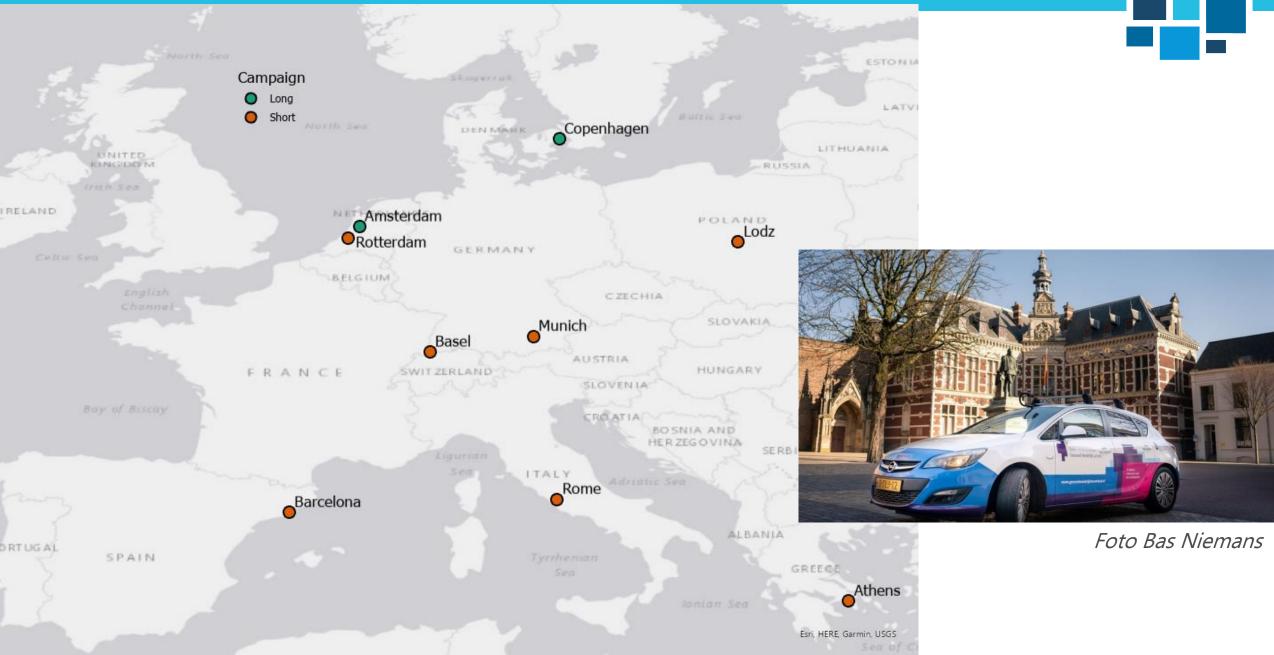

for healthy living in urban settings

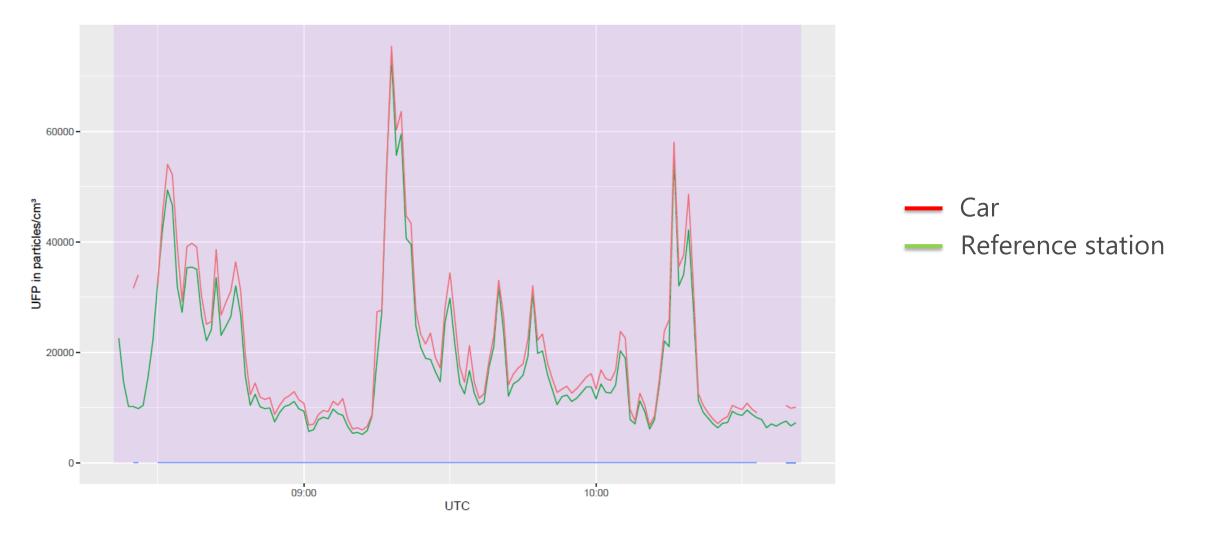
EUROPEAN-WIDE UFP MODEL

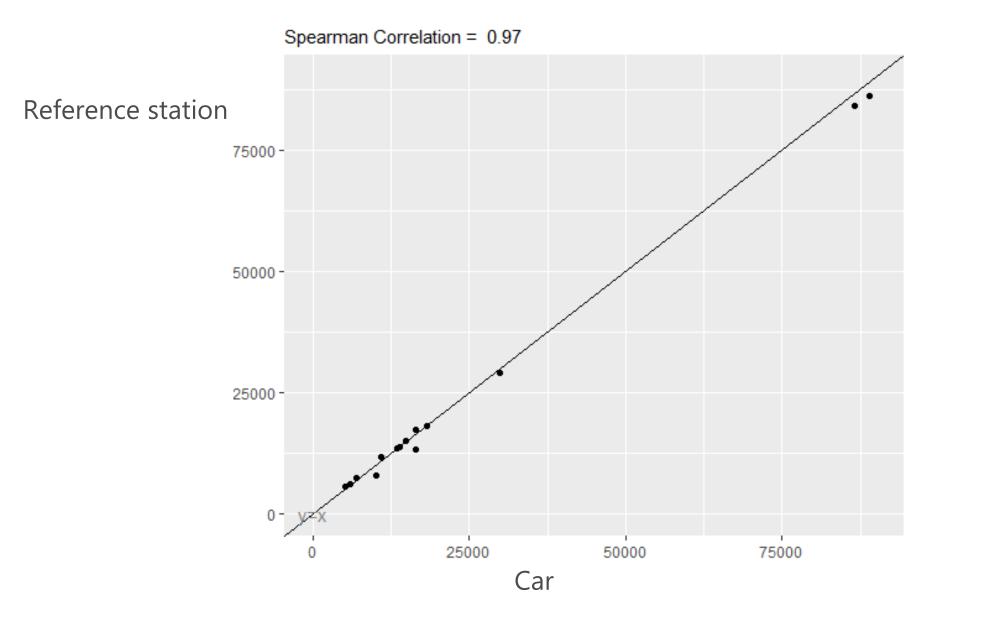

Jules Kerckhoffs

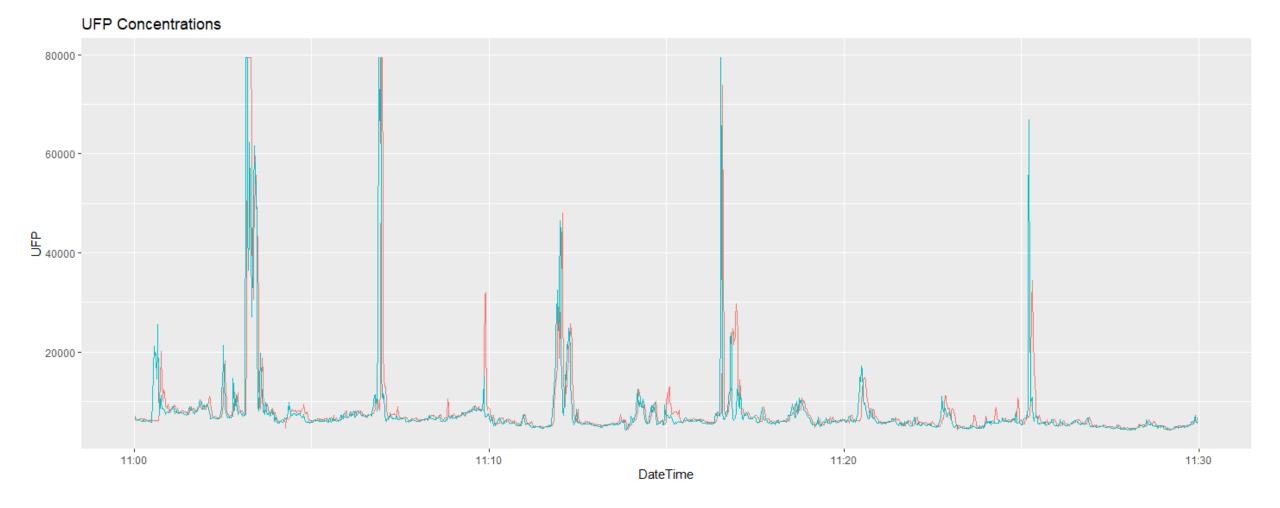
03 07 2024

MOBILE MONITORING

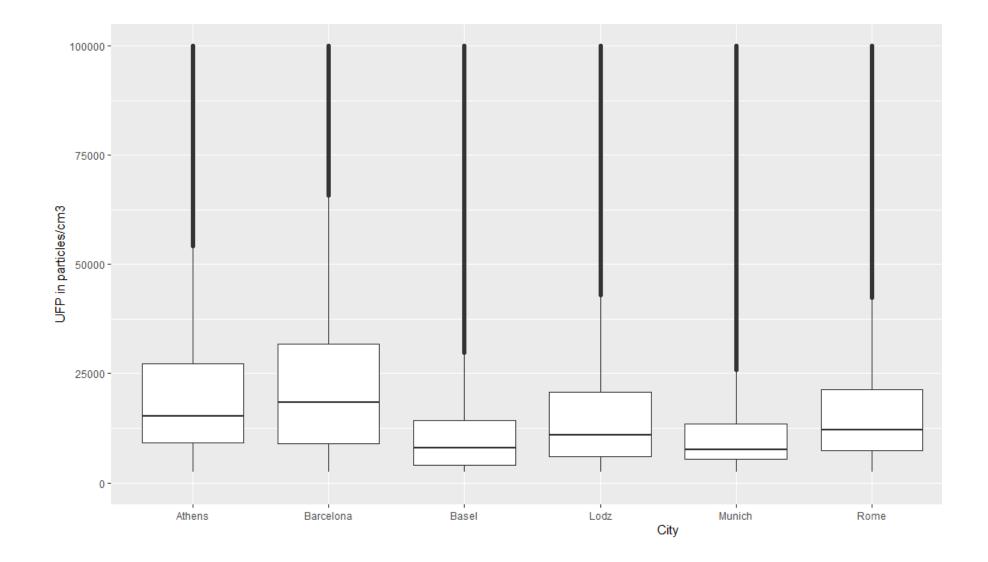
MOBILE MONITORING CAMPAIGNS


MOBILE MONITORING CAMPAIGNS




- Snapping all 1Hz measurements to nearest road
- Mean of means
- Windsorizing
- Colocations

COLOCATION



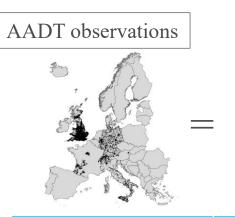
COLOCATION

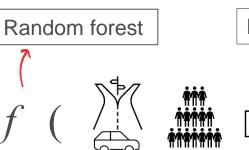
UFP MEASUREMENTS

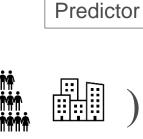
Predictor variables

Data source	Resolution	Predictor	code	Directio n of effects	Buffer size (radius in m) or point estimate	Year of data collection	Included in background deconvolution method
AADT	25m	Annual average daily traffic counts in buffers	aadt_[buffer]	+	50, 100, 200, 300, 400, 500, 700, 1000, 2000, 5000	2019	With buffer ≥ 1 km
AADT	5m	Annual average daily traffic counts	AADT_onRoad	+	Point estimates (on centroids of road segments)	2019	No
OpenstreetMaps	25m	Count of restaurants, and fast-food outlets in buffers	FstRst_[buffer]	+	25; 50; 100; 300; 500; 1000; 2500; 5000	2020	With buffer \geq 1km
OpenstreetMaps	25m	Major roadsin buffers All roadsin buffers	mjrRoads_[buffer] allRoads _[buffer]		50; 100; 200; 300; 400; 500; 700; 1000; 2000; 5000; 10000	2020	With buffer $\geq 1 \text{km}$
GEOSTAT population (2020)	100m	Population per grid cell	Pop2020	+	Point estimates (on centroids of road segments)	2020	No
GEOSTAT population (2020)	100m	Population per grid cell in buffers	pop20_[buffer]	+	100; 300; 500; 1000; 2500; 5000	2020	With buffer ≥ 1 km
ERA 5 monthly aggregates from climate reanalysis (Copernicus, 2019; ECMWF, 2019)	0.1º (~12km)	 Annual averages from monthly aggregates: Average temperature at 2m height (Kelvin) Total precipitation (m) Average surface pressure (Pa) Average 10m wind speed (m/s) 	temp prep pres wind	+ - +	Point estimates (on centroids of road segments)	2019	Yes

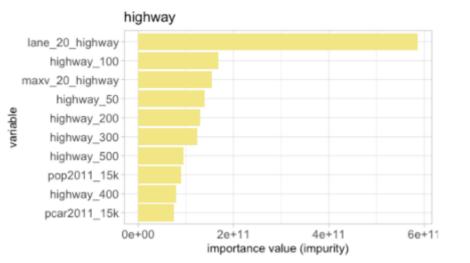
Predictor variables

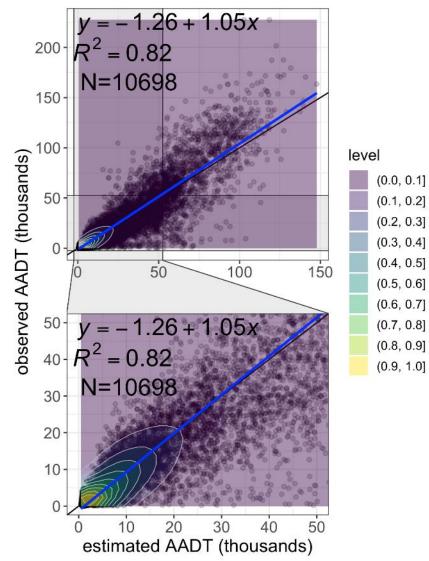

Data source	Resolution	Predictor	code	Direction of effects	Buffer size (radius in m) or point estimate		Included in background deconvolution method
CORINE land cover	100m	Percentage of the land cover types in buffers:Residential areasNatural areasUrban green	res nat ugr	+ - -	100, 200, 300, 400, 500, 600, 700, 800, 1000, 1200, 1500, 1800, 2000, 2500, 3500, 4000, 5000, 6000, 7000, 8000, 10000	2018	With buffer ≥ 1km
CORINE land cover	100m	 Percentage of the land cover types in buffers: Industrial/commercial areas Ports Airports 	ind por apor	+ + +	1000, 1200, 1500, 1800, 2000, 2500, 3500, 4000, 5000, 6000, 7000, 8000, 10000	2018	Yes
Impervious surface from Copernicus services (Copernicus, 2021b)	100m	Percentage of sealed area in buffers	imd	+	100; 200; 300; 400; 500; 600; 700; 800; 1000; 1200; 1500; 1800; 2000; 2500; 3500; 4000; 5000; 6000; 7000; 8000; 10000	2018	With buffer ≥ 1 km
Altitude 90 m SRTM DTM v4 (Jarvis, A., H.I. Reuter, A. Nelson, 2008)	90m	Altitude	alt	-	Point estimates (on centroids of road segments)	Static	Yes
Global UFP estimates	0.1° x 0.1°	UFP estimates from ECHAM/MESSy Atmospheric Chemistry model (EMAC) for the year 2015	CTMufp	+	Point estimates (on centroids of road segments)	2015	Yes

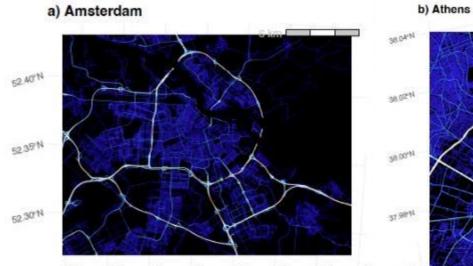

PREDICTOR VARIABLES

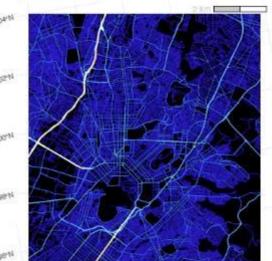

Data source	Resolution	Predictor	code	Direction of effects	Buffer size (radius in m) or point estimate		Included in background deconvolutio n method
Building density with building height	50m	10m-resolution impervious density data was combined with 100m-resolution building height data	canyon_[buffer] canyonSD_[buffer]	+ +	25, 50, 100, 200, 500	2018	No
Building height	100m	Building height	anbh	+	Point estimates (on centroids of road segments)		No
OpenstreetMaps	5m	Road type: highway, primary, secondary, tertiary, residential roads	roadtype			2020	No
LCZ (Demuzere et al., 2019)	100m	Local climate zone, estimated by random forests with ground-based training data and remotely-sensed data from Landsat and Sentinel-1 SAR data along with other geopstaial data.	lcz		Point estimates (on centroids of road segments)	2016	Yes

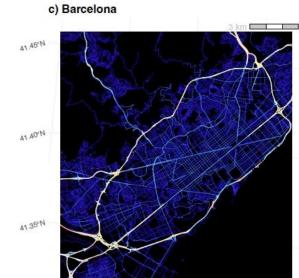
TRAFFIC FLOW





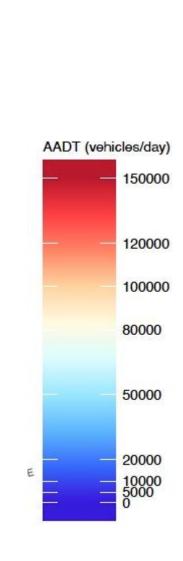

Road traffic model	Road type
Highway	highway (motorway, trunk)
Primary	primary roads
Local	local (secondary, tertiary) roads
Minor	minor (residential, unclassified) roads

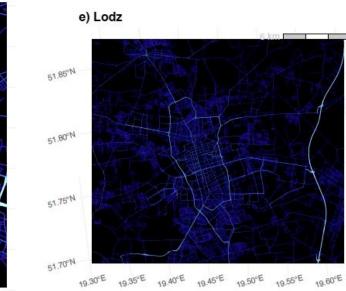

Shen et al (2024), Estimated road traffic flow across Europe improves air pollution modelling (under review)


TRAFFIC FLOW

4.90°E 4.95"E 5.10°E 4.80°E 4.85°E 4.75°E 5.00°E 5.05°E 37.98*14

> 23.76'E 23 TEFE




2.15°E

1135°E 1140°E 1145°E 1150°E 1155°E 1180°E 1185°E 11.70°E

2.10°E

2.20°E

47.59°N

47.58°N

47.57°N

47.56°N

47.55°N

47.54°N

47.53°N

47.52°N

7.56°E

d) Basel

7.58°E

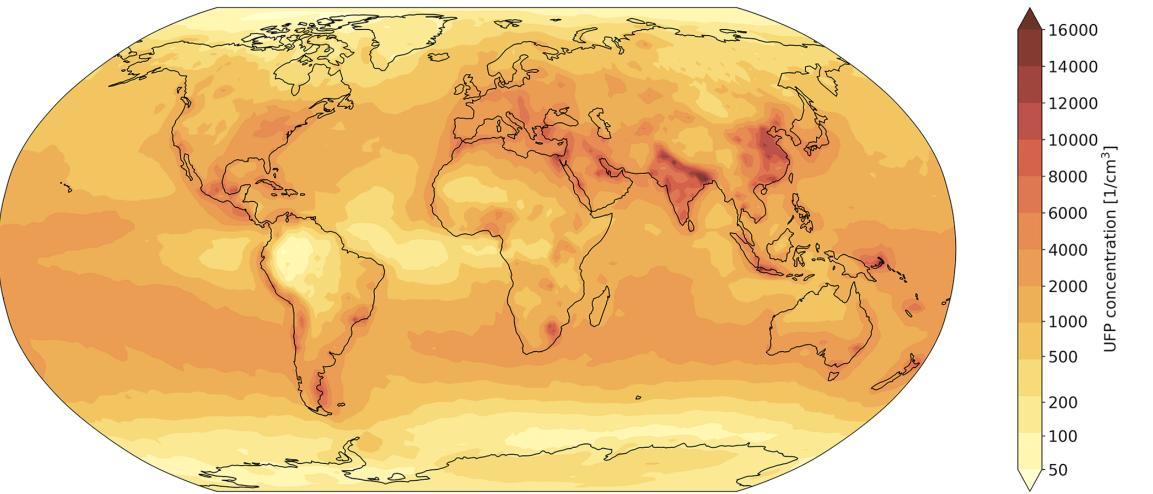
7.60°E

7.62°E

1 km

f) Munich

48.25°N

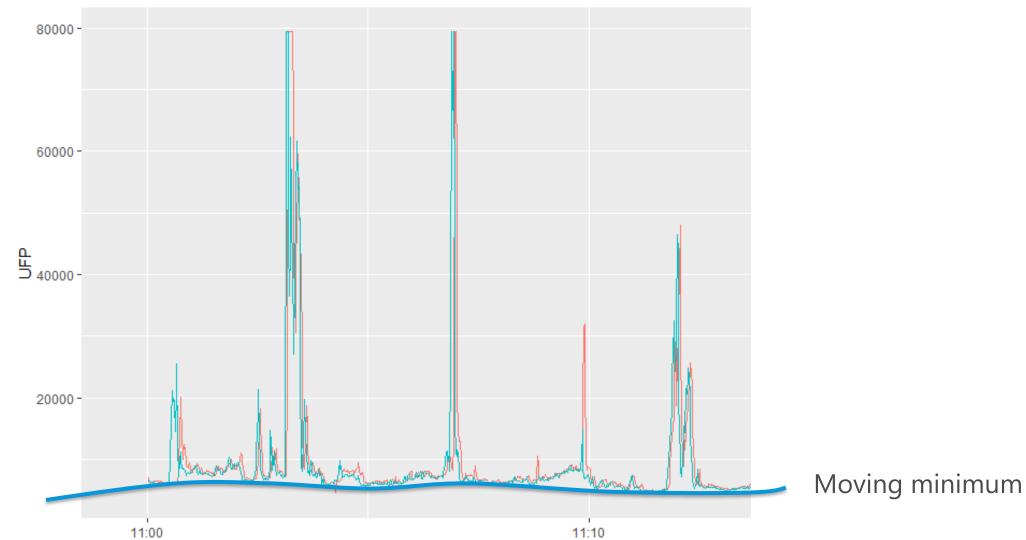

48.20°N

48.15°N

48.10°N

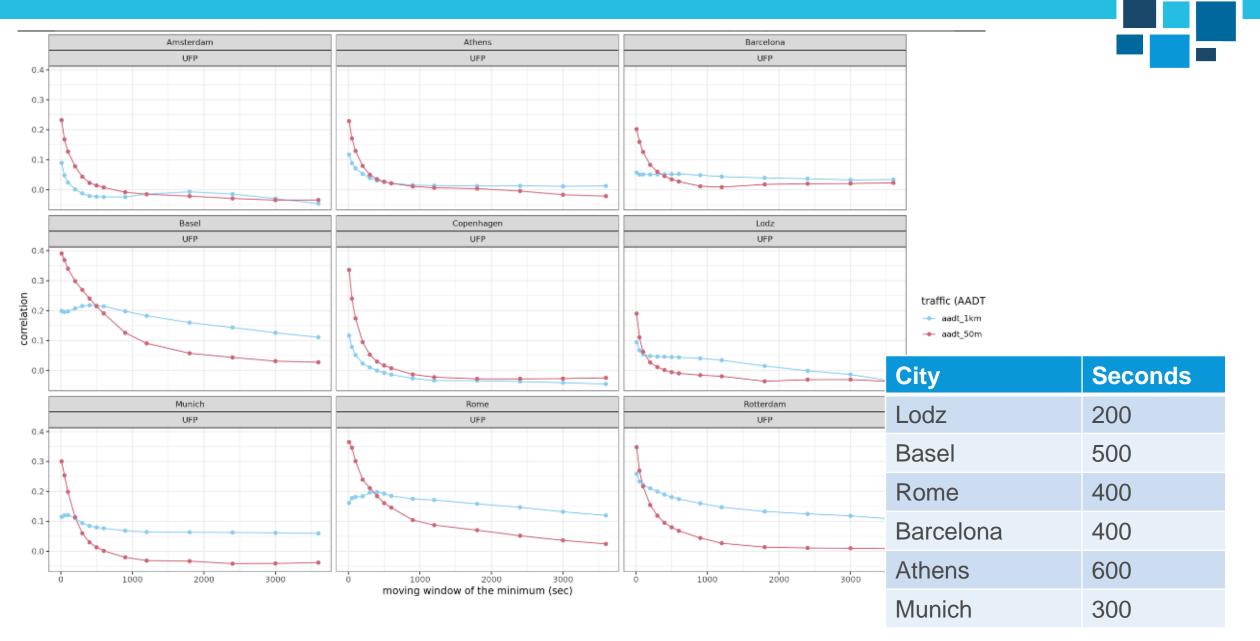
BACKGROUND UFP CONCENTRATION

UFP concentration [1/


FINAL MODEL

variables	beta	Std.Error	t	Р	VIF	increR2
Final	12503.1	264.82	47.21	0.00	NA	NA
AADT_onRoad	0.5	0.00	164.97	0.00	1.60	0.330
CTMufp	0.3	0.02	14.20	0.00	2.72	0.344
alt10_enh	13.1	0.54	24.33	0.00	2.50	0.353
allR_10000	0.0	0.00	11.60	0.00	2.82	0.353
ugr_10000	0.9	0.08	11.39	0.00	2.60	0.354
ind 1000	9.3	1.51	6.20	0.00	1.24	0.354
mjrR_400	1.6	0.05	30.15	0.00	1.90	0.361
FsfRst_500	21.7	2.61	8.34	0.00	1.54	0.362
ind_6000	0.4	0.15	2.69	0.01	1.49	0.362
apor_1000	45.5	8.91	5.11	0.00	1.07	0.362
precip	1042.5	257.09	4.05	0.00	1.25	0.362
por_1500	34.5	1.18	29.30	0.00	1.13	0.367
apor_5000	5.0	0.55	9.07	0.00	1.13	0.367
FsfRst_50	503.3	106.21	4.74	0.00	1.36	0.367
mjrR_2000	0.0	0.01	3.36	0.00	1.75	0.368

DECONVOLUTION


UFP Concentrations

Method is based on Brantley et al. (2014) and Shairsingh et al. (2018)

DECONVOLUTION

BACKGROUND

LOCAL

variables	beta	Std.Error	t	Р	VIF	increR2
Final	-58775.26	2857.99	-20.57	0.00	NA	NA
por_10000	2.90	0.03	98.21	0.00	2.18	0.151
mjrR_2000	0.06	0.00	20.84	0.00	2.82	0.195
por_1800	15.85	0.30	53.49	0.00	1.40	0.217
temp	226.22	10.09	22.43	0.00	2.63	0.229
precip	1367.92	95.56	14.32	0.00	1.85	0.238
ugr_10000	0.44	0.02	19.96	0.00	2.33	0.239
nat_10000	0.12	0.01	22.58	0.00	2.50	0.241
ind_1000	7.14	0.43	16.65	0.00	1.07	0.244
CTMufp	0.11	0.01	16.04	0.00	2.38	0.245
mjrR_1000	0.15	0.01	23.97	0.00	2.48	0.249
apor_3500	1.04	0.30	3.43	0.00	1.04	0.249

variables	beta	Std.Error	t	Р	VIF	increR2
Final	5613.94	120.81	46.47	0.00	NA	NA
AADT_onRoad	0.45	0.00	119.30	0.00	2.27	0.300
mjrR_50	24.93	0.83	30.11	0.00	2.97	0.309
allR_700	0.10	0.01	13.77	0.00	1.69	0.313
mjrR_500	0.37	0.04	9.04	0.00	2.02	0.313
pop20_500	0.03	0.01	2.90	0.00	2.07	0.313
FsfRst_50	632.82	101.73	6.22	0.00	1.36	0.314
FsfRst_500	9.85	2.63	3.75	0.00	1.70	0.314

Combined R²: 0.35

CONCLUSION AND DISCUSSION

- It is possible to create a European-wide LUR model based on mobile measurements.
 - Urban areas only?
 - Day time only?
 - Spatial clusters of measurements
 - Test interaction with city to verify CTM (and other variables)
 dealt with spatial variation between cities sufficiently.
 - Coordinates were not helpful
 - Test RF

THE ROAD TO CLEAN AIR

<u>Thanks to:</u> Youchen Shen Gerard Hoek Kees de Hoogh Roel Vermeulen

Foto Bas Niemans