Effects of ignition location on CHy/air explosion characteristic in a

spherical bomb

Chao Li®", Baiwei Lei ", Renhua Pang *", Jianjun Xiao ¢, Mike Kuznetsov ¢, Thomas Jordan °

@ School of Emergency Management and Safety Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
Y Institute for Emergency Rescue Ergonomics and Protection, China University of Mining and Technology (Beijing), Beijing 100083, China
¢ Institute of Thermal Technologies and Safety, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany

ABSTRACT

Keywords:
CH,4/air mixture
Ignition location
Peak pressure
Heat loss
GASFLOW-MPI

To build methane anti-explosion storage equipment, the influence of the ignition location on the CHy/air ex-
plosion in a spherical equipment was investigated. A two-step CH4/air reaction mechanism was developed and it
considered the effect of heat transfer on the explosion. The effect of methane explosion pressure on heat loss was
studied. The results show that the maximum explosion pressure of central ignition is 0.72 MPa under the heat
loss simulation. The peak pressure of the upper and lower end-wall explosion is about 79.2 % and 83.3 % of the
central ignition explosion, respectively, and the experimental results verifies the simulation results. Therefore,
the reason for the highest peak pressure of central ignition methane explosion is that the reaction speed of central
ignition methane explosion is the fastest, and the heat loss is the lowest. The difference in peak pressure between
the upper and lower wall surfaces is due to the buoyancy effect accelerates the reaction rate of the lower end-wall
ignition. In the simulation time range, the heat radiation at different ignition locations accounts for more than

70 % of the total heat loss, and radiation heat transfer plays a leading role in the total heat loss.

1. Introduction

Methane is an essential component of natural gas and a promising
clean energy source [1-3]. However, it is a flammable and explosive gas,
which can lead to fires during industrial transportation and storage.
Methane explosion in confined spaces or vessels occur, resulting in se-
vere damage to industrial equipment such as closed vessels for storing
methane and causing casualties [4,5]. The construction of process
equipment that can withstand the pressure of methane explosions can
reduce the risk of casualties and minimize accidents. As a result, before
considering application in the industrial field, the explosion character-
istics of methane under closed conditions should be investigated. To
build process equipment capable of withstanding explosion pressure, it
is essential to understand methane explosion characteristics in a closed
vessel [6-10]. The ignition position has a significant impact on explo-
sion overpressure and it is closely related to the extent of explosion
damage. Therefore, studying the influence mechanism of ignition posi-
tion on the explosion characteristics of methane is of great significance
for the design of combustible gas storage containers and the safe and
efficient utilization of clean energy.

The ignition location in spherical equipment affects the reaction

process of combustible gas. Researchers have carried out experimental
studies [11-15]. The experimental results show that the central ignition
explosion will produce the highest maximum peak pressure, and the
wall ignition explosion reaction is weak. According to the findings of
many researchers [16-19], this is mainly due to the differences in heat
losses during gas explosion, and the ignition location can affect the
development of explosion and the heat loss during the reaction process
[20]. As the heat loss process includes two mechanisms of radiative heat
transfer and convective heat transfer [18,19], due to the lack of corre-
sponding experimental measurements in the testing process, the above
researchers only qualitatively analyze the heat loss during the ignition
location process, and could not quantitatively analyze the contribution
ratio of thermal radiation and thermal convection.

Numerical simulations can quantitatively predict the changes in
temperature and flow fields and the contribution of heat loss rates to
explain the mechanism of pressure rise [14,21]. Many researchers have
compared and analyzed the influence of heat transfer conditions on
methane explosion [22-24], but there is a lack of analysis of the effect of
ignition location on methane explosion in a spherical bomb. Numerical
simulation can quantitatively analyze the heat loss in the methane ex-
plosion process, which is of great significance to the methane explosion
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process study.

While researchers have conducted numerous studies on the explo-
sion characteristics and heat transfer mechanisms of CH4/air explosions,
there is still a lack of research on the influence mechanism of ignition
positions on CHy/air explosion characteristics. Therefore, the impact of
different ignition positions on the peak overpressure, maximum pressure
rise rate, and heat transfer mechanisms of methane explosions still need
further exploration. In this study, a two-step CHy/air reaction mecha-
nism was established using the CFD code, and a mathematical model of
heat loss was developed. The explosion evolution process of methane in
a 20L spherical explosive container was simulated and reproduced
through the GASFLOW-MPI. The effects of different ignition locations on
the characteristics of methane explosion was analyzed, and the varia-
tions in the heat transfer mechanism during the methane explosion
process was investigated. This study uncover the effects mechanism of
heat loss on the overpressure of methane explosions. This research
provides a scientific reference for the safe and efficient utilization of fuel
(CH4) and the design of closed pressure vessels.

2. Numerical model

GASFLOW-MPI is a CFD code specifically designed for the safety
analysis of combustible gases. It can solve three-dimensional
compressible Navier-Stokes equations. In our earlier work, the reli-
ability of GASFLOW-MPI in predicting the combustion and explosion of
premixed combustible gases (such as methane [24-27] and hydrogen
[28-31]) has already been demonstrated. This section introduces the
governing equations for the explosion of premixed combustible gases
(CH4) and the two-step combustion reaction mechanism.

2.1. Conservation equation

The mass, momentum, and energy conservation equations for mixed
gas can be expressed as follows [32,33]:
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where u represents the mean velocity, S;.m represents the source of
energy produced by explosion, V represents the volume, P represents the
pressure, S, .,m represents the mass source term, S represents the control
surface; a represents the gas specie, 7 represents the stress tensor, p,
represents the density, J, represents the diffusion term of specie a, and
S,.com Tepresents the mass change of gas explosion, Sj,q.q represents the
radiation mechanism, g represents the gravitational acceleration, Sj.q
represents the steam condensation, and S; .., represents the convection
mechanism.

2.2. Turbulence model

Detached eddy simulation (DES) turbulence model has been suc-
cessfully applied in numerous industrial cases. Zhang et al. validated the
computational accuracy of the DES turbulence model [34]. Therefore, in
this study, the DES turbulence model was chosen.

2.3. Reaction mechanism
Assuming the methane explosion process involves two-step chemical
reactions [35,36]:

CH, +1.50,—-CO +2H,0 )

CO+0.50, < CO, (6)

For the methane—oxygen reactions in Eq. (5) and Eq. (6), the reaction
can be expressed as follows [35]:

@1 = kea (T)Co, CoF° )

pp = ko (T) Ccocgf (8)

where the rate constant k(T) is independent of the concentration and
varies with temperature. The rate constant is modeled by implementing
a modified Arrhenius law in the following form:

ke (T) :Jcl(qﬁ)cf,lT"le(*E“/RT) ©

kf‘z (T) =f (¢)Cf‘2 Tn2e(fEa.z/RT) (10)

where C; denotes the frequency factor (in this model, C;1=4.9 x 10°
andCyy = 2 x 108), n is the temperature exponent (in this model, nl =
0 andn2 = 0.8), E, represents the activation energy (E,1/R=1.78772 x
10* K andE, /R = 0.6043 x 10* K), and f;(¢) are correction functions.
The specific formula is in [35,37].

2.4. Heat transfer model

In the process of a methane explosion in a spherical bomb, there is a
heat transfer phenomenon between the fluid and the wall surface.
Therefore, we established a heat transfer model of spherical bomb ex-
plosion, divided into convective heat transfer [38,39] and radiation heat
transfer [30,39]. The asymmetric molecules in the explosion products
during the explosion are the primary sources of thermal radiation, such
as water vapor and carbon dioxide [30,40-43].

3. Modeling of the 20 L spherical bomb
3.1. Geometric modeling

Fig. 1 shows a 20 L spherical bomb experimented on by Luo et al.
[45]. The 20 L spherical bomb has an outer diameter of 36 cm and a wall
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Fig. 1. Schematic diagram of a 20 L spherical bomb. (I: central ignition, 1I:
upper end-wall ignition, III: lower end-wall ignition).



thickness of 1 cm. Fig. 2 (a) and Fig. 2 (b) are schematic diagrams of the
experimental central ignition location and the upper end-wall ignition
location, respectively. In this study, the lower wall ignition location was
added to compare the effects of different sidewall ignition locations on
the methane explosion characteristics, as shown in Fig. 2 (c).

3.2. Numerical simulation set-up

Luo et al. [45] and their research group [46] used stainless steel as
the primary material for the spherical bomb. The specific parameters for
numerical simulation modeling were modeled based on the descriptions
of the physical properties of stainless steel by Lei et al. [24] and the
Engineering ToolBox [47], as well as experimental environmental con-
ditions [44,45], as shown in Table 1. To ensure calculation accuracy,
meshes are set in the computational domain to improve computational
efficiency. The total number of meshes in the simulation is 148,877, and
the number of meshes in the three directions of the x, y, and z axes is 53.
The three-dimensional grid is a small cube with side lengths of 6.6 mm.
In this paper, to verify the independence of the mesh, the mesh side
length of the 20 L spherical explosion bomb geometric model is divided
into 6.6 mm and 3.3 mm. Fig. 3 shows the pressure change curves of
spherical bombs at different ignition locations under the two grid side
lengths. When the number of grids at each ignition location is 148877,
the pressure change in the spherical bomb is similar to that of the
297,757 grids. Due to the good convergence of the results, 148,877 mesh
numbers were chosen for this study to save simulation time.

4. Discussion

4.1. Data validation analysis

To validate the accuracy of numerical simulation results, the 9.5 %
methane explosion experimental data of the upper end-wall ignition
[44] and central ignition [45] were compared with the numerical
simulation results. Both sets of experimental data were measured in a 20
L spherical bomb, as shown in the figure. Fig. 4 (a) compares the pres-
sure-time curves of experimental and simulated results for central
ignition. its evident that simulation results exhibits good consistency
with the experimental results. In addition, Fig. 4 (b) and (c) compare the
numerical simulation and experimental data for the central and upper
end-wall ignition. The peak pressure Py, time to reach the peak pres-
sure t, and maximum pressure rise rate (dp/dt),. calculated by
GASFLOW-MPI code are similar to the experimental results and have
errors of 4.17 %, 3.33 %, and 6.45 %, respectively. The calculation re-
sults agree with the experimental results, proving that the numerical
simulation results are reliable and effective.

)
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(a) central ignition

(b) upper end-wall ignition

Table 1

Simulation of detailed parameter settings.
Items Value
Initial ambient temperature 298 K

9.8 m/s?, along the negative direction of
the z-axis

Explosion bomb wall material Stainless steel

Methane concentration 9.5 %

Gravity acceleration

Atmospheric pressure 0.1 MPa

Wall material density 7850 kg/m>

Specific heat capacity under constant 490 J/kg-K
pressure

Wall material emissivity 0.85

Thermal conductivity 50 W/m-K
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Fig. 3. Mesh independence test for different ignition locations.
4.2. Explosion pressure

The curves of the explosion pressure P and pressure rise rate dp/dt
over time at different ignition locations simulated by adiabatic simula-
tion and simulated calculations considering heat loss are shown in Fig. 5.
Fig. 5 (a) shows that under adiabatic conditions, P, at different igni-
tion locations are equal. However, the times required to reach Py, are
different. The central ignition explosions were approximately 53 % and
40 % faster than the upper and lower end-wall ignition. Fig. 5 (b) shows
the corresponding dp/dt curve. The rising rate of the ignition pressure on
the lower wall first increases, which also corresponds to an increase in
the ignition pressure curve on the lower wall in the enlarged area of
Fig. 5 (a). (dp/dt),,., of the central ignition is 22.19 MPa/s, which is

endwall ignition

(c) lower end-wall ignition

Fig. 2. Schematic diagram of the methane explosion reflected wave with different ignition positions.
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represents the maximum pressure rise rate;

max

P.x represents the peak pressure; t represents the time to reach the peak pressure).

more than 60 % higher than that of the end-wall ignition. According to
the isothermal model [48], dp/dt as Eq. (11), dp/dt is related to the flame
front area A and laminar burning velocity K,. Under static conditions,
the flame front area of the central ignition explosion is more significant
than that of the end-wall ignition. Therefore, (dp/dt),,,, of the central
ignition is higher than the end-wall ignition. (dp/dt),,,,, of the lower end-
wall ignition is slightly higher than that of the upper end-wall ignition
due to the buoyancy effect [49] that accelerates the explosion rate of
methane.

dP  aK,AP(P, P)
dr VP, v

where P, represents the initial pressure, « means the turbulence
factor. When there is no turbulence, a=1, P represents the measured
pressure, A denotes the flame front area, P, represents the final (and
maximum) pressure, K, denotes the laminar burning velocity, V repre-
sents the volume of the facility.

The peak pressure calculated by considering the heat loss simulation
was lower than the adiabatic simulation, especially where the end-wall
ignition explosion was obvious. As shown in Fig. 5 (c), P of the central
ignition methane explosion was 0.72 MPa, and those of the upper and
lower end-wall ignition explosions were approximately 79.2 % and 83.3
% of the central ignition explosion. However, the downward trend of dp/
dt was similar to that of the adiabatic simulation. In Fig. 5 (d), although

(dp/dt),.« of the upper and lower end-wall ignition fluctuated, the
downward trends were consistent. The time when the ignition explosion
dp/dt of the upper and lower end-walls reached the peak corresponding
to the time of the temperature cloud map. The distances of the flame
front in Fig. 6 were 0.30949 m and 0.31766 m, which implied that it was
the other end of the explosion bomb. From the temperature cloud dia-
gram in Fig. 5 (d), it can also be seen that for the explosion of a uniformly
mixed CHy/air mixture in the explosion device, the junction of the
purple and red temperature gradients can indicate the flame front
location. That is, the flame generated by the explosion reaches the other
end of the explosion bomb at 0.094 and 0.088 s, filling the entire ex-
plosion device. Thus, causing the subsequent downward trend of dp/dt
of the two end-wall ignitions coincides. As shown in Fig. 6, the flame
front velocity of end-wall ignition explosion is much faster than that of
central ignition. This is because the end-wall ignition explosion gas only
expands to one side, while the central ignition expands to all sides, so the
flame front propagation velocity is slower and more stable.

4.3. Temperature and flow field

Fig. 7 shows the evolution of the spatial distribution of the explosion
temperature and gas velocity at different ignition locations. At the
beginning of the explosion, the lower end-wall ignition explosion first
began to react when the explosion bomb gas from the lower end-wall
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Fig. 6. Flame front location along the radius evolution over time.

had a hemispherical outward flow at a maximum gas flow rate of 4 m/s.
At 50 ms, the central ignition explosion temperature began spreading
outward from the ignition center, the lower end-wall ignition explosion
temperature spread more than half of the volume of the explosion de-
vice, and the gas reached the distal wall and reflection. At the 100 ms,
the upper and lower end-wall flow fields are centered on the line be-
tween the ignition location and the center of the ball, forming two
opposite vortices on the upper and lower sides of the oblique. At 180 ms,
the temperature in the explosion device gradually decays owing to the
wall thermal reaction [50], and the temperature at the wall ignition is
significantly lower than that at the far wall. Under the double driving
force of explosion and buoyancy, the central ignition explosion forms an

tact with less oxygen and has an inadequate reaction, resulting in
increased carbon monoxide production, namely the volume fraction of
carbon monoxide produced is 26.1 % and 7.2 % more than central
ignition, respectively. There is also a slight difference in the peak tem-
perature between the upper and lower end-wall ignition because the
lower end-wall ignition burns faster than the upper end-wall ignition
due to buoyancy. The flame front contacts the fresh air earlier, the re-
action is more sufficient, and less carbon monoxide is produced.

Fig. 9 shows that the methane consumption rate of the central igni-
tion increases rapidly to a peak of 0.0287 kg/s within 0.08 s, which
indicates that the flame of the central ignition explosion expands quickly
and the consumption rate is higher than that of the end-wall ignition
explosion. For the upper and lower end-wall ignition, the methane
consumption time of the lower end-wall ignition is approximately 39 %
shorter than that of the upper end-wall ignition. Because of the effect of
buoyancy, the propagation speed of the lower end-wall ignition flame
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Fig. 7. Cloud image of 9.5 % CH,/air calculated explosion: (a) central ignition, (b) upper end-wall ignition, and (c) lower end-wall ignition.

front is faster. Thus, the flame generated by the explosion expanded to
the unburned area more quickly, resulting in speedier methane
consumption.

4.5. Heat loss analysis

The heat generation and release law of methane explosion under the

condition of heat transfer in the explosion bomb were analyzed. Fig. 10
shows the curves depicting the variations in heat release, heat loss, and
heat transfer mechanisms during the methane explosion process are
illustrated. As shown in Fig. 10 (a), According to the Eq. (12), it can be
determined that H, of the central ignition explosion reaches a maximum
at 134 ms, which is 297 kJ/s, and the peak heat loss rates of the upper
and lower end-wall ignition explosions are only 173 kJ/s and 191 kJ/s,
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respectively. By comparison, the peak heat loss rate of the central
ignition is more significant, and the t, value is smaller. This is because
the central ignition explosion quickly spread to the entire explosion
bomb, the end-wall was in complete contact with the explosion flame,
and the heat loss rate reached its peak. The heat loss rate curve of the
end-wall ignition increased earlier because the ignition location was
located on the wall surface, the convective heat transfer was substantial,
and a considerable amount of explosion energy was consumed. This is
the main reason the peak pressure of end-wall ignition explosion is lower
than that of central ignition [51]. As shown in Fig. 10 (a), 10 (c), and 10
(e), when the explosion reaches the peak pressure, the total heat release

and loss of the central ignition are 60.1 kJ and 10.8 kJ, respectively, and
the residual heat of the explosion bomb is 49.3 kJ. Under this condition,
the residual heat of the upper and lower end-wall ignition is 38 kJ and
40 kJ, respectively, 77 % and 81 % of the central ignition. Py, of the
upper and lower end-wall ignition are 79.2 % and 83.3 % of the central
ignition. Therefore, P, of the end-wall ignition explosion is lower than
that of the central ignition because of the heat difference in the explo-
sion device, that is, the heat loss is different.

Q=H,t 12)

where Q represents the total heat loss, t represents the heat-loss time
during explosion, H, represents the heat-loss rate.

Heat loss occurs in the explosion bomb explosion, considering heat
loss simulation. The relative contributions of the radiative and convec-
tive heat transfer mechanisms to the heat loss at each ignition location
are shown in Fig. 10 (b), 10 (d), and 10 (). The central ignition explo-
sion is dominated by radiation heat transfer in stage I, and the convec-
tive heat transfer gradually increases, whereas the end-wall ignition has
a higher convective heat transfer in stage I. At 0.8 s, the contributions of
heat radiation to heat loss are 72.98 %, 73.51 %, and 72.77 % when the
central, upper, and lower end-walls are ignited. Overall, although the
proportion of convective heat transfer increases over the simulation time
range, the thermal radiation at each ignition location accounted for
more than 70 % of the total heat loss. Therefore, radiation heat transfer
is the primary form of heat loss during the methane explosion process.

5. Conclusions

A two-step CHy/air reaction mechanism was established based on a
CFD code. The impact of different ignition positions on the explosion
characteristics of CHy/air was studied in a 20L explosion sphere.
Combining heat transfer mechanisms, the influence mechanisms of
different ignition positions on methane explosion characteristics were
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Fig. 10. Heat production and dissipation curve (a, c, and e), the contribution of the heat transfer mechanism (b, d, and f).

revealed. The following conclusions were obtained:

(1) Ignition position has a significant impact on the explosion char-

acteristics of methane. The maximum overpressure and the
maximum rate of pressure rise for methane explosions with
central ignition are markedly greater than those with end-wall
ignition. Explosions with ignition on the upper and lower end-
wall ignition respectively contribute to 79.2 % and 83.3 % of
the maximum overpressure observed in central ignition explo-
sions. The maximum rate of pressure rise for central ignition is
more than 60 % faster than that for end-wall ignition. The
buoyancy effect accelerates the methane explosion rate, resulting
in lower end-wall ignition explosions having significantly higher

(2

—

overpressure and maximum rate of pressure rise than end-wall
ignition and slightly higher than upper end-wall ignition.

Heat loss is a crucial factor influencing the explosion character-
istics at different ignition positions, with heat radiation being the
primary form of thermal loss. Heat radiation during the explosion
processes at various ignition positions accounts for more than 70
% of the total heat loss. The total heat loss during central ignition
explosions is the lowest, while the heat loss during explosions
with the upper and lower end-wall ignition is approximately
twice that of central ignition explosions. Analysis based on the
methane explosion energy equation reveals that the difference in
heat loss during end-wall ignition explosions is a significant



factor leading to lower maximum overpressure compared to
central ignition.

Considering the heat transfer mechanisms and the influence of
different ignition positions on explosion characteristics in the design
process of combustible gas storage containers in the chemical industry
can enhance the accuracy of explosion characteristic parameter assess-
ments. The research outcomes provide a more scientifically grounded
assessment approach and reference basis for the design of combustible
gas storage containers and the safe and efficient utilization of clean
energy in the chemical industry.
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