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Abstract
Introduction In metabolomics, the investigation of associations between the metabolome and one trait of interest is a key 
research question. However, statistical analyses of such associations are often challenging. Statistical tools enabling resilient 
verification and clear presentation are therefore highly desired.
Objectives Our aim is to provide a contribution for statistical analysis of metabolomics data, offering a widely applicable 
open-source statistical workflow, which considers the intrinsic complexity of metabolomics data.
Methods We combined selected R packages tailored for all properties of heterogeneous metabolomics datasets, where 
metabolite parameters typically (i) are analyzed in different matrices, (ii) are measured on different analytical platforms 
with different precision, (iii) are analyzed by targeted as well as non-targeted methods, (iv) are scaled variously, (v) reveal 
heterogeneous variances, (vi) may be correlated, (vii) may have only few values or values below a detection limit, or (viii) 
may be incomplete.
Results The code is shared entirely and freely available. The workflow output is a table of metabolites associated with a 
trait of interest and a compact plot for high-quality results visualization. The workflow output and its utility are presented by 
applying it to two previously published datasets: one dataset from our own lab and another dataset taken from the repository 
MetaboLights.
Conclusion Robustness and benefits of the statistical workflow were clearly demonstrated, and everyone can directly re-use 
it for analysis of own data.

Keywords Metabolomics · Statistical workflow · Association · Most likely transformation

1 Introduction

Metabolomics has evolved as a discipline that has been 
widely used to measure changes in the profiles and levels of 
metabolites using two main distinct analytical approaches, 
the targeted and the nontargeted metabolite profiling. The 
changes in the profiles and levels of metabolites are of inter-
est in order to understand their biological roles, in order to 
explore and identify biomarkers of disease, and to discover 

the pathogenesis of diseases. For instance, Rangel-Huerta 
et al. (2019) investigates the relationship between metab-
olites and obesity; Nguyen et al. (2021) the relationship 
between the metabolites and chronic hepatitis B; Kumar 
et al. (2020) the relationship between leptin levels and levels 
of metabolites of energy and hormone metabolism. How-
ever, demonstrating such relationships is often challenging. 
Specifically, statistical analysis is quite often one of the most 
challenging tasks, together with the consecutive biologi-
cal interpretation of the statistical results. In fact, this task 
requires expertise from many disciplines and therefore inter-
disciplinary collaboration. In many publications, data analy-
sis methods were reported unclearly or incompletely, so that 
it is impossible to follow or replicate statistical analyses, as 
noted by Considine et al. Considine et al. (2018). Concomi-
tantly, in order to address the complexity of metabolomics 
data analysis, several tools offering help for this task have 
emerged. In the last decade, many research groups developed 
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a variety of strategies and methods to extract meaningful 
information from metabolomics data. Just to give some 
examples, common web-based tools are, for instance, Meta-
boAnalyst (Chong et al., 2018), Workflow4Metabolomics 
Giacomoni et al. (2015), and Galaxy Davidson et al. (2016). 
Moreover, modelling data using partial least squares dis-
criminant analysis (PLS-DA) is widespread. Mendez et al. 
(2020) proposed an extension of the PLS-DA to non-linear 
artificial neural networks, while Antonelli et al. (2019) dis-
cussed the limitations of PLS-DA when variable selection is 
aimed. The two reviews O’Shea and Misra (2020) and Misra 
(2021) summarized software resources, packages, and tools 
which were made available to the metabolomics research 
community between 2018 and 2020. The authors underline 
the importance of having many new tools, which represent a 
welcome addition from different points of view. Since only 
the coming years will show which software was ultimately 
useful and adopted in metabolomics research, the authors 
encourage the regular development of more software tools. 
In the effort to provide a contribution for statistical analysis 
of metabolomics data, we hereby provide a universal and 
widely applicable open-source statistical workflow, which is 
tailor-made for analysis of metabolomics data. The workflow 
combines many R packages, involving powerful statistical 
methods for data analysis. In this sense, pre-existing meth-
ods in R are re-used; concomitantly, extension and integra-
tion of further methods is easily possible. As a result, the 
workflow yields a table of metabolites associated with a trait 
of interest, together with a compact plot for high-quality 
results visualization. The crucial aspect of our workflow is 
the comprehensive consideration of the intrinsic complexity 
of metabolomics data, handling many aspects and character-
istics of the data simultaneously. In fact, the workflow can 
deal with all properties of typical metabolomics datasets: 
the metabolites /analyte data are (i) quantified in different 
matrices (plasma, urine etc), (ii) measured on different ana-
lytical platforms (e.g. GC-MS, LC-MS, NMR) with different 
precisions, (iii) analyzed by targeted as well as non-targeted 
methods, (iv) scaled variously, (v) reveal heterogeneous 
variances, (vi) may be correlated, (vii) may have only few 
values (so called ties), (viii) may have values below a detec-
tion or quantification limit (left censored data), and (ix) may 
be incomplete (missing values). The workflow can be used 
for quantitative data, for semiquantitative data and also for 
unknowns. This means that associations can be determined 
for unknowns’ metabolites that have not yet been identified. 
Furthermore, it is important to emphasize that in most stud-
ies there are more metabolites than participants resulting in 
the so-called p > N problem (p = number of metabolites, N 
= sample size). On the other hand, it should be considered 
that the variable of interest can be modelled quantitatively 
as well as qualitatively, and that each metabolite association 
can be calculated separately or together with other analytes 

as metabolite patterns (univariate vs. multivariate analysis). 
Finally, the role of other important participant attributes, 
such as sex, BMI (i.e. competing covariates) needs to be 
considered as well. Our workflow addresses all these specific 
issues by appropriate statistical analysis of metabolomics 
data. In this paper, we first explain the principle steps of 
the proposed statistical approach. Secondly, workflow utility 
and output are demonstrated by applying it to two previ-
ously published and well-documented datasets: one data-
set from our own lab and another dataset taken from the 
repository MetaboLights Haug et al. (2012). These exem-
plary re-evaluations shall support clarity and transparency 
in metabolomics data analysis, as suggested by Considine 
et al. (2018). Specifically, we re-analyzed two human studies 
concerning metabolites: a cross-sectional study with the aim 
to characterize the metabolome of healthy individuals, and 
another study with the aim to investigate the impact of age 
on the urinary metabolome.

2  Methods

2.1  Selected studies for re‑evaluation using our 
workflow

2.1.1  The cross‑sectional study Karlsruhe Metabolomics 
and Nutrition (KarMeN)

The first dataset used came from the study presented and 
described in detail by Bub et al. (2016), the KarMeN study. 
This was a cross-sectional study, conducted in Germany 
between 2011 and 2013. Briefly, 301 healthy adults, 172 
men, 129 women, 18–80 years old were recruited. They 
were subjected to a standardized examination schedule for 
a characterization by anthropometric, functional, and clini-
cal parameters. Moreover, urine and blood samples were 
collected for metabolomics analysis with different analyti-
cal methods. This yielded in total more than 400 analytes in 
plasma and over 500 analytes in urine. Originally, predictive 
modelling was applied on these data using different machine 
learning algorithms to investigate associations of metabo-
lites with age and sex Rist et al. (2017).

2.1.2  The analysis of the human adult urinary metabolome 
variations with age by Thévenot et al. (2015)

The second dataset we re-analyzed came from the study 
presented by Thévenot et al. (2015), which had the aim to 
investigate the impact of age on the urinary metabolome. 
Urine samples were collected from a cohort of 183 human 
adults during their routine examination. Thevenot et al. 
started with 258 metabolites measured by LC-HRMS in total 
and, after some quality control operations, finally considered 
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170 metabolites for evaluation. Of these 170 metabolites, 
120 are available online. Specifically, the online repository 
( compare the data availability statement) contains the data 
set from the negative ionization mode while the associated 
publication also describes data from the positive ionization 
mode.

The data were modelled by orthogonal partial least-
squares. The effects for the association between the metabo-
lites and age were given by log 2 ratios. Specifically, metabo-
lites were sorted by decreasing log 2 ratios of the predicted 
intensities by the model. The statistical analyses were con-
ducted as univariate analysis of the association of age with 
the 120 metabolites, respectively.

2.2  Statistical analysis as realized in our workflow

In order to detect the relationship between a continuous vari-
able X (e.g., age) on a total number of p human metabolites 
Y1, Y2,… , Yp, (i.e., i metabolites with i from 1 to p) the asso-
ciation between the covariate of interest X and the p metabo-
lites was expressed by the following regression models:

Here, hi were various, strictly monotonically increasing 
transformations of the metabolites Yi (as explained below). 
�i were the regression parameters, whose interpretation 
resulted from the a priori chosen error distribution of the 
errors �i.

In order to be receptive for different association patterns 
between the metabolites Yi and the variable of interest X, the 
variable of interest X was taken unmodified as well as modi-
fied by the logarithm, i.e., considering log(X) (Tukey et al., 
1985). Specifically, this means that we had two association 
models, one with covariate X, the other with its logarithm 
log(X) . Consequently, there were a total of two regression 
models per each metabolite Yi , expressed respectively by the 
notation [a] and [l], where [l] stands for the logarithm (for 
positive X). The R function tukeytrend::dosescalett allows 
to consider and store X and its logarithm simultaneously, 
where the different operations on X (like the calculation of 
the logarithm) constitute the so-called "metameters".

In order to be open for different shapes of the condi-
tional distribution function of Y, we considered so-called 
transformation models. The core idea of any transforma-
tion model is the application of a transformation function h 
for the reformulation of the unknown distribution function 
P(Y < y) as P(h(Y) <= h(y)) . Specifically, the functions hi 
were estimated from the data by the so-called most likely 
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transformation (Hothorn et al., 2018): This estimation 
was embedded in a maximum likelihood framework and 
it was facilitated by parametrization of the function h. Spe-
cifically, the parametrization was conducted by Bernstein 
polynomials. In this way, the conditional distribution of a 
metabolite Yi given the variable of interest X was estimated 
from a flexible parametric model, with the help of the R 
function mlt::mlt or of the function tram::boxCox.

Moreover, the metabolites affected by a limit of quan-
tification were considered as left censored variables. The 
R function survival::Surv was involved for calculation 
with censored variables. This function stored the vari-
ables together with the information if these were cen-
sored or not as well as the corresponding censorship 
value. Finally, the metabolites affected by many repeated 
values were considered as having so-called ties. This is 
the case when many observations take the same value. 
In many cases ties resulted from insufficient precision, in 
other cases ties were caused by the discrete character of a 
variable. The way we chose to "break" ties was to regard 
them as censored, interval variables. Again, the R function 
survival::Surv was involved for calculation for variables 
with ties, considering these as interval variables.

The null hypothesis was that there is no association 
between the metabolites Yi and the variable of interest X or 
between the metabolites Yi and the logarithm of the vari-
able of interest, log(X) . The alternative hypothesis was that 
at least one model shows association, that is:

The equivalent multivariate hypothesis generalized this 
for all metabolites: Is there an association between all the 
metabolites Yi , i = 1...p and the variable of interest X? For 
the in total 2 ∗ p models, the correlation between the mar-
ginal test statistics was calculated by so-called multiple mar-
ginal models (R function multcomp::mmm) and taken into 
account for the joint inference by general linear hypothesis 
(R function multcomp::glht) (Pipper et al., 2012). This cor-
responds to a multivariate analysis, correcting for multiplic-
ity. The full-page-figure (Fig. 1) schematically displays the 
main principles behind the workflow, the R packages and 
functions involved, indicating possible inference steps.

3  Results

In this section, we demonstrate the principle of our work-
flow by presenting the results of the statistical analyses 
applied to the two representative studies, the KarMeN 
study and the study by Thevenot et al.
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3.1  The KarMeN cross‑sectional study 
as explanatory data example

In order to demonstrate the workflow step-by-step, we used 
an exemplary dataset consisting of two (continuous) metabo-
lites from the KarMeN Study (Bub et al., 2016) and (From-
mherz et al., 2016) for the sake of explanation; the code can 
be found in the supplementary information. Specifically, the 
chosen metabolites were: the plasma metabolite GUDCA, 
i.e., glycoursodeoxycholic acid, a bile acid quantified by 
LC-MS; and the plasma metabolite C10:0, decanoic acid, 
a saturated fatty acid quantified by GC-MS. This provided 
a particular case example, since GUDCA was affected by a 
limit of quantification (LOQ) of 25 nM (left censored) and 
C10:0 was affected by many repeated values (ties). Specifi-
cally, 193 individuals had the same value for C10:0 equal 
to 0.46. The variable of interest was the age. The aim was 
to investigate associations between age and the metabolites 
GUDCA and C10:0, respectively and jointly.

The results of this calculation is a table containing the 
estimated effects and the simultaneous confidence intervals 
for arithmetic as well as logarithmic dependencies (Table 1). 
The workflow reveals a strong association between GUDCA 
and age, and no association between C10:0 and age. This 
corresponds to the results for these two analytes already 
documented in Rist et al. (2017). Also after adjustment for 

BMI, the association between GUDCA and age is confirmed 
as well as the fact that there is no association between the 
metabolite C10:0 and age.

3.2  The Thevenot et al. study as reproducible study 
example

In order to further illustrate how our workflow works, we 
re-analyzed data by Thévenot et al. (2015), investigating the 
association of age with the urinary metabolome (compare 
the section Methods); the code can be found in the sup-
plementary information. For this purpose, the association 
of 120 metabolites with the age of 183 adults were investi-
gated. Specifically, the associations of age were considered 
simultaneously for all metabolites. The complete results of 
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Fig. 1  Visualization of the workflow. Orange diamonds represents mandatory questions about data characteristics or analysis strategy. Green rec-
tangles list the R packages and functions involved as proposed solution. Blue rectangles between dashed lines indicate possible inference steps

Table 1  Effects and simultaneous confidence intervals for the asso-
ciation between the metabolite GUDCA and age and between the 
metabolite C10:0 and age, considering age unmodified (i.e., metam-
eter "arithmetic") and the logarithm of age (metameter "logarithmic")

Metabolite Metameter Effect Lower limit Upper limit

GUDCA Arithmetic − 0.016 − 0.025 − 0.008
GUDCA Logarithmic − 0.738 − 1.094 − 0.381
C10:0 Arithmetic 0.003 − 0.005 0.012
C10:0 Logarithmic 0.124 − 0.225 0.474
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applying the workflow to the data was visualized with one 
single plot: Fig. 2 displays one confidence interval for each 
metabolite; together, the simultaneous confidence intervals 
for all 120 metabolites are ordered by increasing effects 
for linear association with age, allowing scale-independent 
interpretation. The confidence intervals not transgressing the 
vertical line (for effect=0) describe the metabolites associ-
ated with age; specifically, they show a positive association 
when they are at the right-hand side of the vertical line, 
and a negative association when they are on the left-hand 
side. The calculated effects are listed in table-form, together 
with the low and the upper value of the confidence intervals 
(compare the supplementary material). In the same way, 
simultaneous confidence intervals for logarithmic associa-
tions between metabolites and age are displayed (Fig. 3). 
The results obtained by Thévenot et al. (2015) and by our 
workflow were summarized in a list and compared (Table 2): 
the 52 metabolites reported in Thevenot et al. (2015) as asso-
ciated with age are sorted by decreasing log2 ratios as in the 
original work. The metabolites identified by our workflow 
as significantly associated with age are in bold and blue. 
These are less than the metabolites identified Thévenot et al. 
(2015). In fact, Thévenot et al. (2015) conducted a univari-
ate analysis with significance threshold given by a p-value 

equal to 0.05, while our workflow conducted a multivariate 
analysis, constructing simultaneous confidence intervals and 
therefore considering also the number of involved metabo-
lites. This is appropriate when dealing with many metabo-
lites at the same time. As a consequence, the probability for 
false-positive results is lower.

4  Discussion and conclusion

In the present article, we propose a statistical workflow based 
on a combination of several R packages (survival, tram, mlt, 
multcomp), considering common issues with metabolomics 
data, such as the fact that metabolomics data are scaled dif-
ferently, are platform-dependent, are heterogeneous, and are 
sometimes not detectable below a certain limit. Moreover, 
by considering the most likely transformation function for 
each metabolite, we enable the metabolites to be differently 
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Fig. 2  Impact of age on 120 urine metabolites for 183 adults under 
a linear model, visualized by simultaneous confidence intervals, 
ordered by increasing effects, given as horizontal lines around black 
circles. The blue lines are the metabolites that show association with 
age: Quinic acid, 1.7-Dimethyluric acid, 1.3-Dimethyluric acid, Ami-
nosalicyluric acid, 1-Methylxanthine, Fumaric acid, and 1-Methyluric 
acid (positively associated); Dimethylguanosine, N4-Acetylcytidine, 
FMNH2, Testosterone glucuronide, Dehydroepiandrosterone 3- glu-
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−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
20

40
60

80
10

0
12

0

Metabolites vs. log(Age)

Effects

M
et

ab
ol

ite
s 

i=
1,

...
,1

20

Dehydroepiandrosterone.sulfate

Dehydroepiandrosterone.3.glucuronide

Testosterone.glucuronide

FMNH2

N4.Acetylcytidine

Fumaric.acid

X1.Methyluric.acid

X1.Methylxanthine

Aminosalicyluric.acid

X1.7.Dimethyluric.acid

X1.3.Dimethyluric.acid

Quinic.acid
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distributed, left censored and to have different patterns of 
association with the variable of interest, or with its logarithm 
as well. According to current statistical approaches, we have 
considered the correlation between metabolites in order to 
adjust for multiplicity in a less conservative way than with 
classical approaches (i.e., the Bonferroni-correction).

More specifically, the strengths of the proposed workflow 
are the following:

There are no a priori assumptions about the distribution 
of Yi , since it is unrealistic to assume the same error distri-
bution for each of the p metabolites. Instead, a metabolite-
specific data-driven transformation function is considered. 
mlt provides a comparable analysis of such differently scaled 
metabolites and therefore enables scale-independent inter-
pretation of the results, which is particularly helpful when 
searching for associations between one specific variable of 
interest and multiple metabolites simultaneously.

The workflow considers the fact that the p metabolites 
are a mixture of completely measured metabolites, but also 
left censored metabolites (with values below the limit of 
detection or quantification), which is an intrinsic property of 
the chemical measurement of metabolites. Moreover, some 
metabolites have many ties and these are also integrated in 
analysis. Whether a feature can be attributed to a certain 
molecule or not, is not relevant for the workflow. Therefore, 
a description consisting of a pair of m/z and RT values is 
certainly compatible with the workflow.

Different association patterns between the metabolites Yi 
and the variable of interest X are “allowed”: The workflow is 
also able to detect non-linear associations. Each metabolite 
gets its own “suitable” model for association with the vari-
able of interest as result of a maximization process without 
need for explicit formulation of some parameters.

The adjustment for multiple comparisons considers 
another intrinsic property of the metabolites, namely that 
they are often correlated in subgroups. This information 
has been included and leads to adjustments for multiplicity 
that can be less conservative compared to approaches that 
ignore it.

Table 2  List of the 52 significant metabolites identified in Thévenot 
et  al. (2015), sorted by decreasing log 2 ratios for association with 
age. In italic, the metabolites that are not available. In bold, the 
metabolites identified by the workflow. For these, the log 2 ratios cal-
culated by Thévenot et al. (2015) are also reported

Metabolites log2 ratio of age 
in Thévenot et al. 
(2015)

Aniline isomer
Indoleacetic acid isomer
Pyridoxic acid isomer 2
Nicotinic acid isomer
Caffeine
Quinic acid 4.4
Aminosalicyluric acid 3.6
Adipoylcarnitine
1,7-Dimethyluric acid 3.3
1,3-Dimethyluric acid 3.1
Paraxanthine/Theophylline
1-Methylxanthine 1.9
Fumaric acid 1.8
Pyrroledicarboxylic acid
1-Methyluric acid 1.6
Hydroxyanthranilic acid isomer
2-acetamido-4-methylphenyl acetate
Acetylphenylalanine
Methoxysalicylic acid isomer
Tetrahydrohippuric acid
Normetanephrine isomer
2-Hydroxybenzyl alcohol
Threo-3-Phenylserine
N-Acetyltryptophan
Deoxyhexose
Pentose
Dehydroepiandrosterone sulfate − 7
Testosterone glucuronide − 3.1
Dehydroepiandrosterone 3-glucuronide − 2.9
FMNH2 − 2.6
N4-Acetylcytidine − 2.3
6-(carboxymethoxy)-hexanoic acid
Tryptamine
4-Hydroxybenzoic acid
Methylinosine
Indoleacetyl glutamine
Decanoylcarnitine isomer
Decenoylcarnitine isomer 2
Tryptophan
Dimethylguanosine −0.91
Hydroxysuberic acid isomer 2
Aspartic acid
Pyridylacetylglycine
N-Acetyl-aspartic acid
Kynurenic acid

Table 2  (continued)

Metabolites log2 ratio of age 
in Thévenot et al. 
(2015)

Heptylmalonic acid
4-Acetamidobutanoic acid isomer 2
N-Acetyltryptophan isomer 3
3-Methylcrotonylglycine
(gamma)Glu-Leu/Ile
Pantothenic acid
5-Hydroxyindoleacetic acid
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A possible limitation of the workflow occurs if there is 
a large proportion of values below a detection limit. In that 
case, it could be difficult to identify the Bernstein polynomi-
als and hence to calculate the most likely transformation.

There are also possible extensions of the workflow, which 
generalize the proposed procedures. For instance, a possible 
extension is represented by the so-called continuous out-
come logistic regression, a technique that has recently been 
proposed by Lohse et al. (2017). The continuous outcome 
logistic regression can be applied in case there is interest in 
categorization of the metabolites. This procedure represents 
a valid alternative to post-hoc categorizations. Specifically, 
this type of regression makes it possible to consider the asso-
ciation between the variable of interest and the metabolites 
by odds ratios that can be evaluated for all potential val-
ues or cut-offs of the metabolites. Therefore, the step by 
the continuous outcome logistic regression is also included 
in Fig. 1. According to the recommendations of Open Sci-
ence Spellman et al. (2018), we are sharing the code in its 
entirety and we have demonstrated the workflow using pub-
licly available data. The shared code can be re-used on the 
proposed data and on other datasets to achieve progress in 
metabolomics research.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11306- 023- 02065-z.
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