KIT | KIT-Bibliothek | Impressum | Datenschutz

The rise of large language models: challenges for Critical Discourse Studies

Gillings, Mathew ; Kohn, Tobias ORCID iD icon 1; Mautner, Gerlinde
1 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)

Abstract:

Large language models (LLMs) such as ChatGPT are opening up new areas of research and teaching potential across a variety of domains. The purpose of the present conceptual paper is to map this new terrain from the point of view of Critical Discourse Studies (CDS). We demonstrate that the usage of LLMs raises concerns that definitely fall within the remit of CDS; among them, power and inequality. After an initial explanation of LLMs, we focus on three key areas of reflection. The first is a general stock-taking, where we look at CDS’ theoretical underpinnings and what they imply for working with AI-generated language data. The second issue is authorship, where we assess the traceability of linguistic metadata and the ethically sensitive situation with regard to ownership of texts. The third area is linguistic homogenisation, where we examine how LLM usage privileges the mainstream. Afterwards, we explore ways in which LLMs could be used in research, and we discuss the implications of exploring their use in the classroom through a CDS lens. We close the paper with some observations on likely future developments in AI and how CDS can contribute with its distinctive theoretical, methodological and critical apparatus.


Verlagsausgabe §
DOI: 10.5445/IR/1000172798
Veröffentlicht am 25.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Informatik (INFORMATIK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1740-5904, 1740-5912
KITopen-ID: 1000172798
Erschienen in Critical Discourse Studies
Verlag Routledge
Seiten 1–17
Vorab online veröffentlicht am 11.07.2024
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page