
bution of the sensitivities for the configuration SUT+1U300.
Finally, we assess the skill of SUT+1U300 for predicting
out-of-sample anomalies induced by changes in cloud-top
pressure and cloud fraction, including the El Niño event of
2015–2016.

We find that the optimal domain size and CCF combi-
nation are dependent on the temporal and spatial scales as-
sessed, and we summarize the most relevant findings here:
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Figure 8. Observed mean El Niño surface temperature anomaly (top) and radiative anomalies (a), averaged from July 2016–June 2015
relative to the full 20-year record. Predicted anomalies (b) made using a 21× 11 domain and the configuration SUT+1U300 (with Tsfc,
RH700, UTRH, and ω300) for the El Niño months. The difference (predicted minus observed) is shown in panel (c). The Pearson r spatial
correlation between (a) and (b) is shown in the bottom left of panel (b). Note different color bar ranges.

Figure 9. Scatter plot showing the correlation between observed and predicted monthly globally aggregated (a) RLW,CF and (b) RLW,CTP
time series using configuration SUT+1U300 (in addition to Tsfc, RH700, UTRH, and ω300) and a 21×11 domain. El Niño months are shown
using colored circles, with the annual mean shown using a colored square. Solid lines show y = x, and the dashed lines show the line of best
fit through the points. For RNET,CF and RNET,CTP, see Fig. S12.
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1. All configurations predict out-of-sample historical vari-
ability for RLW (and RNET) with good skill for obser-
vations and CMIP models at local scales. A domain of
7× 3 optimizes local predictions, where we show that
ridge regression skill surpasses traditional multiple lin-
ear regression.

2. Conversely to local predictions, predictive skill for
globally aggregated (i.e., a global spatial average) ra-
diative anomalies increases with domain size, peaking
at 21× 11. We suggest a trade-off between local and
non-local predictors is partially responsible for this do-
main size discrepancy between local and global predic-
tions, though unraveling this remains a key question for
future research.

3. The main mechanisms driving high-cloud feedback –
rising of free-tropospheric clouds and reduction in anvil
cloud fraction – appear to be captured by the core
and candidate CCFs in the SUT+ 1U300 configura-
tion. The spatial distributions of the RLW sensitivities
to the core CCFs and SUT are physically consistent with
our understanding and expectations, with observed and
CMIP-modeled sensitivities qualitatively similar. There
are larger differences between observed and the multi-
model mean 1U300 sensitivities, which are more com-
plex to interpret than the core CCFs and SUT.

4. Out-of-sample globally aggregated anomalies induced
by cloud-top pressure and cloud fraction changes are
predicted well using SUT+1U300 in both observations
and models. In particular, we obtain a quantitatively
accurate out-of-sample prediction of the observed ex-
treme anomalies in RLW,RLW,CF, and RLW,CTP during
the 2015–2016 El Niño. The corresponding spatial dis-
tributions are also predicted with high correlation coef-
ficients (r ≥ 0.80).

Our systematic evaluation of high-cloud controlling fac-
tors highlights SUT+1U300 as a possible optimal configu-
ration for CCF frameworks. Of course, our work is only the
first attempt to assess candidates for high-cloud controlling
factors so we welcome future work on additional candidate
factors that might not have been considered here. We have
also identified an important inconsistency regarding ideal do-
main size for CCF predictions on historical data locally and
globally aggregated. Given the strong out-of-sample predic-
tive power of our framework, in future work we will use
our optimal CCF configurations to constrain high-cloud feed-
back.
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