KIT | KIT-Bibliothek | Impressum | Datenschutz

Probing Particle‐Carbon/Binder Degradation Behavior in Fatigued Layered Cathode Materials through Machine Learning Aided Diffraction Tomography

Hua, Weibo 1; Chen, Jinniu; Ferreira Sanchez, Dario; Schwarz, Björn ORCID iD icon 2; Yang, Yang; Senyshyn, Anatoliy; Wu, Zhenguo; Shen, Chong-Heng; Knapp, Michael ORCID iD icon 2; Ehrenberg, Helmut 2; Indris, Sylvio ORCID iD icon 2; Guo, Xiaodong; Ouyang, Xiaoping
1 Institut für Angewandte Materialien (IAM), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT)

Abstract:

Understanding how reaction heterogeneity impacts cathode materials during Li-ion battery (LIB) electrochemical cycling is pivotal for unraveling their electrochemical performance. Yet, experimentally verifying these reactions has proven to be a challenge. To address this, we employed scanning μ-XRD computed tomography to scrutinize Ni-rich layered LiNi$_{0.6}$Co$_{0.2}$Mn$_{0.2}$O$_{2}$ (NCM622) and Li-rich layered Li[Li$_{0.2}$Ni$_{0.2}$Mn$_{0.6}$]O$_2$ (LLNMO). By harnessing machine learning (ML) techniques, we scrutinized an extensive dataset of μ-XRD patterns, about 100,000 patterns per slice, to unveil the spatial distribution of crystalline structure and microstrain. Our experimental findings unequivocally reveal the distinct behavior of these materials. NCM622 exhibits structural degradation and lattice strain intricately linked to the size of secondary particles. Smaller particles and the surface of larger particles in contact with the carbon/binder matrix experience intensified structural fatigue after long-term cycling. Conversely, both the surface and bulk of LLNMO particles endure severe strain-induced structural degradation during high-voltage cycling, resulting in significant voltage decay and capacity fade. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000172758
Veröffentlicht am 24.07.2024
Originalveröffentlichung
DOI: 10.1002/anie.202403189
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 22.07.2024
Sprache Englisch
Identifikator ISSN: 1433-7851, 1521-3773
KITopen-ID: 1000172758
HGF-Programm 38.02.02 (POF IV, LK 01) Components and Cells
Erschienen in Angewandte Chemie International Edition
Verlag John Wiley and Sons
Band 63
Heft 30
Vorab online veröffentlicht am 03.05.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page