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Abstract

This thesis studies the stability of the magnetohydrodynamic equations around
an affine shear flow and constant magnetic field. The dynamics of the equations
change drastically depending on the fluid viscosity ν ≥ 0 and magnetic resis-
tivity κ ≥ 0. The main goal of this thesis is to establish results on (nonlinear)
stability and instability for selected dissipation regimes. These stability and
instability results are established in Chapters 3-5.

In the first part, we consider the inviscid ν = 0 and resistive κ > 0 case. We
linearize around explicit low-frequency solutions of traveling waves to infer the
main growth model. Small data in Gevrey 2 spaces are necessary and sufficient
for this main growth model to ensure stability.

In the second part, we consider the MHD equations with viscosity and hor-
izontal resistivity ν = κx > 0 and κy = 0. We show that small initial data
in Sobolev spaces ensure stability. Furthermore, we show that for the viscous
ν > 0 and non-resistive κ = 0 case, for the linearized MHD equations, there ex-
ists initial data such that the magnetic field grows unbounded as t → ∞. Thus,
global in time stability of the magnetic field in Sobolev spaces cannot hold for
the nonlinear system.

In the third part, we consider the case when resistivity is smaller than viscos-
ity 0 < κ ≤ ν. We show that small initial data in Sobolev spaces yield stability.
Furthermore, the stability properties qualitatively differ for the cases κ ≥ ν3

and κ ≤ ν3. For the case κ ≤ ν3 we obtain norm inflation of order νκ− 1
3 due to

growth in the magnetic field.
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Chapter 1

Mixing and Stability of the
Magnetohydrodynamic
Equations

The magnetohydrodynamic (MHD) equations are a common model used in as-
trophysics, planetary magnetism and controlled nuclear fusion [Dav16]. They
model the interaction of the velocity and magnetic field of a conducting non-
magnetic fluid. The MHD equations are derived from the Navier-Stokes equa-
tions coupled with the Maxwell equations assuming vanishing charge density
(see Appendix B for a detailed derivation).

In this thesis, we consider the two-dimensional MHD equations in a finite
periodic channel,

∂tV + V · ∇V +∇Π = ν∆V +B · ∇B,

∂tB + V · ∇B = κ∆B +B · ∇V,

∇ · V = ∇ ·B = 0,

B
∣∣
t=0

= Bin, V
∣∣
t=0

= Vin,

(t, x, y) ∈ R+ × T× R =: Ω.

(1.1)

Here V : Ω → R2 is the velocity of an incompressible conducting fluid interacting
with the magnetic field B : Ω → R2. The quantity Π : Ω → R denotes the
pressure. The dissipation parameters ν, κ ≥ 0 represent fluid viscosity and
magnetic resistivity.

The MHD equations (1.1) are notoriously challenging. Already in the 2D
case, global-in-time wellposedness is open for general initial data. Stability
results for vanishing resistivity in the literature are often either local-in-time or
limited to small perturbations around special solutions (mostly around a large
constant magnetic field). Therefore, weak or vanishing resistivity poses great
challenges. For the resistive κ > 0 and viscous ν > 0 case we obtain global-in-
time wellposedness [ST83]. Furthermore, a strong magnetic field is stable for
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small initial data [WZ17]. Also for the inviscid ν = 0 and resistive κ > 0 MHD
equations, one obtains global-in-time wellposedness [Koz89] for initial data in
Sobolev spaces. For the viscous ν > 0 and non-resistive κ = 0 MHD equations,
one obtains local-in-time wellposedness [CMRR16, FMRR17], but global-in-
time wellposedness is remains open. Furthermore, one obtains stability of a
large enough constant magnetic field for small initial data [LXZ15, RWXZ14].
For the ideal MHD equations ν = κ = 0, only local-in-time wellposedness is
established [Koz89, Sch88, Sec93, MY06]. In [BSS88], it is shown that the
dynamics of small initial perturbations of the ideal MHD equations around a
large constant magnetic field behave like the linearized system.

An essential challenge for the MHD equations is the solutions’ stability and
long-time behavior. Specifically, we aim to understand the stability and insta-
bility of specific global in-time solutions that combine the effects of mixing and
magnetic (de)stabilization. This dissertation focuses on the combination of an
affine shear flow, called Couette flow, and a constant magnetic field

Vs(t, x, y) =

(
y
0

)
,

Bs(t, x, y) =

(
α
0

)
, α ∈ R.

(1.2)

This stationary solution combines the effects of mixing due to shear and cou-
pling by the magnetic field. The Couette flow mixes perturbations, which leads
to damping. The constant magnetic field induces a strong coupling of the mag-
netic and velocity perturbations. Therefore, perturbations of (1.2) highlight the
velocity and magnetic field interaction.

The main goal of this thesis is to contribute to the understanding of stability
and instability of perturbations of (1.2). Here, stability is understood in the
Lipschitz sense, which we state in the following. We consider the perturbative
unknowns

v(t, x, y) = V (t, x+ yt, y)− Vs(t, x+ yt, y),

b(t, x, y) = B(t, x+ yt, y)−Bs(t, x+ yt, y).
(1.3)

The change of variables x 7→ x + yt follows the characteristics of the Couette
flow. Then the equations (1.1) become

∂tv + v2e1 = ν∆tv + α∂xb+ b · ∇tb− v · ∇tv −∇tπ,

∂tb− b2e1 = κ∆tb+ α∂xv + b · ∇tv − v · ∇tb,

∇t · v = ∇t · b = 0,

b
∣∣
t=0

= bin, v
∣∣
t=0

= vin,

(t, x, y) ∈ R+ × T× R.

(1.4)

Here we write v =

(
v1
v2

)
, b =

(
b1
b2

)
and e1 =

(
1
0

)
. The spatial derivatives

become time-dependent due to the change of variables and change to ∂t
y :=
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∂y − t∂x, ∇t := (∂x, ∂
t
y)

T and ∆t := ∂2
x + (∂t

y)
2. For different values of ν and

κ, we obtain different linear behavior and as a result, the nonlinear terms yield
different interactions.

Problem 1.1. Let f be a choice of unknowns which describes a solution of
(1.4). Let X1 and X2 be two Banach spaces, then we aim to find a bound on
the initial data ε0 = ε0(f,Xi, ν, κ) and a Lipschitz constant L = L(f,Xi, ν, κ)
such that for initial data which satisfies

∥fin∥X1
= ε ≤ ε0,

the corresponding solution is globally bounded in time by

∥f(t)∥X2
≤ Lε.

Furthermore, the stability threshold are γ1, γ2 ∈ R, such that for ε0 = c0ν
γ1κγ2

with a c0 > 0 we obtain

∥fin∥X1
≤ c0ν

γ1κγ2 → stability,

∥fin∥X1
≫ c0ν

γ1κγ2 → possible instability.

Stability thresholds are a typical approach and are also used for related
equations such as the Navier-Stokes, Euler or Boussinesq equations. Our defi-
nition generalizes previous definitions [BVW18, BGM19, Lis20] to allow for two
parameters γ1 and γ2.

In the following, we give an overview of the literature. First, we give an
overview of the closely connected cases of the Navier-Stokes (ν > 0) equations
and the Euler equations (ν = 0) around Couette flow. This corresponds to the
MHD equations around Couette flow without a magnetic field (b = 0 ∈ R2 and
α = 0 ∈ R) and has similar properties but behaves qualitatively differently. We
refer to [BGM19] for a more comprehensive overview.

For the Euler equations around Couette flow, Gevrey 2 spaces (see Appendix
A) are expected to be optimal for stability. In [BM15a], stability is shown for
small initial data in Gevrey σ spaces for 1 ≤ σ < 2. When linearizing around
small explicit low-frequency solutions, one obtains stability and norm inflation
in Gevrey 2 spaces, depending on the radius of convergence [DZ21]. For the
nonlinear system, one obtains nonlinear instability in a space slightly weaker
than Gevrey 2 [DM23].

In the case of the Navier-Stokes equations around Couette flow, small initial
data in Sobolev spaces with respect to ν are sufficient to obtain stability. In
[BVW18] it is shown that initial data in Sobolev spaces smaller than ν

1
2 yield

stability. Masmoudi and Zhao improved this to ν
1
3 [MZ22], which is expected to

be optimal. In [BMV16], it is shown that small initial data in Gevrey σ spaces
for 1 ≤ σ < 2 are sufficient to ensure stability independent of ν. Furthermore,
one can trade smallness in terms of ν and Gevrey regularity to obtain stability
[LMZ22].

The MHD equations around Couette flow and constant magnetic field re-
cently received substantial attention [Lis20, KZ1, ZZ24, Dol24, KZ2, K, CZ24].
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This includes the three publications and preprints which are the basis for this
thesis:

1. Niklas Knobel and Christian Zillinger, On Echoes in Magnetohydrodynam-
ics with Magnetic Dissipation, Journal of Differential Equations, 367:625–688,
2023, [KZ1]. Main result: Theorem 3.3.

2. Niklas Knobel and Christian Zillinger, On the Sobolev Stability Threshold
for the 2D MHD Equations with Horizontal Magnetic Dissipation arXiv
preprint, arXiv:2309.00496, 2023, [KZ2]. Main results: Proposition 4.2
and Theorem 4.3

3. Niklas Knobel, Sobolev Stability for the 2D MHD Equations in the Non-
Resistive Limit arXiv preprint, arXiv:2401.12548, 2024, [K]. Main result:
Theorem 5.1

For the MHD equations around Couette flow and constant magnetic field, the
linear dynamics change depending on the values of the dissipation parameters
ν and κ. As a consequence, the nonlinear terms exhibit different behaviors. For
an intuition on linear and nonlinear effects on the MHD equations, we refer to
Chapter 2. Here we give an overview of the various results.

In 2020, Liss proved the first stability result for the MHD equations around
Couette flow and constant magnetic field [Lis20]. He considered the fully dis-
sipative regime, κ = ν > 0, and established stability of the three-dimensional
MHD equations for initial data small in Sobolev spaces for a large enough con-
stant magnetic field. For the analogous two-dimensional problem, Chen and Zi
considered in [CZ24] the stability of the 2D MHD equations around a shear flow
close to Couette for small initial data in Sobolev spaces. Dolce [Dol24] proved
stability for small initial data in Sobolev spaces for the more general setting of
0 < κ3 ≲ ν ≤ κ.

In [KZ1], which is part of this thesis in Chapter 3, Zillinger and the author
consider the regime of vanishing viscosity ν = 0 and resistivity κ > 0. In the
linearized dynamics, the equations decouple with respect to frequency and are
stable in Sobolev spaces. However, the nonlinear terms yield an interaction
between different frequencies, possibly leading to norm inflation. In order to
capture this effect, we consider traveling waves, which are explicit low-frequency
solutions, from which we deduce the main growth model. There we showed
that resonance chains can lead to Gevrey 2 norm inflation. On the one hand,
Gevrey 2 spaces with a large enough radius of convergence ensure stability.
On the other hand, there are specific initial data in Gevrey 2 spaces with a
small radius of convergence such that the solutions grow unbounded in Sobolev
spaces. Thus, Gevrey 2 spaces are sufficient and necessary for stability. In a
corresponding nonlinear stability result, Zhao and Zi [ZZ24] proved the almost
matching nonlinear stability result for small perturbations in Gevrey σ spaces
for 1 ≤ σ < 2.

In [KZ2], which is a part of this thesis in Chapter 4, Zillinger and the author
consider the case of horizontal resistivity and full viscosity, ν = κx > 0 and κy =
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0. We establish stability for small initial data in Sobolev spaces. Furthermore,
we prove that for the non-resistive MHD equations, ν > 0 and κ = 0, the
linearised dynamics yield growth of the Sobolev norm by νt. Therefore, stability
in Sobolev spaces cannot hold for the magnetic field. In this sense, horizontal
resistivity is indeed necessary for stability.

In [K], which is a part of this thesis in Chapter 5, the author considers
the case when resistivity is smaller than viscosity 0 < κ ≤ ν. The author
proves stability for small enough initial data in Sobolev spaces. The behavior
qualitatively differs between the cases ν3 ≤ κ and ν3 ≥ κ. The relation ν3 ≤ κ
corresponds to the case when resistivity and viscosity are close to each other
and thus yield stability and no norm inflation. In the case when ν3 ≥ κ,
the resistivity is very small compared to the viscosity. Thus the velocity field
gets damped down on time scales ν−1 leading to growth in the magnetic field
until times scales of order κ− 1

3 . Therefore, this case yields stability with norm
inflation of order νκ− 1

3 .
To summarize the previously mentioned results for the MHD equations

around Couette flow, the stability of the cases ν ≈ κ > 0 [Lis20, Dol24, CZ24, K]
and ν = 0 < κ [KZ1, ZZ24] are by now well understood, with key contribution
being part of this dissertation. The case κ = 0 < ν is still open due to the growth
of the magnetic field and we cannot expect global-in-time stability for the mag-
netic field [KZ2]. Furthermore, [KZ2, K] contribute to the understanding of
the non-resistive limit or the case of partially horizontal, anisotropic resistivity.
For the ideal case, no results exist yet. We remark that the non-resistive and
ideal MHD equations, which remain open in our setting, are exactly the two
regimes where global-in-time wellposedness is still open for the MHD equations
in general, as mentioned at the beginning. The main results of this thesis are
summarized in the following table:

Paper Ch Result Dissipation Description

[KZ1] 3 Thm 3.3 ν = 0, κ > 0 (In)stability of traveling waves
[KZ2] 4 Thm 4.3 ν = κx > 0, κy = 0 Nonlinear stability
[KZ2] 4 Prop 4.2 ν > 0, κ = 0 Linear growth of magnetic field

[K] 5 Thm 5.1 ν ≥ κ ≳ ν
1
3 > 0 Nonlinear stability

[K] 5 Thm 5.1 ν
1
3 ≳ κ > 0 Nonlinear stability, norm inflation

The remainder of this dissertation is structured as follows:

• In Chapter 2, we give a short overview of the main mathematical effects
of the linear and nonlinear dynamics.

• In Chapter 3, we consider the inviscid ν = 0 and resistive case κ > 0.
While the linearised dynamics is stable in Sobolev spaces, we cannot ex-
pect stability for the nonlinear dynamics due to resonances in the nonlin-
ear terms. We model these resonances by deriving a model from explicit
low-frequency solutions. For this model, we show that Gevrey 2 spaces
are necessary for stability. This chapter is based on a joint publication
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with Christian Zillinger [KZ1], published in the Journal of Differential
Equations.

• In Chapter 4, we consider the case with viscosity and horizontal resistivity
ν = κx > 0 and vanishing vertical resistivity κy = 0. Smallness of initial
data in Sobolev norms is sufficient for nonlinear stability. Furthermore, we
show that for the viscous ν > 0 and non-resistive κ = 0 case, for specific
initial data, the magnetic field grows linearly in time. This is based on a
joint preprint with Christian Zillinger [KZ2].

• In Chapter 5, we consider the case when resistivity is smaller than vis-
cosity 0 < κ ≤ ν. We obtain nonlinear stability for initial data small in
Sobolev spaces. There are two different behaviors. If resistivity is close to
viscosity, we obtain stability without norm inflation. If the resistivity is
much smaller than viscosity, we obtain norm inflation depending on the
resistivity and viscosity. In particular, stability estimates degenerate in
the non-resistive limit. This is based on the author’s preprint [K].

• In Appendix A, we give an overview of the necessary mathematical back-
ground.

• In Appendix B, we derive the magnetohydrodynamic equations from the
Navier-Stokes and Maxwell equations.
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Chapter 2

Mathematical Effects of the
MHD Equations

In this chapter, we give a short overview of the leading mathematical effects of
the MHD equations around Couette flow and constant magnetic field (1.4), for
the unknowns (1.3),

∂tv + v2e1 = ν∆tv + α∂xb+ b · ∇tb− v · ∇tv −∇tπ,

∂tb− b2e1 = κ∆tb+ α∂xv + b · ∇tv − v · ∇tb,

∇t · v = ∇t · b = 0,

b
∣∣
t=0

= bin, v
∣∣
t=0

= vin,

(t, x, y) ∈ R+ × T× R.

(2.1)

Choosing the right unknowns is crucial for equation (2.1). Depending on the
parameters ν, κ ≥ 0 and α ∈ R, switching to different unknowns adapted to the
linearized dynamics is natural. In particular, in this chapter, we will often use
the adapted unknowns p = Λ−1

t (∇⊥
t · u,∇⊥

t · b), the vorticity w = ∇⊥
t · v and

the current j = ∇⊥
t · b. The fractional Laplacian is defined as Λt := (−∆t)

1
2 .

Furthermore, we perform a Fourier transform such that for the variables (x, y) ∈
T×R we obtain (k, ξ) ∈ Z×R in Fourier space. With slight abuse of notation,
we omit writing the hat of the Fourier transform.

We briefly outline the structure of this chapter. In the first three sections,
we describe the linearized effects of the MHD equations. Section 2.1 considers
the case when the magnetic field vanishes and corresponds to the Navier Stokes
equation. Section 2.2 discusses effects in the ideal MHD (i.e. ν = κ = 0) equa-
tions. In Section 2.3, we consider the dissipative MHD equations and give an
overview of the different dissipation regimes. Section 2.4, provides an overview
of all the useful unknowns. In Section 2.5 we describe the leading nonlinear
effects in terms of toy models.
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2.1 Linear Effects of the Navier-Stokes Equa-
tions with b = 0 and α = 0

This section describes the linear effects of the MHD equations without a mag-
netic field. In particular, these are the linearised Navier-Stokes equations around
Couette flow

∂tv + v2e1 = ν∆tv − v · ∇tv −∇tπ,

∇t · v = 0.

The effects described in this section are well-known (see for example [Orr07,
BM15a, BVW18, Zil17]). In vorticity w = ∇⊥

t · v formulation, the linearized
Navier-Stokes equations read

∂tw = ν∆tw,

v = ∇⊥
t ∆

−1
t w.

(2.2)

Assuming vanishing x-average, we obtain two important stabilizing effects in
linearized dynamics: inviscid damping and enhanced dissipation. After a Fourier
transformation (as announced we omit the hat in the Fourier transform), we
obtain

∂tw = −ν(k2 + (ξ − kt)2)w,

v = − i
k2+(ξ−kt)2

(
ξ − kt
−k

)
w.

(2.3)

The equation decouples in frequency space. Due to the assumption of vanishing
x-average we obtain k ̸= 0, since k ∈ Z that means |k| ≥ 1.

Inviscid Damping with ν = 0

The Couette flow induces a mixing of vorticity. This leads to a damping of the
velocity field independent of ν, often called inviscid damping. For ν = 0 the
solution of (2.2) stays constant

w(t, k, ξ) = win(k, ξ)

and thus, for the velocity field, we infer

v(t, k, ξ) = i
k

1
1+(t− ξ

k )2

(
t− ξ

k
1

)
win(k, ξ). (2.4)

For fixed frequencies, the absolute value of the velocity reaches its maximum
at time t = ξ

k and is damped as t increases further. For norm estimates, lower
Sobolev norms will decay in time [Orr07]

⟨t⟩∥v1∥HN+1 + ⟨t⟩2∥v2∥HN ≲ ∥win∥HN+1 = ∥vin∥HN+2 . (2.5)
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Enhanced Dissipation with 0 < ν ≪ 1

Mixing by the Couette flow leads to faster dissipation rates, often called en-
hanced dissipation. In particular, at times t ≈ ν−

1
3 the dissipation leads to fast

decay and compares to t ≈ ν−1 for the heat equation. For ν > 0

w(t, k, ξ) = exp

(
−νk2

∫ t

0

(1 + (t− ξ
k )

2)dτ

)
win(k, ξ)

solves equation (2.3). We estimate this exponential term by

exp

(
−νk2

∫ t

0

(1 + (t− ξ
k )

2)dτ

)
≲ exp(−cν

1
3 t)

and thus, for ν ≪ 1, we obtain the enhanced dissipation estimate

∥w∥HN+1 ≤ e−cν
1
3 t∥win∥HN+1 .

For the velocity field, we obtain both enhanced dissipation and inviscid damping

⟨t⟩∥v1∥HN+1 + ⟨t⟩2∥v2∥HN ≲ e−cν
1
3 t∥win∥HN+2 .

2.2 Linear Effects of the Ideal MHD Equations
with ν = κ = 0

This section describes the linear effects of the ideal MHD equations, ν = κ = 0.
Here, there is competition between the growth of the magnetic field, the decay
of the velocity field, and their interaction. We will describe these effects and
then show stability for a large constant magnetic field α > 1

2 . To show these
effects, we consider the adapted unknowns

p = Λ−1
t (∇⊥

t · v,∇⊥
t · b).

These unknowns are established in [KZ2] (Chapter 4) and similar unknowns are
established independently in [Dol24]. Then (2.1) changes to

∂tp1 = ∂x∂
t
y∆

−1
t p1 + α∂xp2,

∂tp2 = −∂x∂
t
y∆

−1
t p2 + α∂xp1,

p
∣∣
t=0

= pin.

(2.6)

We apply a Fourier transformation, only consider modes k ̸= 0 and, by slight
abuse of notation, we replace p2 by −ip2 to obtain the equation

∂tp1 = − t− ξ
k

1+(t− ξ
k )2

p1 − αkp2,

∂tp2 =
t− ξ

k

1+(t− ξ
k )2

p2 + αkp1,

p
∣∣
t=0

= pin.

(2.7)
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For simplicity of notation, we introduce the new variable s = t − ξ
k and the

initial time sin = − ξ
k . Then equation (2.7) reads

∂sp1 = − s
1+s2 p1 − αkp2,

∂sp2 = s
1+s2 p2 + αkp1,

p
∣∣
s=sin

= pin.

(2.8)

In the following, we will discuss all the different effects appearing in (2.8).

Decay and Growth of the Adapted Unknowns with α = 0

As the first toy model, we consider

∂sp1 = − s
1+s2 p1,

∂sp2 = s
1+s2 p2.

(2.9)

This corresponds to the case α = 0, when there is no coupling between p1 and
p2. Equation (2.9) has an explicit solution

p1(s) =
⟨sin⟩
⟨s⟩ p1,in,

p2(s) =
⟨s⟩

⟨sin⟩p2.in.

So in this model the p2 grows by ⟨s⟩ and p1 decays by ⟨s⟩−1. The decay in p1
corresponds to the inviscid damping of the Navier-Stokes equations discussed
in (2.4). However, the p2 unknown grows in time, which is a major challenge
for longtime stability. It destabilizes the nonlinear equations in the settings of
small magnetic field 0 ≤ α ≪ 1

2 or for small values of the resistivity 0 ≤ κ ≪ ν.

Constant Magnetic Field and Circular Movement with α ∈
R and without Couette Flow

In this subsection, we highlight the effect of the constant magnetic field α in
(2.8). This is very similar to the effect of Alfén waves [Alf42, Dav16]. We
consider the toy model

∂sp1 = −αkp2,

∂sp2 = αkp1,
(2.10)

which corresponds to the second part of (2.8). This is solved by

p(s) =

(
cos(αk(s− sin)) − sin(αk(s− sin))
sin(αk(s− sin)) cos(αk(s− sin))

)
pin.

We call this circular movement, which leads to an exchange between p1 and p2.
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Stability and Loss of Inviscid Damping α > 1
2

We consider the linearized ideal MHD equations

∂sp1 = − s
1+s2 p1 − αkp2,

∂sp2 = s
1+s2 p2 + αkp1.

(2.11)

In particular, this is the combination of (2.9) and (2.10). For a large constant
magnetic field α > 1

2 , the circular movement averages the growth of the magnetic
field and the decay in the velocity field. We define the energy

E = |p|2 + 2
αk

s
1+s2 p1p2. (2.12)

Using an energy of this form is a common approach used similarly in [BBZD23,
Dol24, KZ2]. The energy E is strictly positive definite since α > 1

2 and satisfies

(1− 1
2α|k| )|p|

2 ≤ E ≤ (1 + 1
2α|k| )|p|

2 (2.13)

globally in time. Then we estimate

∂sE = 2
|αk|

1−s2

(1+s2)2 |p1p2| ≤
2

2α|k|−1
1

1+s2E

and thus we infer the energy estimate

exp(− 2π
2α|k|−1 )E(sin) ≤ E(s) ≤ exp( 2π

2α|k|−1 )E(sin).

Using (2.13), this implies stability

|p|(s) ≈ |pin|.

That means we are stable in the p variables. However, this comes with a cost
to the inviscid damping: For the velocity field, we obtain

v = i√
1+s2

(
s
1

)
p1,

b = i√
1+s2

(
s
1

)
p2.

(2.14)

Hence, using t = s+ ξ
k we infer the estimate

∥(v1, b1)∥HN+1 + ⟨t⟩∥(v2, b2)∥HN ≲ ∥(vin, bin)∥HN+1 . (2.15)

In particular, compared to the Euler equations (2.5) both components lose decay
of order ⟨t⟩−1. This happens due to the previously mentioned growth in the
magnetic field.

11



2.3 Linear Effects of the Dissipative MHD Equa-
tions with ν > 0 or κ > 0

The MHD equations behave very differently depending on the relation of the
dissipation parameters. We consider the linearised MHD equations with dissi-
pation

∂tp1 = ∂x∂
t
y∆

−1
t p1 + α∂xp2 + ν∆tp1,

∂tp2 = −∂x∂
t
y∆

−1
t p2 + α∂xp1 + κ∆tp2,

p
∣∣
t=0

= pin.

(2.16)

After a Fourier transform, replacing p2 by −ip2 and the variable change s = t− ξ
k

and sin = − ξ
k (similar as in the previous section), we obtain

∂sp1 = − s
1+s2 p1 − αkp2 − νk2(1 + s2)p1,

∂sp2 = s
1+s2 p2 + αkp1 − κk2(1 + s2)p2,

p
∣∣
s=sin

= pin,

(2.17)

for k ̸= 0. From the stability and asymptotic of (2.17) in the p unknowns the
stability of (2.16) and (2.1) follows directly, similar as in the previous section.
This section focuses on the various effects appearing in (2.17). For a rigorous
calculation, we refer to Chapters 3, 4 and 5. We saw in the inviscid case that
for α > 1

2 , the p unknowns are stable. That is not necessarily true for the
dissipative regime since the imbalance of the dissipation counteracts the circular
movement. In particular, we distinguish between different cases, ν = κ, ν ≈ κ,
close to resonant s = 0, ν ≪ κ, κ ≪ ν and (ν = κx > 0 and κy = 0). If
both dissipation parameters are close to each other ν ≈ κ, a strong constant
magnetic field α > 1

2 is sufficient to ensure stability. Both p get damped by a
rate close to each other, ensuring stability. However, if one dissipation is much
larger than the other, one component is damped to zero very fast. In contrast,
in the other component, we obtain behavior similar to Subsection 2.2 for α = 0
with some additional terms.

The Case ’ν = κ’

This case was first considered by Liss in [Lis20]. In the case when κ = ν and
α > 1

2 , the MHD equations are stable as in the ideal case with additional
enhanced dissipation decay

|p|(s) ≲ exp(−cν
1
3 (s− sin))|pin|.

With the energy (2.12) we obtain

∂sE + 2νk2(1 + s2)E ≤ 2
α

1
1+s2 p1p2.

12



Thus we infer for E

E(s) ≤ exp

(∫ s

sin

2
α

1
1+s2 − 2νk2(1 + s2)

)
E(sin)

≲ exp(−2cν
1
3 (s− sin))E(sin)

for some c = c(α) > 0. With E ≈ |p|2 for α > 1
2 we obtain

|p|(s) ≲ exp(−cν
1
3 (s− sin))|pin|.

The Case ’ν ≈ κ’

The regime ν ≤ κ ≤ ν
1
3 was first considered by Dolce in [Dol24]. When ν

and κ are close with ν3 ≤ κ ≤ ν
1
3 , for a strong magnetic field α > 1

2 , the
circular movement ensures linear stability. Our enhanced dissipation changes
to exp(−cmin(ν, κ)

1
3 t) with the minimum of the dissipation parameters. We

obtain the estimate

|p|(s) ≲ exp(−cmin(ν, κ)
1
3 (s− sin))|pin|.

In the following, we show this for the regime κ ≤ ν, the opposite regime is
analog. We derive the energy (2.12)

∂sE + 2νk2(1 + s2)|p1|2 + 2κk2(1 + s2)|p2|2

≤ 2
αk

1−s2

(1+s2)2 p1p2 −
2
αsk(ν + κ)p1p2.

Similarly to the previous cases, the first term will lead to finite growth. The
second term appears due to the imbalance of dissipation and is relevant for
stability. We estimate and split the second term

− 2
αsk(ν + κ)p1p2 ≤ νk2(1 + s2)p21 +

1
ανp

2
2

≤ νk2(1 + s2)p21 + κk2(1 + s2)p22 + ( 1
αν − κk2(1 + s2))p22.

We absorb the first two terms into the dissipation. Thus we infer

∂sE + 2cκk2(1 + s2)E

≤ 2
α

1
1+s2 p1p2 + ( 1

αν − κk2(1 + s2))+p1p2

≲ ( 1
1+s2 + ( 1

αν − κk2(1 + s2))+)E

for some c = c(α) > 0. At this point we require the assumption ν3 ≤ κ, to
bound ∫

( 1
αν − κk2(1 + τ2))+dτ ≤ 2 sup

s
( 1
αsν − κ

3k
2s3) ≤ 4 4

α .

Thus we deduce the estimate

E(s) ≲ exp(−2cmin(ν, κ)
1
3 (s− sin))E(sin).

Thus, with α > 1
2 we infer the estimate

|p|(s) ≲ exp(−cmin(ν, κ)
1
3 (s− sin))|pin|.

13



Frequencies Close to Resonant

Before discussing the cases where there is a large imbalance of the dissipation, we
consider the case close to resonant which ensures stability in the p variables. For
the non-resistive limit of Chapter 5 this is particularly important for stability.
For two times s, s0 (s0 is any time, possibly different from sin) satisfying |s −
s0| ≤ min(ν−1, κ−1), a large constant magnetic field α > 1

2 ensures that the
circular movement is stronger than the imbalance of dissipation yielding stability

|p|(s) ≲ |p(s0)|.

The derivative of the energy (2.12) satisfies

∂sE + 2νk2(1 + s2)|p1|2 + 2κk2(1 + s2)|p2|2

= 2
αk

1−s2

(1+s2)2 p1p2 +
2
α |ν + κ|skp1p2

≲ ( 1
1+s2 + 2

α |ν + κ|sk)p1p2.

We estimate the second term by

2
α |ν + κ|skp1p2 ≤ 4

α2 max(ν, κ)|p1|2 +max(ν, κ)k2(1 + s2)|p2|2,
2
α |ν + κ|skp1p2 ≤ 4

α2 max(ν, κ)|p2|2 +max(ν, κ)k2(1 + s2)|p1|2,

which yields

2
α |ν + κ|skp1p2 ≤ 4

α2 max(ν, κ)|p|2 + νk2(1 + s2)|p1|2 + κk2(1 + s2)|p2|2.

So we infer the estimate

∂sE + cmin(κ, ν)k2(1 + s2)E

≲ ( 1
1+s2 +max(ν, κ))p1p2

≲ ( 1
1+s2 +max(ν, κ))E

(2.18)

for some c = c(α). By Growall’s lemma, we obtain

E(s) ≲ exp(max(ν, κ)(s− s0))E(sin) ≲ E(s0),

and thus with α > 1
2 we deduce

|p|(s) ≲ |p(s0)|.

We note that, from (2.18) one obtains an enhanced dissipation rate of

exp(−c(min(κ, ν))
1
3 (s− s0). However, this effect only appears if |s − s0| ≫

min(κ, ν)−
1
3 . Therefore, to reach time scales where enhanced dissipation is

relevant, we need the assumption ν3 ≤ κ ≤ ν
1
3 of the previous section.
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The Effect of Strong Resistivity with ν ≪ κ

In this case the viscosity is much smaller than the resistivity, see Chapter 3
for more details. In the first model, we formally set p2 = 0. Then we obtain
the behavior of the Euler and Navier-Stokes equations of Section 2.1. The
assumption p2 = 0 is too strong for a more precise analysis. We consider the
vorticity and current formulation

∂tw = −αkj − νk2(1 + s2)w,

∂tj = ( 2s
1+s2 − κk2(1 + s2))j + αkw.

(2.19)

We define the good unknown G = j + α
κ

1
1+s2w and so (2.19) changes to

∂tw = −α2

κ
1

1+s2w − νk2(1 + s2)w + αG,

∂tG = ( 2s
1+s2 − κk2(1 + s2))G+ α

κ
s

(1+s2)2w + α
κ∂s(

1
1+s2w).

The resistivity is large enough for high frequencies k to ensure G ≈ 0. Therefore
we obtain for β = κ

α2

∂tw = − 1
β

1
1+s2w − νk2(1 + s2)w

compared to the Navier-Stokes case, the vorticity w obtains additional damping
of − 1

β
1

1+s2w.

The Effect of Strong Viscosity with κ ≪ ν

In this case the resistivity is much smaller than the viscosity, see Chapter 5 for
more details. At first glance, one would expect that large values of viscosity
lead to better stability. This doesn’t hold since for ν ≫ κ

1
3 we obtain growth

in the p2 unknown which corresponds to growth in the magnetic field. Due to
the viscosity, for large times s ≳ ν−1 ≈ s0 we obtain p1 ≈ 0 and so p1 can be
neglected (In Chapter 5, Proposition 5.2 and 5.3 we prove the following with
the p1 unknown). For times s ≳ ν−1 ≈ s0, we reduce (2.19) to the toy model

∂tp2 = ( s
1+s2 − κk2(1 + s2))p2. (2.20)

We obtain the estimate

|p2|(s) ≲ νκ− 1
3 e−cκ

1
3 (s−s0)|p2|(s0), (2.21)

which is optimal in the sense that for k = −1 we obtain the norm inflation

p2(κ
− 1

3 , k = −1) ≈ νκ− 1
3 p2(s0, k = −1). (2.22)

In particular, the p2 unknown exhibit growth of the size νκ− 1
3 .
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The first term in (2.20) leads to linear growth until the resistivity is strong
enough for the second term to take over. This is seen in the explicit solution of
(2.20)

p2(s) =
⟨s⟩
⟨s0⟩ exp

(
−κk2

∫ s

s0

1 + τ2 dτ

)
p2(s0).

Then (2.22) and (2.21) follow directly. The reader may expect that the enhanced

dissipation timescale ν−
1
3 would be the relevant timescale, but the combination

of circular movement and the viscosity gives enough decay for p2 such that the
linear growth is suppressed until the time ν−1.

The Effect of Horizontal Resistivity with κx = ν > 0 and
κy = 0

We consider the effect of anisotropic resistivity when µ := κx = ν > 0 and
κy = 0 for a strong constant magnetic field α > 1

2 , see Chapter 4 for more
details. Then we obtain the linearized equations

∂tp1 = − s
1+s2 p1 − αkp2 − µk2(1 + s2)p1,

∂tp2 = s
1+s2 p2 + αkp1 − µk2p2.

(2.23)

The horizontal resistivity is sufficient to ensure stability

|p|(s) ≲ e−cµ(s−sin)|pin|.

This is shown with the energy E in (2.12)

∂sE + 2µk2(1 + s2)|p1|2 + 2µk2|p2|2

= 2
αk

1−s2

(1+s2)2 p1p2 +
2
αµks(1 +

1
1+s2 )p1p2.

The last term is estimated by

2
αµksp1p2 ≤ 2µk2s2p21 +

1
2α2µk

2p22,
2
αµks

1
1+s2 p1p2 ≤ µkp21 +

4
1+s2 p

2
2.

This yields

∂sE + 2cµk2E ≤ 8
1+s2 p1p2,

for some c = c(α) > 0 and so with Gronwall’s Lemma, we infer

E(s) ≲ e−2cµ(s−sin)E(sin).

Finally, we deduce

|p|(s) ≲ e−cµ(s−sin)|pin|.
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2.4 Tailored Unknowns

As seen in the previous section, we use several notions of unknowns. In this sec-
tion, we summarize the most important unknowns and their relations. Usually,
the different unknowns are used if we consider the part of the equation without
x-average. For the x-average, we use the original equations. Then, the different
unknowns are equivalent formulations of the MHD equations. In the following,
we only consider the part without x-average and omit writing the projection.
The unknowns satisfy the following relation

p1
Λ−1

t ∇⊥
t−−−−−−⇀↽−−−−−−

−Λ−1
t ∇⊥

t

v,

p2
Λ−1

t ∇⊥
t−−−−−−⇀↽−−−−−−

−Λ−1
t ∇⊥

t

b,

and

p1
Λt−−−⇀↽−−−
Λ−1

t

w,

ϕ
−Λt−−−−⇀↽−−−−
−Λ−1

t

p2
Λt−−−⇀↽−−−
Λ−1

t

j.

Furthermore, if one dissipation parameter is much stronger, the symmetry of
the p unknowns breaks. The dissipation and the linear forcing by the other
unknown lead to a balance. Good unknowns are a typical approach to use this
balance to obtain better estimates [Zil23, MSHZ22]. For the MHD equations,
the relevant good unknowns are

Gw = ∂xw + α
ν ∂

2
xϕ,

Gϕ = ∂x∆tϕ+ α
κ∂

2
x∆

−1
t w.

All these different unknowns lead to different equations. In the following, we
summarize the most relevant equations:

Velocity and magnetic field formulation: The standard form of the
MHD equations is written in terms of the velocity and magnetic field

∂tv + v2e1 = ν∆tv + α∂xb+ b · ∇tb− v · ∇tv −∇tπ,

∂tb− b2e1 = κ∆tb+ α∂xv + b · ∇tv − v · ∇tb,

∇t · v = ∇t · b = 0.

(2.24)

The p unknowns formulation: The p unknowns reduce from the vecto-
rial unknowns (v, b) to two scalar unknowns (p1, p2). The equations for the p
unknown read

∂tp1 − ∂x∂
t
y∆

−1
t p1 − α∂xp2 = ν∆tp1 + Λ−1

t ∇⊥
t (b · ∇tb− v · ∇tv),

∂tp2 + ∂x∂
t
y∆

−1
t p2 − α∂xp1 = κ∆tp2 + Λ−1

t ∇⊥
t (b · ∇tv − v · ∇tb).

(2.25)
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This formulation is more useful for calculations and energy estimates. In partic-
ular, as seen in the previous sections, the p unknowns allow us to quantify the
relation between circular movement, inviscid damping and different dissipation
regimes. In Sobolev spaces, they are equivalent to the velocity and magnetic
field.

Vorticity and magnetic potential formulation: If there is a strong
imbalance between resistivity and viscosity, linear stability will shift from the p
unknowns to the vorticity w and magnetic potential ϕ

∂tw + v · ∇w = ν∆tw + α∂x∆tϕ+∇⊥ϕ · ∇∆tϕ,

∂tϕ+ v · ∇ϕ = κ∆tϕ+ α∂x∆
−1
t w.

(2.26)

Vorticity and magnetic good-unknown formulation: For the resistive
κ > 0 and inviscid ν = 0 case, the resistivity damps the magnetic potential to a
balance with linear forcing by the vorticity. The good unknown Gϕ corresponds
to this balance

∂tw = −α2

κ ∂2
x∆

−1
t w + αGϕ + b · ∇tj − v · ∇tw,

∂tGϕ = κ∆tGϕ + ∂x∆t(v · ∇tϕ) +
α
κ∂x(∆

−1
t w).

(2.27)

Fluid good-unknown and magnetic potential formulation: In the
viscous ν > 0 and non-resistive case κ = 0, the viscosity damps the magnetic
potential to a balance with the linear forcing by the magnetic potential. The
good unknown Gw corresponds to this balance

∂tGw = ν∆tGw + α
ν ∂t∂

2
xϕ+ ∂x(∇⊥ϕ · ∇∆tϕ− v · ∇w),

∂tϕ = −α2

ν ∂2
x∆

−1
t ϕ+ α∆−1

t Gw − v · ∇ϕ.
(2.28)

2.5 Nonlinear Behavior

For the MHD equations, the linearized dynamics decouple in frequency space
and we obtain stability for a suitable choice of adapted unknowns. The non-
linear terms differ depending on the choice of unknowns and yield an interac-
tion between different frequencies. Understanding and estimating the nonlinear
interaction is the major challenge for establishing nonlinear stability. In the
following, we give a simplified model to get an intuition for the main growth
mechanism in nonlinear terms. We consider the toy model of an active scalar
equation

∂tf = (a · ∇t)f,

a = ∇⊥
t Λ

−m
t f.

(2.29)

For f we assume vanishing x-average. The m corresponds to different choices
of unknowns, for m = 2 this is the nonlinearity of (2.27) and m = 1 is a
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simplification of the nonlinearities in (2.25) (i.e. Λ−1
t ∇⊥

t (b∇tb) replaced by
b∇t(Λ

−1
t ∇⊥

t b) = b∇tp). After a Fourier transform of (2.29) we obtain

∂tf(k, ξ) =
∑

k−l,l ̸=0

∫
dη ξl−kη

((ξ−η−(k−l)t)2+(k−l)2)
m
2
f(k − l, ξ − η)f(l, η). (2.30)

Nonlinear Toy Model: Reaction Term

We apply a paraproduct decomposition to the quadratic nonlinearity to isolate
the main resonance mechanism in (2.30). This is a common approach, see for
example [BM14, Zil23]. We split the solution into high and low frequencies
f = flo + fhi. This can be made precise with the help of a Littlewood-Paley
decomposition [Gra14]. We thus obtain the system

∂tfhi = (alo∇t)fhi + (ahi∇t)flo + (ahi∇t)fhi,

∂tflo = (alo∇t)flo.

For this splitting, the alo∇t term acts as a transport and the (ahi∇t)phi term
is small in high Sobolev spaces. Our main contribution is then the term

∂tfhi ≈ (ahi∇t)flo. (2.31)

We model this effect by replacing

flo → −2c cos(x).

These are called a traveling wave solution. The traveling in the name comes
from the fact that our coordinates follow the characteristic of the Couette flow,
which means we ’travel’ in the original coordinates by x − yt. The cos is a
solution of frequency k = 1 and yields a nearest-neighbor interaction between
the k and k ± 1 modes. This is a very good model for the largest possible
growth in the full nonlinear system. More generally, we could use any periodic
and smooth function in x. With this low frequent solution, we obtain

∂tf = −∇⊥Λ−m
t f · ∇2c cos(x)

= 2c sin(x)∂yΛ
−m
t f,

which is our main growth model. After a Fourier transform, we obtain

∂tf(k, ξ) = c ξ
(k+1)m

1

(1+( ξ
k+1−t)2)

m
2
f(k + 1, ξ)

− c ξ
(k−1)m

1

(1+( ξ
k−1−t)2)

m
2
f(k − 1, ξ).

We simplify this further by looking at the k mode acting on k − 1 mode

∂tf(k − 1, ξ) = c ξ
km

1

(1+( ξ
k−t)2)

m
2
f(k, ξ).

We distinguish between the two main cases for m.
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• Let m = 2, this corresponds to the main model for the resistive MHD
equations in Chapter 3

∂tf(k − 1, ξ) = c ξ
k2

1
1+( ξ

k−t)2
f(k, ξ)

The main effect of f(k) acting on f(k − 1) will appear close to the time
t̃k = ξ

k , which we call resonant time. Close to this time, the f(k) stays
approximately constant and thus after integrating in time

f(tk−1, k − 1, ξ) ≈ cπ ξ
k2 f(tk, k, ξ)

for times tl =
1
2 (t̃l + t̃l+1) between the resonant times. If we iterate this

growth k → k − 1 → · · · → 1 for initial data f(tk, l, ξ) = δkl we obtain

f(t1, 1, ξ) ≈
k∏

l=1

cπ ξ
l2 = (cπξ)k

(k!)2 .

This is maximized by Sterling’s approximation at k ≈
√
cξ to

f(t1, 1, ξ) ≈
√

ξ exp(C̃
√
ξ)f(tk, k, ξ)

which is a loss if Gevrey 2 regularity of C̃ = C̃(c) > 0 in the radius of
convergence. Which corresponds to our result in Chapter 3.

• The case m = 1 correspnds to the main model of the p unknowns in
Chapter 5

∂tf(k − 1, ξ) = c ξ
k

1

(1+( ξ
k−t)2)

1
2
f(k, ξ).

With the previous approach, we would need regularity stronger than
Gevrey 1, which would impose problems in the nonlinear estimates. Here
we perform a different approach, we show under which circumstances
we can suppress the nonlinear effect with dissipation. At times t ≥
min(ν, κ)−

1
3 , the enhanced dissipation appears and damps the equation

down quickly. Thus we consider times t ≤ µ− 1
3 with µ = min(ν, κ). We

write

ξ
k

1

(1+( ξ
k−t)2)

1
2
= 1 + t

(1+( ξ
k−t)2)

1
2

and after integrating in time∫ t

0

ξ
k

1

(1+( ξ
k−τ)2)

1
2
dτ ≲ t ln(2

√
1 + t2) ≤ µ− 1

3 ln(4µ− 1
3 ).

If we assume that f(k) is constant for t ≈ ξ
k , we obtain then

f(tk−1k − 1, ξ) ≤ 2cµ− 1
3 ln(4µ− 1

3 )f(tk, k, ξ).
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Thus for c < 1
2µ

1
3

(
ln(4µ− 1

3 )
)−1

these resonances get supresed. The idea

here corresponds to what is done in the nonlinear estimates if ν ≈ κ > 0.
However, the nonlinear estimates are more challenging since the supremum
norm in time and the L2 norm in space do not commute. Therefore, the
nonlinear estimates are worse than conjectured here for the toy model.
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Chapter 3

On Echoes in
Magnetohydrodynamics
with Magnetic Dissipation

This chapter consists of the paper [KZ1], published in the Journal of Differential
Equations and is a joint work with Christian Zillinger. In this Chapter, we often
refer to Gevrey spaces in the sense of (A.1) since the important effects are visible
there. We note here that the space (3.19) with (3.9) also includes the Gevrey
spaces in the sense of (A.2).

NIKLAS KNOBEL AND CHRISTIAN ZILLINGER

Abstract. We study the long time asymptotic behavior of the invis-
cid magnetohydrodynamic equations with magnetic dissipation near
a combination of Couette flow and a constant magnetic field. Here
we show that there exist nearby explicit global in time low frequency
solutions, which we call waves. Moreover, the linearized problem
around these waves exhibits resonances under high frequency per-
turbations, called echoes, which result in norm inflation Gevrey reg-
ularity and infinite time blow-up in Sobolev regularity.

3.1 Introduction and Main Results

In this article we consider the two-dimensional magnetohydrodynamic (MHD)
equations with magnetic resistivity κ > 0 but without viscosity

∂tV + V · ∇V +∇p = B · ∇B,

∂tB + V · ∇B = κ∆B +B · ∇V,

div(B) = div(V ) = 0,

(t, x, y) ∈ R+ × T× R,

(3.1)
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near the stationary solution

V (t, x, y) = (y, 0),

B(t, x, y) = (α, 0).
(3.2)

The MHD equations are a common model of the evolution of conducting fluids
interacting with (electro-)magnetic fields in regimes where the magnetization of
the fluid can be neglected. They describe the evolution of the fluid in terms
of the fluid velocity V , pressure p and magnetic field B. The constant mass
and charge densities are normalized to 1. Here particular examples of appli-
cations range from the modeling of solar dynamics to geomagnetism and the
earths molten core to using liquid metals in industrial applications or in fusion
applications [Dav16].

A main aim of this article is to analyze the long-time asymptotic behavior of
solutions to this coupled system and, in particular, the interaction of instabili-
ties, partial dissipation and the system structure of the equations. Here we note
that due to the affine structure of the stationary solution (3.2), the correspond-
ing linearized problem around this solution decouples in Fourier space and can
be shown to be stable in arbitrary Sobolev (or even analytic) regularity, as we
prove in Section 3.2.

Lemma 3.1. Let α ∈ R be given and consider the linear problem

∂tV + y∂xV + (V2, 0) = α∂xB,

∂tB + y∂xB − (B2, 0) = κ∆B + α∂xV,

div(B) = div(V ) = 0,

(t, x) ∈ R+ × T× R.

Then these equations are stable in Hs for any s ∈ R in the sense that there
exists a constant C > 0 such that for any choice of initial data and all times
t > 0 it holds that

∥(∇⊥ · V )(t, x− ty, y)∥2Hs + ∥(∇⊥ ·B)(t, x− ty, y)∥2Hs

≤ (1 + κ−2/3)2(∥∇⊥ · V |t=0∥2Hs + ∥∇⊥ ·B|t=0∥2Hs).

Here ∇⊥ · V =: W is the vorticity of the fluid and ∇⊥ · B =: J is the
(magnetically induced) current.

In contrast to this to this very strong linear stability result, the stability
results for the inviscid nonlinear equations are expected to crucially rely on
very high, Gevrey regularity (see Section 3.2.2 for a definition). More pre-
cisely, similarly to the nonlinear Euler equations [DM23, DZ21, Zil23] or Vlasov-
Poisson equations [Bed20, Zil21a, MV11] the nonlinear equations are not a pri-
ori expected to not remain close to the linear dynamics due to “resonances” or
“echoes”[MWGO68, YOD05], which may lead to unbounded norm inflation of
any Sobolev norm. It is the main aim of this article to identify and capture this
resonance mechanism for the resistive MHD equations. In particular, we ask to
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which extent magnetic dissipation can stabilize the dynamics. As we discuss in
Section 3.2.2 the main nonlinear resonance mechanism is expected to be given
by the repeated interaction of a high frequency perturbation with an underlying
low frequency perturbation of (3.2). In this article we thus explicitly construct
such low frequency nonlinear solutions, called traveling waves (a combination of
an Alfvén waves and shear dynamics; see Section 3.2 and Lemma 3.5 for further
discussion).

Lemma 3.2. Let κ > 0 and α ∈ R and let (f0, g0) ∈ R2.Then there exist smooth
global in time solutions of the nonlinear, resistive MHD equations (3.1), which
are of the form

V (t, x, y) = (y, 0)− f(t)

1 + t2
∇⊥ cos(x− ty),

B(t, x, y) = (α, 0) +
g(t)

1 + t2
∇⊥ sin(x− ty),

with (f(0), g(0)) = (f0, g0). Furthermore, for a suitable choice of f0, g0 it holds
that

f(t) → 2c,

g(t) → 0,

as t → ∞.

In view of the underlying shear dynamics it is natural to change to coordi-
nates

(x− ty, y).

In these coordinates the corresponding vorticity W = ∇⊥ · V and current J =
∇⊥ ·B read

W = −1 + f(t) cos(x),

J = 0− g(t) sin(x).

Unlike the stationary solution (3.2) these waves have a non-trivial x-dependence.
As we discuss in Section 3.2.2 this x-dependence allows resonances to propagate
in frequency and underlies the nonlinear instability of the stationary solution
(3.2). More precisely, we show that the (simplified) linearized equations around
these waves exhibit the above mentioned nonlinear resonance mechanism (in
terms of both upper and lower bounds on solutions). In particular, we aim to
obtain a precise understanding of the dependence of the resonance mechanism
on the resistivity κ > 0 and the frequency-localization of the initial perturba-
tion. The research on well-posedness and asymptotic behavior of the magneto-
hydrodynamic equations is a very active field of research and we in particular
mention the recent work [Lis20], which considers a related, fully dissipative set-
ting in 3D, as well as the articles [JW22, ZZ23, WZ21, BLW20, FL19, DYZ19,
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HXY18, LCZL18, WZ17]. More precisely, in [Lis20] Liss studied the nonlinear,
fully dissipative, three-dimensional MHD equations around the same stationary
solution (3.2) in a doubly-periodic three-dimensional channel T × R × T and
established bounds on the Sobolev stability threshold as ν = κ ↓ 0. In contrast,
this article considers the 2D setting with partial dissipation ν = 0, κ > 0 in
Gevrey regularity. Similar questions on the stability of systems with partial
dissipation in critical spaces are also a subject of active research in other (fluid)
systems, such as the Boussinesq equations [CW13, EW15, DWZZ18].

For simplicity of presentation and to simplify the analysis in this article we
modify the linearized equations for the vorticity and current perturbations w, j

∂tw = α∂xj − (2c sin(x)∂y∆
−1
t w)̸=

∂tj = κ∆tj + α∂xw − 2∂x∂
t
y∆

−1
t j,

∆t = ∂2
x + (∂y − t∂x)

2,

(3.3)

and fix the x-averages of w and j, which also fixes the underlying shear flow.
Here, for simplicity we have also replaced f(t), g(t) by 2c and 0, respectively.
In analogy to other fluid systems [BBZD23, BM15b], a similar structure of the
equations can be achieved by considering the coordinates

(x−
∫ t

0

∫
V1dxdt,

1

t

∫ t

0

∫
V1dxdt) =: (X,Y ),

which however makes estimates of ∆−1
t technically more involved and less trans-

parent [Zil17]. In the interest of a clear presentation of the resonance mechanism
we hence instead fix Y = y by a small forcing.

Theorem 3.3. Let 0 < α < 10 and 0 < κ < 1 with β := κ
α2 and c ≤

min(10−3β
16
3 , 10−4) be given. Consider the (simplified) linearized equations

(3.3) around the wave of Lemma 3.2.
Then there exists a constant C such that for any initial data w0, j0 whose

Fourier transform satisfies∑
k

∫
exp(C

√
|ξ|)(|Fw0(k, ξ)|2 + |Fj0(k, ξ)|2)dξ < ∞

the corresponding solution stays regular for all times up to a loss of constant in
the sense that for all t > 0 it holds that∑

k

∫
exp(C2

√
|ξ|)(|Fw(t, k, ξ)|2 + |Fj(t, k, ξ)|2)dξ < ∞.

Moreover, there exists initial data w0, j0 and 0 < C∗ < C such that∑
k

∫
exp(C∗

√
|ξ|)(|Fw0(k, ξ)|2 + |Fj0(k, ξ)|2)dξ < ∞,

but so that the corresponding solution w, j grows unbounded in Sobolev regularity
as t → ∞.
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Let us comment on these results:

• As we discuss in Section 3.2.2 the linearized equations around a traveling
wave closely resemble the interaction of high and low-frequency pertur-
bations in the nonlinear equations. These equations thus are intended to
serve as slightly simplified model of the nonlinear resonance mechanism.
We remark that in the full nonlinear problem the x-averages and hence
the underlying shear dynamics change with time and the corresponding
change of coordinates has to be controlled. For simplicity and clarity the
present model instead fixes this change of coordinates.

• The Fourier integrability with a weight exp(C
√
|ξ|) corresponds to Gevrey

2 regularity with respect to y. For simplicity of presentation the above
results are stated with L2(T) regularity in x. All results also extend to
more general Fourier-weighted spaces, such as HN for any N ∈ N or
suitable Gevrey or analytic spaces (see Definitions 3.8 and 3.9).

• The stability and norm inflation in Gevrey 2 regularity matches the reg-
ularity classes of the (nonlinear) Euler equations. In particular, the mag-
netic field and magnetic dissipation are shown to not be strong enough to
suppress this growth. We remark that our choice of coupling between the
size of the magnetic field and magnetic dissipation is made so that both
effects are “of the same magnitude” and hence their interaction plays a
more crucial role (see Section 3.2.3 for a discussion).

• These results complement the work of Liss [Lis20] on the Sobolev stability
threshold in 3D with full dissipation. Indeed, the above derived upper
and lower bounds establish Gevrey 2 as the optimal regularity class of the
linearized problem in 2D with partial dissipation. We expect that as for
the Euler [BM15a] or Vlasov-Poisson equations [BMM16] nonlinear sta-
bility results match the regularity classes of the linearized problem around
appropriate traveling waves.

We further point out that the instability result of Theorem 3.3 also implies a
norm inflation result for the nonlinear problem around each wave in slightly
different spaces (see Corollary 3.26). In particular in any arbitrarily small ana-
lytic neighborhood around the stationary solution (3.2) there exist nonlinearly
unstable solutions (with respect to lower than Gevrey 2 regularity) .

The remainder of the article is structured as follows:

• In Section 3.2 we discuss the linearized problem around the stationary
state (3.2) and introduce waves as low-frequency solutions of the nonlinear
problem.

• In Section 3.2.2 we discuss the resonance mechanism for a toy model. In
particular, we discuss optimal spaces for norm inflation and (in)stability
results as well as the time- and frequency-dependence of resonances.
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• The main results of this article are contained in Section 3.4, where we
establish upper bounds and lower bounds on the norm inflation.

• The 3.5 contains some auxiliary estimates of a growth factor in Section 3.4.
In the second 3.6 we prove a nonlinear instability result for the traveling
waves.

3.2 Linear Stability, Traveling Waves and Echo
Chains

In this section we establish the linear stability of the resistive MHD equations
(3.1)

∂tV + (V · ∇)V +∇p = (B · ∇)B,

∂tB + (V · ∇)B = κ∆B + (B · ∇)V,

∇ ·B = ∇ · V = 0,

(3.4)

around the stationary solution (3.2) as stated in Lemma 3.1. Furthermore,
we sketch the nonlinear resonance mechanism underlying the norm inflation
result of Theorem 3.3, which is given by the repeated interaction of high and
low frequency perturbations. This mechanism motivates the construction of
the traveling wave solutions of Lemma 3.5 and the corresponding (simplified)
linearized equations around these waves, which are studied in the remainder of
the article.

In order to simplify notation we may restate the MHD equations with respect
to other unknowns. That is, since we consider vector fields in two dimensions
and V and B are divergence-free, we may introduce the magnetic potential Φ,
magnetic current J and fluid vorticity W by

J = ∇⊥ ·B,

∆Φ = J,

W = ∇⊥ · V.

Under suitable decay assumptions (or asymptotics) in infinity the equations can
then equivalently be expressed as

∂tW + (V · ∇)W = (B · ∇)∆Φ,

∂tΦ+ (V · ∇)Φ = κ∆Φ,
(3.5)

or in terms of J :

∂tW + (V · ∇)W = (B · ∇)J,

∂tJ + (V · ∇)J = κ∆J + (B · ∇)W − 2(∂iV · ∇)∂iΦ.
(3.6)

With these formulations we are now ready to establish the linear stability of the
stationary solution (3.2).
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Proof of Lemma 3.1. Consider the formulation of the MHD equations as (3.5),
then the linearization around V = (y, 0),W = −1, B = (α, 0),Φ = αy is given
by

∂tW + y∂xW = α∂x∆Φ,

∂tΦ+ y∂xΦ+ V2α = κ∆Φ.

We note that all operators other than y∂x are constant coefficient Fourier mul-
tipliers. Hence we apply a change of variables

(x, y) 7→ (x− ty, y)

to remove this transport term and obtain

∂tw = α∂x∆tϕ,

∂tϕ = −α∂x∆
−1
t w + κ∆tϕ,

where w, ϕ denote the unknowns with respect to these variables and ∆t =
∂2
x + (∂y − t∂x)

2. We note that this system decouples in Fourier space and
for simplicity of notation express it in terms of the (Fourier transform of the)
current j = ∆tϕ:

∂tw = ikαj,

∂tj =
2k(kt− ξ)

k2 + (ξ − kt)2
j − κ(k2 + (ξ − kt)2)j + ikαw,

where k ∈ Z and ξ ∈ R denote the Fourier variables with respect to x ∈ T and
y ∈ R, respectively. Here and in the following, with slight abuse of notation,
we reuse w and j to refer to the Fourier transforms of the vorticity and current
perturbation. For k = 0 these equations are trivial and we hence in the following
we may assume without loss of generality that k ̸= 0. Furthermore, we note
that the right-hand-side depends on ξ only in terms of ξ

k − t. Hence, by shifting
time we may further assume that ξ = 0.

With this reduction we first note that by anti-symmetry for all α ∈ R it
holds that

∂t(|w|2 + |j|2)/2 = ( 2t
1+t2 − κk2(1 + t2))|j|2.

We make a few observations:

• If κk2 ≥ 1 the horizontal dissipation is sufficiently strong to absorb growth
for all times.

• If κk2 ≤ 1 is small, then for sufficiently large times |t| ≥ (k2κ)−1/3 the
right-hand-side is non-positive.

• It thus only remains to estimate the growth on the time interval |t| ≤
(k2κ)−1/3, where

∂t(|w|2 + |j|2) ≤ 4(t)+
1 + t2

(|w|2 + |j|2).
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The latter case can be bounded by an application of Gronwall’s lemma and after
shifting back in time it yields

|w(t)|2 + |j(t)|2 ≤ (1 + (k2κ)−2/3)2(|w(0)|2 + |j(0)|2)

for all t > 0.

While the ground state is thus linearly stable in arbitrary Sobolev or even
analytic regularity, nonlinear stability poses to be a much more subtle question
with stronger regularity requirements.

3.2.1 Wave-type Perturbations

In order to investigate the stability of the MHD equations, it is a common
approach to consider wave-type perturbation. Here a classical result considers
perturbations around a constant magnetic field and a vanishing velocity field.

Lemma 3.4 ((c.f. [Alf42, Dav16])). Consider the ideal MHD equations (i.e.
κ = 0) in three dimensions linearized around a constant magnetic field B = B0ez
and vanishing velocity field V = 0. Then a particular solution is of the form

B = (B1(t, z), 0, 0), V = (V1(t, z), 0, 0)

where B1 and V1 are solutions of the wave equation

∂2
tB1 −B2

0∂
2
zB1 = 0,

∂2
t V1 −B2

0∂
2
zV1 = 0,

The linearized problem thus admits wave-type solutions propagating in the
direction ez of the constant magnetic field and pointing into an orthogonal
direction. These solutions are known as Alfvén waves [Alf42].

Proof of Lemma 3.4. We make the ansatz that B and v only depend on t and
z and express the linearized equations in terms of the current J = ∇× B and
vorticity W = ∇× V . Then the equations reduce to

∂tJ = B0∂zW,

∂tW = B0∂zJ.

These equations are satisfied if both J and W solve a wave equation and are
chosen compatibly. More precisely, two linearly independent solutions are given
by

W = f(z +B0t) = J

and

W = g(z −B0t) = −J,
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where f and g are arbitrary smooth function.
We remark that since B = B(t, z) and V = V (t, z) point into a direction

orthogonal to the z-axis, they are divergence-free for all times. Finally, since
both functions are independent of x it follows that all nonlinearities V · ∇V,B ·
∇V, V ·∇B,B ·∇B identically vanish, so these are also nonlinear solutions.

In the following we consider the two-dimensional setting and extend this
construction to also include an underlying affine shear flow. We call the re-
sulting solutions traveling waves in analogy to dispersive equations and related
constructions for fluids and plasmas [DZ21, Bed20, Zil21a, Zil23, DM23]. As we
sketch in Section 3.2.2 the non-trivial x-dependence of these waves will allow
us to capture the main nonlinear norm inflation mechanism in the linearized
equations around these waves (as opposed to linearizing around the stationary
solutions (3.2)).

Lemma 3.5. Let α ∈ R and κ ≥ 0 be given. Then for any choice of parameters
(f(0), g(0)) ∈ R2 there exists a solution of (3.6) of the form

W = −1 + f(t) cos(x− yt)

J = −g(t) sin(x− yt).
(3.7)

We call such a solution a traveling wave.

We remark that this construction also allows for general profiles h(t, x− ty)
in place of cos(x− ty). This particular choice is made so that for f(0) and g(0)
small, such a wave is an initially small, analytic perturbation of the stationary
solution (3.2) and localized at low frequency.

Proof of Lemma 3.5. For easier reference we note that for this ansatz, we obtain

V = (y, 0) + f(t)
1+t2 sin(x− yt)(t, 1)

W = −1 + f(t) cos(x− yt)

B = (α, 0) + g(t)
1+t2 cos(x− yt)(t, 1)

J = −g(t) sin(x− yt)

Φ = αy + g(t)
1+t2 sin(x− yt).

Inserting this into the equation (3.6) the nonlinearities vanish due to the one-
dimensional structure of the waves. Therefore, this ansatz yields a solution if
and only if f and g solve the ODE system

f ′(t) = −αg(t),

g′(t) = −κ(1 + t2)g(t) + αf(t) + 2t
1+t2 g(t).

(3.8)

Thus by classical ODE theory for any choice of initial data there indeed exists
a unique traveling wave solution.
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Given such a traveling wave we are interested in its behavior, in particular
for large times, and how it depends on the choices of κ and α.

Lemma 3.6. Let α > 0 and κ > 0 then for any choice of initial data the
solutions f(t), g(t) of the ODE system (3.8)

f ′(t) = −αg(t),

g′(t) = −κ(1 + t2)g(t) + αf(t) + 2t
1+t2 g(t),

(3.9)

satisfy the following estimates:{
|f(t)|2 + |g(t)|2 ≤ (1 + t2)2(|f(0)|2 + |g(0)|2) if 0 < t < κ−1/3

|f(t)|2 + |g(t)|2 ≤ |f(κ−1/3)|2 + |g(κ−1/3)|2 if t > κ−1/3.
(3.10)

Furthermore, for a specific choice of initial data it holds

|f(t)− ϵ| ≤ 1

2
ϵ,

for all t ≥ 4β−1 and

|g(t)| → 0

as t → ∞.

Proof of Lemma 3.6. We first observe that by anti-symmetry of the coefficients
it holds that

∂t(|f |2 + |g|2) = 2|g|2
(
−κ(1 + t2) + 2t

1+t2

)
.

In particular, for t > κ−1/3 the last factor is negative and hence |f |2 + |g2| is
non-increasing. For times smaller than this, we may derive a first rough bound
from the estimate

∂t(|f |2 + |g|2) ≤ (|f |2 + |g|2) 4t
1+t2 ,

which yields an algebraic lower and upper bound growth bound. We next turn
to the case of special data, due to lower and upper norm bounds (3.9) is time
reversible. Therefore, we can obtain

f(t0) = 1, g(t0) = 0

for t0 = 4β−1. Then we deduce

g(t) = α

∫ t

t0

dτ exp(−κ(t− τ + 1
3 (t

3 − τ3))) 1+t2

1+τ2 f(τ)
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and thus

f(t) = 1− α

∫ t

t0

dτ1g(τ1)

= 1− κ
β

∫ t

t0

dτ1(1 + τ21 )

∫ τ1

t0

dτ2 exp(−κ(τ1 − τ2 +
1
3 (τ

3
1 − τ32 )))

1
1+τ2

2
f(τ2)

= 1− 1
β

∫ t

t0

dτ2
1

1+τ2
2
f(τ2)(1− exp(−κ(t− τ2 +

1
3 (t

3 − τ32 )))).

This gives the estimate

0 ≤ 1− f(t) ≤ 2
βt0

, (3.11)

which implies that after time t0 the value of f satisfies the same bound. Simi-
larly, for g we recall that

∂sg = ( 2t
1+t2 − κ(1 + t2))g(t) + αf(t)

and hence for t1 = 2κ− 1
3 it holds that

g(t1) ≤ α
t21
t20
.

Furthermore, this implies that for times t ≥ t1 it holds that

g(t) ≤ α
t21
t20
exp(−κ

3 t
2(t− t1)) + α

∫ t

t1

exp(−κ
3 (1 + t2)(t− τ))

≤ α
t21
t20
exp(−κ

3 t
2(t− t1)) +

3α
κ
3 (1+t)2

.

Finally, for times t ≫ κ− 1
3 we may estimate

g ≤ 4α
κt2 . (3.12)

3.2.2 Paraproducts and an Echo Model

As mentioned in Section 3.1 the main mechanism for nonlinear instability is
expected to be given by the repeated interaction of high- and low-frequency
perturbations of the stationary solution (3.2). In the following we introduce a
model highlighting the role of the traveling waves and discuss what stability and
norm inflation estimates can be expected.

For this purpose we note that the nonlinear MHD equations (3.5) for the
perturbations w, ϕ of the groundstate (3.2) in coordinates (x − ty, y) can be
expressed as

∂tw +∇⊥∆−1
t w · ∇w = α∂x∆ϕ+∇⊥ϕ · ∇∆tϕ,

∂tϕ+∇⊥∆−1
t w · ∇ϕ = α∂x∆

−1w + κ∆tϕ,

∆t = ∂2
x + (∂y − t∂x)

2,

(3.13)
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where we used cancellation properties of ∇⊥ · ∇. The stability result of Lemma
3.1 considered the linearized problem around the trivial solution (0, 0), which
removes all effects of the nonlinearities. In order to incorporate these effects
into our model we thus consider the nonlinear equations as a coupled system for
the low frequency part of the solution (wlow, ϕlow) (defined as the Littlewood-
Payley projection to frequencies < N/2 for some dyadic scale N) and the high
frequency part (whi, ϕhi). If we for the moment consider the low frequency part
as given then the action of the nonlinearities on the high frequency perturbation
of the vorticity can be decomposed as

∇⊥∆−1
t wlow · ∇whi +∇⊥∆−1

t whi · ∇wlow +∇⊥∆−1
t whi · ∇whi. (3.14)

Here the first term is of transport type and hence unitary in L2 and we expect
∇⊥∆−1

t wlow to decay sufficiently quickly in time that this term should not
yield a large contribution to possible norm inflation. Similarly for the last
term we note that both factors are at comparable frequencies and that we by
assumption consider a small high frequency perturbation and thus this term
is also not expected to have a large impact on the evolution. The main norm
inflation mechanism thus is expected to be given by the high frequency velocity
perturbation interacting with a non-trivial low frequency vorticity perturbation.

In order to build our toy model we thus focus on this part and formally
replace wlow, ϕlow by the traveling waves, which are solutions of the nonlinear
problem. Furthermore, as a simplification by a similar reasoning as above we
also fix the underlying shear flow for our model. Then the equations for the (high
frequency part of the) current perturbation j = ∆ϕ and vorticity perturbation
w read

∂tw = α∂xj − (2c sin(x)∂y∆
−1
t w)̸=

∂tj = κ∆tj̸= + α∂xw − 2∂x∂
t
y∆

−1
t j,

(3.15)

where we also simplified to f(t) = 2c, g(t) = 0.
We note that compared to the linearization around the stationary solution

these equations break the decoupling in Fourier space. Indeed taking a Fourier
transform and relabeling j 7→ −ij we arrive at

∂tw(k) = −αkj(k)− c ξ
(k+1)2

1
1+( ξ

k+1−t)2
w(k + 1) + c ξ

(k−1)2
1

1+( ξ
k−1−t)2

w(k − 1),

∂tj(k) = (2
t− ξ

k

1+( ξ
k−t)2

− κk2(1 + ( ξk − t)2))j(k) + αkw(k).

(3.16)

Furthermore, if t ≈ ξ
k then the additional term is of size c ξ

(k)2 and hence can

possibly lead to a very large change of the dynamics. In reference to the ex-
perimental results mentioned in Section 3.1 we can interpret this as the low
frequency and high frequency perturbation resulting in an “echo” around the
time t ≈ ξ

k . For the following toy model we neglect all modes except those at
frequency k and k − 1 and only include the action of the resonant mode k on
the non-resonant mode k − 1.
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Lemma 3.7 (Toy model). Let c, κ, α be as in Theorem 3.3 such that β = κ
α2 ≥ π

and consider the Fourier variables k ≥ 2 and ξ ≥ 10max(κ−1, k2

c ). Then for

tk :=
1

2
(

ξ

k + 1
+

ξ

k
) < t <

1

2
(
ξ

k
+

ξ

k − 1
) =: tk−1

we consider the toy model

∂tw(k) = −αkj(k),

∂tj(k) = (2
t− ξ

k

1+( ξ
k−t)2

− κk2(1 + ( ξk − t)2))j(k) + αkw(k),

∂tw(k − 1) = −α(k − 1)j(k − 1) + c ξ
k2

1
1+( ξ

k−t)2
w(k),

∂tj(k − 1) = −κ
ξ2

k2
j(k − 1) + α(k − 1)w(k − 1).

(3.17)

Then for initial data w(k, tk) = 1 and w(k − 1, tk) = j(k, tk) = j(k − 1, tk) = 0
we estimate

(|w(k)|+ |w(k − 1)|+ αk|j(k)|+ α(k − 1)|j(k − 1)|)|t=tk−1
≤ 2πc

ξ

k2
.

Furthermore, this bound is attained up to a loss of constant in the sense that

|w(k − 1, tk−1)| ≥ π
2 c

ξ

k2
.

Proof of Lemma 3.7. We perform a shift in time such that t = ξ
k + s and thus

s0 := − ξ
2

1
k2+k ≤ s ≤ ξ

2
1

k2−k =: s1. Integrating the equations in time, for our
choice of initial data we obtain that

j(s, k) = αk

∫ t

s0

1+s2

1+τ2
2
exp(−κk2(s− τ2 +

1
3 (s

3 − τ32 )))w(k, τ2)dτ2

and thus

w(k, s) = 1− αk

∫
j(τ1, k) dτ1

= 1− α2k2
∫ s

s0

∫ τ1

s0

1+τ2
1

1+τ2
2
exp(−κk2(τ1 − τ2 +

1
3 (τ

3
1 − τ32 )))w(k, τ2)dτ2dτ1.

For the second term we insert α2 = κ
β and deduce that

κ

β
k2
∫ s

s0

∫ τ1

s0

1+τ2
1

1+τ2
2
exp(−κk2(τ1 − τ2 +

1
3 (τ

3
1 − τ32 )))w(k, τ2)dτ2dτ1

=
1

β

∫ s

s0

1
1+τ2

2

∫ s

τ2

κk2(1 + τ21 ) exp(−κk2(τ1 − τ2 +
1
3 (τ

3
1 − τ32 )))w(k, τ2)dτ1dτ2

=
1

β

∫ s

s0

w(k,τ2)
1+τ2

2

[
exp(−κk2(τ1 − τ2 +

1
3 (τ

3
1 − τ32 )))

]τ1=s

τ1=τ2
dτ2

=
1

β

∫ s

s0

w(k,τ2)
1+τ2

2
(1− exp(−κk2(s− τ2 +

1
3 (s

3 − τ32 ))))dτ2.
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This further yields that

w(k, s) = 1− 1

β

∫ s

s0

dτ2
w(k,τ2)
1+τ2

2
(1− exp(−κk2(s− τ2 +

1
3 (s

3 − τ32 )))). (3.18)

Therefore, if 1 ≥ w(k, s) ≥ 0 we obtain

|w(k, s)− 1| ≤ 1

β

∫ s

s0

1
1+τ2

2
dτ2 ≤ 1

β (arctan(s) +
π
2 ).

and by bootstrap this assumption holds for all times if β ≥ π. For the current
j(k) we similarly estimate∫ s1

s0

1+s2

1+τ2
2
exp(−κk2(s− τ2 +

1
3 (s

3 − τ32 )))w(k, τ2)dτ2

≤ (

∫ ξ

5k2

s0

+

∫ s1

ξ

5k2

) exp(−κk2(s− τ2 +
1
3 (s

3 − τ32 )))dτ2

≤ 1
κk2 (exp(−κξ( 13 + 3−4 ξ2

k4 )) +
4
η2 ) ≤ c

κk2 ,

which yields

αkj(s, k) ≤ (αk)2 c
κk2 = c

β .

Concerning the k − 1 mode we argue similarly and write

j(k − 1) = α(k − 1)

∫
exp(κ ξ2

k2 (s− τ))w(k − 1)dτ

and

w(k − 1) = c ξ
k2

∫
1

1+τ2w(k)dτ − α(k − 1)

∫
j(k − 1) dτ1

= c ξ
k2

∫
1

1+τ2w(k)dτ

− α2(k − 1)2
∫∫

exp(κ ξ2

k2 (τ1 − τ2))w(τ2, k − 1)dτ2dτ1

= c ξ
k2

∫ s1

s0

1
1+τ2w(k)dτ − α2k2(k−1)2

κξ2

∫
dτ2w(τ2, k − 1).

Since

|α
2k2(k−1)2

κξ2

∫
dτ2| ≤ 1

β ξ

k2

we deduce by bootstrap that

|w(k − 1)| ≤ 2πc ξ
k2
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and thus

|w(k − 1)− πc ξ
k2 | ≤ c ξ

k2

∫
τ /∈[s0,s1]

1
1+τ2 dτ

+ c ξ
k2

1
β

∫ s1

s0

1
1+τ2 (arctan(τ)− π

2 )dτ + 1
β ξ

k2

2πc ξ
k2

≤ πc ξ
k2 (

2
π

k2

ξ + π
2β + 2

β ξ

k2

)

≤ π
2 c

ξ
k2

and

α(k − 1)j(k − 1) ≤ 2πc ξ
k2 (α(k − 1))2

∫
exp(κ ξ2

k2 (s− τ))dτ

= 2πc ξ
k2 (α(k − 1))2 1

κ ξ2

k2

= πc 1
βξ ≪ πc ξ

k2 .

Based on this model we may thus expect that a repeated interaction or chain
of resonances starting at k0

k0 7→ k0 − 1 7→ · · · 7→ 1

results in a possible growth

|w(1, t1)| ≥ |w(k0, tk0)|
k0∏
k=1

C ′(1 + c
ξ

k2
),

where C ′ = C ′(β). Choosing k0 ≈
√
C ′cξ to maximize this product and using

Stirling’s approximation formula we may estimate this growth by an exponential
factor:

k0∏
k=1

C ′c
ξ

k2
=

(C ′cξ)k0

(k0!)2
≈ exp(

√
C ′cξ)

This suggests that stability can only be expected if the initial decays in Fourier
space with such a rate, which is naturally expressed in terms of Gevrey spaces.

Definition 3.8. Let s ≥ 1, then a function u ∈ L2(T×R) belongs to the Gevrey
class Gs if its Fourier transform satisfies∑

k

∫
exp(C|ξ|1/s)|F(u)(k, ξ)|2dξ < ∞

for some constant C > 0.
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In view of the more prominent role of the frequency with respect to y and
for simplicity of notation this definition only includes |ξ|1/s as opposed to (|k|+
|ξ|)1/s in the exponent. All results in this article also extend to more general
Fourier weighted spaces X (see Definition 3.9) with respect to x with norms∑

k

∫
exp(C|ξ|1/s)λk|F(u)(k, ξ)|2dξ. (3.19)

We remark that any Gevrey function is also an element of HN for any N ∈
N and that Gevrey classes are nested with the strongest constraint, s = 1,
corresponding to analytic regularity with respect to y.

As the main result of this article and as summarized in Theorem 3.3 we
show that the above heuristic model’s prediction is indeed accurate and that the
optimal regularity class for the (simplified) linearized MHD equations around a
traveling wave are given by Gevrey 2.

3.2.3 Magnetic Dissipation, Coupling and the Influence of
β

In the preceding proof we have seen that the interaction of interaction of w(k)
and j(k) is determined by the combination of the action of the underlying mag-
netic field of size α and magnetic resistivity κ > 0 through the parameter

β = κ
α2 .

More precisely, we recall that ignoring the influence of neighboring modes w(k)
and j(k) are solutions of a coupled system:

∂tw(k) = −αkj(k),

∂tj(k) = (2
t− ξ

k

1+( ξ
k−t)2

− κk2(1 + ( ξk − t)2))j(k) + αkw(k).

Hence starting with data w(k, s0) = 1, j(k, s0) = 0 three different mechanisms
interact to determine the size of w(k, s):

• The vorticity w(k, s) by means of the constant magnetic field generates a
current perturbation j(k, s).

• The current perturbation j(k, s) is damped by the magnetic resistivity.

• The current j(k, s) in turn by means of the constant magnetic field acts
on the vorticity and damps it.

In this system several interesting regimes may arise, which are distinguished by
the parameter β.

In the limit of infinite dissipation, β → ∞, the current is rapidly damped
and the system hence formally reduces to the Euler equations

∂tw(k) = 0,

j(k) = 0,
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where w(k, s) remains constant in time.
As the opposite extremal case, if β ↓ 0 we obtain the inviscid MHD equations

and the system

∂sw(k) = −αkj(k),

∂sj(k) = 2 s
1+s2 j(k) + αkw(k).

Hence at least for |s| large this suggests that

w(k) ≈ c1(1 + s) cos(αks), j(k) ≈ c1(1 + s) sin(αks).

In particular, in stark contrast to the Euler equations (i.e. α = 0) for the
inviscid MHD equations with a magnetic field the vorticity w(k) and current
perturbations j(k) cannot be expected to remain close to 1 and 0, respectively.

This article considers the regime 0 < β < ∞, where the interaction of both
extremal phenomena results in behavior which is qualitatively different from
both limiting cases. Indeed, recall that by a repeated application of Duhamel’s
formula w(k, s) satisfies the integral equation (3.18):

w(k, s) = 1− 1

β

∫ s

s0

w(k,τ2)
1+τ2

2
(1− exp(−κk2(s− τ2 +

1
3 (s

3 − τ32 ))))dτ2

Hence, as a first case which we also discussed in the toy model of Lemma 3.7,
if we restrict to β ≥ π then the integral term is bounded and small

1

β

∫ s

s0

dτ2
1

1+τ2
2
≤ 1.

Hence, for large β the integral term can be treated as a perturbation and w(k, s)
remains comparable to 1 uniformly in s and thus close to the Euler case. How-
ever, unlike for the Euler equations the evolution of the current remains non-
trivial.

If instead 0 < β < π we obtain different behaviour depending on the dissi-
pation κk2, the size of the magnetic field and the frequencies considered, whose
interaction determines the behavior of the solution. More precisely, considering
the integrand

1

1 + τ22
(1− exp(−κk2(s− τ2 +

1
3 (s

3 − τ32 )))),

we observe that for κk2 ≫ 1 large the magnetic dissipation is very strong and
hence the integrand is well-approximated by 1

1+τ2
2
. In particular, this suggests

that for these s it holds that

w(k, s) ≈ 1− 1

β

∫ s

s0

dτ2
w(k,τ2)
1+τ2

2
,

⇔ ∂sw(k, s) ≈ − 1
β

1
1+s2w(k, s),

⇔ w(k, s) ≈ exp(− 1
β (arctan(s) +

π
2 ))w(k, s0),
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and hence w(k, s) might decay by a factor comparable to exp(−π
β ).

If instead κk2 ≤ 1 is small, different effects interact and involve the following
natural time scales:

• Mixing enhanced magnetic dissipation becomes relevant on time scales
(κk2)−1/3 ≫ 1.

• The resonant interval Ik is of size about ξ
k2 .

• Within this resonant interval most of the L1 norm of 1
1+τ2

2
is achieved on

a much smaller sub-interval of size about 1.

Hence, for times |s| < s∗ ≪ (κk2)−1/3 which are small compared to the disspa-
tion time scale the integrand is small and we may therefore expect that

w(k, s) ≈ 1

remains constant. If we instead consider very large times |s| ≫ (κk2)−1/3 ≫ s∗

in view of the exponential factor and the decay of 1
1+τ2

s
the size of w(k, s) should

largely be determined by the action of the time interval (−s∗, s∗), that is

w(k, s) ≈ 1− 1

β

∫ s∗

−s∗

1
1+τ2

2
dτ2

≈ 1− π
β ,

provided such such s exist, that is if the size ξ
k2 of Ik is much bigger than the

dissipative time scale. In particular, the size of w(k, s) transitions from being
close to 1 for |s| < s∗ to being very far from 1 for |s| ≫ (κk2)−1/3 and further
needs to be controlled on intermediate time scales. These different regimes all
have to be considered in the upper and lower bounds of Section 3.4 and we in
particular need to control the size of w(k, s) in order to estimate the resulting
norm inflation due to resonances. For this purpose we estimate w(k, s) in terms
of a growth factor L such that

|w(k, s)| ≤ Lw(k, s0),

as we discuss in 3.5. For our upper bounds we will require that cL ≪ 1 is
sufficiently small to control back-coupling estimates.

3.3 Stability for Small and Large Times

In this section we establish some general estimates on the (simplified) linearized
MHD equations (3.16). We note that these equations decouple with respect
to ξ. In the following we hence treat ξ as an arbitrary but fixed parameter of
the equations and consider (3.16) as an evolution equation for the sequences
w(·, ξ, t) and j(·, ξ, t). As mentioned following the statement of Theorem 3.3
in addition to ℓ2(Z) all proofs in the remainder of the article hold for a rather
general family of weighted spaces:
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Definition 3.9. Consider a weight function λl > 0 such that

sup
l

λl±1

λl
=: λ̂ < 10.

Then we define the Hilbert space X associated to this weight function as the set
of all sequences u : Z → C such that (ulλl)l ∈ ℓ2.

This definition for instance includes ℓ2 (λl = 1), (Fourier transforms of)
Sobolev spaces Hs (λl = 1 + C|l|2s with C > 0 sufficiently small) or Gevrey
regular or analytic functions with a suitable radius of convergence.

As sketched in Section 3.2.2 for a given frequency ξ ∈ R we expect the norm
inflation for evolution by (3.16) to be concentrated around times tk ≈ ξ

k for
suitable k ∈ Z. In particular, if the time is too large, t > 2ξ, there exists no
such k and we expect the evolution to be stable. Similarly, if t is small also the
size of the resonance predicted by the toy model is small and we again expect
the evolution to be stable. The results of this section show that this heuristic is
indeed valid and establish stability for “small” and “large” times. The essential
difficulty in proving Theorem 3.3 thus lies in control the effects of resonances in
the remaining time intervals, which are studied in Section 3.4. In the following
we will often write L∞

t as the supremum norm till time t.

Lemma 3.10 (Large time). Consider the equation (3.16) on the time interval
(2ξ,∞). Then the possible norm inflation is controlled uniformly in time

∥w, j∥X(t) ≤ 1
1−4c

1
1−2cλ̂

∥w, j∥X(2ξ),

where λ̂ = maxl
λl

λl±1
is as in Definition 3.9.

Proof. Let ŵ(k) = |(w(k), j(k))|. Then we infer

1
2∂tŵ

2(k) ≤ (a(k − 1)w(k − 1)− a(k + 1)w(k + 1))w(k) + b(k)j(k)2,

where we introduced the short-hand notation a, b for the coefficient functions.
Since b(t, k) ≤ 0 for t ≥ 2ξ, we further deduce that

1
2∂tŵ

2(k) ≤ c ξ
1+(t−ξ)2 (ŵ(k + 1) + ŵ(k − 1) + 2ŵ(k))ŵ(k)

⇝ ŵ2(k, t) < ŵ2(k, 2ξ) + 2c(|ŵ2(k)|L∞
t

+ 1
2 |ŵ

2(k + 1)|L∞
t

+ 1
2 |ŵ

2(k − 1)|L∞
t
).

Hence by a bootstrap argument we control

ŵ2(k, t) ≤ 1
1−4c

∑
l

(2c)|k−l|ŵ2(l, 2ξ).

Summing this estimate with the weight λk then concludes the proof:

∥w, j∥X(t) ≤ 1
1−4c

√∑
k

λk

∑
l

(2c)|k−l|ŵ2(l, 2ξ)

≤ 1
1−4c

√∑
l

λlŵ2(l, 2ξ)
∑
k

(2cλ̂)|k−l|

≤ 1
1−4c

1
1−2cλ̂

∥w, j∥X(2ξ)

40



Thus it suffices to study the evolution for times t < 2ξ. In view of the
estimates of Section 3.2.2 it here is convenient to partition (0, 2ξ) into intervals
where t ≈ ξ

k for some k ∈ Z.

Definition 3.11. Let ξ > 0 be given, then for any k ∈ N we define

tk =
1

2
( ξ
k+1 + ξ

k ) if k > 0,

t0 = 2ξ.

We further define the time intervals Ik = (tk, tk−1), for ξ < 0 we define tk
analogously for −k ∈ N.

Note that

tk < ξ
k < tk−1

and

tk−1 − tk =
1

2

(
ξ

k+1 − ξ
k−1

)
= ξ

k2−1 .

Hence Ik is an interval containing the time of resonance ξ
k and is of size about

ξ
k2 .

The next lemma provides a very rough energy-based estimate, which will
allow us to control the evolution for small times and frequencies. That is, we
show that it is easy to obtain a energy estimate with ξt in the exponent. If the
time t or the frequency ξ are small this rough estimate is sufficient. However,
for Gevrey 2 norm estimates it will be necessary to improve this control to a
C
√
ξ term in the exponent in subsequent estimates. Furthermore, we remark

that also the magnetic part needs to be handled adequately, since it may give
an additional growth by exp( 43κ

− 1
2 ).

Lemma 3.12 (Rough estimate). Consider a solution of (3.16), then for fixed
ξ and for all times t > 0 it holds that

∥w, j∥X(t) ≤ exp( 43κ
− 1

2 ) exp((1 + λ̂)cξt)∥w, j∥X(0).

Proof. We define ŵ(k) = |w, j|(k), then
1
2∂tŵ

2(k) = (a(k + 1)w(k + 1)− a(k − 1)w(k − 1))w(k) + b(k)j(k)2

with b(k, t) = (2
t− ξ

k

1+( ξ
k−t)2

− κk2(1 + ( ξk − t)2)). We further define the define the

growth factor

M(k, t) =


1 if t− ξ

k ≤ 0 or κk2 ≥ 1,
1

1+( ξ
k−t)2

if 0 ≤ t− ξ
k ≤ ( 2

κk2 )
1
3 and κk2 ≤ 1,

1

1+(
2

κk2 )
1
3

if ( 2
κk2 )

1
3 ≤ t− ξ

k and κk2 ≤ 1.
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We note that this weight satisfies b(k, t) + M ′

M (k, t) ≤ 0. Hence, defining the
energy

E = (
∏
l

M(l, t))2
∑
k

λkŵ(k, t)
2,

we deduce that

1
2∂tE ≤

(∏
l

M(l, t)

)2∑
k

λk (a(k + 1)ŵ(k + 1, t) + a(k − 1)ŵ(k − 1, t)) ŵ(k)

≤ (
∏
l

M(l, t))2
∑
k

(λka(k) +
a(k−1)λk−1+a(k+1)λk+1

2 )ŵ2(k, t)

= (1 + λ̂)cξE.

Applying Gronwall’s inequality thus yields

E(t) ≤ exp(2(1 + λ̂)cξt)E(0).

This in turn leads to the estimate

∥w, j∥X ≤ exp((1 + λ̂)cξt)
∏
l

|M(l, t)|−1∥w0, j0∥X

≤ exp((1 + λ̂)cξt)

κ− 1
2∏

l=0

(1 + ( 2
κl2 )

1
3 )∥w0, j0∥X .

Finally, we can use Stirling’s approximation of the factorial, which results in the
desired estimate:

∥w, j∥X(t) ≤ exp( 43κ
− 1

2 ) exp((1 + λ̂)cξt)∥w0, j0∥X .

In the following we establish upper and lower bounds for small times. Here
we use that for modes k such that ξ

k2 is small nay possible resonance will not
produce large enough norm inflation and the evolution can hence be treated
perturbatively. More precisely, we consider the evolution on the time interval

I = [0, ξ
2 (

1
k0

+ 1
k0−1 )]

for fixed k0 to be determined later. For this purpose we introduce the parameter
η0 := ξ

k2
0
which later will be chosen as η0 ≈ 1

10c .

Lemma 3.13. Let w, j be a solution of (3.16), define d := c−1 and let ξ, k0 be
such that η0 ≤ d2. Then for all times 0 ≤ t ≤ tk0

it holds that

∥w(t), j(t)∥2X ≤ exp(2(1 + λ̂)max(cη0, 1)
√
ξη0)∥w0, j0∥2X

≤ exp(C
√

ξ)∥w0, j0∥2X .
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Furthermore, suppose that k0 ≥ κ− 1
2 and 10d ≤ ξ

k2
0
≤ 1

100c2 , then for the initial

data w(k, 0) = δk0,k and j(k, 0) = 0 we obtain that

w(k0, tk0
) ≥ 1

2 max(1, w(k, tk0
), j(k, tk0

))

j(k0, tk0
) ≤ 1

αk0
ξη0

.

Proof. Computing the time derivative, we obtain

1
2∂t∥w, j∥

2
X =

∑
l

(a(l + 1)w(l + 1) + a(l − 1)w(l − 1))λlw(l) + b(l)λlj(l)
2,

where the coefficient functions satisfy

a(l) ≤

{
cη0 l ≥ k0

4c 1
1+η0

l ≤ k0

≤ max(cη0, 4c),

b(l) ≤ 1.

Therefore, we conclude that

∂t∥w, j∥2X ≤ 2(1 + λ̂)max(cη0, 1)∥w, j∥2X ,

∥w, j∥2X(t) ≤ exp(2(1 + λ̂)max(cη0, 1)t)∥w0, j0∥2X ,

∥w, j∥2X(tk0
) ≤ exp(2(1 + λ̂)max(cη0, 1)

√
ξη0)∥w0, j0∥2X .

To prove lower bounds on the norm inflation we further need to show that
for w(k, 0) = δk0,k and j(k, 0) = 0, the mode w(k0, tk0

) will stay the largest
mode. Therefore, we introduce the short-hand notation

ŵ(k, t) = |w, j|(k, t)

and have to estimate the growth of ŵ(·, t). Since on the interval [0, tk0
] it holds

that b(k) ≤ 0 as k0 ≥ κ− 1
2 , we obtain the system

∂tŵ(k) ≤ a(k + 1)ŵ(k + 1) + a(k − 1)ŵ(k − 1)

ŵ(k, 0) = δk,k0 .

Let
√
ξπ = l0 ≥ l ≥ k0 to be fixed later. We want to prove by induction that

ŵ(m, tl−1) ≤ 6πcη0(2c)
|m−k0|

ŵ(l, tl−1) ≤ 4(2c)|l−k0|

ŵ(n, tl−1) ≤ 2(2c)|m−k0|

(3.20)

for all m > l > n.
Induction start:
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We integrate a in time to estimate∫ tl0−1

0

a(k) = c ξ
k2

∫ tl0−1

0

1
1+( ξ

k−t)2

≤
{

πc ξ
k2 k > l0
c k ≤ l0

≤ c.

Thus we obtain that

ŵ(k, tl0−1) < δk0,k + c(|ŵ(k + 1)|L∞
t

+ |ŵ(k − 1)|L∞
t
),

which by a bootstrap argument yields that

ŵ(k, tl0−1) ≤ 1
1−2c (2c)

|k0−k|

for all k which satisfy (3.20).
Induction step: We fix l and we assume that (3.20) holds for all l̃ with
l0 ≥ l̃ ≥ l + 1 ≥ k0 + 1 and then prove that it holds also for l. We here argue
by bootstrap. That is, we show that the estimate (3.20) at least holds up until
a time t∗ with tl ≤ t∗ ≤ tl−1 and that the maximal time with this property is
given by t∗ = tl−1. For n < l we estimate

ŵ(n, tl−1) ≤ δn,k0
+

∫ tl−1

0

a(n± 1, τ)w(n± 1, τ)

≤ δn,k0 + c(4(2c)|n+1−k0| + 2(2c)|n−1−k0|)

< 2(2c)|n−k0|.

To estimate the l mode we estimate the integral between tl and tl−1 to
deduce

ŵ(l, tl−1) ≤ ŵ(l, tl) +

∫ tl−1

tl

a(l ± 1, τ)w(l ± 1, τ)

≤ 2(2c)l−k0 + 6πcη0(2c)
l+1−k0 + 2c(2c)|l−1−k0|

≤ 4(2c)l−k0 .

For m > l we split the integrals as

ŵ(m, tl−1) ≤ ŵ(m, tm−1) +

∫ tl

tm−1

a(m+ 1, t)ŵ(m+ 1, τ)

+

∫ tm−2

tm−1

a(m− 1, t)ŵ(m− 1, τ) +

∫ tl

tm−2

a(m− 1, t)ŵ(m− 1, τ)

≤ 4(2c)m−k0 + 12πc2η0(2c)
|m−k0| + 4πη0(2c)

m−k0 + 6πcη0(2c)
m−k0

≤ 6πη0(2c)
m−k0 .
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So we finally deduce that

ŵ(k, tk0
) ≤ (2c)|k−k0|

{
4 k ≤ k0 + 1

6πη0 k > k0 + 1

Thus we established an upper bound for all modes, the next step is to show that
for w indeed the k0 mode is one of the largest modes. Therefore, we estimate
j(k0) by

j(k0, t) = αk0

∫ t

0

dτ
1+( ξ

k 0
−t)2

1+( ξ
k 0

−τ)2
exp

(
−κk20(t− τ + 1

3 ((
ξ
k0

− t)3 − ( ξ
k0

− τ)3)
)
w(k0, τ)

and hence obtain that

j(t) ≤ αk0

∫
exp(−κk20η

2(t− τ)

≤ 1√
βκξη3

0

= 1
αk0

ξη0

and

αk0

∫
j(k0, τ2)dτ1 =

κk2
0

β

∫ t

0

dτ1

∫ τ1

0

dτ2
1+( ξ

k 0
−τ1)

2

1+( ξ
k 0

−τ2)2

× exp
(
−κk20(τ1 − τ2 +

1
3 ((

ξ
k 0

− τ1)
3 − ( ξk 0

− τ2)
3)
)

≤ 1
β

∫
dτ1

1
1+( ξ

k0
−τ1)2

≤ 4
βη0

.

With this we conclude that

|w(k0, tk0
)− 1| ≤

∫
a(k0 + 1)w(k0 + 1) + a(k0 − 1)w(k0 − 1) + αk0j(t)

≤ 16πη0c
2 + 8c2 + 4

βη0
≤ 1

2 ,

which in turn yields

|w(k0, tk0
)| ≥ 1

2 ≥ max
k ̸=k0

(ŵ(k, tk0
), |j(k0, tk0

)|).

3.4 Resonances and Norm Inflation

Having discussed the evolution for small times and large times in Section 3.3 it
remains to discuss the evolution on the interval

(tk0 , 2ξ) =
⋃

1≤k≤k0

Ik
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with Ik as in Definition 3.11.
Based on the heuristics of the toy model of Section 3.2.2 our aim here is

to establish both upper lower and upper bounds on the norm inflation on each
resonant interval Ik, where the resonant mode w(k) can possibly lead to a large
growth of its neighboring modes w(k ± 1). In order to simplify notation we
introduce the growth factor

L = L(α, κ, k),

which estimates the maximal growth of w(k) due to its interaction with the
current j(k), see 3.5. In particular, we show that L = 1 if β ≥ π and if β < π
we obtain an estimate L = L(α, κ, k) ≤

√
c. We define M and Mn as

M =
∑
m

10−|m|(w + 1
αkm

j)(km, s0)

Mn =
∑
m

10−|m−n|+χ(w + 1
αkm

j)(km, s̃0)

where χ = −|sgn(m)− sgn(n)|. We note that∑
l ̸=0

( 3η )
|kl−k0|Ml ≤ 3

ηM.

With these notations the main results of this section are summarized in the
following theorem:

Theorem 3.14. Let c ≤ min(10−3β
16
3 , 10−4) , ξ ≥ 10κ−1(1 + β−1) and η =

ξ
k2 ≥ 10d and tk = ξ

2 (
1
k + 1

k+1 ), then it holds that

∥w, j∥X(tk−1) ≤ 18πLλ̂(cη)γ∥w, j∥X(tk).

Furthermore, let κk min(β, 1) ≥ 1
c and β ≥ 1

5

w(k, tk) ≥ 1
2 max(w(l, tk), j(l, tk)). (3.21)

Then w(k − 1, tk−1) satisfies (3.21) with k replaced by k − 1 and

|w(k − 1, tk−1)| ≥ min(β, π)(cη)γw(k, tk).

To prove the estimates of Theorem 3.14 it is convenient to rescale j̃(k) =
αkj(k) in (3.16) to obtain

∂tw(k) = −j̃(k)

− c ξ
(k+1)2

1
1+( ξ

k+1−t)2
w(k + 1)

+ c ξ
(k−1)2

1
1+( ξ

k−1−t)2
w(k − 1)

∂tj̃(k) = (2
t− ξ

k

1+( ξ
k−t)2

− κk2(1 + (t− ξ
k

2
))j̃(k) + κk2

β w(k),

46



where we used that κ = βα2. With respect to these unknowns the norm on our
space X changes slightly

∥w, j∥2X =
∑

λk(w
2(k) + β

κk2 j̃
2(k))

=: ∥w, j̃∥2
X̃
.

In the following sections, with slight abuse of notation we omit writing the tilde
symbols both for j and X.

Given a choice of time interval Ik0
, considering k0 as arbitrary but fixed (and

unrelated to k0 of Section 3.3) we further introduce the relative frequencies

kn := k0 + n,

where n ∈ Z>−k0
and also shift our time variable

t = ξ
k0

+ s.

Introducing the coefficient functions

a(k) = cη
k2
0

(k)2
1

1+(η
k0(k0−k)

k −s)2
,

b(k) = 2
(s−η

k0(k0−k)
k )

1+(η
k0(k0−k)

k −s)2
− κk(1 + (η (k0−k)k0

k − s)2),

(3.22)

the system (3.16) then reads

∂sw(k) = −j(k)

− a(k + 1)w(k + 1)

+ a(k − 1)w(k − 1),

∂tj(k) =
κk

β w(k) + b(k)j(k).

(3.23)

For later reference, we note that the coefficient function a satisfies the following
estimates:

a(k0) = cη 1
1+s2 ,

a(k±1) ≤ 4 c
η ,

a(kn) ≤ c
η ,

(3.24)

for all |n| ≥ 2.
Finally, in view of cancellations of −a(k − 1) and +a(k + 1) on any given

time interval Ik it is convenient to work with the unknowns

u1 = w(k0), u2 = w(k1)− w(k−1), u3 = w(k1) + w(k−1).
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We then consider (3.23) as a forced system for these three modes (and a separate
equation for all other modes):

∂s


u1

u2

u3

j(k0)

 =


0 −a1 a2 −1

2cη 1
1+s2 0 0 0

0 0 0 0
κk

β 0 0 2s
1+s2 − κk(1 + s2)




u1

u2

u3

j(k0)



+


0

−a(k±2)w(k±2)∓ j(k±1)
∓a(k±2)w(k±2)− j(k±1)

0


(3.25)

where a1 = 1
2 (a(k1) + a(k−1)) and a2 = 1

2 (a(k1)− a(k−1)).
The analysis of this system is split into multiple subsections, where we also

split the time interval Ik as

Ik0 = [s0,−d] ∪ [−d, d] ∪ [d, s1] =: I1 ∪ I2 ∪ I3,

where s0 = −η
2
k0−1
k0

and s1 = η
2
k0+1
k0

. Similarly to the setting of the Euler
equations [DZ21] here the interaction between growth and decay of various
modes interacts to determine the over all norm inflation.

3.4.1 Proof of Theorem 3.3

Before proceeding to the proof of Theorem 3.14, in this subsection we discuss
how it can be used to establish Theorem 3.3. We split the proof into two
auxiliary theorems.

Theorem 3.15 (technical statement). Let c ≤ min(10−3β
16
3 , 10−4), ξ ≥ 10κ−1(1+

β−1) and ξ
k2 ≥ 10d. Then there exists exists a constant C = C(κ, α, c) such that

for a fixed ξ we obtain

∥w, j∥X(t, ξ) ≤ exp(C
√

ξ)∥w, j∥X(0, ξ).

Furthermore, let ξ ≥ 104 d2

βκ , β ≥ 1
5 , k0 ≈ c

10

√
ξ and k1 ≈ 4√

βκ
, then there

exists a constant C∗ = C∗(κ, α, c) such that for initial data w(k, 0) = δk0,k and
j(k, 0) = 0 we obtain

w(k1, t) ≥ exp(C̃
√

ξ).

for t ∈ [tk1
− 1, tk1

+ 1].

Proof of Theorem 3.15. For fixed ξ, t and k0 =: 10d
√
ξ we consider w(·, ξ, t) as

an element in X. On X we define the operator Sτ1,τ2 : X → X as the solution
operator of (3.16) on [τ1, τ2], i.e.

Sτ1,τ2 [w(·, ξ, τ1)] = w(·, ξ, τ2)
Sτ1,τ2 ◦ Sτ2,τ3 = Sτ1,τ3 .
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By Lemma 3.13, Theorem 3.14 and Lemma 3.10 this S then satisfies the follow-
ing norm estimates:

∥S0,tk0+1
∥X→X = exp(C1

√
ξ),

∥Stk,tk−1
∥X→X = 3πc( ξ

k2 )
γ ,

∥St1,t∥X→X = 2 1

1−c
√

λ̂
.

Combining these estimates with Stirling’s approximation formula we thus obtain
the desired upper bound:

∥S0,t∥X→X ≤ 2 exp(C1

√
ξ)

k0∏
k=1

3πc( ξ
k2 )

γ

≤ exp(C
√

ξ).

Concerning the lower bound, we use first use Lemma 3.13 and then Theorem
3.14 to deduce that

w(k0, tk0
) ≥ 1

2

w(k − 1, tk−1) ≥ (c ξ
k2 )

γ min(β, π)w(k, tk)

for
√

c
10ξ ≈ k0 ≥ k ≥ k1 ≈ 4√

βκ
. Thus, by again using Stirling’s approximation,

we conclude that

w(k1, tk1) ≥ 1
2

k2∏
k=k1

(c ξ
k2 )

γ min(β, π)

≈ exp(C̃
√
ξ).

Theorem 3.16 (Stability and blow-up). Let c ≤ min(10−3β
16
3 , 10−4) and w, j

be a solution to (3.16) , then there exists a constant C = C(κ, α, c) such that
for all C1 > C and initial data which satisfy∫

exp(C1

√
ξ)∥w0, j0∥2X(ξ) dξ < ∞,

the solution remains Gevrey 2 regular in the sense that

sup
t

∫
exp(C2

√
ξ)∥w, j∥2X(ξ, t) dξ ≤ C̃

∫
exp(C1

√
ξ)∥w0, j0∥2X(ξ) dξ,

where C2 = C1 − C and C̃ > 0 is a universal constant.
Furthermore, additionally suppose that β ≥ 1

5 , then there exist a constant
0 < C∗ < C and initial data w0, j0 which satisfy∫

exp(C∗
√

ξ)∥w0, j0∥2X(ξ) dξ < ∞,
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such that for a subsequence kn,1 the solution diverges in L2:

∥w(·, tkn,1
)∥L2ℓ2 → ∞.

Proof of Theorem 3.16. The first part follows directly from Theorem 3.15. For

the second part we fix ξ1 = 104 d2

βκ and define the sequence ξn = nξ1 with the

associated kξn0 ≈ c
10

√
ξn and k1 ≈ 4√

βκ
. Note that the starting mode kξn0 is ξn-

dependent, but the final mode k1 is independent of ξn. Furthermore, let zn(ξ)
be a function in C∞ ∩ L2, such that

supp zn(·) ⊂ [ξn − 1, ξn + 1]∫
zn(ξ)

2 dξ = 1.

We then define the initial data

w(k, ξ, 0) =

∞∑
n=1

1
nzn(ξ) exp(−

1
2C

∗
√

ξ)δkξn,0,k.

We observe that it satisfies the estimates

∥w(·, ξ, 0)∥2l2 =

∞∑
n=1

1
n2 zn(ξ)

2 exp(−C∗
√
ξ),∫

exp(C∗
√

ξ)∥w(·, ξ, 0)∥2l2 dξ = 2
∑

1
n2 = π2

3 .

Furthermore, by the norm inflation results for each mode at each time tkn,1
we

obtain that

∥w(kn,1, ξ, tkn,1
)∥l2 ≥ 9

10
1
n2 z(ξ, n) exp((C̃ − C∗)

√
ξ),

and integrating in ξ we conclude that

∥w(·, tkn,1)∥L2l2 ≥ 9
10

1
n2 exp((C̃ − C∗)

√
ξn) → ∞.

3.4.2 Asymptotic Behavior on the Intervals I1 and I3

In this section we consider the equation (3.25) on the outer intervals I1 = [s0,−d]
and I3 = [d, s1]. Since a lot of calculations are similar on both intervals we in
general write the interval as [s̃0, s̃1], where we only need to distinguish the two
cases on a few occasions and in the statement of the conclusions. For the interval
I1 we prove the following proposition:
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Proposition 3.17 (Interval I1). Let c < max(10−4, 10−1β) and ξ ≥ 10max(κ−1(1+
β−1), k20d). Then for a solution of (3.25) on the interval I1 the following esti-
mates hold at the time d:

|u1(d)| ≤ 2M(cη)−γ2 ,

|u2(d)| ≤ 2M(cη)γ1 ,

|u3|(−d) ≤ 2M1,

|w(kn,−d)| ≤ 2Mn,

|j|(k0,−d) ≤ c
β (cη)

−γ2M inf(c, κk0
c−2),

|j|(k±1,−d) ≤ 4
βη2M,

|j|(kn,−d) ≤ 4
βη2Mn.

If we additionally assume that

w(k0, tk0) ≥ 1
2 sup

l
(w(l, tl), j(l, tl)), (3.26)

we obtain that

|u1(−d)− (cη)−γ2u1(s0)| = 50cu1(s̃0)(cη)
−γ2

|u2(−d)| ≤ 50cu1(s̃0)(cη)
γ1 ,

|u3|(−d), |w|(km,−d) ≤ 2|u|(s0) for |m| ≥ 2,

|j|(km,−d) ≤ 4
η |u|(s0) for |m| ≥ 1,

|j|(k0,−d) ≤ 2c2

β |u|(s0)(cη)−γ2 .

(3.27)

The proof of this proposition is split into several lemmas and concludes at
the end of this subsection. For the interval I3 in a first step we only establish
asymptotic estimates. The final conclusion for interval I3 will be postponed to
the proof of Theorem 3.14. On both intervals I1 and I2 the interaction of u1

and u2 is the main effect to be analyzed. Therefore, we consider the equations
for u1 and u2 as an inhomogeneous linear system

∂s

(
u1

u2

)
=

(
0 − c

η

2cη 1
s2 0

)(
u1

u2

)
+ F, (3.28)

where F is a force term. Equation (3.28) with F = 0 has a explicit homogeneous
solution and we aim to show that (3.25) can be treated as a perturbation. In
the following we denote ũ as the homogeneous solution of (3.28). Furthermore,
we split the forcing as

F =: Fall = F3mode + Fj + Fu3
+ Fj(k0±1) + Fw̃

where we define

F3mode = ( cη − a1)e1u2 − 2cη 1
s2(s2+1)e2u1,
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as the 3 mode forcing

Fj = −e1j(k0)

as the k0-th current forcing and

Fu3
+ Fj(k0±1) + Fw̃ = e1a2u3 ∓ e2j(k±1)− e2a(k±2)w(k±2)

as the forcings due to u3, j(k0 ± 1) and w̃, respectively. The corresponding
R[F∗] are the called r changes. We also define γ =

√
1− 8c2 and γ1 = 1

2 (1 + γ)
and γ2 = 1

2 (1− γ) and note the following equalities:

γ1γ2 = 2c2,

γ1 + γ2 = 1,

γ = 1 +O(c2),

γ1 = 1 +O(c2),

γ2 = 1
γ1
2c2 = 2c2 +O(c4).

Lemma 3.18. Consider (3.28) with F = 0, then the solution is given by

ũ(s) = S(s)r

with

S(s) =

( | sη |
γ1 | sη |

γ2

−γ1

c
s
η |

s
η |

γ1−2 −γ2

c
s
η |

s
η |

γ2−2

)
,

and r = S−1(s̃0)ũ(s0).

Furthermore, we define the operator S∗ as

S∗(s) =

( | sη |
γ1 | sη |

γ2

γ1

c |
s
η |

γ1−1 γ2

c |
s
η |

γ2−1

)
,

which gives the estimate

|S(s)r| ≤ S∗r ∀r ∈ (R+)
2

The inverse of S can be computed as

S−1(s) = sgn(s)cγ−1

( −γ2

c
s
η |

s
η |

γ2−2 −| sη |
γ2

γ1

c
s
η |

s
η |

γ1−2 | sη |
γ1

)
=

( −γ2

γ | sη |
γ2−1 − c

γ
s
η |

s
η |

γ2−1

γ1

γ | sη |
γ1−1 c

γ
s
η |

s
η |

γ1−1

)
.
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Lemma 3.19. Let u1, u2 be a solution to (3.28) with given F = (F1, F2), then
for

R1[F ] = (1 + 10c2)2c2η1−γ2

∫ s

s̃0

τγ2−1F1(τ) dτ + cη−γ2

∫ s

s̃0

τγ2F2(τ) dτ,

R2[F ] = (1 + 10c2)η1−γ1

∫ s

s̃0

τγ1−1F1(τ) dτ + cη−γ1

∫ s

s̃0

τγ1F2(τ) dτ,

we estimate

|u− ũ| ≤ S∗(s)R[F ].

Proof. Since S has an inverse, we write

u = S(s)r(s)

and our aim is to control the evolution of r(s). Therefore, we calculate

|∂sr| = S−1F

|∂sr1| ≤ 2c2| sη |
γ2−1F1 + c| sη |

γ2F2

|∂sr2| ≤ | sη |
γ1−1F1 + c| sη |

γ1F2

and so

|r1(s)− r1(d)| ≤ 2c2(1 + 10c2)η1−γ2

∫
τγ2−1F1(τ) + cη−γ2

∫
τγ2F2(τ)

|r2(s)− r2(d)| ≤ (1 + 10c2)η1−γ1

∫
τγ1−1F1(τ) + cη−γ1

∫
τγ1F2(τ)

In the following we always assume that there exists c1, c2, c̃1, c̃2 ≥ 0 such
that

|u| ≤ S∗(s)C(s)

C1(s) = c1 + c̃1(
s
η )

−γ

C2(s) = c2 + c̃2(
s
η )

γ

(3.29)

on a maximal interval [s̃0, s
∗]. We will establish some estimates on the Ri

depending on ci and c̃i and then we will determine specific ci and c̃i such that
we prove that the maximal s∗ will be greater than s̃1. Later it will be sufficient
to choose c̃1 = 0 on I1 and c̃2 = 0 on I3. We thus deduce

|u1(s)| ≤ (c1 + c̃2)| sη |
γ1 + (c̃1 + c2)| sη |

γ2

|u2(s)| ≤ (γ1

c c1 +
γ2

c c̃2)|
s
η |

γ1−1 + (γ1

c c̃1 +
γ2

c c2)|
s
η |

γ2−1

≤ c∗1| sη |
γ1−1 + c∗2| sη |

γ2−1.

where c∗1 = γ1

c c1 + γ2

c c̃2 and c∗2 = γ1

c c̃1 + γ2

c c2. For sake of simplicity we will
often omit absolute values for the estimates.

53



Lemma 3.20 (3 mode forcing estimate ). Let u(s) = S(s)r(s) be a solution of
(3.25) on [s̃0, s

∗], such that |u(s)| ≤ S∗(s)C(s), then we estimate

R1[F3mode] ≤ 20c2c1 + (20 + c4( s∧s̃0
η )−γ)c̃1 + (20c2 + c4( s∧s̃0

η )−γ)c2 + 20c4c̃2

R2[F3mode] ≤ 20( s∨s̃0
η )γ(c1 + 2c2c̃2) + 20(c̃1 + c2c2).

Proof. The forcing term is given by

F3mode = ( cη − a1)e1u2 − 2cη 1
s2(s2+1)e2u1.

Therefore, we estimate

R1[e22cη
1

s2(1+s2)u1] ≤ 2c2ηγ1

∫ s

s̃0

τγ2−4((c1 + c̃2)(
τ
η )

γ1 + (c̃1 + c2)(
τ
η )

γ2)

≤ c4(c1 + c̃2) + c4( s∧s̃0
η )−γ(c̃1 + c2)

R2[e22cη
1

s2(1+s2)u1] = 2c2ηγ2

∫ s

s̃0

τγ1−4((c1 + c̃2)(
τ
η )

γ1 + (c̃1 + c2)(
τ
η )

γ2)

≤ 2c3η−γ(c1 + c̃2) + c4(c̃1 + c2).

By Taylor formula we obtain |c 1
η − a1| ≤ 18c |s|η2 and so

R1[(c
1
η − a1)u2e1] ≤ (1 + 10c2)c2η1−γ2

∫
τγ2−118c τ

η2 ((
τ
η )

γ1−1c∗1 + ( τη )
γ2−1c∗2)

≤ 20c3c∗1 + 20cc∗2

≤ 20c2c1 + 20c̃1 + 20c2c2 + 20c4c̃2,

R2[(c
1
η − a1)u2e1] = (1 + 10c2)η1−γ1

∫
τγ1−118c τ

η2 ((
τ
η )

γ1−1c∗1 + c( τη )
γ2−1c∗2))

≤ 20c| s∨s̃0
η |γc∗1 + 20cc∗2

≤ 20| s∨s̃0
η |γ(c1 + 2c2c̃2) + 20c̃1 + 20c2c2.

Lemma 3.21 (k0-th current estimate ). Let u(s) = S(s)r(s) be a solution of
(3.25) on [s̃0, s

∗] such that |u(s)| ≤ S∗(s)C(s), then we estimate

R1[Fj ] ≤ c3

β (c1 + c̃2) +
c3

β ( s∧s0
η )−γ(c̃1 + c2) +

{
4c2+γ1

κk0
η1+γ2

j(k0, s̃0) on I1

ηγ1 c4+γ1

κk0
j(k0, s̃0) on I3

R2[Fj ] ≤ min( 1β
1

2c1+γ η
−γ , c

β (
s∨s̃0
η )γ)(c1 + c̃2) +

1
β c(c2 + c̃1)

+ 1
β c(c2 + c̃1) +

{
4 cγ2

κk0
η1+γ1

j(k0, s̃0) on I1

ηγ2 c2+γ2

κk0
j(k0, s̃0) on I3

.
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Furthermore, on I1 we estimate

|j(k0, s̃1)| ≤ 2d2

η2 exp(− κ
25 ξη

2)j(k0, s̃0)

+ c2

β ((c1 + c̃2)(
d
η )

γ1 + (c2 + c̃1)(
d
η )

γ2)

and on I3

|j(k0, s̃1)| ≤ c2η2 exp(−κk0η
3)j(k0, s̃0)

+ 2 162

β
1
η2 (c1 + c2 + c̃1 + c̃2)

Proof. The equation

∂sj(k0) = ( 2s
1+s2 − κk0

(1 + s2))j(k0) + u1

leads to

j(k0) =
1+s2

1+s20
exp(−κk0(s− s0 +

1
3 (s

3 − s30)))j(k0, s̃0)

+ κk

β

∫ s

s0

dτ2
1+s2

1+τ2
2
exp(−κk0

(s− τ2 +
1
3 (s

3 − τ32 )))u1(τ2)

= j1 + j2.

Therefore, we estimate

R1[Fj2 ] =
κk0

β c2η1−γ2

∫ s

s0

dτ1

∫ τ1

s0

dτ2 τγ2−1
1

1+τ2
1

1+τ2
2
exp(−κk0

(τ1 − τ2 +
1
3 (τ

3
1 − τ32 )))u1(τ2)

=
κk0

β c2η1−γ2

∫ s

s0

dτ1

∫ τ1

s0

dτ2 τγ2−1
1

1+τ2
1

1+τ2
2

· exp(−κk0
(τ1 − τ2 +

1
3 (τ

3
1 − τ32 )))((c1 + c̃2)(

τ2
η )γ1 + (c2 + c̃1)(

τ2
η )γ2)

≤ 1
β c

2η1−γ2

∫ s

s0

dτ2
((c1+c̃2)(

τ2
η )γ1+(c2+c̃1)(

τ2
η )γ2 )τ

−γ1
2

1+τ2
2

·
∫ s

τ2

dτ1κk0
(1 + τ21 ) exp(−κk0

(τ1 − τ2 +
1
3 (τ

3
1 − τ32 )))

= 1
β c

2η1−γ2

∫ s

s0

dτ2 ((c1 + c̃2)(
τ2
η )γ1 + (c2 + c̃1)(

τ2
η )γ2)

τ
−γ1
2

1+τ2
2

·
[
− exp(−κk(τ1 − τ2 +

1
3 (τ

3
1 − τ32 )))

]τ1=s

τ1=τ2

≤ 1
β c

2η1−γ2

∫ s

s0

dτ2 (c1 + c̃2)η
−γ1τ−2

2 + (c2 + c̃1)η
−γ2τ−γ−2

2

≤ (c1 + c̃2)
1
β c

2η1−γ2−γ1 [−τ−1]ss0 + (c2 + c̃1)
1
β c

2ηγ [−τ−γ−1]ss0

≤ c3

β (c1 + c̃2) +
c3

β ( s∧s0
η )−γ(c̃1 + c2)
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and

R2[Fj2 ] =
κk0

β η1−γ1

∫ s

s0

dτ1

∫ τ1

s0

dτ2 τγ1−1
1

1+τ2
1

1+τ2
2
exp(−κk0(τ1 − τ2 +

1
3 (τ

3
1 − τ32 )))u1(τ2)

=
κk0

β η1−γ1

∫ s

s0

dτ1

∫ τ1

s0

dτ2 τ−γ2

1
1+τ2

1

1+τ2
2

· exp(−κk0
(τ1 − τ2 +

1
3 (τ

3
1 − τ32 )))((c1 + c̃2)(

τ2
η )γ1 + (c2 + c̃1)(

τ2
η )γ2)

≤ 1
β η

γ2

∫ s

s0

dτ2
((c1+c̃2)(

τ2
η )γ1+(c2+c̃1)(

τ2
η )γ2 )τ

−γ2
2

1+τ2
2

·
∫ τ2

s0

dτ1 κk(1 + τ21 ) exp(−κk(τ1 − τ2 +
1
3 (τ

3
1 − τ32 )))

= 1
β

∫ s

s0

dτ2 ((c1 + c̃2)τ
γ−2
2 η−γ + (c2 + c̃1)τ

−2
2 η−γ2)

· [exp(−κk0(τ1 − τ2 +
1
3 (τ

3
1 − τ32 )))]

τ1=s
τ1=τ2

≤ 1
β

∫ s

s0

dτ2 ((c1 + c̃2)τ
γ−2
2 η−γ + (c2 + c̃1)τ

−2
2 η−γ2).

We note that for the first term we obtain

1
β

∫ s

s0

dτ2 τγ−2
2 η−γ ≤ min( c

β (
s∨s̃0
η )γ , 1

βc (cη)
−γ),

since we can either integrate it directly or first pull out sγ and then integrate.
Finally, we obtain the following estimate

R1[Fj2 ] ≤ min( 1β
1

2c1+γ η
−γ , c

β (
s∨s̃0
η )γ)(c1 + c̃2) +

1
β c(c2 + c̃1).

On I1 we estimate the j(k0) influence by

R1[Fj1 ] = c2η1−γ2j(s0)

∫
τγ2−1 1+τ2

1+s20
exp(−κk0

(τ − s0 +
1
3 (τ

3 − s30)))

≤ 4c2+γ1η−1−γ2j(s0)

∫
(1 + τ2) exp(−κk0(τ − s0 +

1
3 (τ

3 − s30)))

≤ 4c2+γ1

κk0
η1+γ2

j(s0)

and

R2[Fj2 ] = η1−γ1j(s0)

∫
τγ1−1 1+τ2

1+s20
exp(−κk0

(τ − s0 +
1
3 (τ

3 − s30)))

= 4η−1−γ1cγ2j(s0)

∫
(1 + τ2) exp(−κk0(τ − s0 +

1
3 (τ

3 − s30)))

= 4 cγ2

κk0
η1+γ1

j(s0).
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We estimate j(k0) by

j(k0, s) =
1+s2

1+s̃20
exp(−κk0(s− s̃0 +

1
3 (s

3 − s̃30)))j(k0.s̃0)

+
κk0

β

∫ s

s̃0

dτ 1+s2

1+τ2 exp(−κk0
(s− τ + 1

3 (s
3 − τ3)))u1(τ)

≤ 4d2

η2 exp(− κ
25 ξη

2)j(k0, s̃0) +
c2

β ((c1 + c̃2)(
d
η )

γ1 + (c2 + c̃1)(
d
η )

γ2).

On I3 we estimate the j(k0) influence by

R1[Fj1 ] = c2η1−γ2

∫
τγ2−1 1+τ2

1+s20
exp(−κk0(τ − s0 +

1
3 (τ

3 − s30)))j(s0)

≤ c4+γ1ηγ1

∫
(1 + τ2) exp(−κk0

(τ − s0 +
1
3 (τ

3 − s30)))j(s0)

≤ ηγ1 c4+γ1

κk0
j(s0)

and

R2[Fj2 ] = η1−γ1

∫
τγ1−1 1+τ2

1+s20
exp(−κk0(τ − s0 +

1
3 (τ

3 − s30)))j(s0)

= ηγ2c2+γ2

∫
(1 + τ2) exp(−κk0

(τ − s0 +
1
3 (τ

3 − s30)))j(s0)

= ηγ2 c2+γ2

κk0
j(s0).

Next we want to estimate the evolution of j(k0)

j(k0, s̃1) =
1+s̃21
1+d2 exp(−κk0

(s̃1 − d+ 1
3 (s̃

3
1 − d3)))j(k0, s̃0)

+
κk0

β

∫ s̃1

d

dτ2
1+s2

1+τ2
2
exp(−κk(s− τ2 +

1
3 (s

3 − τ32 )))((c1 + c̃2)(
τ2
η )γ1 + (c2 + c̃1)(

τ2
η )γ2).

Therefore, we deduce

κk0

β

∫ s̃1

d

dτ2
1+s2

1+τ2
2
exp(−κk0

(s− τ2 +
1
3 (s

3 − τ32 )))(
τ2
η )γi

≤ κk0

β

(∫ 1
2 s̃1

d

+

∫ s̃1

1
2 s̃1

)
1+s2

1+τ2
2
exp(−κk0

(s− τ2 +
1
3 (s

3 − τ32 )))(
τ2
η )γi

≤ κk0

β η−γi c
1−γi

γi
(1 + η2) exp(−κk0

25 η3) +
κk0

β
24

κk0
η2

≤ 25

β
1
η2 ,

which leads to

|j(k0, s̃1)| ≤ c2κk0
η2 exp(−κk0

η3)j(k0, s̃0)

+ 25

β
1
η2 (c1 + c2 + c̃1 + c̃2).
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Lemma 3.22 (Forcing estimate ). Let u(s) = S(s)r(s) be a solution of (3.25)
on [s̃0, s

∗] such that |u(s)| ≤ S∗(s)C(s). We define for |n| ≥ 2

w̃(n) = 2
∑

|m|≥2

(2c)|m−n|+χ(w + 4
κξ j)(km, s̃0)

+ (2c)||m|−2|c(2c∗1 +
1
c2 c

∗
2)

+ (2c)|m|−1(u3(s̃0) +
2

κξη (j(k±1, s̃0))

where χ = χ(m,n) = −|sgn(m)− sgn(n)|. Then we estimate

R1[Fw̃] = 2c2(w̃(2) + w̃(−2))

R2[Fw̃] = c2(w̃(2) + w̃(−2))( s∨s̃0
η )γ1

and

R1[Fj(k±1)] =
2c
κξη j(k±1, s̃0) +

2c
βκξ (w̃(1) + c∗1 + c∗2)

R2[Fj(k±1)] =
2c
κξη j(k±1, s̃0)(

s∨s̃0
η )γ1 + c

βκξ (w̃(1) + c∗1 + c∗2)(
s∨s̃0
η )γ1

and

R1[Fu3
] = 2cw̃(1)

R2[Fu3
] = 2cw̃(1)( s∨s̃0

η )γ1 .

Furthermore, we estimate

|w(kn, s)| ≤ w̃(n) |n| ≥ 2

|u3| ≤ w̃(1) = w̃(−1)

|j(kn)| ≤ 2e−
1
2κξη(s−s̃0)j(kn, s̃0) + 4 1

βη2 w̃(n).

Proof. To estimate w(kn, s) we without loss of generality assume that n ≥ 2.
We begin with the case n ≥ 3, where we deduce that

∂sw(kn) = a(kn+1)w(kn+1)− a(kn−1)w(kn−1)− j(kn)

≤ c
η (w̃(n− 1) + w̃(n+ 1)) + 2e−κξη(s−s̃0)j(k0 + n, s̃0) + 4 1

βη2 w̃(n).

We estimate

2

∫
e−

1
2κξη(τ−s̃0)j(k0 + n, s̃0) ≤ 4 1

κξη j(kn, s̃0).

Thus integrating ∂sw(k0 + n) over time yields

w(kn) ≤ w(kn, s̃0) + c(w̃(n− 1) + w̃(n+ 1)) + 4 1
κξη j(k0 + n, s̃0) +

4
βκξ w̃(n)

< w̃(n).
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For the case n = 2 we deduce

∂sw(k2) = a(k3)w(k3)− a(k1)
1
2 (u3 + u2)− j(k2)

≤ c
η (w̃(3) + 2w̃(1) + 2c∗1(

s
η )

γ1−1 + 2c∗2(
s
η )

γ2−1) + 2e−
1
2κηξ(s−s̃0)j(k2, s̃0) + 4 1

βκξη w̃(2)

w(k2) ≤ w(k2, s̃0) +
4

κξη j(k2, s̃0) + c(w̃(3) + 2w̃(1) + 2c∗1 +
1
c2 c

∗
2) + 4 1

βκξ w̃(2)

< w̃(2).

We estimate u3 by

∂su3 = a(k + 2)w(k2)− a(k − 2)w(k−2)− j(k1) + j(k−1)

≤ 2c
η (w(2) + w(−2)) + 2e−

1
2κξη(s−s̃0)j(k±1, s̃0) +

4
βκξη (w̃(1) + c∗1 + c∗2)

|u3| ≤ |u3(s̃0)|+ c(w̃(2) + w̃(−2)) + 4
κξη (j(k±1, s̃0) +

1
β w̃(1) +

1
β c

∗
1 +

1
β c

∗
2)

≤ w̃(1).

Non-resonant j will often be estimated similarly. Therefore we will use the
following notation frequently. We estimate j(kn) for n ≥ 2 by writing ŝ =

s− k0(k0−k)
k+1 η and τ̂ = τ − k0(k0−k)

k+1 η

∂sj(kn) = −κkn
(1 + ŝ2)j(kn) + 2 ŝ

1+ŝ2 j(kn) +
1
βκkn

w(kn)

which gives

j(kn) ≤ 1+ŝ2

1+ˆ̃s20
e−κkn ((ŝ−ˆ̃s0+

1
3 (ŝ

3−ˆ̃s30))j(kn, s̃0)

+ 1
βκkn

∫
dτ 1+ŝ2

1+τ̂2 e
−κkn ((ŝ−τ̂+ 1

3 (ŝ
3−τ̂3))w̃(n)

For s̃0 ≤ τ ≤ s ≤ s̃1 we obtain

κkn
(ŝ− τ̂ + 1

3 (ŝ
3 − τ̂3)) = κkn

1
3 (s− τ)(ŝ2 + ŝτ̂ + τ̂2 + 1)

≥ 1
2κmax(k2n, k

2
0)η

2(s− τ)

1+ŝ2

1+τ̂ ≤ 2.

So we infer

j(kn) ≤ 2e−
1
2κξη(s−s̃0)j(kn, s̃0)

+ 2κkn

1
β

∫
dτ e−

1
2κξη(s−τ)w̃(n)

≤ 2e−
1
2κξη(s−s̃0)j(kn, s̃0) +

4
βη2 w̃(n).

We next turn to the estimate of j(k±1), where we without loss of generality
consider j(k1). With the equation

∂sj(k1) = (2 ŝ
1+ŝ2 − κk1(1 + ŝ2))j(k1) +

κk1

2β κk1(u3 + u2)
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we estimate

j(k1) ≤ 2e−
1
2κξη(s−s̃0)j(k1, s̃0)

+
κk1

2β

∫
dτ e−

1
2κξη(s−τ)(w̃(1) + c∗1(

τ
η )

γ1−1 + c∗2(
τ
η )

γ2−1)

≤ 2e−
1
2κξη(s−s̃0)j(k1, s̃0) +

2
βη2 (w̃(1) + c∗1 + c∗2).

Given these estimates, we next consider the effects on R[·] by forcing:

Fw̃ = e1(a(k2)w(k2) + a(k−2)w(k−2)

≤ e1
c
η w̃(2) + e1

c
η w̃(−2).

For constant e2 functions we estimate

R1[e2] ≤ c
2η

R2[e2] ≤ c
3η(

s∨s̃0
η )γ1 .

Therefore, we can control Fw̃ by

R1[Fw̃] = c2(w̃(2) + w̃(−2))

R2[Fw̃] = c2(w̃(2) + w̃(−2))( s∨s̃0
η )γ1 .

For Fj(k±1) we use

Fj(k±1) = −e2j(k±1)

≤ e2(2e
− 1

2κξη(s−s̃0)j(k±1, s̃0) +
2

βκξη (w̃(1) + c∗1 + c∗2)),

to estimate

R1[Fj(k±1)] =
2c
κξη j(k±1, s̃0) +

2c
βκξ (w̃(1) + c∗1 + c∗2)

R2[Fj(k±1)] =
2c
κξη j(k±1, s̃0)(

s∨s̃0
η )γ1 + c

βκξ (w̃(1) + c∗1 + c∗2)(
s∨s̃0
η )γ1 .

Furthermore, for Fu2
we estimate

Fu3 = e1a2u3

≤ e1
c
η w̃(1)

and

R1[e1] ≤ η

R2[e1] ≤ η( s∨s̃0
η )γ1 .

to deduce

R1[Fu3 ] ≤ cw̃(1)

R2[Fu3 ] ≤ cw̃(1)( s∨s̃0
η )γ1 .
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Proof of Proposition 3.17. For the interval I1 we have s̃0 = s0, s̃1 = −d. The
initial data of r can be calculated by r(s̃0) = S−1(s0)u(s0) and so

r1(s̃0) = −γ2

γ ( k0

2(k0+1) )
γ2−1u1(s̃0) +

c
γ (

k0

2(k0+1) )
γ2u2(s̃0)

≈ −4c2u1(s̃0) + cu2(s̃0),

r2(s̃0) =
γ1

γ ( k0

2(k0+1) )
γ1−1u1(s̃0)− c

γ (
k0

2(k0+1) )
γ1u2(s̃0)

≈ u1(s̃0)− c
2u2(s̃0).

For other initial data we define

N =
∑

|m|≥2

(2c)|m|(w + 8
κηξ j)(km, s̃0)

+ 2c(u3(s̃0) +
8

κηξ j(k±1, s̃0))

+ 2c
ξκj(k0, s0),

to bound the impact of the less important terms in the following bootstrap. Let
C(s) be defined by the terms

c1 = 45c2u1(s0) + 2cu2(s0) + 2N,

c̃1 = 2 c3

β∨1c2,

c2 = 2u1(s0) + 45cu2(s0) + 2N,

c̃2 = 0.

AS c1 > r1(s̃0) and c2 > r2(s̃0) and we have a smooth solution, the estimate
|u| ≤ S∗(s)C(s) holds at least for a small time. Let s∗ be the maximal time
such that |u| ≤ S∗(s)C(s). We then aim to show that necessarily s∗ ≥ −d, since
otherwise the estimate improves, which contradicts the maximality. By Lemma
3.20, Lemma 3.21 and Lemma 3.22 we estimate

R1[Fall] = R1[F3mode] +R1[Fj ] +R1[Fw̃] +R1[Fj(k0±1)] +R1[Fu3
]

= 20c2c1 + (20 + c4( sη )
−γ)c̃1 + (20c2 + c4( sη )

−γ)c2

+ c3

β c1 +
c3

β ( sη )
−γ(c̃1 + c2) +

4c2+γ1

κk0
η1+γ2

j(k0, s0)

+ 2c2(w̃(2) + w̃(−2))

+ 2c
κξη j(k±1, s̃0) +

2c
βκξ (w̃(1) + c∗1 + c∗2)

+ 2cw̃(1)

< 21c2c1 + c̃1(21 +
c3

β ( sη )
−γ) + c2(21c

2 + c3

β ( sη )
−γ) +N
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and

R2[Fall] = R2[F3mode] +R2[Fj ] +R2[Fw̃] +R2[Fj(k0±1)] +R2[Fu3
]

= 20c1 + 20c̃1 + 20c2c2

+ c
β c1 +

c
β (c2 + c̃1) + 4 cγ2

κk0
η1+γ1

j(k0, s0)

+ c2(w̃(2) + w̃(−2))

+ 2c
κξη j(k±1, s̃0) +

c
βκξ (w̃(1) + c∗1 + c∗2)

+ 2cw̃(1)

< 21c1 + 21c̃1 +
c

β∧1c2 +N.

We split R1 as

R1[all] = R1[all][1] +R1[all][(
s
η )

γ ],

into the part with and without a ( sη )
γ term, respectively. We then estimate

r1(s̃0) +R1[all][1] < r1(s̃0) + 21c2c1 + 21c̃1 + 21c2c2 +N,

R1[all][(
s
η )

γ ] < c3

1∧β c̃1 +
c3

1∧β c2,

r2(s̃0) +R2[all][1] < r2(s̃0) + 21c1 + 21c̃1 + 2 c
1∧β c2 +N,

and thus we conclude the bootstrap that

r1(s̃0) +R1[all][1] < c1

R1[all][(
s
η )

γ ] < c̃1

r2(s̃0) +R2[all][1] < c2.

We can therefore extend the estimates past the time s∗, which contradicts the
maximally. Therefore, we obtain that for all times s ≤ −d it holds that

|u(s)| ≤ S∗(s)C(s),

which yields the upper bound

|u(−d)| ≤
(

(cη)−γ1c1 + (c̃1 + c2)(cη)
−γ2

1
c (cη)

1−γ1c1 + ( 1c c̃1 + cc2)(cη)
1−γ2

)
≤ 2M

(
(cη)−γ2

(cη)1−γ2

)
.

We next aim to establish an estimate on w̃(n). For this purpose we note that

c(2c∗1 +
1
c2 c

∗
2) ≈ 2c1 +

1
c2 c̃1 + 2c2

≈ 2c1 + 2c2

≤ 4u1(s0) + 100cu2(s0) + 3N
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and

w̃(n) ≤ 2
∑

|m|≥2

(2c)|m−n|+χ(w + 4
κξη j)(km, s̃0)

+ (2c)||n|−2|c(2c∗1 +
1
c2 c

∗
2)

+ (2c)|n|−1(u3(s̃0) +
2

κξη j(k±1, s̃0)).

We hence deduce that

w̃(n) ≤ 2
∑

|m|≥2

(2c)|m−n|+χ(w + 4
κξη j)(km, s̃0)

+ (2c)||n|−2|(4u1(s0) + 100cu2(s0) + 3N)

+ (2c)|n|−1(u3(s̃0) +
2

κξη j(s̃0, k±1))

≤ 2Mn,

when χ = −|sgn(m) − sgn(n)|. To prove (3.27) under the condition (3.26) we
estimate

|u(−d)− ũ(−d)| ≤ S(−d)R[all]

≤ u1(s̃0)

(
(cη)−γ2

5c(cη)γ1

)
.

Furthermore, we use

ũ(−d) =

(
(cη)−γ1 (cη)−γ2

−γ1

2c (cη)
1−γ1 −γ2

2c (cη)
1−γ2

)(
4c2u1(s̃0)− 2cu2(s̃0)
u1(s̃0) + cu2(s̃0)

)
≈ u1(s̃0)

(
(cη)−γ2

O(c)(cη)γ1

)
and thus

|u1(−d)− (cη)−γ2u1(s̃0)| = 10cu1(s̃0)(cη)
−γ2

|u2(−d)| ≤ 10cu1(s̃0)(cη)
γ1 .

The remaining terms can be estimated by

M ≤ 1
1−10−1u1(s̃0),

Mn ≤ 4
1−10−1u1(s̃0).

3.4.3 The Resonance and Upper Bounds in I2

The bounds on the evolution of (3.25) on the interval I2 = [−d, d] are summa-
rized in the following proposition:
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Proposition 3.23. Let c ≤ min((8π)−
4
3 β

16
3 , 10−4). Consider a solution of

(3.25) on the interval I = [s0, d], then it holds that

|u1(d)| ≤ 3(cη)−γ2LM,

|u2(d)| ≤ 7π(cη)γ1LM,

|u3(d)| ≤ 7π( 5η )
2(cη)γ1LM + 2M1,

|w(kn, d)| ≤ 7π( 5η )
|n|−1(cη)γ1LM + 2Mn,

|j(kn, d)| ≤ 4
βη2 (7π(

5
η )

|n|−1(cη)γ1LM + 2Mn),

|j(k0, d)| ≤ 4
β min(κk0

πd2, 1)(cη)−γ2LM.

For interval I2 we are mostly concerned with the interaction between j(k0)
and u1 and in particular the growth this induces for u2. Therefore, consider the
ODE system

∂su1 = −j(k0) + F

∂sj(k0) =
κk0

β u1 + ( 2s
1+s2 − κk0

(1 + s2))j(k0),
(3.30)

our aim is to bound the growth of j(k0) and u1 by a factor. Let U(τ, s) be the
solution of (3.30) with initial data u1(τ) = 1 and j(τ) = 0 and L as the constant
which satisfies

|U(τ, s)| ≤ L = L(β, κ, k). (3.31)

With the restriction

c ≤ (8π)−
4
3 β

16
3 ,

L is estimated by the following two cases, if β ≥ π we obtain L = 1 and if β < π
we obtain a L = L(α, κ, k) ≤

√
c. A proof and more specific bounds can be

found in 3.5 and for simplicity of presentation we here only consider two cases.

Lemma 3.24. Let u1 be a solution of (3.30) on [−d, d]such that (3.31) holds,
then we estimate

1
L |u1| ≤ u1(−d) +

∫ s

−d

|F (τ)| dτ + |j(−d)|
∫

1+τ2

1+d2 exp(−κk(τ + d+ 1
3 (s

3 + d3))).

Proof. We may without loss of generality restrict to the case j(−d) = 0, since

we can choose F̃ = F + 1+s2

1+d2 exp(−κk(τ + d+ 1
3 (s

3 + d3)))j(−d). By Duhamel’
principle the equation (3.30) is solved by

u1(s) = U(−d, s)u1(−d) +

∫
U(τ, s)F (τ)

which yields the desired bound.
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Proof of Proposition 3.23. With Proposition 3.17 we estimate until time −d

|u1|(−d) ≤ 2M(cη)−γ2

|u2|(−d) ≤ 2M(cη)γ1 ,

|u3|(−d) ≤ 2M1,

|w(kn,−d)| ≤ 2Mn,

|j|(k0,−d) ≤ c
βM(cη)−γ2 min(κk0c

−2, 1),

|j|(k±1,−d) ≤ 4
βη2M,

|j|(kn,−d) ≤ 4
βη2Mn.

We next aim to prove by a bootstrap that

|u1| ≤ 3L(cη)−γ2M,

|u2| ≤ 7πL(cη)γ1M,

|u3| ≤ 15πL( 5η )
2(cη)γ1M + 2M1,

|w(kn)| ≤ 7πL( 5η )
|n|−1(cη)γ1M + 2Mn,∫

j(k±1) ≤ 7πL 3d
βη2 (cη)

γ1M,∫
j(kn) <

2
β

d
η2 (7πL

5
η (cη)

γ1M + 2Mn).

To estimate u1 we use Lemma 3.24 to deduce

|u1| ≤ L

(
u1(−d) +

∫
a1u2 + a2u3 +

1+s2

1+d2 exp(−κk0
(s− τ + 1

3 (s
3 − τ3)))j(−d)

)
≤ 2L(cη)−γ2M + L 1

η (1 + η−2)(7πL(cη)γ1M + 2M1)

+ L
1+d2 min( 1

κk0
, d3)j(k0,−d)

≤ 2L(cη)−γ2M + L 1
η (1 + η−2)(7πL(cη)γ1M + 2M1) + L c

β (cη)
−γ2M

< 3L(cη)−γ2M,

where we used that 40
η M1 ≤ 1

10M(cη)−γ2 since η ≥ 1
10c and that 7πLc < 1

2 . We
estimate u2 by

|u2| ≤ 2(cη)γ1M +

∫
2cη 1

1+s2u1 + a(k±2)w(k±2) + j(k±1)

≤ 2(cη)γ1M + 2πcη|u1|L∞
s

+ 4
η |w(k±2)|L∞

s
+

∫
j(k±2)

< 7πL(cη)γ1M.
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In order to control u3, we integrate ∂su3 in time, which yields

|u3| ≤ |u3|(−d) +

∫
a(k±2)w(k±2) + j(k±1)

≤ 2M1 +
5
η (7πL

4
η (cη)

γ1M + 2M2) + 7πL 3d
βη2 (cη)

γ1M

< 8πL( 5η )
2(cη)γ1M + 2M1.

For w(kn) we first consider |n| ≥ 3. By integrating ∂sw(kn) we deduce

|w(kn)| ≤ |w(kn,−d)|+ 2
η (|w(kn+1)|L∞

s
+ |w(kn−1)|L∞

s
) +

∫
j(kn)

< 7πL( 5η )
|n|−1(cη)γ1M + 2Mn.

For the cases n = ±2 we similarly conclude that

|w(k±2)| ≤ |w(k±2,−d)|+ 2
η (|u2|L∞

s
+ |u3|L∞

s
+ |w(k±3)|L∞

s
)

< 7πL 5
η (cη)

γ1M + 2M±2.

For the estimates on the current j we argue similarly as on the interval I1 and
introduce ŝ as the shifted time coordinates. To estimate j(k±1) we integrate
∂sj(k±1) in time:

j(k±1) = 2 exp(− 1
2κξη(s+ d))j(k±1,−d)

+
κk±1

β

∫
1+ŝ2

1+τ̂2 exp(−κk±1
(ŝ− τ̂ + 1

3 (ŝ
3 − τ̂3)))(u2 ± u3).

The impact of j(k±1) is bounded by∫
j(k±1) ≤ 4

κξη j(k±1,−d) + 2d
βη2 (|u2|L∞

s
+ |u3|L∞

s
)

≤ 7πL 3d
βη2 (cη)

γ1M

and hence yields the estimate

j(k±1) ≤ 2 exp(− 1
2dκξη)j(k±1,−d) + 4

βη2 (|u3|L∞
s

+ |u2|L∞
s
)

< 4
βη2 (7πL(cη)

γ1M + 2M1).

By integrating we thus obtain the following estimate for j(kn):

j(kn) = 2 exp(−κξη(s+ d))j(kn,−d)

+
κkn

β

∫
1+ŝ2

1+τ̂2 exp(−κkn(ŝ− τ̂ + 1
3 (ŝ

3 − τ̂3)))w(kn),

which leads to ∫
j(kn) =

1
κξη j(kn,−d) + 1

β
d
η2 |w(kn)|L∞

s

≤ 2
β

d
η2 (7πL

4
η (cη)

γ1M + 2Mn)
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and

j(kn) ≤ 2 exp(−κξdη)j(kn,−d) + 4
βη2 |w(kn)|L∞

s

< 4
βη2 (7πL(

5
η )

|n|−1(cη)γ1M + 2Mn).

We estimate j(k0) by integrating

j(k0) =
1+s2

1+d2 exp(−κk0
(s+ d+ 1

3 (s
3 + d3))j(k0,−d)

+
κk0

β

∫
1+s2

1+τ2 exp(−κk0
(s− τ + 1

3 (s
3 − τ3)))u1(τ).

The second term can be estimated by

κk0

β

∫
1+s2

1+τ2 exp(−κk0
(s− τ + 1

3 (s
3 − τ3)))u1(τ)

≤ 1
β min(κk0

πd2, 1)|u1|L∞
s

and thus

j(k0, d) = exp(−κk0
(2d+ 2

3d
3)j(k0,−d)

+ 1
β min(κk0

πd2, 1)|u1|L∞
s

≤ exp(−κk0
(2d+ 2

3d
3) c

2

β M(cη)−γ2 min(κk0
, 1)

+ 3LM
β min(κk0

πd2, 1)(cη)−γ2

< 4LM
β min(κk0πd

2, 1)(cη)−γ2 .

3.4.4 The Echo and Lower Bounds in the Interval I2

In this section we establish the echo mechanism on the interval I2, i.e. our aim
is to show that the mode u1 induces growth of the u2 mode. For this echo
mechanism we need the additional assumption

κk20 min(β, 1) > 1
c . (3.32)

As shown in Subsection 3.2.3, this is not only a technical assumption. When k0
is too small, the u1 term can become negative due to the action of j and hence
negate the growth of u2 and we could even obtain u2(d) ≈ 0. We will use initial
data of the form

u1(−d) = 1,

u2(−d) ≤ 50c2η,

|j|(k0,−d) ≤ 2c2

β ,

|w|(k,−d), |u3|(−d) ≤ 5(cη)γ2 ,

|j|(k,−d) ≤ 20
η (cη)γ2 .

(3.33)
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Which corresponds to the echoes on I1 normalized in terms of u(−d). We will
prove that u closely matches the following asymptotics:

ũ1 = exp(− 1
β (tan

−1(s) + tan−1(d))),

ũ2 = u2(−d) + 2cηβ(1− exp(− 1
β (tan

−1(s) + tan−1(d)))).

Proposition 3.25. Consider a solution of (3.25) with initial data (3.33), then
the following estimates hold:

|u1(d)− ũ1(d)| = 12πc,

|u2(d)− ũ2(d)| ≤ 24πc2η,

w(kn, d), u3(d) ≤ 6(cη)γ2 ,

j(kn, d) ≤ 25
βη2 (cη)

γ2 ,

j(k0, d) ≤ 2
β .

(3.34)

In the following it is convenient to introduce the good unknown:

g(s) = (1 + s2)j − u1

β ,

In terms of g our equations then read

∂su1 = − 1
β

1
1+s2u1 − a1u2 + a2u3 − 1

1+s2 g

and

∂sg = 2sj(k0) + (1 + s2)∂sj(k0)− 1
β∂su1

= 2s
1+s2 (g +

1
βu1)

− κk0
(1 + s2)g + 2s

1+s2 (g +
1
βu1)

+ 1
β2

1
1+s2u1 +

1
βa1u2 − 1

βa2u3 +
1
β

1
1+s2 g

= (
4s+ 1

β

1+s2 − κk0
(1 + s2))g

+ 1
β

4s+ 1
β

1+s2 u1 +
1
βa1u2 − 1

βa2u3.

Therefore, (3.25) can be equivalently expressed as

∂s


u1

u2

u3

g

 =


− 1

β
1

1+s2 −a1 a2 − 1
1+s2

2cη 1
1+s2 0 0 0

0 0 0 0
1
β

4s+ 1
β

1+s2
1
βa1

1
βa2

4s+ 1
β

1+s2 − κk(1 + s2)




u1

u2

u3

g



+


0

a(k ± 2)w(k ± 2)− j(k ± 1)
±a(k ± 2)w(k ± 2)∓ j(k ± 1)

0

 .

(3.35)
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The homogeneous system with respect to (3.35) is given by

∂s

(
ũ1

ũ2

)
=

(
− 1

β
1

1+s2 0

2cη 1
1+s2 0

)(
ũ1

ũ2

)
(3.36)

with the explicit solution

ũ1 = exp(− 1
β (tan

−1(s) + tan−1(d)))u1(−d)

ũ2 = u2(−d) + 2cηβ(1− exp(− 1
β (tan

−1(s) + tan−1(d))))u1(−d).
(3.37)

In the following, we prove that the solution of (3.35) can be treated as a per-
turbation of (3.37). Note that we can approximate

β(1− exp(− 1
β (tan

−1(s) + tan−1(d)))) ≈ min(β, (tan−1(s) + tan−1(d))),

where “≈” in this case corresponds to the explicit bounds

1
2 min(β, ·) ≤ β(1− exp(− 1

β ·)) ≤ min(β, ·).

Proof of Proposition 3.25. We want to show by a bootstrap that

|u1 − ũ1| ≤ c1 = 12πc

|u2 − ũ2| ≤ c2 = (2π + 1)cηc1

|u3|, |w(kn)| ≤ 6(cη)γ2∫
j(kn) ≤ 13d

βη2 (cη)
γ2∫

j(s, k±1) ≤ 10π
βη .

(3.38)

Let s∗ be the maximal time such that (3.38) holds. We assume that s∗ ≤ d and
show that this leads to a contradiction by improving (3.38). The estimates of
j(kn) for n ̸= 0 are done similarly as in Proposition 3.23 and we hence omit
them here. First, we estimate g:

g0(s) =
(1+s2)2

(1+d2)2 exp(
1
β (tan

−1(s) + tan−1(d))− κk0(s+ d+ 1
3 (s

3 + d3)))g(−d),

g(s)− g0(s) =
1
β

∫
(1+s2)2

(1+τ2)2 exp
(

1
β (tan

−1(s)− tan−1(τ))− κk0
(s− τ + 1

3 (s
3 − τ3))

)
(

4τ+ 1
β

1+τ2 u1(τ) +
1
βa2u2(τ)− 1

βa3u3(τ)
)

dτ.
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Next we estimate the size of the perturbations by∫
dτ2

exp(− 1
β (tan−1(s)−tan−1(τ2)))

1+τ2
2

(g − g0)(τ2)

= 1
β

∫
dτ2

∫
dτ1 exp

(
− 1

β (tan
−1(s)− tan−1(τ1))− κk0

(τ2 − τ1 +
1
3 (τ

3
2 − τ31 ))

)
· 1+τ2

2

(1+τ2
1 )

2

(
4τ1+

1
β

1+τ2
1
u1(τ1) +

1
βa2u2(τ1)− 1

βa3u3(τ1)
)

≤ 2
βκk0

∫
dτ1 exp(− 1

β (tan
−1(s)− tan−1(τ1)))

· 1
(1+τ2

1 )
2

(
4τ1+

1
β

1+τ2
1
u1(τ1) +

1
βa2u2(τ1)− 1

βa3u3(τ1)
)

≤ 2
κk0

β (2|u1|L∞
s

+ 4c
η (|u2|L∞

s
+ |u3|L∞

s
))

and ∫
exp(− 1

β (tan−1(s)−tan−1(τ2)))

1+τ2
2

g0(τ2) dτ2

= c4 exp(− 1
β (tan

−1(s) + tan−1(d)))g(−d)

·
∫
(1 + τ22 ) exp(−κk0

(τ2 + d+ 1
3 (τ

3
2 + d3)))g0(−d)

= c4

κk0
exp(− 1

β (tan
−1(s) + tan−1(d))) 3β g(−d) ≤ 3

β
c4

κk0
,

where we used (3.33) to obtain g(−d) ≤ 3
β . To estimate u1 we look at the

difference to the homogeneous system,

∂s(u1 − ũ1) = − 1
β

1
1+s2 (u1 − ũ1)− a1u2 + a3u3 − 1

1+s2 g

which leads after integrating to

|u1 − ũ1| ≤ 4
η (|u2|L∞

s
+ |u3|L∞

s
) + 1

κk0
( 2β |u1|L∞

s
+ 4c

ηβ (|u2|L∞
s

+ |u3|L∞
s
)) + 3

β
c4

κk0

≤ 8cmin(β, π) + 4(2π + 1)cc1 +
4

κk0
β (1 + c1) +

5
η6(cη)

γ2 < c1

since κk20 ≥ 1
βc . We estimate u2 − ũ2 by

∂s(u2 − ũ2) = 2cη 1
1+s2 (u1 − ũ1) + a(k±2)w(k±2)− j(k±1)

which implies by integrating in s, that

|u2 − ũ2| ≤ 2πcηc1 +
2
η |w(k±2)|L∞

s
+

∫
j(k±1)

≤ 2πcηc1 + (12 + 10π 1
β )c

γ2η−γ1

< (2π + 1)cηc1.
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Next we estimate w(kn) for |n| ≥ 3. We remark that the estimates for u3 and
wk±2 are similar and hence we omit them. By integrating over the derivative
we deduce

w(kn,−d) ≤ w(kn, d) +
2
η (|w(kn+1)|L∞

s
+ |w(kn−1)|L∞

s
) +

∫
j(kn)

< 6(cη)γ2 .

So the bootstrap is concluded. It is left to estimate j(k0). We write

∂sj(k0) =
κk0

β u1 + ( 2s
1+s2 − κk0

(1 + s2))j(k0)

≤ κk0

β u1 − 8
9κk0

j(k0)

where in the second line we used (3.32). By integrating, we obtain

j(k0, s) ≤ exp(− 8
9κk0(s+ d))j(k0,−d)

+
κk0

β

∫ s

−d

dτ exp(− 8
9κk0

(s− τ))u1(τ)

which leads to

j(k0, d) ≤ exp(−2d 8
9κk0

)j(k0,−d)

+ 9
8
1
β |u1|L∞

s

≤ 2
β .

3.4.5 Proof of Theorem 3.14

In Subsections 3.4.2, 3.4.3 and 3.4.4 we proved lower and upper bounds until the
time s = d. Furthermore, in Subsection 3.4.2 we already showed the asymptotic
behavior on the interval I3. In this subsection we need to combine the results of
these subsections to obtain the final lower and upper bounds for the complete
interval Ik. This will be achieved in two steps: first we conclude the bootstrap
on I3, afterwards we show that all terms result in the desired estimates.

Proof of Theorem 3.14. Following we proceed similarly as in the proof of Propo-
sition 3.17, just for I3. In particular we use the tools from Subsection 3.4.2. We
thus need to prove the missing estimate on [d, s1]. Let ri(d) be the initial data
of r(s). We define the ci terms by

c1 = 2(r1(d) + (21c2 + 2 c3

β (cη)γ)r2(s0) +N +Nj)

c̃1 = 0

c2 = 1
1−2 c

β
(r2(d) +N +Nj)

c̃2 = 22c1 +
c
β c̃2.

(3.39)
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and

N = 2c 1
κξηγ2

j(k0 ± 1, d) + 2cu3(d)

+ 2
∑

|m|≥2

(2c)|m|(w + 4
κηξ j)(km, d)

Nj = 4(cη)γ2 c2

κk0
j(k0, d).

We prove by bootstrap that

|u|(s) ≤ S∗(s)C(s). (3.40)

Since ci ≥ ri(d) this estimate holds locally, and we again let s∗ be the maximal
time such that (3.40) holds. We assume that s∗ ≤ s1 and improve the estimate,
which gives a contradiction and thus proves that (3.40) holds on [d, s1]. For the
Ri we obtain with the Lemmas 3.20, 3.21, 3.22 that

R1[Fall] = R1[F3mode] +R1[Fj ] +R1[Fw̃] +R1[Fj(k0±1)] +R1[Fu3 ]

≤ 20c2c1 + 20c4c̃2 + (20c2 + c4(cη)γ)c2

+ c3

β (c1 + c̃2) +
c3

β (cη)γc2 + (cη)γ1 4c4

κk0
j(k0, d)

+ 2c2(w̃(2) + w̃(−2))

+ 2c
κξη j(k±1, d) +

2c
βκξ (w̃(1) + c∗1 + c∗2)

+ 2cw̃(1)

≤ 21c2c1 + 2 c3

β c̃2 + (21c2 + c3

β (cη)γ)c2 +N + c2(cη)γNj ,

and

R2[Fall] = R2[F3mode] +R2[Fj ] +R2[Fw̃] +R2[Fj(k0±1)] +R2[Fu3
]

≤ 20( sη )
γ(c1 + 2c2c̃2) + 20c2c2

+ c
β (

s
η )

γ(c1 + c̃2) +
c
β c2 + (cη)γ2 c2

κk0
j(k0, d))

+ c2(w̃(2) + w̃(−2))( sη )
γ1

+ 2c
κξη j(k±1, d)(

s
η )

γ1 + c
βκξ (w̃(1) + c∗1 + c∗2)(

s
η )

γ1

+ 2cw̃(1)( sη )
γ1

≤ 21( sη )
γc1 + 2 c

β c2 +
c
β (

s
η )

γ c̃2 +N( sη )
γ +Nj .

Therefore, we deduce that

r1(s0) +R1[all][1] ≤ r1(d) + 21c2(c1 + c̃2) + (21c2 + c3

β (cη)γ)c2

+N + c2(cη)γNj < c1,

r2(s0) +R2[all][1] ≤ r2(d) + 2 c
β c2 +N +Nj < c2,

R2[all][(
s
η )

γ ] < 20c1 + 2c2c̃2 < c̃2.
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This concludes the bootstrap and we estimated |u|(s) ≤ S∗(s)C(s) for s ≤
s1. To finish the proof of the theorem we need to establish the norm estimate
at the final time. With Proposition 3.23 we obtain the folloiwng bounds:

|u1|(d) ≤ 3(cη)−γ2LM,

|u2|(d) ≤ 7π(cη)γ1LM,

|u3|(d) ≤ 7π( 5η )
2(cη)γ1LM + 2M1,

|w(kn, d)| ≤ 7π( 5η )
|n|−1(cη)γ1LM + 2Mn,

j(kn, d) ≤ 4
η2β (7π(

4
η )

|n|−1(cη)γ1LM + 2Mn),

j(k0, d) ≤ 4LM
β min(κk0πd

2, 1)(cη)−γ2 .

This in turn yields

N = 2c 1
κξηγ2

j(k0 ± 1, d) + 2cu3(d)

+ 2
∑

|m|≥2

(2c)|m−k0|(w + 8
κηξn2 j)(km, d)

≤ c(cη)γLM,

Nj ≤ 4(cη)γ2 c2

κk0

4LM
β min(κk0

πd2, 1)(cη)−γ2

≤ 16
β min(π, c2

κk0
)LM.

Using these bounds, we consider Afterwards, we estimate

r(d) = S−1(d)u(d)

= −2cγ−1

(
−γ2

2c |cη|
−γ2+1 −|cη|−γ2

γ1

2c |cη|
−γ1+1 |cη|−γ1

)
u(d)(

|r1|
|r2|

)
(d) ≤ LM

(
15πc(cη)γ

4

)
and hence deduce that

c1 = (cη)γ(30πc+ 30 c2

β + c)LM

≤ 31πc(cη)γLM

c2 = (5 + 16π
β )LM.

This implies the estimate

u(s1) ≤ S∗(s1)C(s1)

≤ LM

(
1
2 1
1
2c 2c

)(
31πc(cη)γ

(5 + 16π
β )

)
≤ LM(cη)γ

(
16c+ (5 + 16π

β )(cη)−γ

16π

)
,
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where we used that (cη)−γ 1
κk0

= (
k2
0

cξ )
γ 1
κk2

0
= 1

(cξ)γκk
2γ2
0

≪ βc. For w̃(n) we

obtain

w̃(n) = 2
∑

|m|≥2

(2c)|m−n|+χ(w + 4
κηξ j)(km, d)

+ (2c)||n|−2|c(c∗1 +
1
c2 c

∗
2)

+ (2c)|c|−1u3(d)

≤ L(2c)|n|M +Mn

u3(n) ≤ L(2c)|n|+2M +M1.

Furthermore, by integrating over ∂sj(kn) we obtain

j(kn, s1) ≤ L 5
κξη ((2c)

|n|M +Mn),

j(k±1, s1) ≤ L 5
κξη ((2c)

|n|+2M +M1).

In order to estimate j(k0) we use Lemma 3.21:

|j(k0, s1)| ≤ Lc2η2 exp(−κk0η
3)j(k0, d)

+ 2 162

β
1
η2 (c1 + c2 + c̃1 + c̃2)

≤ 3π
κk0

β η2 exp(−κk0η
3)( dη )

γ2M

+ L4 162

β
1
η2 2M(cη)−γ2

≤ 211

β
1
η2M(cη)−γ2 .

We further estimate

M2 =
∑

m,n≥1

10−m−n(w + 1
αkn

j)(kn)(w + 1
αkm

j)(km)

≤ 2
1−10−1

∑
n≥1

10−n(w2 + 1
α2

kn

j2)(kn)

≤ 2
1−10−1

1
λk0

∑
n≥1

(10−n λk0

λkn
)λkn(w

2 + 1
α2

kn

j2)(kn)

≤ 2
1−10−1

1
λk0

∥w, j∥X(s0)
2∑

|n|≥1

λkn
M2

n =
∑
n

λkn

∑
m,l

10−|m−l|−|l−n|−χl−χm(w + 1
αkm

j)2(km)

≤ 2
1−10−1

∑
n

λkn

∑
m

10−|m−n|−χm(w2 + 1
α2

km

j2)(km)

≤ 2
1−10−1

∑
m

λkm(w + 1
αkm

j)2(km)
∑
n

10−|m−n|−χm λkn

λkm

≤ 2λ̂2

1−10−1 ∥w, j∥2X .

74



Combining these bounds we infer the norm estimate

∥w, j∥2X(s1) ≤ 16πL2M2(cη)2γ(λk±1
+ λk0

(16π + 5(cη)−2γ)2)

+
∑
|n|≥1

L2λkn
(10−|n|M +Mn)

2

= M2(cη)−2γ(λk2
±1
(2c)2 + λ2

k0
+ 2

∑
|n|≥1

λ2
kn
10−2|n| + L2

∑
|n|≥1

λkn
M2

n

≤ L2(λ̂(16π)2 + 3λ̂2)(cη)2γ∥w, j∥2X(s0).

This finally allows us to complete the proof of the upper bound and obtain that

∥w, j∥X(s1) ≤ 18πLλ̂(cη)γ∥w, j∥X(s0).

To prove the lower bound we use Proposition 3.17 and Proposition 3.25 and
obtain that at time s = d it holds that

|u1(d)− exp(−π
β )(cη)

γ2 | = O(c)

|u2(d)− 2β(1− exp(−π
β ))(cη)

γ1 | ≤ O(c)

w(kn, d), u3(d) ≤ 6

j(kn, d) ≤ 10π
βη

1
η

j(k0, d) ≤ 2
β .

We calculate ũ2 by

ũ2(s1) = (0 1)S(s1)S
−1(d)u(d)

≈ ( 1
2c 2c)2c

(
−c(cη)γ1 −(cη)−γ2

1
2c (cη)

γ2 (cη)−γ1

)
u(d)

≈ (−c(cη)γ1 + 2c(cη)γ2)u1(d) + (−(cη)−γ2 + 4c2(cη)−γ1)u2(d)

≈ c(cη)γ1u1(d) + (cη)γ2u2(d)

≈ 2(cη)γ1β(1− exp(−π
β ))u1(−d)

≈ 2(cη)γβ(1− exp(−π
β ))u1(s0).

The difference u2 − ũ2 is estimated by

|u2 − ũ2| ≤ (0 1)S∗(s1)R[F ]

≤ 1
2cR1[F ] + 2cR2[F ]

≤ (cη)γ2u2(d) +O(c)

= 2(cη)γβ(1− exp(−π
β ))u1(s0) +O(c).

Furthermore, we obtain

M ≤ 1
1−10−1u1(s̃0)

Mn ≤ 4
1−10−1u1(s̃0).
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So we finally obtain since β ≥ 1
5

w(k−1, tk−1
) ≈ 2(cη)γβ(1− exp(−π

β ))u1(s0)

≥ 1
2 max

l
(w(kl, tkl

),

which gives

w(k−1, tk−1
) ≥ (cη)γ min(β, π)w(k−1, tk−1

).

In this article we have studied the asymptotic (in)stability of the magneto-
hydrodynamic equations with a shear, a constant magnetic field and magnetic
dissipation. Here multiple effects compete to determine the long time behavior
of solutions:

• Echoes in the inviscid fluid equations may lead to large norm inflation.

• The underlying magnetic field leads to an exchange between kinetic and
magnetic energy. In particular, for large magnetic fields oscillation my
diminish norm inflation.

• Magnetic dissipation may stabilize the flow. Hence, a priori, it is not clear
whether stability requires Gevrey regularity (as for the Euler equations)
or Sobolev regularity (as for the fully dissipative problem) and how the
evolution depends on the size of the magnetic field α and on the resistivity
κ.

As the main result of this article we show that the balance between these effects
is parametrized by the parameter β = κ

α2 > 0 and that the behavior for finite,
positive β strongly differs from both the fully non-dissipative case and the large
dissipation limit (which reduces to the Euler equations). In particular, we show
that in this regime the magnetic dissipation is not strong enough to stabilize
the evolution in Sobolev regularity and establish Gevrey regularity as optimal
both in terms of upper and lower bounds. It remains an interesting problem
for future research to determine the optimal stability classes for other partial
dissipation regimes and to study the inviscid limit κ ↓ 0.

3.5 Estimating the Growth Factor

In Section 3.4.3 we observe the evolution of (3.25) on the interval I2 = [−d, d].
Here we observe the interaction between j and u1

∂su1 = −j

∂sj =
K
β u1 + ( 2s

1+s2 −K(1 + s2))j,
(3.41)

with κk replaced by K for simplicity In particular we bound the growth of u1

by a factor. Let U(τ, s) be the solution of (3.41) with initial data u1(τ) = 1 and
j(τ) = 0. We show that
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• |U(τ, s)| ≤ 1 for β ≥ π
2

• |U(τ, s)| ≤ L = L(β,K) for β < π
2 .

With the restriction

c ≤ (8π)
4
3 β

16
3 . (3.42)

we obtain

L(β,K) =


1 1 ≤ K√
d 1

2c
3
4 ≤ K ≤ 1

2(1 + π
β )

2π
β c3 ≤ K ≤ 1

2c
3
4

1 K ≤ 2π
β c3

(3.43)

We note that (3.42) is not optimal, in the sense that Section 3.4.3 we need

Lc << 1 and we could optimize the 1
2c

3
4 term to obtain a larger L but better

(3.42). However, this would yield a lot dependencies which would make the final
theorem more technical to state. The most important part of this estimates is
to verify that β can be very small if c is chosen small enough. First we do an
energy estimate, let

E = u2
1 +

β
K j

which leads to

1
2∂sE ≤ ( 2s

1+s2 −K(1 + s2))+E.

Therefore, we obtain for K ≥ 1 that ∂sE ≤ 0, which proves our first estimate.
Furthermore, we infer for K ≤ 1

E(s) ≤ E(τ)


1 s ≤ 0

(1 + s2)2 0 ≤ s ≤ (K2 )
−
1 3

4(K)−
4
3 (K2 )

− 1
3 ≤ s,

We conclude

u1(s) ≤


1 s ≤ 0

1 + s2 0 ≤ s ≤ (K2 )
1
3

2(K)−
2
3 (K2 )

1
3 ≤ s

which proves (3.43) for 1
2c

3
4 ≤ K ≤ 1. For small K we need to make a different

ansatz. We write j as,

j(s) = K
β

∫ s

−d

1+s2

1+τ2 exp(−K(s− τ + 1
3 (s

3 − τ3)))u(τ) dτ
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and so

u(s)− 1 = −K
β

∫∫
−d≤τ1≤τ2≤s

d(τ1, τ2)
1+τ2

2

1+τ2
1
exp(−K(τ2 − τ1 +

1
3 (τ

3
2 − τ31 )))u(τ1)

= − 1
β

∫
−d≤τ1≤s

dτ1 u(τ1)
1

1+τ2
1
[exp(−K(τ2 − τ1 +

1
3 (τ

3
2 − τ31 )))]

τ2=s
τ2=τ1

= − 1
β

∫
−d≤τ1≤s

dτ1 u(τ1)
1

1+τ2
1
(1− exp(−K(s− τ1 +

1
3 (s

3 − τ31 )))).

Now we exploit that u is decreasing till the smallest time such that u(s) = 0.
This holds, since if u is positive, then j is positive and so ∂su = −j ≤ 0.
Therefore, we bound

1
β

∫
−d≤τ1≤s

dτ1 u(τ1)
1

1+τ2
1
(1− exp(−K(s− τ1 +

1
3 (s

3 − τ31 ))))

by 1 to deduce 0 ≤ u(s) ≤ 1. Let s be positive, then we estimate

1
β

∫
−d≤τ1≤s

dτ1
1

1+τ2
1
(1− exp(−K(s− τ1 +

1
3 (s

3 − τ31 ))))

= 1
β

∫
−d≤τ1≤−s

dτ1
1

1+τ2
1
(1− exp(−K(s− τ1 +

1
3 (s

3 − τ31 ))))

+ 1
β

∫
−s≤τ1≤s

dτ1
1

1+τ2
1
(1− exp(−K(s− τ1 +

1
3 (s

3 − τ31 ))))

≤ 1
βs + π

β (1− exp(−K(2s+ 2
3s

3)))

≤ 1
βs + π

βK(2s+ 2
3s

3)

≤ 1
βs + π

βKs3.

This term is less than zero if 2
β ≤ s ≤ ( β

2πK )
1
3 . We choose s = min(( β

2πK )
1
3 , d)

maximal. When s = d, then ( β
2πK )

1
3 ≥ d which is satisfied if K ≤ 2π

β c3 and

so we obtain the last estimate of (3.43). Now we need to prove the case if
2π
β c3 ≤ K ≤ 1

2c
3
4 , with the previous calculation we obtain for s1 = ( β

2πK )
1
3 ,

that 0 ≤ u(s1) ≤ 1. Then for s ≥ s1 we have

u(s)− 1 = 1
β

∫
−d≤τ1≤s

dτ u(τ) 1
1+τ2 (1− exp(−K(s− τ + 1

3 (s
3 − τ3))))

|u(s)− 1| ≤ 1
β

∫
−d≤τ≤s1

dτ 1
1+τ2 + 1

β

∫
t1≤τ1≤s

dτ u(τ) 1
1+τ2

≤ π
β + 1

βs1
|u|L∞

s
.

Due to K ≤ 1
2c

4
3 and (3.42) we obtain s1β = ( β4

2πK )
1
3 ≥ 2 and so

|u(s)| ≤ 1
1− 1

βs1

(1 + π
β )

≤ 2(1 + π
β ).
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3.6 Nonlinear Instability of Waves

In this appendix we consider the nonlinear instability of the traveling waves.

∂tw + (v∇w)̸= = α∂xj + (b∇j) ̸= − (2c sin(x)∂y∆
−1
t w) ̸=

∂tj + (v∇j)̸= = κ∆tj + α∂xw + (b∇w)̸= − 2∂x∂
t
y∆

−1
t j − (2(∂iv∇)∂i∆

−1j)̸=,

(3.44)

For brevity of notation let us denote the Gevrey 2 norm with constant C by

∥(w, j)∥2GC
=

∫ ∑
k

exp(C
√
|ξ|)|F(w, j)|2dξ.

Then the norm inflation result of Theorem 3.3 further implies the nonlinear
instability of any non-trivial traveling wave for C sufficiently small.

Corollary 3.26. Let 0 < c < min(10−4, 10−3 κ
α2 ) be given and consider a trav-

eling wave as in Lemma 3.2 and let 0 < C2 < C∗ where C∗ = C∗(c) is as in
Theorem 3.3. Then the nonlinear evolution equations around the traveling wave
are unstable for small initial data in GC2

in the sense that for any 0 < C1 < C2,
ϵ > 0 and N > 1 there exists initial data with

∥(w0, j0)∥GC2
< ϵ

but such that for some time T > 0 it holds that

∥(w, j)|t=T ∥GC2
≥ N∥(w0, j0)∥GC1

.

We stress that this results considers the instability of the traveling waves and
that the space with respect to which instability is established depends on the
size c of the wave. A nonlinear instability result for the underlying stationary
state (3.2) in the spirit of [DM23, Bed20, DZ21] further requires that the size c
of the traveling is comparable to ϵ.

Proof of Corollary 3.26. We argue by contradiction. Thus suppose that the
nonlinear solution is uniformly controlled in GC1 for all times:

sup
t>0

∥(w, j)∥GC1
≤ Dϵ.

for some constant D > 0. Given this a priori control of regularity we may
consider the nonlinear equations as a forced linear problem

∂t(w, j) + L(w, j) = F

where L is the linear operator considered throughout this article and F is the
quadratic nonlinearity. If we denote by S(t, τ) the solution operator associated
to L it then follows that for any T > 0

(w, j)t=T = S(T, 0)(w0, j0) +

∫ T

0

S(T, τ)F (τ)dτ.
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By the norm inflation results of Theorem 3.3 for any C2 < C∗ there exists initial
data and a time T > 0 such that

∥S(T, 0)(w0, j0)∥L2 ≥ N∥(w0, j0)∥GC2
. (3.45)

Since this estimate is linear after multiplication with a factor we may assume
that this initial data also has size smaller than ϵ. On the other hand, by the
results of Section 3.3 and of Theorem 3.3 for any fixed time T , S(T, τ) is uni-
formly bounded as a map from L2 to L2. More precisely, we recall that S(T, τ)
decouples with respect to the frequency ξ in y.

• For ξ with |ξ| ≫ T 2 by the results of Section 3.3 the time interval (0, T )
is considered “small time” and hence S(T, τ) is bounded uniformly.

• If instead |ξ| ≤ T 2 then Theorem 3.3 provides an upper bound of the
operator norm by exp(C

√
ξ) ≤ exp(CT ).

Thus there exists an extremely large constant E (depending on T ) such that

∥
∫ T

0

S(T, τ)F (τ)dτ∥L2 ≤ E

∫ T

0

∥F (τ)∥L2dτ.

Finally, we note that by assumption

∥F (τ)∥L2 ≤ D2ϵ2.

Hence, choosing ϵ ≪ 1
ED2NT the Duhamel integral can be treated as a pertur-

bation of (3.45), which concludes the proof.
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Chapter 4

On the Sobolev Stability
Threshold for the 2D MHD
Equations with Horizontal
Magnetic Dissipation

This chapter is the preprint [KZ2] and is a joint work with Christian Zillinger.

NIKLAS KNOBEL AND CHRISTIAN ZILLINGER

Abstract. In this chapter we consider the stability threshold of the
2D magnetohydrodynamics (MHD) equations near a combination of
Couette flow and large constant magnetic field. We study the par-
tial dissipation regime with full viscous and only horizontal magnetic
dissipation. In particular, we show that this regime behaves qualita-
tively differently than both the fully dissipative and the non-resistive
setting.

4.1 Introduction

The equations of magnetohydrodynamics (MHD)

∂tV + V · ∇V +∇Π = (νx∂
2
x + νy∂

2
y)V +B · ∇B,

∂tB + V · ∇B = (κx∂
2
x + κy∂

2
y)B +B · ∇V,

∇ · v = ∇ · b = 0,

(t, x, y) ∈ R+ × T× R,

(4.1)

model the evolution of the velocity V of conducting, non-magnetic fluids in-
teracting with a magnetic field B. The MHD equations are commonly used in
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applications ranging from astrophysics and the description of plasmas to control
problems for liquid metals in industrial applications [Dav16]. Similarly to the
Navier-Stokes and Euler equations, questions of hydrodynamic stability and the
behavior for high Reynolds numbers (that is, for ν, κ tending to zero) are a very
active area of research both inner-mathematically and in view of applications.

Motivated by stability results for the isotropic full-dissipation case (νx =
νy = κx = κy > 0) and instability results for the non-resistive case (κx = κy =
0), we are interested in the behavior of the two-dimensional magnetohydrody-
namic (MHD) equations with partial dissipation, where some of the dissipation
coefficients

κy, κx, νx, νy ≥ 0,

are allowed to vanish. More specifically, we study the behavior near the station-
ary solution given by the combination of Couette flow and a (large) constant
magnetic field

Vs = ye1, Bs = αe1, (4.2)

for the case of vanishing vertical resistivity, κy = 0. By the symmetry B 7→ −B,
we consider the case α ≥ 0. For the related case of the Navier-Stokes equations
(that is, without any magnetic field) the (in)stability of Couette flow at high
Reynolds number is known as the Sommerfeld paradox [MB01] and is related
to nonlinear instability of the Euler equations [BM15a, DM23, DZ21].

However, for the case of sufficiently small data it was proven in [BVW18]
that (mixing enhanced) dissipation can counteract this instability in the Navier-
Stokes equations and that (long time asymptotic) stability holds in Sobolev
spaces for initial data with

∥ω∥HN ≤ ϵ ≪ νγ

with γ ≥ 1
2 . Later in [MZ22] this has been improved to γ = 1

3 . This is an
example of a stability threshold result, which establishes stability for small data
and determines suitable (optimal) exponents γ for given norms.

Since the addition of the magnetic field is known to possibly destabilize the
dynamics (see the following discussion), our main questions concern the MHD
equations (4.1) in terms of perturbations moving with the underlying shear flow:

v(x, y, t) = V (x− yt, y, t)− Vs,

b(x, y, t) = B(x− yt, y, t)−Bs.

The corresponding perturbed equations in these new variables read

∂tv + v2e1 − 2∂x∆
−1
t ∇tv2 = ν ·∆tv + α∂xb+ b∇tb− v∇tv −∇tπ,

∂tb− b2e1 = κ ·∆tb+ α∂xv + b∇tv − v∇tb,

∇t · v = ∇t · b = 0.

(4.3)
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Here, we introduce the time-dependent derivatives ∂t
y = ∂y − t∂x, ∇t = (∂x, ∂

t
y)

and ∆t = ∂2
x + (∂t

y)
2. Furthermore, we use the following short notation for the

dissipation operator:

ν ·∆t = νx∂
2
x + νy(∂

t
y)

2,

κ ·∆t = κx∂
2
x + κy(∂

t
y)

2.

In this article we aim to establish a Sobolev stability threshold for (4.3) for
the specific anisotropic, partial dissipation case

κy = 0, κx = νx = νy > 0.

In particular, we show that this setting exhibits qualitatively different behavior
than the fully dissipative and the non-resistive case.

Following a similar notation as [Lis20] we make the following definition.

Definition 4.1 (Stability threshold). Consider the MHD equations (4.1) with
anisotropic dissipation 0 < νx = νy = κx =: µ ≪ 1 and κy = 0 and let X be a
Banach space with norm ∥(v, b)∥X . We then say that the exponent γ = γ(X) is
a stability threshold for the space X if for initial data with

∥(vin, bin)∥X ≤ ϵ ≪ µγ ,

the corresponding solution of (4.3) remains uniformly bounded for all future
times with a quantitative control

sup
t>0

∥(v, b)∥X ≲ ϵ.

We remark that this definition does not require optimality (that is, instabil-
ity for smaller choices of γ). Optimal stability thresholds quantify the appear-
ance of instability in the large Reynolds number limit and are an active area
of research for many fluid systems. In view of the large literature, the inter-
ested reader is referred to the following articles for the Navier-Stokes equations
[BVW18, BGM17] and the Boussinesq equations [ZZ23, LWX+21, TWZZ20] for
a discussion and further references.

For the (isotropic) MHD equations (ν := νx = νy and κ := κx = κy), there
exists several results for non-vanishing magnetic dissipation.

• When considering full isotropic dissipation ν = κ > 0, Liss [Lis20] estab-
lished a Sobolev threshold in the 3D case. Under a Diophantine condition
on the magnetic field, he establishes stability for ∥(v, b)∥HN with γ = 1.
For the 2D case an improvement to γ = 2

3 is expected due to the lack of
lift-up instability. Indeed, in a very recent paper, [Dol24], Dolce estab-
lishes such a threshold for the regime 0 < Cκ3 ≤ ν ≤ κ.

• In the 2D inviscid case with isotropic magnetic dissipation, ν = 0 and
κ > 0, in [KZ1] the authors established linear instability of nearby (in
analytic regularity) so-called traveling wave type solutions in Gevrey 2
regularity. As an (almost) matching nonlinear result, [ZZ24] established a
stability threshold γ ≥ 1 for Gevrey 2− δ regularity for any 0 < δ < 1.
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• The setting with only an underlying magnetic field but without shear flow
exhibits qualitatively different behavior and was studied for the case of
the whole space in [BSS88, RWXZ14] in the full dissipation case and in
[CRW13, JLWY19] for the partially dissipative case.

To the authors’ knowledge there are no such results in the literature for the non-
resistive case κ = 0 with Couette flow, both for the viscous or inviscid regime
ν = 0 or ν > 0, and neither for partial dissipation regimes. In view of linear
instability results [HHKL18] (see also Proposition 4.2), for these equations any
stability threshold results would need to consider unknowns different from (v, b).

As a step towards understanding this non-resistive regime, in this article
we consider the 2D MHD equations with isotropic viscosity but only horizontal
resistivity (while [Lis20, Dol24] consider full dissipation). In particular, we
ask to which extent, as quantified by Sobolev stability thresholds, this partial
dissipation regime behaves or does not behave like these extremal cases.

In the (ideal) MHD equations (ν = κ = 0) the interaction of shear flows and
the magnetic field has been shown to possibly cause instabilities, with arguments
both on physical [CM91, HTY05] and mathematical grounds [HT01, ZZZ21].

As our first result, we show that this instability also persists in the viscous
but non-resistive MHD. These equations exhibit norm inflation in HN for all
choices of ν > 0.

Proposition 4.2 (Instability for the non-resistive MHD equations). Consider
the isotropic equation with 1 ≥ ν > 0, κ = 0, α > 1

2 and N ≥ 3, then the
stationary solution (4.2) is linearly unstable in HN . More precisely, there ex-
ists initial data (v, b)in ∈ HN such that the solution to the linearized problem
satisfies

∥(v, b)∥HN ≈ ⟨νt⟩∥(v, b)in∥HN

as t → ∞. This is optimal in the sense that for all initial data (v, b)in ∈ HN

the solution to the linearized problem satisfies

∥(v, b)∥HN ≲ ⟨νt⟩∥(v, b)in∥HN .

The implicit constants here may depend on α. As a consequence, the nonlinear
equations also exhibit arbitrarily large norm inflation in HN . That is, for any
C = C(ν) > 0 there exists an ε0 > 0 such that for all ε < ε0 there exists initial
data (v, b)in and a time T such that

∥(v, b)in∥HN = ε,

∥(v, b)|t=T ∥HN ≥ C∥(v, b)in∥HN .

In particular, there cannot exist a Sobolev threshold for ∥(v, b)∥HN .

We remark that following the same argument also instability in suitable
Gevrey spaces can be established.
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As mentioned above, the isotropic fully dissipative case is known to be sta-
ble in Sobolev regularity [Lis20, Dol24]. For the associated partial dissipation
regimes, in view of the underlying shear dynamics the associated vertical dis-
sipation case is expected to behave similarly as the full dissipation case. The
effects of partial dissipation are a very actively studied field of research in other
fluid systems, such as the Boussinesq equations [DWZ21, CW13, ABSPW22]),
but, to the authors’ knowledge, is largely open in the MHD equations near
Couette flow.

In the present case of horizontal resistivity, κy = 0 and νx = νy = κx, the lack
of vertical dissipation leads to stronger instabilities, requiring finer control and
use of the coupling by a strong magnetic field. Our main results are summarized
in the following theorem.

Theorem 4.3. Consider the MHD equations with horizontal resistivity, µ :=
νx = νy = κx > 0 and κy = 0, near the stationary solution (4.2) with α > 1

2
and let N ≥ 6 be given.

Then there exist constants c0 = c(α) > 0, such that for all initial data (v, b)in
which satisfy

∥(v, b)in∥HN = ε ≤ c0µ
3
2

the corresponding solution (v, b) of (4.4) satisfies the estimates

∥v∥L∞HN + µ
1
2 ∥∇tv∥L2HN ≲ ε,

∥b∥L∞HN + µ
1
2 ∥∂xb∥L2HN ≲ ε.

Let us comment on these results:

• Proposition 4.2 shows instability in terms of (v, b) for the non-resistive
case. Hence, the (horizontal) magnetic dissipation is shown to be necessary
for long-time stability results for (v, b).

However, similarly as in the Boussinesq equations [BBZD23, Zil23], in
principle stability results in terms of other unknowns such as the magnetic
potential ϕ = (−∆t)

−1∇⊥
t b could hold for longer or even infinite times,

which remains an exciting question for future research.

• Theorem 4.3 establishes a stability threshold γ = 3
2 . In particular, we

stress that the lack of vertical magnetic dissipation not only poses a key
challenge of our analysis but results in a different threshold value than the
fully dissipative setting [Lis20, Dol24].

Indeed, the main constraint on our stability threshold is given by the
control of the nonlinearity v · ∇tb and the reduced decay rates already at
the linearized level (see Section 4.2). As we show in Section 4.3.3, our
estimates of the so-called reaction terms (4.23) and (4.27) require a lower
bound on the threshold by 3

2 and are expected to be optimal for this
partial dissipation case.
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• Theorem 4.3 considers the case µ := νx = νy = κx. As we discuss in
Sections 4.2 and 4.3, we expect that instead of equality it suffices to require

that 1
2ανy ≤ κx ≤ Cν

1
3
y , similarly as in the full dissipation case studied

in [Dol24]. These constraints naturally arise in the linearized problem
studied in Proposition 4.4. Furthermore, we expect that results can be
extended to the case of purely vertical viscous dissipation with additional
technical effort.

• Due to missing vertical dissipation, we obtain no decay of the x-averaged
magnetic field b= which is forced by the nonlinearity.

To prove our results, it is convenient to work with the unknowns

p1 = Λ−1
t ∇⊥

t · v, p2 = Λ−1
t ∇⊥

t · b; Λt :=
√
−∆t.

Similarly to the vorticity and current, the curl operator ∇⊥
t eliminates the pres-

sure and yields a scalar quantity, while the operator Λ−1
t ∇⊥

t · is of order 0.
Moreover, since v and b are divergence-free, similarly to viscosity formulations
of the 2D Navier-Stokes equations, it can be shown by integration by parts that

∥Av∥L2 = ∥Ap1∥L2 ,

∥Ab∥L2 = ∥Ap2∥L2 ,

for all Fourier multiplier A which commute with ∇t and Λt. This, in particular,
includes ⟨∇⟩N which corresponds to the Sobolev norm ∥ · ∥HN .

In terms of these unknowns our equations read

∂tp1 − ∂x∂
t
x∆

−1
t p1 − α∂xp2 = µ∆tp1 + Λ−1

t ∇⊥
t (b∇tb− v∇tv),

∂tp2 + ∂x∂
t
x∆

−1
t p2 − α∂xp1 = µ∂2

xp2 + Λ−1
t ∇⊥

t (b∇tv − v∇tb),
(4.4)

The remainder of the article is structured as follows:

• In Section 4.2, as a first step we establish linear stability of the equations
(4.4). In view of the lack of vertical resistivity we here crucially rely on the
interaction of p1 and p2 due the the underlying constant magnetic field.
Moreover, we discuss the effects of partial dissipation and the resulting
limited (optimal) decay rates in time.

• In Section 4.3, we introduce a bootstrap method for the proof of The-
orem 4.3. Decomposing into low and high frequency contributions here
yields several error terms, which are handled in different subsections. In
particular, we need to distinguish between the evolution of the x-average
(which does not experience enhanced dissipation due to the shear) and
its L2-orthogonal complement, as well as different frequency decomposi-
tions of the nonlinear terms (called reaction and transport terms in the
literature).
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• More precisely, in Subsection 4.3.2 we collect all nonlinear terms which
can be estimated in a straightforward way. In view of partial magnetic
dissipation a main challenge is given by the effect of v∇tb on p2 at high
frequencies. Here, we distinguish between terms without x-average in
Subsection 4.3.3 and with average in Subsection 4.3.4 and perform a de-
composition into a transport and a reaction term. The low frequency
regime is discussed in Subsection 4.3.5 and does not require a very precise
analysis.

• As a complementary result, in Section 4.4 we establish instability of the
non-resistive, viscous MHD equations and prove Proposition 4.2. Here we
first prove linear algebraic instability and then deduce a nonlinear norm
inflation result as a corollary.

4.1.1 Notations and conventions

For two real numbers a, b ∈ R we denote the minimum and maximum as

min(a, b) = a ∧ b,

max(a, b) = a ∨ b.

We use the notation f ≲ g if there exists a constant C independent of all relevant
parameters such that |f | ≤ C|g|. Furthermore, we write f ≈ g if f ≲ g and
g ≲ f .

Moreover, for any vector or scalar v we define

⟨v⟩ = (1 + |v|2) 1
2 .

For a function f(x, y) ∈ L2(T×R) we denote the x-average and its L2-orthogonal
complement as

f=(y) =

∫
T
f(x, y)dx,

f̸= = f − f0.

Throughout this text, unless noted otherwise, the spatial variables (x, y) ∈
T×R are periodic in the horizontal direction and the respective Fourier variables
are denoted as

(k, ξ) ∈ (Z,R)

or (l, η). The norms ∥ · ∥Lp and ∥ · ∥HN refer to the standard Lebesgue and
Sobolev norms for functions on T×R. For time-dependent functions we denote
LpHs = Lp

tH
s as the space with the norm

∥f∥LpHs =
∥∥∥f∥Hs(T×R)

∥∥
Lp(0,T )

.

87



We define the weight AN and AN ′

µ by the Fourier multipliers

AN = M⟨∇⟩N ,

AN ′

µ = M⟨∇⟩N
′
ecµt1k ̸=0 ,

for 3 < N ′ ≤ N − 2 and 0 < c < 1
2 (1−

√
2
3 ). With slight abuse of notation we

identify the multiplier operators with their Fourier symbols. The operator M
is a time dependent Fourier multiplier, introduced in [BVW18], and is defined
to satisfy the following equation:

− Ṁ
M = |k|

k2+|ξ−kt|2 ,

M(0, k, ξ) = 1.

That is, M is given as

M(t, k, ξ) = exp

(
−
∫ t

0

dτ |k|
k2+(ξ−kτ)2

)
.

In particular, the operator M is comparable to the identity in the sense that

1 ≥ M(t, k, ξ) ≥ c

for some constant c and all k ̸= 0 (and M(t, 0, ξ) := 1 for k = 0).
The operators A thus define energies comparable to Sobolev (semi)norms:

∥AN · ∥L2 ≈ ∥ · ∥HN ,

∥AN ′

µ · ∥L2 ≈ ∥ecµt1k ̸=0 · ∥HN .

In particular, since N is sufficiently large, the norm defined by AN satisfies an
algebra property.

4.2 Linear Stability

In this section we study the stability of the linearized version of the equations
(4.4):

∂tp1 − ∂x∂
t
x∆

−1
t p1 − α∂xp2 = ν ·∆tp1,

∂tp2 + ∂x∂
t
x∆

−1
t p2 − α∂xp1 = κ ·∆tp2,

ν = (µ, µ), κ = (µ, 0).

(4.5)

The ode tools to establish stability of such systems are well-known in related
systems such as the Boussinesq equations [LWX+21, BBZD23, BZD20, MZZ23,
Zil21b].

Our main results are summarized in the following proposition.

88



Proposition 4.4 (Linear stability). Let µ > 0, α > 1
2 and N ≥ 6 be as in

Theorem 4.3. Then the equations (4.5) are stable in HN in the sense that for
any choice of initial data pin ∈ HN the corresponding solution satisfies

∥p∥L∞HN + µ1/2∥∇tp1∥L2HN + µ1/2∥∂xp2∥L2HN ≲ e−Cµt∥pin∥HN .

As we discuss after the proof, in the case 1
2αν ≤ κ ≤ ν1/3 the optimal decay

rate for large times is given by µ = min(ν1/3, κ). In particular, the coupling
induced by the underlying magnetic field cannot yield enhanced dissipation rates
for both components once the viscous dissipation becomes too large.

Proof of Proposition 4.4. We note that in this linear evolution equation (4.5) all
coefficient functions are independent of both x and y. Therefore the equations
decouple after a Fourier transform and we may equivalently consider the ode
system

∂tp̂1 − k(ξ−kt)
k2+(ξ−kt)2 p̂1 − αikp̂2 = −ν(k2 + (ξ − kt)2)p̂1,

∂tp̂2 +
k(ξ−kt)

k2+(ξ−kt)2 p̂2 − αikp̂1 = −κk2p̂2,
(4.6)

for an arbitrary but fixed frequency (k, η) ∈ Z × R. Since the equations are
trivial for k = 0, in the following we further without loss of generality may
assume that k ̸= 0. Furthermore, after shifting t by ξ

k , we may assume that
ξ = 0 and thus obtain a system of the form

∂t

(
p1
p2

)
=

(
− t

1+t2 − νk2(1 + t2) iαk

iαk t
1+t2 − κk2

)(
p1
p2

)
, (4.7)

where we dropped the hats for simplicity of notation.
In a first naive estimate, we can test this equations with (p1, p2) and obtain

that

∂t(|p1|2 + |p2|2) ≤ (
|t|

1 + t2
− µk2)(|p1|2 + |p2|2),

which already yields the desired decay for times |t| ≫ (µk2)−1. However, a
Gronwall-type estimate on the remaining interval would only yield a very rough
upper bound on the possible growth by

exp

(∫
|t|≲(µk2)−1

|t|
1 + t2

dt

)
≲ (1 + (µk2)−1)2.

In order to improve this estimate, a common trick is to make use of the fact
that |α| is relatively large and to consider

E = |p1|2 + |p2|2 −
t

1 + t2
ℜ
(

1

iαk
p1p2

)
.
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Since |α| > 1
2 this energy is positive definite and comparable to |p1|2 + |p2|2,

with a constant which degenerates as |α| ↓ 1
2 .

Computing the time derivative of the last term, we note that

t

1 + t2
∂tℜ

(
1

iαk
p1p2

)
≤ t

1 + t2
(|p1|2 − |p2|2)

+
|t|

1 + t2
1

|α|
νk(1 + t2)|p1||p2|

+
|t|

1 + t2
1

|α|
κk|p1||p2|

+O(t−2)|p1||p2|.

The first term exactly cancels out the possibly large contribution in ∂t(|p1|2+
|p2|2). For the second and third term we use the fact that 1

α < 2 and that these
terms can hence be absorbed into the dissipation terms at the cost of a slight
loss of constants, provided that

1

2α
ν ≤ κ.

We estimate

|t| 1
|α|

νk|p1||p2| ≤ 2
3νk

2(1 + t2)|p2|2 + 3
8

1
|α|kνk

2|p2|

≤ 2
3νk

2(1 + t2)|p2|2 + 3
4κk

2|p2|

and

|t|
1 + t2

1

|α|
κk|p1||p2| ≤

8

1 + t2
1

|α|2
|p1|2 + 1

8κk
2|p2|2

Noting that ∂t
|t|

1+t2 = O(t−2) is integrable in time, we thus arrive at

∂tE ≲ O(t−2)E − νk2(1 + t2)|p1|2 − κk2|p2|2.

Further defining

Ẽ = E exp(

∫ t

O(τ−2)dτ),

it follows that Ẽ ≈ E decays exponentially in time and that the damping terms
are integrable in time, which yields the desired result.

We further remark that for t (corresponding to times t+ ξ
k ) such that |t| ≲

|α|(µk2)−1/2 the system (4.7) exhibits fast damping in both components (due to
the coupling by α). However, for times much larger than this (that is, far away
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from ξ
k ) the decay is limited. Indeed, after relabeling p1 7→ ip1 and introducing

the energy E to control contributions by t
1+t2 , this follows from the fact that

the eigenvalues of the matrix(
−µk2(1 + t2) −α

α −µk2

)
are given by

λ1,2 = −µk2(2 + t2)

2
±
√

1

4
(µk2t2)2 − α2.

In the first case, the square root is purely imaginary and hence ℜ(λ1) = ℜ(λ2)
is comparable to the stronger dissipation term

−µk2(1 + t2).

For large times, instead the same eigenvalue computation yields

λ1 ≈ −µk2⟨t⟩2, λ2 ≈ −µk2

and hence the decay estimates of Proposition 4.4 are not improved to µ1/3.
This linear result thus highlights the effects of the coupling induced by the
underlying constant magnetic field and shows which optimal decay estimates can
be expected. In particular, it clearly illustrates that the loss of vertical magnetic
dissipation incurs a change of decay rate compared to the fully dissipative case.

4.3 Bootstrap Hypotheses and Outline of Proof

We next turn to the full nonlinear problem (4.4), where we intend to treat the
nonlinear contributions as errors and make use of the smallness of our initial
data.

Our approach here follows a bootstrap argument, which is by now standard
in the field (see, for instance, [BVW18]). In the notation of Section 4.1.1 we
assume that at the initial time

∥ANp∥2L2 + ∥AN ′

µ p∥2L2 ≤ c0ϵ
2 (4.8)

for 3 < N ′ ≤ N − 2. The constant c0 = c0(α) > 0 will later be chosen small
enough and tends to 0 as α → 1

2 . Given this estimate at the initial time, our
aim in the remainder of this section is to establish the following estimates for
the corresponding solution:

• High frequency estimates

∥ANp1∥2L∞L2 + µ∥AN∇tp1∥2L2L2 + ∥
√
− Ṁ

MANp1∥2L2L2 < ε2,

∥ANp2∥2L∞L2 + µ∥AN∂xp2∥2L2L2 + ∥
√
− Ṁ

MANp2∥2L2L2 < ε2.

(4.9)
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• Low frequency estimates

∥AN ′

µ p1∥2L∞L2 + µ∥AN ′

µ ∇tp1∥2L2L2 + ∥
√
− Ṁ

MAN ′

µ p1∥2L2L2 < ε2,

∥AN ′

µ p2∥2L∞L2 + µ∥AN ′

µ ∂xp2∥2L2L2 + ∥
√
− Ṁ

MAN ′

µ p2∥2L2L2 < ε2.

(4.10)

By local well-posedness and our assumptions on the initial data, these estimates
are satisfied at least on some (small) time interval (0, T ). In our bootstrap
approach we assume for the sake of contradiction that the maximal time T
with this property is finite. We then show that on that same time interval all
estimates hold with improved bounds instead, which however would imply that
the estimates could be extended for a small additional time, contradicting the
maximality of T .

With this understanding, we suppress T in our notation (see Section 4.1.1)
and all Lp norms in time are understood to be norms on Lp(0, T ).

The splitting into high and low frequencies is essential to close the estimates
in Subsection 4.3.3 and Subsection 4.3.4. In particular, we need the e−cµt decay
to bound the so-called reaction error. Moreover, we require strong control of
commutators involving A in order to control the so-called transport error. Both
error terms impose strong restrictions on the energies and do not allow to close
estimates in an easy way. We overcome this difficulty by linking separate energy
estimates in the high frequency part and the low frequency part. On the one
hand, we can use the additional e−cµt in the low frequency part to our benefit
in the analysis of the high frequency part. On the other hand, the difference in
regularity allows us to control derivatives in the low frequency estimate by the
using high frequency estimate.

Given a solution (p1, p2) of (4.4) and letting A = AN , AN ′

µ , computing time
derivatives we need to control

∂t∥Ap1∥2L2 + 2(1− c)µ∥A∇tp1∥2L2 + 2∥
√

− Ṁ
MAp1∥2L2

≤ 2⟨A2p1, ∂x∂
t
x∆

−1
t p1 + Λ−1

t ∇⊥
t (b∇tb− v∇tv)⟩ =: L[p1] +NL[p1],

∂t∥Ap2∥2L2 + 2(1− c)µ∥A∂xp2∥2L2 + 2∥
√

− Ṁ
MAp2∥2L2

≤ 2⟨A2p2,−∂x∂
t
x∆

−1
t p2 + Λ−1

t ∇⊥
t (b∇tv − v∇tb)⟩ =: L[p2] +NL[p2].

Here we have split contributions into linear (that is, quadratic integrals) and
nonlinear terms (that is, trilinear integrals). Note that the choice of 0 < c <
1
2 (1−

√
2
3 ) is made such that 1− c is not too small to absorb linear effects for

α close to 1
2 . For later reference, we note that the bootstrap assumptions (4.9)

and (4.10) yield the following estimates:

∥∂2
xΛ

−1
t Λ−1p∥HN ≲ 1

t ∥p̸=∥HN (4.11)
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and for A = AN , AN ′

µ

∥Ap1,̸=∥L2L2 ≲ µ− 1
2 ε,

∥Ap2,̸=∥L2L2 ≲ µ− 1
2 ε.

(4.12)

Furthermore, for the nonlinear terms we will often use the equality

∥Av∥L2 = ∥Ap1∥L2 ,

∥Ab∥L2 = ∥Ap2∥L2 .

Throughout the following sections, we aim to establish smallness of the con-
tributions by the linear terms L[·] and nonlinear terms NL[·]. More precisely,
we establish the following proposition.

Proposition 4.5 (Control of errors). Under the assumptions of Theorem 4.3
suppose that the initial data satisfies the smallness condition (4.8) and let T > 0
be such the high and low frequency estimates (4.9), (4.10) are satisfied. Then
on the same time interval it holds that∫ T

0

L[p1] + L[p2]dt ≤ 1
2α (c0 + 1)ε2 +O(µ−1ε3),∫ T

0

NL[p1] +NL[p2]dt ≤ µ− 3
2 ε3.

As a consequence, supposing that α > 1
2 and ϵ ≪ µ3/2, this implies that

both the high frequency and low frequency estimates (4.9), (4.10) improve and
thus T can only have been maximal if T = ∞, which proves Theorem 4.3. Thus
proving Proposition 4.5 is our main concern in this section and our proof is split
over the following subsections. The most important estimates, highlighting the
effects of partial dissipation, are established in Subsections 4.3.1, 4.3.3 and 4.3.4.

We note that the nonlinear terms

⟨Ap1,Λ
−1
t ∇⊥

t A(b∇tb− v∇tv)⟩ = −⟨Av,A(b∇tb− v∇tv)⟩,
⟨Ap2,Λ

−1
t ∇⊥

t A(b∇tv − v∇tb)⟩ = −⟨Ab,A(b∇tv − v∇tb)⟩,

for A = AN , AN ′

µ are all trilinear products involving

a1a2a3 ∈ {vvv, vbb, bbv, bvb}

and we will use this notation to refer to the specific terms. Since the x-averages
do not experience fast (mixing enhanced) decay under the dissipation, we split
these products as

⟨Aa1, A(a2∇ta
3)⟩ = ⟨Aa1̸=, A(a

2
̸=∇ta

3
̸=) ̸=⟩

+ ⟨Aa1̸=, A(a
2
=∇ta

3
̸=)⟩

+ ⟨Aa1̸=, A(a
2
̸=∇ta

3
=)⟩

+ ⟨Aa1=, A(a
2
̸=∇ta

3
̸=)=,

where the full splitting is only used for the bvb term.
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4.3.1 Estimate of the linear error

In this subsection we establish the estimate of the linear terms in Proposition
4.5. Here, we use some of the same techniques as in the proof of linear stability
in Section 4.2, but instead focus on establishing quantitative bounds on the time
integral.

Taking a Fourier transform of (4.4) yields

∂tp̂1 − k(ξ−kt)
k2+(ξ−kt)2 p̂1 − αikp̂2 = −µ(k2 + (ξ − kt)2)p̂1 + F [NL[p1]],

∂tp̂2 +
k(ξ−kt)

k2+(ξ−kt)2 p̂2 − αikp̂1 = −µk2p̂2 + F [NL[p2]].
(4.13)

Recalling the various contributions, we aim to estimate

⟨A2p2,−∂x∂
t
y∆

−1
t p2⟩+ ⟨A2p1, ∂x∂

t
y∆

−1
t p1⟩

=
∑
k

∫
dξA2 k(ξ−kt)

k2+(ξ−kt)2 (|p̂1|
2 − |p̂2|2).

In the following, with slight abuse of notation, we omit the hat denoting the
Fourier transform and only consider k ̸= 0, since for k = 0 this term vanishes.

Similarly as in the linear stability results of Section 4.2, we note that the
Fourier multiplier a priori is not integrable in time and cannot easily be esti-
mated by the partial dissipation. Hence, we rely on the coupling induced by the
underlying magnetic field to eliminate some of this contribution and to provide
better decay. More precisely, multiplying the equations (4.13) with p̂2, p̂1 and
omitting the hats for simplicity of notation, we obtain the following identity:

|p1(k)|2 − |p2(k)|2

= − 1
iαk (p1iαkp1 + iαkp2p2)

= − 1
iαkp1(∂tp2 +

k(ξ−kt)
k2+(ξ−kt)2 p2 + µk2p2 −F [NL[p2]]))

− 1
iαkp2(∂tp1 −

k(ξ−kt)
k2+(ξ−kt)2 p1 + (µk2 + µ(ξ − kt)2)p1 −F [NL[p1]]

= −1
iαk (∂t(p1p2) + µ(k2 + (ξ − kt)2)p1p2 + µk2p1p2)

− 1
αik (p1, p2) · F [Λ−1

t ∇⊥
t (b∇tb− v∇tv, b∇tv − v∇tb)].

Thus we split L into two linear terms and one nonlinear term:

L = 2
∑
k

∫
dξA2 k(ξ−kt)

k2+(ξ−kt)2
−1
iαk∂t(p1p2)

+ 2
∑
k

∫
dξA2 k(ξ−kt)

k2+(ξ−kt)2
−1
iαk (2µk

2 + µ(ξ − kt)2)p1p2

− 2
α ⟨A∂t

y∆
−1
t (p1, p2)̸=, AΛ

−1
t ∇⊥

t (b∇tb− v∇tv, b∇tv − v∇tb) ̸=⟩
= L1 + Lµ +ONL.

(4.14)
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We estimate Lµ by

Lµ = 2
αµ
∑
k ̸=0

∫
dξA2 (2k2+(ξ−kt)2)(ξ−kt)

k2+(ξ−kt)2 p1p2

= 2
αµ
∑
k ̸=0

∫
dξA2 (2k2+(ξ−kt)2)(ξ−kt)

(k2+(ξ−kt)2)
3
2

p1(k
2 + (ξ − kt)2)

1
2 p2

≤ 2
αµ sup

s

(
(2+s2)s

(1+s2)
3
2

)
∥A∂xp2∥L2∥A∇tp1∥L2

≤
√

2
3
1
αµ(∥A∂xp2∥2L2 + ∥A∇tp1∥2L2),

where we used that ∣∣∣∣ (2k2+(ξ−kt)2)(ξ−kt)

(k2+(ξ−kt)2)
3
2

∣∣∣∣ = ∣∣∣∣ (2+( ξ
k−t)2)( ξ

k−t)

(1+( ξ
k−t)2)

3
2

∣∣∣∣
≤ sup

s

(
(2+s2)s

(1+s2)
3
2

)
≤
√

2
3 .

To estimate L1, we integrate by parts in time to deduce that∫
dτ
∑
k

∫
dξA2 k(ξ−kt)

k2+(ξ−kt)2
−1
iαk∂t(p1p2)

=

[
−1
iα

∑
k

∫
dξA2 (ξ−kt)

k2+(ξ−kt)2 p1p2

]t
0

+

∫
dτ 1

iα

∑
k

∫
dξp1p2∂t(A

2 (ξ−kt)
k2+(ξ−kt)2 )

=

[
−1
iα

∑
k

∫
dξA2 (ξ−kt)

k2+(ξ−kt)2 p1p2

]t
0

+

∫
dτ 2

iα

∑
k

∫
dξp1p2

Ṁ
MA2 (ξ−kt)

k2+(ξ−kt)2

+ cµ1A=AN′
µ

∫
dτ 2

iα

∑
k

∫
dξp1p2A

2 (ξ−kt)
k2+(ξ−kt)2

+

∫
dτ 1

iα

∑
k

∫
dξp1p2A

2 k(k2−(kt−ξ)2)
(k2+(ξ−kt)2)2 .
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So we infer by Hölder’s inequality that∫
dτ
∑
k

∫
dξA2 k(ξ−kt)

k2+(ξ−kt)2
−1
iαk∂t(p1p2)

≤ 1
α (∥Ap1(0)∥L2∥Ap2(0)∥L2 + ∥Ap1(t)∥L2∥Ap2(t)∥L2)

+ µ∥A∂xp1∥L2L2∥A
√

− Ṁ
M p2∥L2L2

+ 1
α∥A

√
− Ṁ

M p1∥L2L2∥A
√
− Ṁ

M p2∥L2L2

and thus ∫
Ldτ −

∫
ONLdτ

≤ 1
2α (∥Ap1(0)∥2L2 + ∥Ap2(0)∥2L2)

+ 1
2α (∥Ap1∥2L∞L2 + ∥Ap2(t)∥2L∞L2)

+ 1
α (µ(1− c)∥∂xAp∥2L2 + µ(1− c)∥∂t

yAp∥2L2 + ∥
√

− Ṁ
MAp∥2L2).

Using the dissipation estimates (4.12), we therefore obtain∫
Ldτ ≤ 1

2α (c0 + 1)ε2 +

∫
ONLdτ, (4.15)

where the ONL part will be estimated at the beginning of the next subsection.

4.3.2 Immediate nonlinear estimates for AN

In this subsection, we collect some estimates which can be obtained in a straight
forward approach using standard techniques (e.g. see [BVW18]). In particular,
for these terms we are not constrained by the lack of vertical resistivity. For most
estimates we do not aim to establish optimal (mixing enhanced) bounds, since
these bounds are in any case better than the ones involving horizontal resistivity
and hence do not affect the over all stability threshold. In the following we write
A = AN .

ONL estimate: Using integration by parts in space and Hölder’s inequality,
the nonlinear contribution in (4.14) can be estimated by

ONL = 2
α ⟨A∂t

y∆
−1
t v ̸=, A(b∇tb− v∇tv) ̸=⟩

+ 2
α ⟨A∂

t
y∆

−1
t b ̸=, A(b∇tv − v∇tb)̸=⟩

= 2
α ⟨A∂t

y∆
−1
t (∇⊥

t ⊗ v ̸=), A(b⊗ b− v ⊗ v)̸=⟩
+ 2

α ⟨A∂
t
y∆

−1
t (∇⊥

t ⊗ b ̸=), A(b⊗ v − v ⊗ b)̸=⟩
≲ 2

α∥A(v, b) ̸=∥2L2∥A(v, b)∥L2 .

Recalling the bounds (4.12) and integrating in time we thus obtain that∫
ONLdτ ≲ µ−1ε3. (4.16)
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Estimates with an x-average in the second component: Let a1a2a3 ∈
{vvv, vbb, bbv, bvb}, then we need to estimate the trilinear products

⟨Aa1̸=, A(a
2
=∇ta

3
̸=)⟩ = ⟨Aa1̸=, A(a

2
=,1∂xa

3
̸=)⟩

≲ ∥Aa1̸=∥L2∥Aa2=,1∥L2∥A∂xa
3
̸=∥L2 .

Integrating in time and again using the bound (4.12) yields a control by∫
dτ⟨Aa1, A(a2=∇ta

3)⟩ ≲ µ−1ε3. (4.17)

The influence of the underlying x-averaged velocity and magnetic field on the
average-less parts can thus be easily controlled by the dissipation, provided
ϵ ≪ µ. In the following we focus on terms involving a2̸=.

vvv estimate: We first discuss the velocity non-linearity and use the alge-
bra property of HN and the bounds on A to estimate

⟨Av,Av̸=∇tv⟩ ≤ ∥Av∥L2∥Av ̸=∥L2∥A∇tv∥L2 .

Here, the contribution by ∥A∇tv∥L2 is square integrable in time due to the
dissipation (4.12), while ∥Av ̸=∥L2 is square integrable in time by the inviscid
damping estimates (4.11). Integrating in time thus yields a bound by∫

dτ⟨Av,A(v ̸=∇tv)⟩ ≲ µ−1ε3. (4.18)

vbb estimate: For the contributions by the vbb nonlinearity we intend to
argue similarly, but have to account for the lack of vertical magnetic dissipation
(which we compensate for by using the full fluid dissipation). We may split the
integral as

⟨Av,A(b̸=∇tb)⟩ =
∫

Av1A(b1,̸=∂x + b2,̸=∂
t
y)b1

+

∫
Av2A(b1,̸=∂x + b2,̸=∂

t
y)b2.

For the second term we integrate by parts to obtain∫
Av1A(b2,̸=∂

t
yb1) = −

∫
A∂t

yv1A(b2,̸=b1)−
∫

Av1A(∂t
yb2,̸=b1).

Furthermore, since b is divergence-free, it holds that ∂t
yb2 = −∂xb1 and hence

⟨Av,A(b̸=∇tb)⟩ ≤ ∥Av∥L2∥Ab̸=∥L2∥A∂xb∥L2 + ∥∂t
yv∥L2∥Ab ̸=∥L2∥Ab2∥L2 .

We may therefore estimate this term using the full fluid and horizontal magnetic
dissipation (4.12) and integrating in time yields a bound by∫

dτ⟨Av,A(b̸=∇tb)⟩ ≲ µ−1ε3. (4.19)
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bbv estimate: Finally, for the bbv contribution, we may again use the full fluid
dissipation and the algebra property of A (and HN ) to obtain a bound

⟨Ab,A(b ̸=∇tv)⟩ ≲ ∥Ab∥L2∥Ab ̸=∥L2∥A∇tv∥L2 .

Integrating in time and using (4.12) we thus obtain a bound by∫
dτ⟨Ab,A(b̸=∇tv)⟩ ≲ µ−1ε3. (4.20)

4.3.3 High frequency bvb term without x-average

Having established several straightforward estimates using the full fluid dissi-
pation, in this and the following subsections we establish bounds for the high
frequency (that is, AN terms as in (4.9)) terms involving bvb. For simplicity, we
write A = AN and aim to establish the estimate

⟨Ab,A(v ̸=∇tb)⟩ ≲ µ− 3
2 ε3.

We split the bvb term according to (non)vanishing x-averages:

⟨Ab,A(v ̸=∇tb)⟩ = ⟨Ab ̸=, A(v ̸=∇tb ̸=)̸=⟩
+ ⟨Ab ̸=, A(v ̸=∇tb=)̸=⟩
+ ⟨Ab=, A(v ̸=∇tb ̸=)=⟩.

Let us first consider the term without any x-averages, which can be written as

⟨Ab ̸=, A(v ̸=∇tb ̸=)⟩ =
∫

Ab1,̸=A((v1, ̸=∂x + v2,̸=∂
t
y)b1,̸=)

+

∫
Ab2,̸=A((v1,̸=∂x + v2,̸=∂

t
y)b2,̸=).

We estimate the second contribution using the algebra property of HN and that
∂t
yb2 = −∂xb1, since b is divergence-free:∫

dτ

∫
Ab2, ̸=A(v1, ̸=∂x + v2,̸=∂

t
y)b2,̸=

≤
∫

dτ∥Ab2,̸=∥L2(∥Av1,̸=∥L2∥A∂xb2,̸=∥L2 + ∥Av2,̸=∥L2∥A∂t
yb2,̸=∥L2)

≤
∫

dτ∥Ab2,̸=∥L2(∥Av1,̸=∥L2∥∂xb2,̸=∥L2 + ∥Av2,̸=∥L2∥A∂xb1,̸=∥L2).

Employing Hölder’s inequality this contribution can thus be estimated as∫
dτ

∫
Ab2,̸=A((v1,̸=∂x + v2,̸=∂

t
y)b2,̸=)

≤
∫

dτ∥Ab2,̸=∥L2∥Av ̸=∥L2∥A∂xb ̸=∥L2

≤ ∥Ab2,̸=∥L2L2∥Av ̸=∥L∞L2∥A∂xb̸=∥L2L2

≲ µ−1ε3.

(4.21)
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It remains to control the contribution by b1,̸=, which in view to the lack of
vertical resistivity is the hardest term to control. Since the velocity field v is
divergence-free, we observe that∫

Ab1,̸=(v ̸=∇tAb1,̸=) = 0.

Therefore, we obtain the following cancellations and introduce a splitting in
Fourier space:∫

Ab1,̸=A(v ̸=∇tb1, ̸=) =

∫
Ab1,̸=(A(v∇tb1,̸=)− (v ̸=∇tAb1,̸=))

=
∑

k,l,k−l ̸=0

∫∫
d(ξ, η)A(k, ξ)b1(k, ξ)

(A(k,ξ)−A(l,η))(ξl−ηk)√
(k−l)2+(ξ−η−(k−l)t)2

p1(k − l, ξ − η)b1(l, η)

= T +R+R.

Here, the Fourier regions

ΩT = {|k − l, ξ − η| ≤ 1
8 |l, η|},

ΩR = {|l, η| ≤ 1
8 |k − l, ξ − η|},

ΩR = { 1
8 |l, η| ≤ |k − l, ξ − η| ≤ 8|l, η|},

correspond to the the transport (T ) or low-high term, reaction (R) or high-low
term and the remainder (R) or high-high term. In the following we omit the ̸=
subscripts.

Transport term: Since |k − l, ξ − η| ≤ 1
8 |l, η| we obtain that |l, η| ≈ |k, ξ|.

Without loss of generality we assume that ξ ≤ η, since we can use either of the
following splittings

ξl − kη = (ξ − η)l − (k − l)η

= (ξ − η)k − ξ(k − l).

Thus using the second equality we estimate

T ≤ ∥∂yΛ−1
t p1∥L∞∥Ab1∥L2∥∂xAb1∥L2

+
∑
k,l ̸=0

∫∫
d(ξ, η)1ΩT

(12⟨t⟩(k∨l)≥ξ + 12⟨t⟩(k∨l)≤ξ)

·A(k, ξ)b1(k, ξ)
(A(k,ξ)−A(l,η))ξ(l−k)√
(k−l)2+(ξ−η−(k−l)t)2

p1(k − l, ξ − η)b1(l, η),

where we distinguished between 2⟨t⟩(k ∨ l) ≥ ξ and 2⟨t⟩(k ∨ l) ≤ ξ.
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The first case is estimated by using the dissipation and (4.11):∑
k,l ̸=0

∫∫
d(ξ, η)1ΩT

1ξ≤2(k∨l)⟨t⟩A(k, ξ)b1(k, ξ)

· (A(k,ξ)−A(l,η))ξ(l−k)√
(k−l)2+(ξ−η−(k−l)t)2

p1(k − l, ξ − η)b1(l, η)

≲ ⟨t⟩∥Ab1∥L2∥Λ−1
t ∂xp1∥L∞∥∂xAb1∥L2

≲ ∥Ab1∥L2∥Λ∂xp1∥L∞∥∂xAb1∥L2

≲ ∥Ab1∥L2∥Ap1∥L2∥∂xAb1∥L2 .

For the second case, 2⟨t⟩(k ∨ l) ≤ ξ, we need to estimate

(AN (k, ξ)−AN (l, η)) = (M(k, ξ)|k, ξ|N −M(l, η)|l, η|N )

= M(k, ξ)(|k, ξ|N − |l, η|N )

+M(l, η)(M(k,ξ)
M(l,η) − 1)|l, η|N .

By the mean value theorem, we obtain

|k, ξ|N − |l, η|N ≤ N |k − θl, ξ − θη|N−1|k − l, ξ − η|
≲ |k − l, ξ − η|(|l, η|N−1 + |k − l, ξ − η|N−1)

≲ |k − l, ξ − η||l, η|N−1.

For the differences inM we use that for a, b > 0 it holds that |ea−b−1| ≤ ea+b−1
and hence

|M1(k,ξ)
M1(l,η)

− 1| = | exp
(∫ t

0

|l|
l2+(η−ls)2 − |k|

k2+(ξ−ks)2 ds

)
− 1|

≤ | exp
(∫ t

0

|l|
l2+(η−ls)2 + |k|

k2+(ξ−ks)2 ds

)
− 1|.

Thus for η ≥ ξ ≥ 2t(k ∨ l) by integrating we obtain that

|M1(k,ξ)
M1(l,η)

− 1| ≤ exp

(
1
|l|

∫ t

0

1
1+( η

l −s)2 ds+
1
|k|

∫ t

0

1
1+( ξ

k−s)2
ds

)
− 1

≤ exp( 1η + 1
ξ )− 1

≲ 1
η + 1

ξ .

Therefore, we deduce that∑
k,l,k−l ̸=0

∫∫
d(ξ, η)1ΩT

1ξ≥2(k∨l)tA(k, ξ)b1(k, ξ)
(A(k,ξ)−A(l,η))ξ(l−k)√
(k−l)2+(ξ−η−(k−l)t)2

p1(k − l, ξ − η)b1(l, η)

≲ ∥Ab1∥L2∥Λ−1
t ∂xp1∥L∞∥Ab1∥L2

≲ ⟨t⟩−1∥Ab1∥L2∥Λ∂xp1∥L∞∥Ab1∥L2

≲ ⟨t⟩−1∥Ab1∥L2∥Ap1∥L2∥Ab1∥L2 ,
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where we used the estimate (4.11). Combining all estimates, we have derived
the following estimate of the transport term:∫

Tdτ ≲ ∥Ab1∥L∞L2∥Ap1∥L∞L2∥Ab1∥L2L2

≲ µ− 1
2 ε3.

(4.22)

Reaction term: Since |l, η| ≤ 1
8 |k− l, ξ− η| we obtain |k− l, ξ− η| ≈ |k, ξ|.

With the identity

ξl − kη = l(ξ − η − (k − l)t)− (k − l)(η − lt)

and A(k, ξ)−A(l, η) ≲ A(k − l, ξ − η) we infer

R =
∑

k,l,k−l ̸=0

∫∫
d(ξ, η)1ΩR

A(k, ξ)b1(k, ξ)
(A(k,ξ)−A(l,η))(l(ξ−η−(k−l)t)−(k−l)(η−lt))√

(k−l)2+(ξ−η−(k−l)t)2

· p1(k − l, ξ − η)b1(l, η)

≤ ∥Ab1∥L2∥A∂t
yΛ

−1
t p1∥L2∥∂xb1∥L∞

+ ∥Ab1∥L2∥AΛ−1
t p1∥L2∥∂t

y∂
2
xb1∥L∞

+ ∥∂xAb1∥L2∥AΛ−1
t p1∥L2∥∂t

y∂xb1∥L∞ .

We split ∂t
y = ∂y − t∂x and use the definition of the low-frequency multiplier

AN ′

µ to estimate

∥⟨∂x⟩2∂t
yb1∥L∞ ≤ ∥⟨∂x⟩2∂yb1∥L∞ + ∥⟨∂x⟩2t∂xb1∥L∞

≤ t∥ΛN ′
b1∥L2

≲ te−cµt∥AN ′

µ b1∥L2

≲ µ−1∥AN ′

µ b1∥L2 .

Therefore, integrating in time yields the estimate∫
Rdτ ≲ ∥Ab1∥L2L2

(
∥A∂t

yΛ
−1
t p1∥L2L2∥Ab1∥L∞L2

)
+ µ−1∥A∂xb1∥L2L2∥AΛ−1

t p1∥L2L2∥AN ′

µ b1∥L∞L2

≲ ε3µ− 3
2 .

(4.23)

R term: We consider the Fourier region where 1
8 |l, η| ≤ |k−l, ξ−η| ≤ 8|l, η|.

Thus, we have the bounds |k, ξ| ≲ |l, η| and A(k, ξ) ≲ A(l, η) ≈ A(k − l, ξ − η).
Furthermore, we note that

ξl − ηk ≤ |l, η|2,
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and thus estimate the remainder terms as

R =
∑

k,l,k−l ̸=0

∫∫
d(ξ, η)1ΩRA(k, ξ)b1(k, ξ)

(A(k,ξ)−A(l,η))(ξl−ηk)√
(k−l)2+(ξ−η−(k−l)t)2

p1(k − l, ξ − η)b1(l, η)

≲ ∥Ab1∥L2∥AΛ−1
t p1∥L2∥Λ2b1∥L∞

≲ ∥Ab1∥L2∥AΛ−1
t p1∥L2∥Ab1∥L2 .

Hence after integrating in time, we deduce that∫
R ≲ ∥Ab1∥L2L2∥

√
− Ṁ

MAp1∥L2L2∥Ab1∥L∞L2 ≲ µ− 1
2 ε3. (4.24)

Combining the estimates (4.21), (4.22), (4.23) and (4.24), we finally conclude
that

⟨Ab̸=, A(v ̸=∇tb̸=)̸=⟩ ≲ µ− 3
2 ε3. (4.25)

4.3.4 High frequency estimates for bvb terms with x-averages

In this subsection we aim to estimate the remaining terms in the bvb integrals,
which involve x-averages. We consider the two terms

⟨Ab̸=, A(v ̸=∇tb=)̸=⟩+ ⟨Ab=, A(v ̸=∇tb ̸=)=⟩
= ⟨Ab1,̸=, A(v ̸=∇tb1,=)̸=⟩+ ⟨Ab1,=, A(v ̸=∇tb1,̸=)=⟩,

where we used that b2,= = 0, since b is divergence-free. Using integration by
parts and the fact that v is divergence-free, we obtain that

⟨Ab1,̸=, v̸=∇tAb1,=⟩+ ⟨Ab1,=, v̸=∇tAb1,̸=⟩
= ⟨v ̸=,∇t(Ab1,=Ab1, ̸=)⟩ = 0,

and thus

⟨Ab1,̸=, A(v ̸=∇tb1,=)⟩+ ⟨Ab1,=, A(v ̸=∇tb1,̸=)⟩
= ⟨Ab1,̸=, A(v ̸=∇tb1,=)− v ̸=∇tAb1,=⟩+ ⟨Ab1,=, A(v ̸=∇tb1,̸=)− v ̸=∇tAb1, ̸=⟩

=
∑
k ̸=0

∫∫
d(ξ, η)A(k, ξ)b1(k, ξ)

(A(k,ξ)−A(0,η))(−kη)√
k2+(ξ−η−kt)2

p1(k, ξ − η)b1(0, η)

+
∑
k ̸=0

∫∫
d(ξ, η)A(0, ξ)b1(0, ξ)

(A(0,ξ)−A(k,η))(−kξ)√
k2+(ξ−η−kt)2

p1(k, ξ − η)b1(−k, η).

Again we split this integrals into the transport T , reaction R and remainder
terms R with the same definition of sets in Fourier space:

ΩT = {|ξ − η| ≤ 1
8 |η|},

ΩR = {|η| ≤ 1
8 |ξ − η|},

ΩR = { 1
8 |η| ≤ |ξ − η| ≤ 8|η|}.
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Transport term: Since |ξ − η| ≤ 1
8 |η| we obtain that |η| ≈ |ξ|.

In our estimates, we distinguish the cases ξ ∨ η ≤ 2k⟨t⟩ and ξ ∨ η ≥ 2k⟨t⟩.
In the first case, ξ ∨ η ≤ 2k⟨t⟩ we obtain a bound by∑

k ̸=0

∫∫
d(ξ, η)1ΩT

1ξ∨η≤k⟨t⟩A(k, ξ)b1(k, ξ)
(A(k,ξ)−A(0,η))kη√

k2+(ξ−η−kt)2
p1(k, ξ − η)b1(0, η)

+
∑
k ̸=0

∫∫
d(ξ, η)1ΩT

1ξ∨η≤k⟨t⟩A(0, ξ)b1(0, ξ)
(A(0,ξ)−A(k,η))kξ√

k2+(ξ−η−kt)2
p1(k, ξ − η)b1(−k, η)

≤ t∥Ab=∥L2∥∂2
xΛ

−1
t p1, ̸=∥L∞∥Ab1,̸=∥L2

≲ ∥Ab=∥L2∥Ap1,̸=∥L2∥Ab1,̸=∥L2 .

In the case ξ ∨ η ≥ 2k⟨t⟩, we instead estimate

A(k, ξ)−A(0, η) ≤ M(k, ξ)(ξ2 + k2)
N
2 − ηN

= (M(k, ξ)− 1)(ξ2 + k2)
N
2 + ((ξ2 + k2)

N
2 − ηN ).

Since ξ ≥ 2k⟨t⟩, in the first summand we may bound

M(k, ξ)− 1 = exp

(
−
∫ t

0

|k|
k2+(ξ−ks)2 ds

)
− 1

≲ 1
ξ ≲

1
η .

By the mean value theorem we further infer

(ξ2 + k2)
N
2 − ηN ≤ ((ξ − θη)2 + k2)

N−1
2 |k, ξ − η| ≲ |k, ξ − η|(ξ2 + k2)

N−1
2 .

Thus, using that k ≤ ξ ≲ η, we deduce that

A(k, ξ)−A(0, η) ≲ |k, ξ − η|ηN−1,

A(k, η)−A(0, ξ) ≲ |k, ξ − η|ηN−1,

where the proof for A(k, η)−A(0, ξ) is analogous. Finally, we obtain

⟨Ab ̸=,1ΩT
1η≥ktA(v ̸=∇tb=)⟩+ ⟨Ab=,1ΩT

1η≥ktA(v ̸=∇tb̸=)⟩

≲
∑
k ̸=0

∫∫
d(ξ, η)A(k, ξ)b1(k, ξ)

|k,ξ−η|ηN−1√
k2+(ξ−η−kt)2

p1(k, ξ − η)b1(0, η)

+
∑
k ̸=0

∫∫
d(ξ, η)A(0, ξ)b1(0, ξ)

|k,ξ−η|ηN−1√
k2+(ξ−η−kt)2

p1(k, ξ − η)b1(k, η)

≲ ∥Ab=∥L∞∥AΛ−1
t p1, ̸=∥L2∥Ab1,̸=∥L2

≲ ∥Ab=∥L∞∥AΛ−1
t p1, ̸=∥L2∥Ab1,̸=∥L2 ,

and integrating in time yields the desired bound:∫
⟨Ab̸=,1ΩT

A(v ̸=∇tb=)⟩+ ⟨Ab=,1ΩT
A(v ̸=∇tb ̸=)⟩dτ

≲ µ−1ε3.

(4.26)
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Reaction term: Since |η| ≤ 1
8 |ξ − η| we obtain |ξ − η| ≈ |ξ| and thus

R = ⟨Ab̸=,1ΩR
A((v ̸=∇tb=)− v ̸=∇tAb=)⟩+ ⟨Ab=,1ΩR

(A(v ̸=∇tb̸=)− v ̸=∇tAb ̸=)=⟩

≤
∑
k ̸=0

∫∫
d(ξ, η)1ΩR

A(k, ξ)b1(k, ξ)
(A(k,ξ)−A(0,η))kη√

k2+(ξ−η−kt)2
p1(k, ξ − η)b1(0, η)

+
∑
k ̸=0

∫∫
d(ξ, η)1ΩR

A(0, ξ)b1(0, ξ)
(A(0,ξ)−A(−k,η))kξ√

k2+(ξ−η−kt)2
p1(k, ξ − η)b1(−k, η)

≲ ∥Ab1, ̸=∥L2∥A∂xΛ
−1
t p1,̸=∥L2∥∂yb1,=∥L∞

+ ∥Ab1,=∥L2∥A∂y∂
−1
x Λ−1

t p1,̸=∥L2∥∂2
xb1,̸=∥L∞ .

Expressing ∂y = ∂t
y+t∂x in terms of the time-dependent derivatives, at this point

we require the splitting into high and low frequency estimates. More precisely,
using the additional time decay of the low-frequency part, we estimate

∥A∂y∂
−1
x Λ−1

t p1,̸=∥L2 ≤ ∥A∂t
y∂

−1
x Λ−1

t p1,̸=∥L2 + t∥AΛ−1
t p1, ̸=∥L2

≲ ∥Ap1,̸=∥L2 + t∥AΛ−1
t p1,̸=∥L2

and using the definition of AN ′

µ we can absorb the growth of the factor t at the
cost of a power of µ:

∥∂2
xb1,̸=∥L∞ ≤ ∥ΛN ′

b1,̸=∥L2

≲ e−cµt∥AN ′

µ b1,̸=∥L2

≲ µ−1⟨t⟩−1∥AN ′

µ b1,̸=∥L2 .

Thus we obtain

R ≲ ∥ANp1,̸=∥L2∥ANb1,=∥L2∥ANb1,̸=∥L2

+ µ−1∥ANb1,=∥L2∥AΛ−1
t p1,̸=∥L2∥AN ′

µ b1,̸=∥L2 .

Integrating in time then yields the estimate∫
Rdτ ≲ µ− 3

2 ε3. (4.27)

R term: The remainder term R can be estimated by the same argument as
in the case without x-averages in Subsection 4.3.3.

Combining the estimates (4.26), (4.27) and (4.25), we conclude that the bvb
term can be controlled as

⟨Ab,A(v ̸=∇tb)⟩ ≲ µ− 3
2 ε3. (4.28)

4.3.5 Low frequency estimates

In this subsection we establish the estimates on the low frequency errors. For
simplicity of presentation we present the proof of these estimates for the bvb
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nonlinearity. The estimates with an x-average in the second component are
analogous to the ones in Subsection 4.3.2. The arguments for the vvv, vbb, bbv
or ONL trilinear terms are also analogous.

We aim to establish the bound

⟨AN ′

µ b, AN ′

µ (v ̸=∇tb)⟩ ≲ µ− 1
2 ε3,

and, as in the previous section, separately discuss the transport, reaction and
remainder term.

For the transport term, we note that

v ̸=∇t = ∇⊥
t Λ

−1
t p1∇t

= ∇⊥Λ−1
t p1∇.

Hence, we may rewrite

⟨AN ′

µ b, AN ′

µ (v ̸=∇tb)⟩ = ⟨AN ′

µ b, AN ′

µ (∇⊥Λ−1
t p1, ̸=∇b)⟩.

In a first step, we estimate the b̸= term by using the algebra property of AN ′
:

⟨AN ′

µ b, AN ′

µ (∇⊥Λ−1
t p1,̸=∇b̸=)⟩

≤ ∥AN ′

µ b∥L2ecµxt
(
∥AN ′

∇⊥Λ−1
t p1, ̸=∥L2∥∇b̸=∥L∞+

∥∇⊥Λ−1
t p1,̸=∥L∞∥AN ′

∇b ̸=∥L2

)
≤ ∥AN ′

µ b∥L2

(
∥ANΛ−1

t p1,̸=∥L2∥AN ′

µ b ̸=∥L2 + ∥AN ′

µ Λ−1
t p1,̸=∥L2∥AN b̸=∥L2

)
.

Integrating in time then yields the estimate∫
dτ⟨AN ′

µ b, AN ′

µ (v ̸=∇tb ̸=)⟩ ≲ µ− 1
2 ε3. (4.29)

Furthermore, we estimate the b= term by partial integration and the algebra
property of AN ′

⟨AN ′

µ b, AN ′

µ (∇⊥Λ−1
t p1,̸=∇b=)⟩

= −⟨AN ′

µ b1,̸=, A
N ′

µ (∂xΛ
−1
t p1,̸=∂yb1,=)⟩

= ⟨∂xAN ′

µ b1,̸=, A
N ′

µ (Λ−1
t p1,̸=∂yb1,=)⟩

≤ ∥∂xAN ′

µ b1,̸=∥L2ecµt
(
∥AN ′

Λ−1
t p1,̸=∥L2∥∂yb1,=∥L∞

+ ∥Λ−1
t p1,̸=∥L∞∥∂N ′+1

y b1,=∥L2

)
≲ ∥∂xAN ′

µ b1,̸=∥L2

(
∥AN ′

µ Λ−1
t p1,̸=∥L2∥AN ′

b1,=∥L2

+ ∥AN ′

µ Λ−1
t p1,̸=∥L2∥ANb1,=∥L2

)
.

Integrating in time then yields that∫
dτ⟨AN ′

µ b̸=, A
N ′

µ (v ̸=∇tb=)⟩ ≲ µ− 1
2 ε3. (4.30)
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This concludes our proof of Proposition 4.5 and hence of Theorem 4.3. More
precisely, the claimed estimates for both AN and AN ′

µ are obtained by combining
the respective linear estimate (4.15), the high frequency nonlinear estimates
(4.16), (4.17), (4.18), (4.19), (4.20), (4.28), and the low frequency estimates
given in (4.29) and (4.30).

We emphasize that the stability threshold of 3
2 is determined by the estimates

for the action of the v ·∇tb nonlinearity in the estimate (4.28) and, in particular,
by the estimates of the reaction terms (4.23) and (4.27). These estimates are
expected to be optimal and together with the linear estimates of Section 4.2
highlight the effects of the lack of vertical resistivity.

The partial dissipation case considered in this article

κy = 0, νx = νy = κx > 0,

shows the large impact of (partial) magnetic resistivity on the behavior of the
MHD equations and the (de)stabilizing role of the magnetic field. As mentioned
following Theorem 4.3, more generally our methods of proof extend to the case
where κx is bounded below in terms of ν:

ν1/3y ≥ κx ≥ 1

2α
νy.

The complementary regime, where κx tends to zero quicker than νy remains an
interesting topic for future work. The limiting case, κx = 0, and the associated
instability is discussed in the following section.

4.4 Instability of the Non-Resistive MHD Sys-
tem

As a complementary result, in this section we consider the non-resistive MHD
equations and establish the instability estimates of Proposition 4.2.

4.4.1 Linear instability

We begin by studying the linearized MHD equations with isotropic viscosity
and vanishing resistivity:

∂tp1 − ∂x∂
t
x∆

−1
t p1 − α∂xp2 = ν∆tp1,

∂tp2 + ∂x∂
t
x∆

−1
t p2 − α∂xp1 = 0.

(4.31)

Lemma 4.6 (Quantitative linear instability of the non-resistive MHD equa-
tions). Under the assumptions of Proposition 4.2, for the linearized equations
(4.31) there exists initial data pin such that

∥p(t)∥HN ≥ t ν
8α2 ∥pin∥HN ,

∥p(t)∥HN−1 ≥ t ν2

32α4 ∥pin∥HN .
(4.32)
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Furthermore, for all solutions such that at time τ it holds p(τ) ∈ HN , then we
obtain

∥p(t)∥HN ≲ ⟨ν(t− τ)⟩∥p(τ)∥HN (4.33)

for all t > τ .

Proof of Lemma 4.6. After a Fourier transform (4.31) yields

∂tp1(k) = − t− ξ
k

1+(t− ξ
k )2

p1(k) + αkp2(k)− ν(k2 + (ξ − kt)2)p1(k),

∂tp2(k) =
t− ξ

k

1+(t− ξ
k )2

p2(k)− αkp1(k).
(4.34)

Here, in order to simplify notation we have relabeled p2 7→ ip2 so that we obtain
only real-valued coefficient functions.

For the lower bound we fix k = −1 and ξ ≥ 3α2

ν and choose p1(0, k, ξ) = 0,
p2(0, k, ξ) = 1. In this case, the Duhamel integral formula yields that

p1 = −α

∫ t

0

dτ1

√
1+(τ1+ξ)2

1+(t+ξ)2 exp(−ν(t− τ + 1
3 ((t+ ξ)3 − (τ1 + ξ)3)))p2(τ1),

and that

p2 −
√

1+(t+ξ)2

1+ξ2

= −αk

∫ t

0

dτ2

√
1+(t+ξ)2

1+(τ2+ξ)2 p1(τ2)

= −α2

∫ t

0

dτ2

∫ τ1

0

dτ1

√
1+(t+ξ)2

√
1+(τ1+ξ)2

1+(τ2+ξ)2 p2(τ1)

· exp(−ν(τ2 − τ1 +
1
3 ((τ2 + ξ)3 − (τ1 + ξ)3)))

Denoting |p2|∞(t) = sup0≤τ≤t |p2(τ)|, the double integral term can be bounded
by

α2|p2|∞
∫ t

0

dτ1

∫ t

τ2

dτ2 exp(−ν(τ2 − τ1 +
1
3 ((τ2 + ξ)3 − (τ1 + ξ)3))).

Furthermore, we may estimate∫ t

0

dτ1

∫ t

τ2

dτ2 exp(−ν(τ2 − τ1 +
1
3 ((τ2 + ξ)3 − (τ1 + ξ)3)))

=

∫ t

0

dτ1

∫ t

τ2

dτ2
1+(τ2+ξ)2

1+(τ2+ξ)2 exp(−ν(τ2 − τ1 +
1
3 ((τ2 + ξ)3 − (τ1 + ξ)3)))

≤
∫ t

0

dτ1

∫ t

τ2

dτ2
1+(τ2+ξ)2

1+(τ1+ξ)2 exp(−ν(τ2 − τ1 +
1
3 ((τ2 + ξ)3 − (τ1 + ξ)3)))

≤ 1
ν

∫ t

0

dτ1
1

1+(τ1+ξ)2 [exp(−ν(τ2 − τ1 +
1
3 ((τ2 + ξ)3 − (τ1 + ξ)3)))]τ2=t

τ2=τ1

≤ 1
νξ .
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Hence, we obtain that

|p2 −
√

1+(t+ξ)2

1+ξ2 p2,in| ≤ α2

νξ |p2|∞ =: c|p2|∞,

For later reference we note that c = α2

νξ satisfies 0 < c ≤ 1
3 and hence 0 < c

1−c ≤
1
2 .

Then it follows that

|p2| ≤ c|p2|∞ +

√
1+(t+ξ)2

1+ξ2 |p2,in|,

and, since ξ ≥ 0, the function
√

1+(t+ξ)2

1+ξ2 is monotonly increasing in time. This

implies that

|p2|∞ ≤ 1

1− c

√
1+(t+ξ)2

1+ξ2 |p2,in|

Hence we infer

|p2 −
√

1+(t+ξ)2

1+ξ2 p2,in| ≤
c

1− c

√
1+(t+ξ)2

1+ξ2 |p2,in|

≤ 1

2

√
1+(t+ξ)2

1+ξ2 |p2,in|.

Since 0 < c
1−c ≤ 1

2 , p2 is comparable to
√

1+(t+ξ)2

1+ξ2 p2,in.

We next keep k = −1 fixed but combine this construction for different ξ.

More precisely, let a(ξ) be such that suppξ(a(ξ)) ⊂ [3α2

ν , 4α2

ν ] and
∫
(2 + ξ2)

N
2 a2(ξ) =

1. Then for the initial data

pin(k, ξ) = 1k=−1a(ξ)

it holds that

∥pin∥HN = 1,

∥p(t)∥HN ≥ t ν
8α2 ,

∥p(t)∥HN−1 ≥ t ν2

32α4 ,

which proves (4.32).
We prove the upper bound in three steps

1. Let t ≥ τ ≥ ν−1 + ξ
k , then we estimate |p|(t) ≲ ⟨ν(t− τ)⟩|p|(τ).

2. Let ν−1 + ξ
k ≥ t ≥ τ ≥ −ν−1 + ξ

k , then we estimate |p|(t) ≲ |p|(τ).

3. Let −ν−1 + ξ
k ≥ t ≥ τ , then we estimate |p|(t) ≲ |p|(τ).

From (1-3) estimate (4.33) follows directly. In the following, we prove (1-3).
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1. Let t ≥ τ ≥ ν−1 + ξ
k . Then we obtain

∂t|p|2 ≤ 2
t− ξ

k

1+(t− ξ
k )2

|p2|2

+ (−2
t− ξ

k

1+(t− ξ
k )2

− 2νk2(1 + (t− ξ
k )

2))|p1|2

≤ 2
t− ξ

k

1+(t− ξ
k )2

|p2|2.

Thus we obtain by Gronwall’s Lemma

|p|2(t) ≤ 1+(t− ξ
k )2

1+(τ− ξ
k )2

|p|2(τ)

≤ 1+(τ− ξ
k )2+(t− ξ

k )2−(τ− ξ
k )2

1+(τ− ξ
k )2

|p|2(τ)

≤ (1 +
(t− ξ

k )2−(τ− ξ
k )2

1+(τ− ξ
k )2

)|p|2(τ)

≤ 2⟨ν(t− τ)⟩2|p|2(τ).

2. Let ν−1 + ξ
k ≥ t ≥ τ ≥ −ν−1 + ξ

k . We define the energy

E = |p|2 + 2
αk

s
1+s2 p1p2.

As α > 1
2 , E is positive definite with

(1− 1
2α )|p|

2 ≤ E ≤ (1 + 1
2α )|p|

2.

Then we derive in time and infer

∂tE + νk2(1 + s2))p21 = 2
αk

1−s2

(1+s2)2 p1p2

+ 2
ανksp1p2

≤ 2
αk

1
1+s2 p1p2

+ 2
ανp

2
2 + νk(1 + s2)p21.

This further implies that

∂tE ≲ ( 1
1+s2 + ν)E.

By Gronwall’s lemma we infer

E(t) ≤ exp(C

∫ t

τ

1
1+τ2

1
+ νdτ1)E(τ)

≤ exp(C(π + 2νν−1)E(τ)

≲ E(τ).

Therefore, we obtain that

|p|(t) ≲ |p|(τ).
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3. Let −ν−1 + ξ
k ≥ t ≥ τ . Then we obtain that

∂t|p|2 ≤ 2
t− ξ

k

1+(t− ξ
k )2

|p2|2

+ (−2
t− ξ

k

1+(t− ξ
k )2

− 2νk2(1 + (t− ξ
k )

2))|p1|2

≤ 0.

Thus we arrive at the desired estimate

|p|(t) ≲ |p|(τ).

4.4.2 Nonlinear norm inflation

We next consider the nonlinear non-resistive MHD equations in their perturba-
tive form around the stationary solution (4.2):

∂tp1 − ∂x∂
t
x∆

−1
t p1 − α∂xp2 = ν∆tp1 +∇⊥

t Λ
−1
t (b∇tb− v∇tv),

∂tp2 + ∂x∂
t
x∆

−1
t p2 − α∂xp1 = ∇⊥

t Λ
−1
t (b∇tv − v∇tb).

(4.35)

The following lemma establishes the norm inflation result of Proposition 4.2.

Lemma 4.7 (Nonlinear norm inflation for the non-resistive MHD equations).
Under the same assumptions of Proposition 4.2, we consider the non-resistive
nonlinear MHD equations (4.35). Then for all C = C(ν) > 1 there exists ε0 > 0
such that for all 0 < ε < ε0 there exists initial data pin such that

∥pin∥HN = ε

and

∥p∥L∞HN ≥ εC.

Proof. For the sake of contradiction we assume that there exists ε0 > 0 such
that for all 0 < ε ≤ ε0 and for any choice of initial data with ∥pin∥HN = ϵ it
holds that

∥p∥L∞HN ≤ εC.

Our plan is to choose initial data such that for a choice of ε and t we obtain
a contradiction to this bound. In particular, we choose pin as the data of the
linear instability result, Lemma 4.6, such that the associated linear solution plin
satisfies

∥pin∥HN = ε,

∥plin(t)∥HN−1 ≥ t ν2

32α4 .
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Let S(τ, t) be the solution operator for the linearized system. Then in view
of (4.33) we have the estimate

∥S(τ, t)∥HN→HN ≲ ⟨ν(t− τ)⟩ ≤ ⟨νt⟩. (4.36)

Thus, since

∂t(p− plin) ≤ L(p− plin) +NL[p],

we deduce that

∥p− plin∥2HN−1 ≤
∫ t

0

∥S(τ, t)∥HN→HN ∥p− plin∥HN−1∥p∥HN−1∥∇tp∥HN−1

≲ ∥p− plin∥L∞HN−1∥p∥L∞HN−1∥p∥L∞HN 2

∫ t

0

τ⟨ντ⟩

≲ t2⟨νt⟩ε2C2∥p− plin∥L∞HN−1 .

This yields the estimate

∥p− plin∥L∞HN−1 ≤ C̃t2⟨νt⟩ε2C2,

for some C̃. Finally, we obtain

∥p∥HN−1 ≥ ∥plin∥HN−1 − ∥p− plin∥L∞HN−1

≥ ∥plin∥HN−1 − t2⟨νt⟩ε2C̃C2

≥ tε( ν2

32α4 − t2⟨νt⟩εC2).

This completes our proof by contradiction provided this term is large enough

for a given small ε and suitable time. Indeed for the choice ε ≤ 1
8

ν6

323C4C̃α10
at

the time t = 2C 32α4

ν2 it holds that

∥p∥HN−1 ≥ 1
2 t

ν2

32α4 ε ≥ Cε.

This concludes our proof of the nonlinear norm inflation and hence completes
our proof of Proposition 4.2.

The behavior of the MHD equations and, in particular, the interaction of
shear flows, the magnetic field and dissipation are an area of current active
research [Lis20, Dol24, ZZ24, KZ1]. However, prior works have focused on cases
where the resistivity is at least as strong as the fluid viscosity and where thus the
behavior is closely related to that of the Navier-Stokes equations. In contrast,
the non-resistive MHD equations exhibit additional instability, as for instance
shown in Proposition 4.2.

Motivated by this dichotomy, in this article we have studied the anisotropic,
partial dissipation regime

κy = 0, κx = νx = νy
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and the associated stability threshold in the inviscid limit. As shown in The-
orem 4.3 and highlighted in the estimates of Sections 4.2, 4.3.4 and 4.3.3, this
partial dissipation regime behaves qualitatively differently than both the fully
dissipative case and the non-resistive case. Moreover, our analysis crucially used
the coupling of the velocity field and magnetic field induced by the underlying
magnetic field, which allowed us to obtain improved estimates for the magnetic
field despite the lack of the symmetry of the dissipation.

Partial, anisotropic dissipation in the MHD equations is thus shown to give
rise to distinct regimes with different (in)stability properties and demonstrates
an intricate interplay of shear dynamics, magnetic interaction and anisotropic
dissipation. A more complete understanding of all these regimes, the case of re-
sistivity vanishing faster than viscosity and a characterization of the (in)stability
properties of the ideal MHD equations remain exciting questions for future re-
search.
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Chapter 5

Sobolev Stability for the 2D
MHD Equations in the
Non-Resistive Limit

This chapter is the preprint [K].

NIKLAS KNOBEL

Abstract. This chapter considers the stability of the 2D magneto-
hydrodynamics (MHD) equations close to a combination of Couette
flow and a constant magnetic field. We consider the ideal conduc-
tor limit for the case when viscosity ν is larger than resistivity κ,
ν ≥ κ > 0. For this regime, we establish a bound on the Sobolev
stability threshold. Furthermore, for κ ≤ ν3 this system exhibits
instability, which leads to norm inflation of size νκ− 1

3 .

5.1 Introduction

The equations of magnetohydrodynamics (MHD)

∂tV + V · ∇V +∇Π = ν∆V +B · ∇B,

∂tB + V · ∇B = κ∆B +B · ∇V,

∇ · V = ∇ ·B = 0,

(t, x, y) ∈ R+ × T× R =: Ω,

(5.1)

model the evolution of a magnetic field B : Ω → R2 interacting with the velocity
V : Ω → R2 of a conducting fluid. The MHD equations are a common model
used in astrophysics, planetary magnetism and controlled nuclear fusion [Dav16].
The quantities ν, κ ≥ 0 correspond to fluid viscosity and magnetic resistivity.
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The pressure Π : Ω → R ensures that the velocity remains divergence-free. A
fundamental problem of fluid dynamics and plasma physics is the stability and
long-time behavior of solutions to equation (5.1) and in particular stability of
specific solutions. We consider the combination of an affine shear flow, called
Couette flow, and a constant magnetic field:

Vs = ye1,

Bs = αe1.

In particular, the solution combines the effects of mixing due to shear and
coupling by the magnetic field. The Couette flow mixes any perturbation, which
leads to increased dissipation rates, called enhanced dissipation, and stabilizes
the equation. The coupling with a constant magnetic field propagates this
mixing to magnetic perturbations. However, the magnetic field weakens the
mixing, especially if viscosity is larger than resistivity, inviscid damping gets
counteracted by algebraic growth for specific time regimes.

In the related case of the Navier-Stokes equation, that is when no magnetic
field is present, one observes turbulent solutions as viscosity reaches small values.
In contrast, the linearized problem around Couette flow is stable for all values of
the viscosity. These phenomena are known as the Sommerfeld paradox [LL11]
and highlight instability due to nonlinear effects. In [BM15a, DM23, DZ21,
BM14, IJ13] various authors show sharp stability in Gevrey 2 spaces (spaces
between C∞ and analytic) for the inviscid case ν = 0. The nonlinear instability
can be suppressed by the viscosity for initial data sufficiently small in Sobolev
spaces, ensuring stability [BVW18, MZ22, BGM17].

When considering the MHD equations without Couette flow, the constant
magnetic field stabilizes the equation. The dynamics of small initial perturba-
tions of the ideal MHD equation around a strong enough magnetic field is close
to the linearized system [BSS88]. For stability in several dissipation regimes we
refer to [WZ17, RWXZ14, HXY18, RWXZ14, Sch88, CF23, Koz89] and refer-
ences therein. However, global in time wellposedness for the non-resistive case
is still open (see the discussion in [CF23]). Furthermore, a shear flow leads to
qualitatively different behavior and instabilities [HT01, HHKL18].

Recently, the MHD equation around Couette flow has gathered significant
interest [Lis20, KZ1, ZZ24, Dol24, KZ2]. Already on a linear level, the behavior
of the MHD changes for different values of ν and κ. In [Lis20] Liss proved the
first stability threshold for the MHD equations. He considered the full dissipa-
tive regime of κ = ν > 0 and proved the stability of the three-dimensional MHD
equation for initial data which is sufficiently small in Sobolev spaces. For the
analogous two-dimensional problem, Dolce [Dol24] proved stability in the more
general setting of 0 < κ3 ≲ ν ≤ κ. In [KZ2] Zillinger and the author considered
the case of only horizontal resistivity and full viscosity and established stability
for small data in Sobolev spaces. For the regime of vanishing viscosity ν = 0
and non-vanishing resistivity κ > 0, in [KZ1] we constructed a linear stability
and instability mechanism around nearby traveling waves in Gevrey 2 spaces.
In a corresponding nonlinear stability result, Zhao and Zi [ZZ24] proved the
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almost matching nonlinear result of Gevrey σ stability for 1 ≤ σ < 2 and for
sufficiently small perturbations.

The results mentioned above on stability around Couette flow focus on the
setting when resistivity is larger than viscosity ν ≤ κ. Indeed in the setting
ν > 0 and κ = 0, the magnetic effects dominate leading to a linear instability
mechanism and thus a growth of the magnetic field by νt for specific initial data
[KZ2].

In this paper, we consider the setting 0 < κ ≤ ν. In particular, this also
includes the non-resistive limit κ ↓ 0 independent of ν. To the author’s knowl-
edge the stability of the regime κ < ν has not previously been studied for the
MHD equation around Couette flow. To state the main result, we define the
perturbative unknowns

v(x, y, t) = V (x+ yt, y, t)− Vs,

b(x, y, t) = B(x+ yt, y, t)−Bs,

where the change of variables x 7→ x + yt follows the characteristics of the
Couette flow. For these unknowns, equation (5.1) becomes

∂tv + v2e1 − 2∂x∆
−1
t ∇tv2 = ν∆tv + α∂xb+ b∇tb− v∇tv −∇tπ,

∂tb− b2e1 = κ∆tb+ α∂xv + b∇tv − v∇tb,

∇t · v = ∇t · b = 0.

(5.2)

Due to the change of variables the spatial derivatives become time-dependent,
i.e. ∂t

y = ∂y − t∂x, ∇t = (∂x, ∂
t
y)

T and ∆t = ∂2
x + (∂t

y)
2.

For equation (5.2) we establish Lipschitz stability for initial data which is
sufficiently small in Sobolev spaces, in the sense that there exists a bound on
the initial data ε0 = ε0(ν, κ) and a Lipschitz constant L = L(ν, κ) such that for
initial data which satisfies

∥(v, b)in∥HN = ε ≤ ε0,

the corresponding solution is globally bounded in time by

∥(v, b)(t)∥HN ≤ Lε.

For the non-resistive case, κ = 0, global wellposedness is an open problem and
so Lipschitz stability in Sobolev spaces is unclear. Thus, naturally the question
arises, which ε0 and L are optimal and how they behave in the limit ν, κ ↓ 0.
We denote a Sobolev stability threshold as γ1, γ2 ∈ R, such that for ε0 =
c0ν

γ1κγ2 with small c0 > 0 we obtain

∥(v, b)in∥HN ≤ c0ν
γ1κγ2 → stability,

∥(v, b)in∥HN ≫ c0ν
γ1κγ2 → possible instability.

This extends the common convention in the field (eg. see [BVW18]) to allow for
two independent parameters ν and κ. In particular, it agrees with the common
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convention when restricting to the case ν ≈ κ. It allows us to discuss cases
where κ tends to zero much quicker than ν. Establishing a possible instability
is highly nontrivial since for the nonlinear setting it is difficult to construct
solutions that exhibit norm inflation. To the author’s knowledge, there does
not exist any nonlinear instability result for the MHD equation around Couette
flow in Sobolev spaces.

For accessibility and simplicity of notation, we state our main result as the
following theorem (see Theorem 1 for a detailed description).

Theorem 5.1. Consider α > 1
2 , N ≥ 5 and a small enough constant c0 =

c0(α) > 0. Let 0 < κ ≤ ν ≤ 1
40 (1 −

1
2α )

6
5 , then we obtain Sobolev stability for

initial data which is sufficiently small in Sobolev spaces, where the estimates
qualitatively differ for the regimes κ ≳ ν3 and κ ≲ ν3. More precisely:

• In the regime of ν3 ≲ κ, for all initial data which satisfy

∥(v, b)in∥HN = ε ≤ c0ν
1
12κ

1
2 ,

the global in time solution (v, b) of (5.2) satisfies the Lipschitz bound

sup
t>0

∥(v, b)(t)∥HN ≲ ε.

• In the regime of ν3 ≳ κ, for all initial data which satisfy

∥(v, b)in∥HN = ε ≤ c0ν
− 11

12κ
5
6 ,

the global in time solution (v, b) of (5.2) satisfies the Lipschitz bound

sup
t>0

∥(v, b)(t)∥HN ≲ νκ− 1
3 ε.

In particular, we obtain Lipschitz stability for the Lipschitz constant L ≈ max(1, νκ− 1
3 )

for the smallness parameter ε0 ≈ min(ν
1
12κ

1
2 , ν−

11
12κ

5
6 ).

In the proof, we employ an energy method similar to [BBZD23, MZZ23,
Zil21b, Dol24, KZ2]. In the following, we outline the main challenges and nov-
elties of the proof:

• The imbalance of resistivity κ and viscosity ν yields two cases ν3 ≲ κ and
ν3 ≳ κ (or equivalently 1 ≲ νκ− 1

3 or 1 ≳ νκ− 1
3 ). These cases give different

values for L, namely 1 and νκ− 1
3 . By Proposition 5.3, the norm inflation

of νκ− 1
3 appears in the linear dynamics and thus is sharp.

• We consider the case ν3 ≳ κ. On certain time scales the viscosity is so
strong that fluid effects get suppressed while the effects of the magnetic
field dominate. Thus, the term ∂tb = e1b2 in (5.1) generates algebraic
growth in specific regimes (see Subsection 5.2). Estimating this linear ef-

fect yields the norm inflation by L = νκ− 1
3 . The algebraic growth appears

on different time scales depending on the frequency, a precise estimate of
the nonlinear terms is necessary.
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• For the case ν3 ≲ κ the algebraic growth is bounded by a finite constant.
In the subcase ν = κ the sum of the threshold parameters is γ1 + γ2 =
7
12 which is a slight improvement over 2

3 in [Dol24]. This improvement
is attained by the choice of our adapted unknowns which changes the
structure of the nonlinearity.

• In the proof of Theorem 5.1 we perform a low and high frequency decom-
position a = ahi + alow. For high frequencies, the nonlinear term consist
of alow∇tahi, called transport term and ahi∇ta, called reaction term (in-
cluding hi − hi interactions). Compared to the Navier-Stokes equation,
in the case of the MHD equation, it is vital to bound the transport term
precisely. In particular, for κ ≲ ν3 the previously mentioned algebraic
growth affects the estimate of the transport term strongly.

• The threshold is determined by the nonlinear term v∇tb = Λ−1
t ∇⊥p1∇b

acting on b in (5.2), for the natural unknown p1 = Λ−1
t ∇⊥v (which we

discuss later in more detail). In our estimates we rely on two stabilizing
effects, the strong viscosity of v and the Λ−1

t in front of p1. For the non-
linear term v∇tb both effects fall onto v. Due to the weaker integrability
of the b this term determines the threshold after integrating in time.

With the main challenges in mind, let us comment on the results:

• The size of the constant magnetic field α > 1
2 results in a strong interaction

between v and b. Due to this interaction, the decay in v and growth in b are
in balance (see Lemma 5.2). Constants may depend on α and degenerate
as α ↓ 1

2 . For example we obtain limα↓ 1
2
c0(α) = 0.

• Figure 5.1 shows which areas stability has been proven. The graphic
shows only qualitative behavior and after rescaling we obtain the same
graphic. The resistivity κ is on the vertical axis and the viscosity ν is on
the horizontal axis. We prove stability for the regime 0 < κ ≤ ν, which we
divide into two segments: ν3 ≲ κ in orange and ν3 ≳ κ in red. In [Dol24]
Dolce considered the regime of 0 < ( 16α κ)3 ≤ ν ≤ κ, which is in blue. The
authors of [ZZ24] considered the line ν = 0 which is in purple. The black
line corresponds to ν = κ > 0 of [Lis20].

Stability for the regimes 0 < ν ≤ ( 16α κ)3, κ = 0 < ν and κ = ν = 0 remain
open. For the set 0 < ν ≪ κ3, we expect that an adjusted application of
the methods used in this article yield stability. We expect stability for the
case κ = 0 and 0 < ν to be very difficult since we obtain linear growth for
the p2 variable. For Λ−1

t p2 we obtain linear stability but then there is no
time decay in the magnetic field and so we lack an important stabilizing
effect. In the inviscid case, κ = ν = 0 the linearized system is stable in the
p variables. However, due to the lack of dissipation, it is very challenging
to bound the nonlinear terms.

• Our threshold consists of parameters γ1 and γ2. An alternative notation
is to impose the relation ν ≈ κδ for some 0 ≤ δ ≤ 1. With that convention
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Figure 5.1: Sketch of areas with results for stability.

we obtain stability if ε ≤ c0κ
γ(δ) for

γ =

{
1
2 + δ

12 δ ≥ 1
3

5
6 − 11

12δ otherwise.

The remainder of this article is structured as follows:

• In Section 5.2 we discuss the linearized system. We identify two different
time regions where “circular movement” or “strong viscosity” determine
the linearized behavior. We estimate both effects separately and then
establish the estimates for the linearized system.

• In Section 5.3 we prove the main theorem. We employ a bootstrap ap-
proach, where we control errors in Proposition 5.4. The main difficulty is
to bound the linear growth and the nonlinear effect of v∇tb acting on b.

Notations and Conventions

For a, b ∈ R we denote their minimum and maximum as

min(a, b) = a ∧ b,

max(a, b) = a ∨ b.

We write f ≲ g if f ≤ Cg for a constant C independent of ν and κ. Furthermore,
we write f ≈ g if f ≲ g and g ≲ f . We denote the Lebesgue spaces Lp =
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Lp(T × R) and the Sobolev spaces HN = HN (T × R) for some N ∈ N. For
time-dependent functions, we denote LpHs = Lp

tH
s as the space with the norm

∥f∥LpHs =
∥∥∥f∥Hs(T×R)

∥∥
Lp(0,T )

, (5.3)

where omit writing the T . We write the time-dependent spatial derivatives

∂t
y = ∂y − t∂x,

∇t = (∂x, ∂
t
y)

T ,

∆t = ∂2
x + (∂t

y)
2,

and the half Laplacians as

Λ = (−∆)
1
2 ,

Λt = (−∆t)
1
2 .

The function f ∈ HN is decomposed into its x average and the orthogonal
complement

f=(y) =

∫
f(x, y)dx,

f̸= = f − f=.

The adapted unknowns

For the following, it is useful to change to the unknowns p1, ̸= = Λ−1
t ∇⊥

t v ̸= and
p2,̸= = Λ−1

t ∇⊥
t b ̸=. However, since Λ−1

t ∇⊥
t is not a bounded operator on the x

average, we define

p1,̸= = Λ−1
t ∇⊥

t v ̸=,

p1,= = v1,=,

p2,̸= = Λ−1
t ∇⊥

t b ̸=,

p2,= = b1,=.

Thus (5.2) can be equivalently expressed as

∂tp1 − ∂x∂
t
y∆

−1
t p1 − α∂xp2 = ν∆tp1 + Λ−1

t ∇⊥
t (b∇tb− v∇tv),

∂tp2 + ∂x∂
t
y∆

−1
t p2 − α∂xp1 = κ∆tp2 + Λ−1

t ∇⊥
t (b∇tv − v∇tb),

p|t=0 = pin.

(5.4)

These unknowns are particularly useful since

∥Ap1∥L2 = ∥Av∥L2 ,

∥Ap2∥L2 = ∥Ab∥L2 ,
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for all Fourier multipliers A such that one side is finite. We note that we can
recover v ̸= and b̸= from p̸= by

v ̸= = −Λ−1
t ∇⊥

t p1,̸=

b ̸= = −Λ−1
t ∇⊥

t p2,̸=.

The operator Λ−1
t ∇⊥

t can be seen as the perpendicular Riesz transform shifted
in time on frequency space applied to either a vector or a scalar. It satisfies
(Λ−1

t ∇⊥
t ) ◦ (Λ−1

t ∇⊥
t ) = − Id in HN .

5.2 Linear Stability and Norm Inflation

In this section, we consider the behavior of the linearized version of (5.4):

∂tp1 − ∂x∂
t
y∆

−1
t p1 − α∂xp2 = ν∆tp1,

∂tp2 + ∂x∂
t
y∆

−1
t p2 − α∂xp1 = κ∆tp2.

(5.5)

For this equation, we establish the following proposition:

Proposition 5.2 (Linear energy estimate). Consider α > 1
2 , N ≥ 0 and 0 <

κ ≤ ν. Let pin ∈ HN with pin,= =
∫
pindx = 0, then the solution p of (5.5)

satisfies the bound

∥p(t)∥HN ≲ e−cκ
1
3 t(1 + νκ− 1

3 )∥pin∥HN . (5.6)

Furthermore, we obtain for specific initial data norm inflation of νκ− 1
3 . The

proof uses Lemma 3 from [KZ2].

Proposition 5.3 (Linear norm inflation). Consider α > 1
2 , N ≥ 1 and ν ≥

max(2κ, κ
1
3 ), then there exist initial data pin and such that at the time T = κ− 1

3

the solution p of (5.5) satisfies

∥p(T )∥HN ≳ νκ− 1
3 ∥pin∥HN . (5.7)

For the proof of the propositions, we perform a Fourier transform (x, y) 7→
(k, ξ) and replace p1 by ip1. Hence the system (5.5) can be equivalently (for
k ̸= 0) written as

∂tp1 = − t− ξ
k

1+(t− ξ
k )2

p1 − αkp2 − νk2(1 + (t− ξ
k )

2)p1,

∂tp2 =
t− ξ

k

1+(t− ξ
k )2

p2 + αkp1 − κk2(1 + (t− ξ
k )

2)p2.
(5.8)

Here, with slight abuse of notation, we omit writing the Fourier transformation.
This equation has several effects that appear in different regimes of t− ξ

k , which

we discuss in the following. The effect of circular movement appears for |t− ξ
k | ≲

ν−1 and the effect of strong viscosity for ν−1 ≲ |t − ξ
k | ≲ κ− 1

3 . Then before
proceeding to the proof of the propositions, we briefly sketch these effects.
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Circular movement

To highlight the effect of the constant magnetic field α in (5.5) we consider the
toy model

∂tp1 = −αkp2,

∂tp2 = αkp1.
(5.9)

This is solved by

p(t) =

(
cos(αkt) − sin(αkt)
sin(αkt) cos(αkt)

)
pin.

We call this effect of the constant magnetic field (5.9) circular movement, which
leads to a transfer between p1 and p2. This circular movement is counteracted
by viscosity for times away from ξ

k .

Effect of strong viscosity

Let us consider the case when 0 < κ ≪ ν and for simplicity of notation let k = 1
and ξ = 0. Due to the viscosity, we obtain p1 ≈ 0 for large times t ≥ t0 ≫ 1.
Then from (5.8) we deduce the toy model

∂tp2 = ( t
1+t2 − κ(1 + t2))p2. (5.10)

The first term in (5.10) leads to linear growth until the resistivity is strong
enough for the second term to take over. This is seen in the explicit solution of
(5.10)

p2(t) =
⟨t⟩
⟨t0⟩ exp

(
−κ

∫ t

t0

1 + τ2 dτ

)
p2(t0).

This is estimated by

p2(t) ≲ t−1
0 κ− 1

3 e−cκ
1
3 (t−t0)p2(t0),

which corresponds to the maximal growth which we obtain. In the following,
we will see that t0 ≈ ν−1 is the time after which viscosity dominates. The
reader may expect that the enhanced dissipation timescale ν−

1
3 would be the

relevant timescale, but the combination of circular movement and the viscosity
gives enough decay for p2 such that the linear growth gets suppressed until the
time ν−1.

Proof of Proposition 5.2

Proof. For simplicity of notation, we introduce the new variable s = t− ξ
k and

initial time sin = − ξ
k . Then equation (5.8) reads

∂sp1 = − s
1+s2 p1 − αkp2 − νk2(1 + s2)p1,

∂sp2 = s
1+s2 p2 + αkp1 − κk2(1 + s2)p2.
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Further we change the unknown to p̃ = exp(κ2k
2(s − sin + 1

3 (s
3 − s3in)))p. For

κ̃ = κ
2 and ν̃ = ν − κ

2 , this yield the equation

∂sp̃1 = − s
1+s2 p̃1 − αkp̃2 − ν̃k2(1 + s2)p̃1,

∂sp̃2 = s
1+s2 p̃2 + αkp̃1 − κ̃k2(1 + s2)p̃1.

Let us denote s0 := ν−1 and in the following, we distinguish between times
|s| ≤ s0 and |s| ≥ s0. We first consider the case sin ≤ −s0. For |s| ≤ s0, the
circular movement is not suppressed by the viscosity.

We define the energy E = |p̃|2 + 1
αk

2s
1+s2 p̃1p̃2, then E is a positive quadratic

form due to our assumption α > 1
2 and satisfies

(1− 1
2αk )|p̃|

2 ≤ E ≤ (1 + 1
2αk )|p̃|

2.

We calculate the time derivative

∂sE + ν̃k2(1 + s2)p̃21 + κ̃k2(1 + s2)p̃22

= 1
αk∂s(

2s
1+s2 )p̃1p̃2 − 2s (ν̃−κ̃)k

α p̃1p̃2

≤ 1
αk∂s(

2s
1+s2 )p̃1p̃2 +

1
2 ν̃k

2(1 + s2)p̃21 +
2ν̃
α2 p̃

2
2

and so with |p̃|2 ≤ 2α
2α−1E we infer

|∂sE| ≤ α
α− 1

2

( 1
1+s2 + 2 ν̃

α2 )E.

Gronwall’s lemma implies

E(s0) ≤ exp
(

α
α− 1

2

(π + 2 ν̃
α2 |s0|)r

)
E(−s0).

Since νs0 = 1, we deduce

E(s0) ≲ E(−s0)

and thus

|p̃(s0)| ≲ |p̃(−s0)|. (5.11)

Consider the case |s| ≥ s0, we calculate

1
2∂s|p̃|

2 ≤ (− s
1+s2 − ν̃k2(1 + s2))p̃21

+ ( s
1+s2 − κ̃k2(1 + s2))p̃22,

and since (− s
1+s2 − ν̃k2(1 + s2)) ≤ 0 for all |s| ≥ s0 we conclude

∂s|p̃|2 ≤ ( 2s
1+s2 − κ̃k2(1 + s2))+p̃

2
2.
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Thus we obtain the estimate

|p̃(s)|2 ≤


|p̃(sin)|2 s ≤ −s0,

1+s2

1+s20
|p̃(s0)|2 s0 ≤ s ≤ 2(κk2)−

1
3 ,

(1 + 4ν2κ− 2
3 k−

4
3 )|p̃(s0)|2 s0 ∨ 2(κk2)−

1
3 ≤ s.

Combining this with (5.11) we infer

|p̃(s)| ≲ (1 + νκ− 1
3 k−

2
3 )|p(sin)|.

The case sin ≥ −s0 is established similarly since we only bound the growth.
With

exp(−κ
2k

2(s− sin + 1
3 (s

3 − s3in))) ≲ e−cκ
1
3 t

we deduce

|p(s)| ≲ e−cκ
1
3 t|p̃|(s)

≲ (1 + νκ− 1
3 k−

2
3 )e−cκ

1
3 t|p|(sin).

Equation (5.8) decouples in ξ and k, so we infer the proposition with this esti-
mate.

Proof of Proposition 5.3

Proof. We introduce the notations p̃(t, k, ξ) = exp(κk2
∫ t

0
(1+(τ− ξ

k )
2)dτ)p(t, k, ξ)

and ν̃ := ν − κ. Then the equations (5.8) read

∂tp̃1 = − t− ξ
k

1+(t− ξ
k )2

p̃1 − αkp̃2 − ν̃k2(1 + (t− ξ
k )

2)p̃1,

∂tp̃2 =
t− ξ

k

1+(t− ξ
k )2

p̃2 + αkp̃1,

p̃in = pin.

(5.12)

We point out that this exactly agrees with the linearized equation with the
non-resistive case. Specifically in Lemma 3 of [KZ2] it was shown that there
exists frequency localized initial data such that for all t > 0 and frequencies

ξ ∈ [2α2

ν̃ , 4α2

ν̃ ] it holds that

p̃2(t,−1, ξ) ≥ t
2ξp2,in(−1, ξ) ≳ ν̃tp2,in(−1, ξ). (5.13)

From this lower bound, we deduce the norm inflation for the non-resistive limit.

For times τ ∈ [0, κ− 1
3 ] and frequencies ξ ∈ [2α2

ν̃ , 4α2

ν̃ ] we obtain

|τ + ξ| ≲ ν−1 + κ− 1
3 .
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Then for T = κ− 1
3 there exist a C = C(α), such that

1 ≥ exp(−κ

∫ T

0

(1 + (t+ ξ)2)dt) ≳ exp(−Cκ(ν−1 + κ− 1
3 )2κ− 1

3 ) ≥ exp(−2C) ≳ 1.

Where we used in the last estimate, that κ ≤ ν3 yields κ(ν−1 + κ− 1
3 )2κ− 1

3 ≤ 2.
From (5.13) and ν̃ = ν − κ ≥ 1

2ν, since ν ≥ 2κ, we deduce, that

p2(T,−1, ξ) = exp(−κ

∫ T

0

(1 + (t+ ξ)2)dt)p̃2(T,−1, ξ) ≳ νκ− 1
3 p2,in(−1, ξ),

From this, we infer the norm inflation

∥p(T )∥HN ≳ νκ− 1
3 ∥pin∥HN .

5.3 Sobolev Stability for the Nonlinear System

The following theorem is a more general statement of Theorem 5.1. We dedicate
the remainder of the section to the proof.

Theorem 1. Let α > 1
2 and N ≥ 5, then there exist c0, c > 0, such that for all

0 < κ ≤ ν ≤ 1
40 (1−

1
2α )

6
5 there exist L = max(1, νκ− 1

3 ), such that for all initial
data, which satisfy

∥(v, b)in,̸=∥HN = ε ≤ c0L
−1ν

1
12κ

1
2 ,

∥(v, b)in,=∥HN ≤ ε̃, with ε ≤ ε̃ ≤ ν−
1
12 ε

(5.14)

the corresponding solution of (5.2) satisfies the bound

∥(v, b)̸=(t)∥L∞HN + ∥∇t(νv, κb)̸=∥L2HN ≲ Le−cκ
1
3 tε,

∥(v, b)=(t)∥L∞HN + ∥∂y(νv, κb)=∥L2HN ≲ ε̃.
(5.15)

Furthermore, we obtain the following enhanced dissipation estimates

∥v ̸=∥L2HN ≲ Lν−
1
6 e−cκ

1
3 tε,

∥b ̸=∥L2HN ≲ Lκ− 1
6 e−cκ

1
3 tε.

This theorem implies Theorem 5.1. With slight abuse of notation, we write L
as the ν and κ dependent part of the Lipschitz constant. We prove this theorem
by using a bootstrap method. Let A be the Fourier weight

A : = M |∇|Necκ
1
3 t1 ̸= ,
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where M = MLM1MκMνMν3 are defined as

−ṀL

ML
=

t− ξ
k

1+( ξ
k−t)2

1
{ν−1≤t− ξ

k≤(c1κk2)−
1
3 }

k ̸= 0,

−Ṁ1

M1
= Cα

|k|+ν
1
12 |k|2

k2+(ξ−kt)2 k ̸= 0,

−Ṁν

Mν
= ν

1
3

1+ν
2
3 (t− ξ

k )2
k ̸= 0,

−Ṁκ

Mκ
= κ

1
3

1+κ
2
3 (t− ξ

k )2
k ̸= 0,

−Ṁν3

Mν3
= Cαν

1+ν2(t− ξ
k )2

k ̸= 0,

M·(t = 0) = M·(k = 0) = 1.

The weight ML is an adaption of the weight m
1
2 in [Lis20] to our setting. The

method of using time-dependent Fourier weights is common when working with
solutions around Couette flow and the other weights are modifications of pre-
viously used weights (cf. [BVW18, MZ22, Lis20, ZZ24]). For simplicity, here
we only state their main properties and refer to Appendix 5.4 for a detailed de-
scription. The constants Cα = 2

min(1,α− 1
2 )
, c = 1

200 (1−
1
2α )

2 and c1 = 1
20 (1−

1
2α )

are determined through the linear estimates. For the weights we obtain

L−1 ≤ min(1, ν−1κ
1
3 k

2
3 ) ≲ML ≤ 1,

M1 ≈ Mκ ≈ Mν ≈ Mν3 ≈ 1.
(5.16)

We note that the weight ML is distinct from the others due to its lower bound
L−1, which depends on ν and κ. The weight ML is necessary to bound the
linear growth in the region ν−1 ≲ t − ξ

k ≲ (κk2)−
1
3 . Controlling the effects

of ML is one of the main challenges in the proof of Theorem 1. We recall the
unknowns p and equation (5.4)

∂tp1 − ∂x∂
t
y∆

−1
t p1 − α∂xp2 = ν∆tp1 + Λ−1

t ∇⊥
t (b∇tb− v∇tv),

∂tp2 + ∂x∂
t
y∆

−1
t p2 − α∂xp1 = κ∆tp2 + Λ−1

t ∇⊥
t (b∇tv − v∇tb),

p|t=0 = pin.

(5.17)

Let χ ∈ C∞(R+ × Z× R) be a Fourier multiplier defined by

χ = χ(k, ξ) =

{
1 |t− ξ

k | ≤ ν−1

0 |t− ξ
k | ≥ 2ν−1 (5.18)

∂tχ ≤ 2ν. (5.19)

We define the main energy

E : = ∥Ap ̸=∥2L2 + 2
αℜ⟨∂

t
y∆

−1
t χAp1,̸=, Ap2,̸=⟩.

Here ℜ denotes the real part, in the following, we omit writing the symbol ℜ
since we derive an upper bound. As α > 1

2 , this energy is positive definite and
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satisfies

(1− 1
2α )∥Ap∥L2 ≤ E ≤ (1 + 1

2α )∥Ap∥L2 . (5.20)

In the following, we assume initial data as in Theorem 1, i.e. (5.14). We use a
bootstrap approach to prove the following two estimates globally in time:
The energy estimate without x-average

∥E∥L∞ + ∥A∇t ⊗ (νp1,̸=, κp2,̸=)∥2L2L2

+
∑

j=1,ν,κ,ν3

∥
√

−Ṁj

Mj
Ap̸=∥2L2L2 ≤ (Cε)2

(5.21)

The energy estimate with x-average

∥p=∥2L∞HN + ∥∂y(νp1,=, κp2,=)∥2L2HN ≤ (Cε̃)2. (5.22)

We then prove that the equality in the estimates is not attained at time T .
By local wellposedness, the estimates thus remain valid at least for a short
additional time. This contradicts the maximality and thus T has to be infinite.
We note that we suppress in our notation the T in the estimates (see (5.3)).

With 1 ≤ κ− 1
3 (−Ṁκ

Mκ
+ κk2(1+ (t− ξ

k )
2) and 1 ≤ ν−

1
3 (−Ṁν

Mν
+ νk2(1+ (t− ξ

k )
2))

we infer from (5.20) and (5.21) the enhanced dissipation estimates

∥Ap1,̸=∥L2L2 ≤ 2(1− 1
2α )

−1ν−
1
6Cε, (5.23)

∥Ap2,̸=∥L2L2 ≤ 2(1− 1
2α )

−1κ− 1
6Cε. (5.24)

By the construction of M1 we obtain

∥∂xΛ−1
t Ap∥L2 ≲ ν−

1
12 ε.

We obtain the energy estimate by deriving the energy E

∂tE + 2∥A∇t ⊗ (νp1,̸=, κp2,̸=)∥2L2 + 2∥
√

−Ṁ
M Ap ̸=∥2L2

=2cκ
1
3 ∥Ap ̸=∥2L2

− 2⟨A(1− χ)p1,̸=, ∂x∂
t
x∆

−1
t Ap1,̸=⟩

+ 2⟨A(1− χ)p2,̸=, ∂x∂
t
x∆

−1
t Ap2,̸=⟩

+ 4
α ⟨χ∂

t
y∆

−1
t Ap1,̸=, Ȧp2, ̸=⟩

+ 2
α ⟨χ∂t(∂

t
y∆

−1
t )Ap1,̸=, Ap2,̸=⟩

+ 2
α ⟨∂t(χ)∂

t
y∆

−1
t Ap1,̸=, Ap2,̸=⟩

+ 2|ν+κ|
α ⟨χ∂t

yAp1,̸=, Ap2, ̸=⟩
+ 2⟨Av ̸=, A(b∇tb− v∇tv)⟩
+ 2⟨Ab ̸=, A(b∇tv − v∇tb)⟩
+ 2

α ⟨χA∂t
y∆

−1
t b ̸=, A(b∇tb− v∇tv)⟩

+ 2
α ⟨χA∂t

y∆
−1
t v ̸=, A(b∇tv − v∇tb)⟩

=L1 + LNR + LR +NL̸= +ONL.

(5.25)
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Where we denoted by ONL all the terms which include the operator ∂t
y∆

−1
t

and NL the one which does not. Furthermore, for the energy of x-averages, we
obtain

∂t∥p=∥HN + ∥∂y(νp1,=, κp2,=)∥HN

≤ ⟨⟨∂y⟩Nv1,=, ⟨∂y⟩N (b∇tb− v∇tv)=⟩
+ ⟨⟨∂y⟩Nb1,=, ⟨∂y⟩N (b∇tv − b∇tv)=⟩

= NL=.

(5.26)

In the following subsections, we establish the following proposition:

Proposition 5.4 (Control of errors). Under the assumptions of Theorem 1,
there exists a constant C = C(α) > 0 such that if (5.21) and (5.22) are satisfied
for T > 0, then the following estimate holds∫ T

0

L1 + LR + LNR dt ≤ 17+ 3
2α

10 (Cε)2 + 2∥
√

−ṀL

ML
Ap2∥2L2L2 ,∫ T

0

NL̸= +ONL dt ≲ Lν−
1
12κ− 1

2 ε3 + (Lκ− 1
3 + κ− 1

2 )ε̃ε2,∫ T

0

NL= dt ≲ Lν−
1
12κ− 1

2 ε̃ε2.

(5.27)

With this proposition we deduce Theorem 1:

Proof of Theorem 1. By a standard application of the Banach fixed-point theo-
rem we obtain local well-posedness, see Appendix 5.5. Thus for all initial data,
there exists a time interval [0, T ] such that (5.21) and (5.22) hold. Let T ∗ be
the maximal time such that (5.21) and (5.22) hold. Let c0 be a given, small
constant and suppose for the sake of contradiction that T ∗ < ∞. With the
estimates (5.25), (5.26) and (5.27) and since c0 is small we obtain that the es-
timates (5.21) and (5.22) do not attain equality. Thus by local existence, T ∗ is
not the maximal time and thus we obtain a contradiction. Therefore, for small
enough c0, (5.21) and (5.22) hold global in time and so we infer Theorem 1.

The remainder of the section is dedicated to the proof of Proposition 5.4.
We rearrange and use partial integration to infer that

⟨Av ̸=, b∇tAb ̸= − v∇tAv ̸=⟩+ ⟨Ab ̸=, b∇tAv ̸= − v∇tAb̸=⟩
= ⟨b,∇t(Av ̸=Ab ̸=)⟩ − 1

2 ⟨v,∇t(Av ̸=Av ̸=) +∇t(Ab ̸=Ab ̸=)⟩
= 0.

(5.28)

The NL term consists of trilinear products with the unknowns

a1a2a3 ∈ {vvv, vbb, bbv, bvb}. (5.29)
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Thus, we denote the nonlinear terms

NL̸=[a
1a2a3] =⟨Aa1̸=, A(a

2
̸=∇ta

3
̸=) ̸= − a2̸=∇tAa3̸=⟩,

+ ⟨Aa1̸=, A(a
2
=∇ta

3
̸=)− a2=∇ta

3
̸=⟩,

+ ⟨Aa1̸=, A(a
2
̸=∇ta

3
=)⟩,

NL=[a
1a2a3] =⟨⟨∂y⟩Na1=, ⟨∂y⟩N (a2̸=∇ta

3
̸=)=⟩.

If we do not use specific choices for a1a2a3 we write just NL. Similarly, we use
a1a2a3 ∈ {bvv, bbb, vbv, vvb} for ONL. Furthermore, we always use i such that
pi = Λ−1

t ∇⊥
t a

2 in the sense that i = 1 if a2 = v and i = 2 if a2 = b. We perform
the energy estimates in the next subsections:

• In Subsection 5.3.1 we estimate the linear error terms. In this subsection,
the split with χ into resonant and non-resonant regions depending on ν is
vital.

• In Subsection 5.3.2 we conclude the energy estimate for the nonlinear
term without x average. Here it is necessary to perform a low and high
frequency decomposition. This gives us a reaction and a transport term.
In particular, for κ ↓ 0 bounding the transport term is very challenging
due to the linear growth.

• In Subsections 5.3.3, 5.3.4 and 5.3.5 we estimate nonlinear terms with an
x-average component.

• In Subsection 5.3.6 we estimate nonlinear term which arise due χ in the
resonant regions. For these terms, we obtain an additional Λ−1

t , which has
a stabilizing effect. This stabilizing effect is necessary due to a nonlinear
term consisting of only magnetic components.

5.3.1 Linear estimates

In this section, we establish estimates of the linear errors L1, LR and LNR of
(5.25). In order to estimate L1, we use (5.23) and (5.24) to deduce∫

L1dτ = 2cκ
1
3 ∥Ap ̸=∥2L2L2 ≤ 8(1− 1

2α )
−1c(Cε)2.

For the LNR terms in (5.25), we infer

⟨A(1− χ)p1,̸=, A∂x∂
t
x∆

−1
t p1,̸=⟩ =

∑
k ̸=0

∫
dξ(1− χ)

t− ξ
k

1+(t− ξ
k )2

A2p21

≤ ν3∥A∇tp1,̸=∥2L2 ,
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since (1−χ)
t− ξ

k

1+(t− ξ
k )2

≤ (1−χ)(ν)3(1+(t− ξ
k )

2) due to χ = 1 for |t− ξ
k | ≤ ν−1.

Furthermore, using (5.34) we estimate

⟨A(1− χ)p2, ̸=, A∂x∂
t
x∆

−1
t p2⟩ =

∑
k ̸=0

∫
dξ(1− χ)

t− ξ
k

1+(t− ξ
k )2

A2p22

≤
∑
k ̸=0

∫
dξ(1− χ)(−ṀL

ML
+ κc1(1 + (t− ξ

k )
2))A2p22

≤ ∥
√

−ṀL

ML
Ap2, ̸=∥2L2 + κc1∥∇tAp2,̸=∥2L2 .

Thus with (5.21) we deduce∫
LNR dτ ≤ (2ν2 + 2c1)(Cε)2 + 2∥

√
−ṀL

ML
Ap2,̸=∥2L2L2 .

For LR, we estimate in frequency space

|(1 ̸=∂
t
y∆

−1
t )∧| = |( ξ−kt

k2+(ξ−kt)2 )k ̸=0| ≤ 1
2 ,

−ṀL

ML
|(∂t

y∆t)
∧| ≤

∣∣∣∣( (t− ξ
k )2

k(1+(t− ξ
k )2)2

)
k ̸=0

∣∣∣∣ ≤ C−1
α

−Ṁ1

M1
.

So it follows that

4
α ⟨χ∂

t
y∆

−1
t Ap1, ̸=, Ȧp2,̸=⟩

= 4
α ⟨χAp1,̸=, (cκ

1
3 + Ṁ1

M1
+ ṀL

ML
+ Ṁκ

Mκ
+ Ṁν

Mν
+

Ṁν3

Mν3
)∂t

y∆
−1
t Ap2,̸=⟩

≤ 2c
α κ

1
3 ∥Ap̸=∥2L2 + (1 + C−1

α ) 1
α∥
√

−Ṁ1

M1
Ap̸=∥2L2

+ 1
α∥
√

−Ṁκ

Mκ
Ap ̸=∥2L2 + 1

α∥
√

−Ṁν

Mν
Ap̸=∥2L2 + 1

α∥
√

−Ṁν3

Mν3
Ap ̸=∥2L2 .

We use the estimate in frequency space

|(((∂2
x − (∂t

y)
2)∆−2

t ) ̸=)
∧| =

∣∣∣∣( 1−(t− ξ
k )2

k2(1+(t− ξ
k )2)2

)
k ̸=0

∣∣∣∣ ≤ C−1
α

−Ṁ1

M1
,

to infer that

1
α ⟨χAp1,̸=, A∂−1

x (∂2
x − (∂t

y)
2)∆−2

t p2, ̸=⟩ ≤ C−1
α

1
α∥
√

−Ṁ1

M1
Ap1,̸=∥L2∥

√
−Ṁ1

M1
Ap2,̸=∥L2

≤ C−1
α

1
2α∥
√

−Ṁ1

M1
Ap ̸=∥2L2 .

With (5.19) we deduce

⟨∂t
y∆

−1
t ∂t(χ)Ap1,̸=, Ap2,̸=⟩ ≤ ν∥Ap1,̸=∥L2∥AΛ−1

t p2,̸=∥L2 .
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By the Fourier support of χ (see (5.18)) and the definition of Mν3 we obtain

χ ≤ 2C−1
α ν−1−Ṁν3

Mν3
χ, which yields

|ν+κ|
α ⟨χA∂t

yp1,̸=, Ap2,̸=⟩ ≤ 2C−1
α

ν
1
2

α ∥A∂t
yp1,̸=∥L2∥

√
−Mν3

Mν3
Ap2,̸=∥L2 .

Thus for the linear error LR we infer∫
LRdτ ≤ ( 2cα + ν

5
6 )(Cε)2

+
1+C−1

α

α ∥
√

−Ṁ1

M1
p ̸=∥2L2L2 + 1

α∥
√

−Ṁκ

Mκ
p ̸=∥2L2L2 + 1

α∥
√

−Ṁν

Mν
p̸=∥2L2L2

+
1+C−1

α

2α ∥
√

−Ṁν3

Mν3
Ap2,̸=∥L2L2 + C−1

α
1
2αν∥A∂t

yp1,̸=∥2L2L2 .

Combining the estimates for all linear terms, we obtain∫
L+ LR + LNR dτ

≤ ((8 + 2
α )(1−

1
2α )

−1c+ 2ν2 + 2c1 + ν
5
6 )(Cε)2

+ 2∥
√

−ṀL

ML
Ap2∥2L2L2

+ (1 + 3
2C

−1
α ) 1

α∥χ
√

−Ṁ1

M1
p̸=∥2L2L2 + 1

α∥
√

−Ṁκ

Mκ
p̸=∥2L2L2 + 1

α∥
√

−Ṁν

Mν
p ̸=∥2L2L2

+
1+C−1

α

2α ∥
√

−Mν3

Mν3
Ap2,̸=∥L2L2 + C−1

α
1
2αν∥A∂t

yp1,̸=∥2L2L2

≤ (12(1− 1
2α )

−1c+ 2ν2 + 2c1 + ν
5
6 +

1+2C−1
α

2α )(Cε)2

+ 2∥
√

−ṀL

ML
Ap2,̸=∥2L2L2 .

Since α > 1
2 we deduce

1+2C−1
α

α < 1 + 1
2α . Choosing the constants such that

c = 1
200 (1−

1
2α )

2,

c1 = 1
20 (1−

1
2α ),

and recalling that

ν ≤ 1
40 (1−

1
2α )

6
5 ,

we conclude that (12(1− 1
2α )

−1c+2ν2 +2c1 + ν
5
6 +

1+2C−1
α

2α <
17+ 3

2α

20 . Thus we
obtain the estimate∫

L1 + LR + LNRdτ ≤ 17+ 3
2α

20 (Cε)2 + 2∥
√

−ṀL

ML
Ap2,̸=∥2L2L2 .

This yields the first estimate of Proposition 5.4.
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5.3.2 Nonlinear terms without an x-average

We apply the notation of (5.29) and aim to estimate terms of the form

⟨Aa1̸=, A(a
2
̸=∇ta

3
̸=)− a2̸=∇tAa3̸=⟩

=
∑

k,l,k−l ̸=0

∫∫
d(ξ, η) A(k,ξ)−A(l,η)

A(k−l,ξ−η)A(l,η)
ξl−kη

((k−l)2+(ξ−η−(k−l)t)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

= T +R.

Here, we split the integral into the reaction R and the transport T terms which
correspond to the sets

ΩR = {|k − l, ξ − η| ≥ 1
8 |l, η|},

ΩT = {|k − l, ξ − η| < 1
8 |l, η|},

in Fourier space. We split the weights

A(k, ξ)−A(l, η) = ectκ
1
3 (ML(k, ξ)−ML(l, η))M1(k, ξ)Mκ(k, ξ)Mν(k, ξ)Mν3(k, ξ)|k, ξ|N

+ ectκ
1
3 (|k, ξ|N − |l, η|N )ML(l, η)M1(k, ξ)Mκ(k, ξ)Mν(k, ξ)Mν3(k, ξ)

+ ectκ
1
3 (M1(k, ξ)−M1(l, η))ML(l, η)Mκ(k, ξ)Mν(k, ξ)Mν3(k, ξ)|l, η|N

+ ectκ
1
3 (Mκ(k, ξ)−Mκ(l, η))M1(l, η)ML(l, η)Mν(k, ξ)Mν3(k, ξ)|l, η|N

+ ectκ
1
3 (Mν(k, ξ)−Mν(l, η))M1(l, η)ML(l, η)Mκ(l, η)Mν3(k, ξ)|l, η|N

+ ectκ
1
3 (Mν3(k, ξ)−Mν3(l, η))M1(l, η)ML(l, η)Mκ(l, η)Mν(l, η)|l, η|N

and thus by (5.16) we estimate

A(k,ξ)−A(l,η)
A(k−l,ξ−η)A(l,η) ≲ e−ctκ

1
3 |ML(k,ξ)−ML(l,η)|
ML(k−l,ξ−η)ML(l,η)

|ξ,η|N
|l,η|N |k−l,ξ−η|N

+ e−ctκ
1
3 ||k,ξ|N−|l,η|N |
|l,η|N |k−l,ξ−η|N

1
ML(k−l,ξ−η)

+ e−ctκ
1
3

∑
j=1,κ,ν,ν3

|Mj(k, ξ)−Mj(l, η)| 1
|k−l,ξ−η|N

1
ML(k−l,ξ−η) .

(5.30)

Reaction term: On the set ΩR it holds that |k − l, ξ − η| ≥ 1
8 |l, η|, thus

|k, ξ|, |l, η| ≲ |k−l, ξ−η|. From (5.16), (5.30) and |k,ξ|N
|l,η|N |k−l,ξ−η|N , ||k,ξ|N−|l,η|N |

|l,η|N |k−l,ξ−η|N ≲
1

|l,η|N we infer

A(k,ξ)−A(l,η)
A(k−l,ξ−η)A(l,η) ≲

1
ML(k−l,ξ−η)ML(l,η)

1
|l,η|N .
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With ξl − kη = (ξ − η − (k − l)t)l − (k − l)(η − lt) and Hölder’s inequality we
deduce

R = e−ctκ
1
3

∑
k,l,k−l ̸=0

∫
d(ξ, η)1ΩR

A(k,ξ)−A(l,η)
A(k−l,ξ−η)A(l,η)

ξl−kη

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≲ e−ctκ
1
3

∑
k,l,k−l ̸=0

∫
d(ξ, η)1ΩR

1
|l,η|N

1
ML(k−l,ξ−η)ML(l,η)

|(ξ−η−(k−l)t)l−(k−l)(η−lt)|
((k−l)2+(ξ−η−(k−l)τ)2)

1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≲ ∥Aa1̸=∥L2∥ 1
ML

Api,̸=∥L2∥ 1
ML

Aa3̸=∥L2

+ ∥Aa1̸=∥L2∥∂x 1
ML

Λ−1
t Api,̸=∥L2∥ 1

ML
A∂t

ya
3
̸=∥L2 .

We use (5.36) and (5.37) to infer

R ≲ ∥Aa1̸=∥L2(∥Api,̸=∥L2 + ν∥(Λt ∧ κ− 1
3 )Api,̸=∥L2)(∥Aa3̸=∥L2 + ν∥A(Λt ∧ κ− 1

3 )a3̸=∥L2)

+ L∥Aa1̸=∥L2(∥A∂xΛ
−1
t pi,̸=∥L2 + ν∥Api,̸=∥L2)∥∂t

yAa3̸=∥L2 .

Integrating in time yields ∫
Rdτ ≲ Lν−

1
12κ− 1

2 ε3.

Transport term: On the set ΩT it holds that |k − l, ξ − η| < 1
8 |l, η| and thus

it follows that |k, ξ| ≈ |l, η|. By the mean value theorem, there exists θ ∈ [0, 1]
such that ∣∣|k, ξ|N − |l, η|N

∣∣ ≤ N |k − l, ξ − η||k − θl, ξ − θη|N−1

≲ |k − l, ξ − η||l, η|N−1.

Thus with (5.30) and Lemma 5.7 we conclude, that

A(k,ξ)−A(l,η)
A(k−l,ξ−η)A(l,η) ≲

1
ML(l,η) (

1
|l| + ν

1
12 ) 1

|k−l,ξ−η|N−1 (5.31)

+
∑

j=κ,ν,ν3

|Mj(k, ξ)−Mj(l, η)| 1
ML(l,η)

1
|k−l,ξ−η|N (5.32)

+ ML(k,ξ)−ML(l,η)
ML(k−l,ξ−η)ML(l,η)

1
|k−l,ξ−η|N . (5.33)
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Based on this estimate, in the following we distinguish between different regimes
in frequency,

T =
∑

k,l,k−l ̸=0

∫
d(ξ, η)1ΩT

A(k,ξ)−A(l,η)
A(k−l,ξ−η)A(l,η)

ξl−kη

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≲
∑

k,l,k−l ̸=0

∫
d(ξ, η)1ΩT

1
ML(l,η) (

1
|l| + ν

1
12 ) 1

|k−l,ξ−η|N−1
ξl−kη

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

+
∑

k,l,k−l ̸=0

∫
d(ξ, η)1ΩT

1| ηl −t|≥| ξ−η
k−l −t|

∑
j=κ,ν,ν3 |Mj(k,ξ)−Mj(l,η)|

ML(l,η)
1

|k−l,ξ−η|N
ξl−kη

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

+
∑

k,l,k−l ̸=0

∫
d(ξ, η)1ΩT

1| ηl −t|≤| ξ−η
k−l −t|

∑
j=κ,ν,ν3 |Mj(k,ξ)−Mj(l,η)|

ML(l,η)
1

|k−l,ξ−η|N
ξl−kη

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

+
∑

k,l,k−l ̸=0

∫
d(ξ, η)1ΩT

ML(k,ξ)−ML(l,η)
ML(k−l,ξ−η)ML(l,η)

1
|k−l,ξ−η|N

ξl−kη

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

= T1,1 + T1,2 + T1,3 + T2.

Here, the T1,1 term is due to estimate (5.31). For (5.32) we distinguish between

the frequencies |ηl − t| ≥ | ξ−η
k−l − t| in T1,2 and |ηl − t| ≤ | ξ−η

k−l − t| in T1,3. The
ML commutator (5.33) is T2, which requires further splitting. For T1,1 we use
ξl − kη = (ξ − η − (k − l)t)l − (k − l)(η − lt), (5.16) and (5.37) to estimate

T1,1 =
∑

k,l,k−l ̸=0

∫∫
d(ξ, η)1ΩT

1
ML(l,η) (

1
|l| + ν

1
12 ) 1

|k−l,ξ−η|N−1
ξl−kη

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≲ ∥Aa1̸=∥L2∥Api,̸=∥L2∥ 1
ML

Aa3̸=∥L2 + ∥Aa1̸=∥L2∥AΛ−1
t pi,̸=∥L2∥ 1

ML
A∂t

ya
3
̸=∥L2

+ ν
1
12 ∥Aa1̸=∥L2∥Api,̸=∥L2∥ 1

ML
A∂xa

3
̸=∥L2

≤ L∥Aa1̸=∥L2∥Api,̸=∥L2∥Aa3̸=∥L2 + L∥Aa1̸=∥L2∥AΛ−1
t pi,̸=∥L2∥A∂t

ya
3
̸=∥L2

+ ν
1
12 ∥Aa1̸=∥L2∥Api,̸=∥L2∥Λta

3
̸=∥L2 .

After integrating in time we deduce that∫
T1,1dτ ≲ (L+ ν−

1
12 )κ− 1

2 ε3.

For T1,2 we use |ηl −t| ≥ | ξ−η
k−l −t| to infer that |ξl−kη| = |(ξ−η−(k−l)t)l−(k−

l)(η−lt)| ≤ 2|(k−l)(η−lt)|. Furthermore, with
∑

i=ν,κ,ν3 |Mi(k, ξ)−Mi(l, η)| ≈
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1 and (5.35) we conclude that

T1,2 ≲
∑

k,l,k−l ̸=0

∫
d(ξ, η)1ΩT

1| ηl −t|≥| ξ−η
k−l −t|

1
ML(l,η)

1
|k−l,ξ−η|N

|(k−l)(η−lt)|
((k−l)2+(ξ−η−(k−l)τ)2)

1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≲ ∥Aa1̸=∥L2∥AΛ−1
t pi,̸=∥L2∥ 1

ML
A∂t

ya
3
̸=∥L2

≲ L∥Aa1̸=∥L2∥AΛ−1
t pi,̸=∥L2∥A∂t

ya
3
̸=∥L2 .

So after integrating in time, we obtain∫
T1,2dτ ≲ Lκ− 1

2 ε3.

For T1,3, we use |ηl − t| ≤ | ξ−η
k−l − t| to infer ξl − kη ≤ 2(ξ − η − (k − l)t)l.

Furthermore, with (5.43) we deduce∑
j=κ,ν,ν3

|Mj(k, ξ)−Mj(l, η)| ≲ ν
1
3
|ξl−kη|

|kl| .

Combining these two estimates by Hölder’s inequality and (5.35) it follows, that

T1,3 ≲
∑

k,l,k−l ̸=0

∫
d(ξ, η)1ΩT

1| ηl −t|≤| ξ−η
k−l −t|

1
ML(l,η)

1
|k−l,ξ−η|N

ν
1
3 (ξl−kη)2

kl((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≲
∑

k,l,k−l ̸=0

∫
d(ξ, η)1ΩT

1| ηl −t|≤| ξ−η
k−l −t|

1
ML(l,η)

1
|k−l,ξ−η|N

ν
1
3 (ξ−η−(k−l)t)2l2

kl((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≲ ν
1
3

∑
k,l,k−l ̸=0

∫
d(ξ, η)1ΩT

1| ηl −t|≤| ξ−η
k−l −t|

1
ML(l,η)

|ξ−η−(k−l)t|
|k−l,ξ−η|N−1

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≲ ν
1
3 ∥Aa1̸=∥L2∥AΛtpi,̸=∥L2∥ 1

ML
Aa3̸=∥L2

≲ Lν
1
3 ∥Aa1̸=∥L2∥AΛtpi,̸=∥L2∥Aa3̸=∥L2 .

Thus integrating in time yields∫
T1,3dτ ≤ Lν

1
6κ− 1

2 ε3.

To estimate the T2 term, we split the integral into the sets

Ω1 = {min(t− η
l , t−

ξ−η
k−l ) ≥ ν−1},

Ω2 = {t− η
l ≥ ν−1 ≥ t− ξ−η

k−l },

Ω3 = {t− ξ−η
k−l ≥ ν−1 ≥ t− η

l },

Ω4 = {t− ξ
k ≥ ν−1 ≥ max(t− η

l , t−
ξ−η
k−l )}.
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For frequencies such that ν−1 ≥ max(t− η
l , t−

ξ
k ), then ML(k, ξ)−ML(l, η) = 0

and hence the commutator vanishes. Thus the sets Ωj covers all regions of the
support. The sets Ω1,Ω2 and Ω3 are chosen to distinguish between 1

ML
= 1 and

1
ML

> 1 for different frequencies and on set Ω4 we use strong dissipation in the
first component. We split the set T2 into

T2 =
∑

k,l,k−l ̸=0

∫
d(ξ, η)1ΩT

ML(k,ξ)−ML(l,η)
ML(k−l,ξ−η)ML(l,η)

ξl−kη

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

1
|k−l,ξ−η|N

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)(1Ω1 + 1Ω2 + 1Ω3 + 1Ω4)

= T2,1 + T2,2 + T2,3 + T2,4.

For T2,1 we use (5.35) to deduce

T2,1 ≤ ν2
∑

k,l,k−l ̸=0

∫∫
d(ξ, η)1Ω1

⟨t− η
l ∧ κ− 1

3 ⟩⟨t− ξ−η
k−l ∧ κ− 1

3 ⟩ 1
|k−l,ξ−η|N−1

(ξ−η−(k−l)t)l−(k−l)(η−lt)

((k−l)2+(ξ−η−(k−l)τ)2)
1
2
(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≲ ν2∥Aa1̸=∥L2∥(Λt ∧ κ− 1
3 )Api,̸=∥L2∥AΛta

3
̸=∥L2

+ Lν∥Aa1̸=∥L2∥(Λt ∧ κ− 1
3 )Λ−1

t Λ−1Api,̸=∥L2∥A∂t
ya

3
̸=∥L2

and so ∫
T2,1dτ ≲ Lν

5
6κ− 1

2 ε3.

Now we consider T2,2. By (5.35) we infer

T2,2 ≤
∑

k,l,k−l ̸=0

∫∫
d(ξ, η)1Ω2ν⟨t−

η
l ∧ κ− 1

3 ⟩ 1
|k−l,ξ−η|N−1

(ξ−η−(k−l)t)l−(k−l)(η−lt)

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≲ ν∥Aa1̸=∥L2∥Api,̸=∥L2∥AΛta
3
̸=∥L2

+ L∥Aa1̸=∥L2∥AΛ−1
t pi,̸=∥L2∥A∂t

ya
3
̸=∥L2 .

Integrating in time yields ∫
T2,2dτ ≲ Lκ− 1

2 ε3.

To estimate T2,3, we need to distinguish between different choices of a. Using
(5.35) we estimate

T2,3 =
∑

k,l,k−l ̸=0

∫∫
d(ξ, η)1Ω3

ν⟨t− ξ−η
k−l ∧ κ− 1

3 ⟩ 1
|k−l,ξ−η|N−1

(ξ−η−(k−l)t)l−(k−l)(η−lt)

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≲ ν∥Aa1̸=∥L2∥(Λt ∧ κ− 1
3 )Api,̸=∥L2∥A∂xa

3
̸=∥L2

+ ν∥Aa1̸=∥L2∥A(Λt ∧ κ− 1
3 )Λ−1Λ−1

t pi,̸=∥L2∥A∂t
ya

3
̸=∥L2
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and thus after integrating in time∫
T2,3[vvv]dτ ≲ ν−

1
2 ε3,∫

T2,3[bvb]dτ ≲ κ− 1
2 ε3,∫

T2,3[bbv]dτ ≲ κ− 1
2 ε3.

In the case of vbb, we use (5.35) to estimate

T2,3[vbb] =
∑

k,l,k−l ̸=0

∫∫
d(ξ, η)ν⟨t− ξ−η

k−l ⟩
1

|k−l,ξ−η|N−1

(ξ−η−(k−l)t)k−(k−l)(ξ−kt)

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Av)(k, ξ)(Ap2)(k − l, ξ − η)(Ab)(l, η)

≲ ν∥∂xAv ̸=∥L2∥(Λt ∧ κ− 1
3 )Ap2,̸=∥L2∥Ab̸=∥L2

+ ν∥∂t
yAv ̸=∥L2∥(Λt ∧ κ− 1

3 )Λ−1
t Ap2,̸=∥L2∥Ab ̸=∥L2

≤ ν∥Ab̸=∥L2∥A∇tv ̸=∥L2∥AΛtp2,̸=∥L2 .

Thus after integrating in time, we obtain∫
T2,3[vbb]dτ ≲ ν

1
2κ− 1

2 ε3.

For T2,4 we obtain that M(l, η) = M(k − l, ξ − η) = 1. We use t − ξ
k ≥ ν ≥

max(t− η
l , t−

ξ−η
k−l ) to deduce that

1 = kt−ξ
kt−ξ = k

k

t− ξ
k

t− ξ
k

≤ ν |ξ−kt|
|k| .

With ξl − kη = (ξ − η − (k − l)t)l − (k − l)(η − lt) we infer that

T2,4 =
∑

k,l,k−l ̸=0

∫∫
d(ξ, η) 1

|k−l,ξ−η|N
ξl−kη

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

= ν
∑

k,l,k−l ̸=0

∫∫
d(ξ, η)|ξ − kt| 1

|k−l,ξ−η|N−1

(ξ−η−(k−l)t)l

|l|((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

+
∑

k,l,k−l ̸=0

∫∫
d(ξ, η) 1

|k−l,ξ−η|N−1

(k−l)(η−lt)

((k−l)2+(ξ−η−(k−l)τ)2)
1
2

(Aa1)(k, ξ)(Api)(k − l, ξ − η)(Aa3)(l, η)

≤ ν∥A∂t
ya

1
̸=∥L2∥Api,̸=∥L2∥Aa3̸=∥L2

+ ∥Aa1̸=∥L2∥Λ−1
t Api,̸=∥L2∥A∂t

ya
3
̸=∥L2 .
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Thus integrating in time yields∫
T2,4dτ ≲ κ− 1

2 ε3.

5.3.3 Nonlinear terms with an x-average in the second
component

We apply the notation of (5.29)

⟨Aa1̸=, A(a
2
1,=∂xa

3
̸=)− a21,=∂xAa3̸=⟩

=
∑
k ̸=0

∫∫
d(ξ, η)(Aa1)(k, ξ)(A(k, ξ)−A(k, η))ka21(0, ξ − η)a3(k, η)

= R+ T.

Here we split into reaction and transport terms according to the sets

ΩR = {|ξ − η| ≥ 1
8 |k, η|},

ΩT = {|ξ − η| < 1
8 |k, η|}.

Reaction term On the set ΩR it holds that |ξ − η| ≥ 1
8 |k, η|, then we obtain

|A(k, ξ)−A(k, η)| ≲ |ξ − η|N and thus with (5.35), it follows that∑
k ̸=0

∫∫
d(ξ, η)(Aa1)(k, ξ)(A(k, ξ)−A(k, η))ka21(0, ξ − η)a3(k, η)

≲ ∥Aa1̸=∥L2∥a2=∥HN ∥∂xa3̸=∥L∞

≲ ∥Aa1̸=∥L2∥a2=∥HN ∥ 1
ML

Aa3̸=∥L2

≲ L∥Aa1̸=∥L2∥a2=∥HN ∥Aa3̸=∥L2 .

Integrating in time yields a bound∫
R dτ ≲ Lκ− 1

3 ε2ε̃.

Transport term On the set ΩL it holds that |k, η| ≥ 1
8 |ξ − η|. By the mean

value theorem there exists a θ ∈ [0, 1]∣∣|k, η|N − |k, ξ|N
∣∣ ≲ |ξ − η||k, η − θξ|N−1 ≲ |ξ − η||k, η|N−1.

Thus, we can estimate the difference in A by

|A(k, ξ)−A(k, η)| ≲ (ML(k, ξ)−ML(k, η))|k, ξ|N

+ML(k, η)|k, ξ|N
∑

j=1,κ,ν,ν3

|Mj(k, ξ)−Mj(k, η)|

+ML(k, η)(|k, η|N − |k, ξ|N )

≲ 1
k |ξ − η||k, ξ|N
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where we used (5.40),(5.42) and (5.43) to estimate the differences in Mj . So we
infer, that

T ≤
∑
k ̸=0

∫∫
d(ξ, η)1ΩT

|Aa1|(k, ξ)|a21|(0, ξ − η) 1
ML(k,η) |Aa3|(k, η).

and thus integrating in time yields∫
Tdτ ≲ L∥Aa1̸=∥L2L2∥a2=∥L∞HN ∥Aa3̸=∥L2L2 ≲ Lκ− 1

3 ε2ε̃.

5.3.4 Nonlinear terms with an x-average in the third com-
ponent

We aim to estimate

⟨Aa11,̸=, A(a
2
2,̸=∂ya

3
1,=)⟩

=
∑
k ̸=0

∫∫
d(ξ, η)(Aa11)(k, ξ)A(k, ξ) kη√

k2+(ξ−η−kt)2
pi(k, ξ − η)a31(0, η)

= R+ T

where we split into the reaction and transport terms according to the sets

ΩR = {|k, ξ − η| ≥ 1
8 |η|},

ΩT = {|k, ξ − η| < 1
8 |η|}.

Reaction term On the set ΩR it holds that |k, ξ − η| ≥ 1
8 |η|. With (5.35) we

infer

R =
∑
k ̸=0

∫∫
d(ξ, η)1ΩR

(Aa11)(k, ξ)A(k, ξ) kη√
k2+(ξ−η−kt)2

pi(k, ξ − η)a31(0, η)

≲ ∥Aa11,̸=∥L2∥A 1
ML

∂xΛ
−1
t pi,̸=∥L2∥∂ya31,=∥L∞

≲ ∥Aa11,̸=∥L2∥Api,̸=∥L2∥a31,=∥HN .

Integrating in time then yields∫
Rdτ ≲ κ− 1

3 ε2ε̃.

Transport term On the set ΩT it holds that |k, ξ−η| ≤ 1
8 |η|, then with (5.35)

we estimate

T =
∑
k ̸=0

∫∫
d(ξ, η)1ΩT

(Aa11)(k, ξ)A(k, ξ) kη√
k2+(ξ−η−kt)2

pi(k, ξ − η)a31(0, η)

≲ ∥Aa1̸=∥L2∥∂xΛ−1
t pi,̸=∥L∞∥∂ya3=∥HN

≲ ∥Aa1̸=∥L2∥ 1
ML

AΛ−1
t pi,̸=∥L2∥∂ya3=∥HN

≲ ∥Aa1̸=∥L2(∥Λ−1
t Api∥L2 + ν∥Api,̸=∥L2)∥∂ya3=∥HN .
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Integrating in time yields ∫
Tdτ ≲ κ− 1

2 ε2ε̃.

5.3.5 Nonlinear terms with an x-average in first compo-
nent

Now we turn to

⟨⟨∂y⟩Na1=,1, ⟨∂y⟩N (a2̸=∇ta
3
̸=,1)=⟩

= −
∑
k ̸=0

∫∫
d(ξ, η)⟨ξ⟩2Na11(0, ξ)

kξ√
k2+(ξ−η+kt)2

pi(−k, ξ − η)a31(k, η).

Applying Hölder’s inequality, the Sobolev embedding and the definition of A
yields

⟨⟨∂y⟩Na11,=, ⟨∂y⟩N (a2̸=∇ta
3
̸=,1)=⟩

≤ ∥∂y⟨∂y⟩Na1=∥L2(∥∂xΛ−1
t pi,̸=∥L∞∥⟨∂y⟩Na3̸=∥L2 + ∥⟨∂y⟩NΛ−1

t pi,̸=∥L2∥∂xa3̸=∥L∞

≤ ∥∂ya1=∥HN ∥A 1
ML

Λ−1
t pi,̸=∥L2∥A 1

ML
a3̸=∥L2

With (5.35) we infer

⟨⟨∂y⟩Na11,=, ⟨∂y⟩N (a2̸=∇ta
3
̸=,1)=⟩

≲ ∥∂ya1=∥HN (∥AΛ−1
t pi,̸=∥L2 + ν∥Api,̸=∥L2)(∥Aa3̸=∥L2 + ν∥A(Λt ∧ κ− 1

3 )a3̸=∥L2)

≲ ∥∂ya1=∥HN ∥AΛ−1
t pi,̸=∥L2(∥Aa3̸=∥L2 + ν∥(Λt ∧ κ− 1

3 )a3̸=∥L2)

+ ν∥∂ya1=∥HN ∥Api,̸=∥L2(∥Aa3̸=∥L2 + ν∥(Λt ∧ κ− 1
3 )a3̸=∥L2).

Integrating in time yields∫
⟨⟨∂y⟩Na1=, ⟨∂y⟩N (a2̸=∇ta

3
̸=,1)=⟩dτ ≲ Lκ− 1

2 ε2ε̃.

5.3.6 Other nonlinear terms

In this subsection, we aim to estimate

⟨χA∂t
y∆

−1
t a1̸=, A(a

2∇ta
3)⟩ = ⟨χA∂t

y∆
−1
t a1̸=, A(a

2
̸=∇ta

3
̸=)⟩

+ ⟨χA∂t
y∆

−1
t a1̸=, A(a

2
̸=∇ta

3
=)⟩

+ ⟨χA∂t
y∆

−1
t a1̸=, A(a

2
=∇ta

3
̸=)⟩.

with the choices a1a2a3 ∈ {bvv, bbb, vbv, vvb}. We start with the case of no
x-averages and use

ξl − kη = (ξ − kt)(l − k) + k(ξ − η − (k − l)t)
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and (5.35) to infer

⟨χA∂t
y∆

−1
t a1̸=, A(a

2
̸=∇ta

3
̸=)⟩

=
∑

k,l,k−l ̸=0

∫∫
d(ξ, η) ξ−kt

k2+(ξ−kt)2
ξl−kη√

(k−l)2+(ξ−η−(k−l)t)2
A2(k, ξ)a1(k, ξ)pi(k − l, ξ − η)a3(l, η)

≲ ∥Aa1̸=∥L2∥ 1
ML

∂xΛ
−1
t Api,̸=∥L2∥ 1

ML
Aa3̸=∥L2

+ ∥∂xΛ−1
t Aa1̸=∥L2∥ 1

ML
Api,̸=∥L2∥ 1

ML
Aa3̸=∥L2

≲ L∥Aa1̸=∥L2(∥∂xΛ−1
t Api,̸=∥L2 + ν∥Api,̸=∥L2)∥Aa3̸=∥L2

+ L(1 + νκ− 1
3 )∥∂xΛ−1

t Aa1̸=∥L2∥Api,̸=∥L2∥Aa3̸=∥L2 .

Thus integrating in time yields∫
⟨χA∂t

y∆
−1
t a1̸=, A(a

2
̸=∇ta

3
̸=)⟩dτ ≲ Lκ− 1

2 ε3.

For the case, when the average is in the second component, we use partial
integration to estimate

⟨χA∂t
y∆

−1
t a1̸=, A(a

2
1,=∂xa

3
̸=)⟩

= −⟨χA∂x∂t
y∆

−1
t a1̸=, A(a

2
1,=a

3
̸=)⟩

≲ ∥∂xΛ−1
t a1̸=∥L2∥a2=∥HN ∥ 1

ML
Aa3̸=∥L2

≲ L∥∂xΛ−1
t a1̸=∥L2∥a2=∥HN ∥Aa2̸=∥L2

and thus integrating in time and using L = max(1, νκ− 1
3 ) yields∫

⟨χA∂t
y∆

−1
t a1̸=, A(a

2
1,=∂xa

3
̸=)⟩dτ ≲ κ− 1

2 ε2ε̃.

For the case when the average is in the third component, we obtain

⟨χA∂t
y∆

−1
t a1̸=, A(a

2
2,̸=∂ya

3
=)⟩

=
∑
k ̸=0

∫∫
d(ξ, η)χ ξ−kt

k2+(ξ−kt)2
kη√

k2+(ξ−η−t)2
A(ξ,k)

A(ξ−η,k) (Aa1)(k, ξ)(Api)(k, ξ − η)a3(0, η).

Thus by η = ξ − kt− (ξ − η − kt) we estimate

⟨χA∂t
y∆

−1
t a1̸=, A(a

2
2,̸=∂ya

3
=)⟩

≤ ∥(∂t
y)

2∆−1
t Aa1̸=∥L2∥∂xΛ−1

t
1

ML
Api,̸=∥L2∥a3=∥HN

+ ∥∂x∂t
y∆

−1
t Aa1̸=∥L2∥ 1

ML
Api,̸=∥L2∥a3=∥HN

≤ L∥Aa1̸=∥L2∥∂xΛ−1
t Api,̸=∥L2∥a3=∥HN

+ L∥∂xΛ−1
t Aa1̸=∥L2∥Api,̸=∥L2∥a3=∥HN
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Integrating in time and using L = max(1, νκ− 1
3 ) yields∫

⟨χA∂t
y∆

−1
t a1̸=, A(a

2
2,̸=∂ya

3
=)⟩dτ ≲ κ− 1

2 ε2ε̃.

Which concludes the estimate∫
ONLdτ ≲ Lκ− 1

2 ε̃ε2.

Combining the estimates of Subsection 5.3.2 to 5.3.6 completes the proof of
Proposition 5.4and thus Theorem 1.

In this article, we have shown that the MHD equations around Couette flow
with magnetic resistivity smaller than fluid viscosity ν ≥ κ > 0 are stable for
initial data which is small enough in Sobolev spaces. If the resistivity is much
smaller than the viscosity, νκ− 1

3 > 0, large viscosity destabilizes the equation,
leading to norm inflation of size νκ− 1

3 . Controlling this norm inflation is a major
new challenge compared to other dissipation regimes.

5.4 Construction of the Weights

Let A be the Fourier weight

A : = M⟨∇⟩ecκ
1
3 t1̸= ,

with M = M1MLMκMνMν3 defined as

−ṀL

ML
=

t− ξ
k

1+( ξ
k−t)2

1
{ν−1≤t− ξ

k≤(c1κk2)−
1
3 }

k ̸= 0,

−Ṁ1

M1
= Cα

|k|+ν
1
12 |k|2

k2+(ξ−kt)2 k ̸= 0,

−Ṁν

Mν
= ν

1
3

1+ν
2
3 (t− ξ

k )2
k ̸= 0,

−Ṁκ

Mκ
= κ

1
3

1+κ
2
3 (t− ξ

k )2
k ̸= 0,

−Ṁν3

Mν3
= Cαν

1+ν2(t− ξ
k )2

k ̸= 0,

M·(t = 0) = M·(k = 0) = 1.

The weight ML is an adaption of the weight m
1
2 in [Lis20] to the present setting

and Mν3 we use to differentiate between resonant and non-resonant regions.
The method of using time-dependent Fourier weights is common when working
at solutions around Couette flow and the other weights are modifications of
previously used weights (cf. [BVW18, MZ22, Lis20, ZZ24] for shear related
systems such as Navier-Stokes). The constants Cα = 2

min(1,α− 1
2 )
, c = 1

20 (1−
1
2α )

2
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and c1 = 1
20 (1−

1
2α ) are determined through the linear estimates. For the weights

we obtain that for all times t > 0, it holds that

M1 ≈ Mκ ≈ Mν ≈ Mν3 ≈ 1,

L−1 ≤ min(1, ν−1κ
1
3 k

2
3 ) ≲ML ≤ 1.

Lemma 5.5 (ML properties ). The weight ML satisfies the following bounds

1|t− ξ
k |≥ν−1

t− ξ
k

1+(t− ξ
k )2

≤ −ṀL

ML
+ κk2c1(1 + (t− ξ

k )
2), (5.34)

1
ML(k,ξ) ≤ 1 + ν

1
2 ⟨t− ξ

k ⟩ ∧ κ− 1
3 . (5.35)

Furthermore, it follows for a ∈ H1, that

∥ 1
ML

a̸=∥L2 ≤ ∥a̸=∥L2 + ∥(Λ−1
t ∧ κ− 1

3 )a̸=∥L2 , (5.36)

∥ 1
ML

∂xa̸=∥L2 ≤ ∥Λta̸=∥L2 . (5.37)

Proof. This follows immediately, from the definition of ML.

Lemma 5.6 (Enhanced dissipation estimates ). The weights Mν and Mκ satisfy
the following bounds

1
2ν

1
3 ≤ −Ṁκ

Mκ
+ ν(k2 + (ξ − kt)2), (5.38)

1
2κ

1
3 ≤ −Ṁν

Mν
+ κ(k2 + (ξ − kt)2). (5.39)

Proof. This follows immediately, from the definition of Mν and Mκ.

Lemma 5.7 (Difference estimates). Let k, l ∈ Z \ {0} and ξ, η ∈ R, then there
hold the following bounds on differences

1− M1(k,ξ)
M1(k,η)

≲ |ξ−η|
|k| , (5.40)

1− M1(k,ξ)
M1(l,η)

≲ |k−l|
|l| + ν

1
12 , (5.41)

ML(k, η)−ML(k, ξ) ≤ 2 |ξ−η|
k , (5.42)

1− Mj(k,ξ)
Mj(l,η)

≤ 2j
1
3
|ξl−kη|

|kl| , j ∈ {κ, ν, ν3} (5.43)

Proof. We start with the M1 estimate (5.40) and consider M1(k, ξ) ≤ M1(k, η)

1− M1(k,ξ)
M1(k,η)

= 1− exp

(
−
∣∣∣∣∫ t

0

|k|+|k|2ν
1
12

k2+(ξ−kτ)2 − |k|+|k|2ν
1
12

k2+(η−kt)2 dτ

∣∣∣∣) ,

≤ 1− exp

(
−
∫
[ ξk , ηk ]∪t−[ ξk , ηk ]

1 dτ

)
≲ |ξ−η|

|k| .
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The case M1(k, ξ) ≥ M1(k, η) follows by the same argument and M1(k, ξ) ≈
M1(k, η) ≈ 1. For (5.41) we consider the case M1(k, ξ) ≤ M1(l, η) and infer
that

1− M1(k,ξ)
M1(l,η)

= 1− exp

(
−
∣∣∣∣∫ t

0

|k|+|k|2ν
1
12

k2+(ξ−kt)2 − |l|+|l|2ν
1
12

l2+(η−lt)2

∣∣∣∣) ,

= 1− exp(−2π( 1
l∧k + ν

1
12 )) ≲ 1

l∧k + ν
1
12 ≲ |k−l|

|l| + ν
1
12 .

The case M1(k, ξ) ≥ M1(l, η) follows by the same argument and M1(k, ξ) ≈
M1(l, η) ≈ 1. For (5.42) we consider the case ML(k, ξ) ≤ ML(k, η) and thus

ML(k, η)−ML(k, ξ) = ML(k, η)(1− ML(k,ξ)
ML(k,η) ) ≲ 1− ML(k,ξ)

ML(k,η) .

We infer

1− ML(k,ξ)
ML(k,η) = 1− exp

(
−
∣∣∣∣∫ t

0

τ− ξ
k

1+(τ− ξ
k )2

dτ −
∫ t

0

τ− η
k

1+(τ− η
k )2 dτ

∣∣∣∣) ,

= 1− exp

(
−
∫
−[ ξk , ηk ]∪t−[ ξk , ηk ]

1dτ

)
,

≤ 2 |ξ−η|
k .

The case ML(k, ξ) ≥ ML(k, η) follows by the same argument.
For (5.43) we estimate the Mκ difference, since the Mν and Mν3 differences

are done similar. Let Mκ(k, ξ) ≥ Mκ(l, η), then it follows

1− Mκ(k,ξ)
Mκ(l,η)

= 1− exp

(
−κ

1
3 |
∫ t

0

1

1+κ
2
3 (t− ξ

k )2
− 1

1+κ
2
3 (t− η

l )
2
|
)
,

≤ 1− exp

(
−κ

1
3 |
∫ t

0

1−[ ξk , ηl ]∪t−[ ξk , ηl ]
(τ)dτ |

)
,

≤ 1− exp
(
−2κ

1
3 | ξk − η

l |
)
,

≲ κ
1
3
|ξl−kη|

|kl| .

The case Mκ(k, ξ) ≤ Mκ(l, η) follows from the same steps and Mκ(k, ξ) ≈
Mκ(l, η).

5.5 Local Wellposedness

We expect the local wellposedness result to be well-known, but were not able to
find it stated in the literature. In the following, we prove the local wellposedness
by a standard application of the Banach fixed-point theorem.

Proposition 5.8. Consider equation (5.17) with initial data pin ∈ HN for
N ≥ 5. Then there exists a time T such that there exists a unique solution
p(t) ∈ HN to (5.17) for all t ∈ [0, T ] .
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Proof. We prove existence with the Banach fixed-point theorem. Let T = 1 +
2∥pin∥HN (1 + 8

κ ) and let X be the space

X = {p ∈ L∞HN ∩ CHN−2 : p(t = 0) = pin, ∥p∥2L∞HN + κ
2 ∥∇tp∥2L∞HN ≤ 2∥pin∥2HN }

with the norm

∥p∥2X := ∥p∥2L∞HN + κ
2 ∥∇tp∥2L∞HN .

We define F : X 7→ X as a mapping q 7→ p = F (q) such that p solves

∂tp1 − ∂x∂
t
y∆

−1
t p1 − α∂xp2 = ν∆tp1 + Λ−1

t ∇⊥
t (∇⊥

t Λ
−1
t q2∇tb−∇⊥

t Λ
−1
t q1∇tv),

∂tp2 + ∂x∂
t
y∆

−1
t p2 − α∂xp1 = κ∆tp2 + Λ−1

t ∇⊥
t (∇⊥

t Λ
−1
t q2∇tv −∇⊥

t Λ
−1
t q1∇tb),

p|t=0 = pin.

Then the mapping F satisfies:

1. The mapping F : X → X is well defined on X.

2. The mapping F is a contraction, i.e. ∥F (p)−F (p̃)∥L∞HN ≤ 1
2∥p−p̃∥L∞HN .

Since X is a complete metric space, if we prove (1) and (2), then it follows that
F has a unique fixpoint by the Banach fixed-point theorem.

1. Let q ∈ X, then we obtain for p = F (q)

∂t∥p∥2HN + κ∥∇tp∥2HN ≤ ∥p∥2HN + ⟨ΛNv,ΛN (∇⊥
t Λ

−1
t q2∇tb−∇⊥

t Λ
−1
t q1∇tv)⟩

+ ⟨ΛNb,ΛN (∇⊥
t Λ

−1
t q2∇tv −∇⊥

t Λ
−1
t q1∇tb)⟩

≤ ∥p∥2HN + ∥p∥HN ∥q∥HN ∥∇tp
n+1∥HN

≤ ∥p∥2HN + 2
κ∥p∥

2
HN ∥q∥2HN + κ

2 ∥∇tp∥2HN .

Thus we obtain

∥p∥2X ≤ ∥pin∥2HN + T (1 + 1
κ∥q∥

2
L∞HN )∥p∥2L∞HN

≤ ∥pin∥2HN + T (1 + 2
κ∥pin∥

2
HN )∥p∥2L∞HN ,

Since

T (1 + 4
κ∥pin∥

2
HN ) < 1

2

we infer the bound

∥p∥2X ≤ 2∥pin∥2HN .

As ∂tp ∈ HN−2, it follows that p ∈ CHN−2 and thus p ∈ X.
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2. We show that F is a contraction. Let q, q̃ ∈ X we denote p = F (q) and
p̃ = F (q̃). We need to show that

∥p− p̃∥X < 1
2∥q − q̃∥X ,

by time estimate we obtain

∂t∥p− p̃∥2HN + κ∥∇t(p− p̃)∥2HN ≤ ∥p− p̃∥2HN

+ ⟨ΛN (v − ṽ),ΛN (∇⊥
t Λ

−1
t q2∇tb−∇⊥

t Λ
−1
t q1∇tv)⟩

+ ⟨ΛN (b− b̃),ΛN (∇⊥
t Λ

−1
t q2∇tv −∇⊥

t Λ
−1
t q1∇tb)⟩

− ⟨ΛN (v − ṽ),ΛN (∇⊥
t Λ

−1
t q̃2∇tb̃−∇⊥

t Λ
−1
t q̃1∇tv)⟩

− ⟨ΛN (b− b̃),ΛN (∇⊥
t Λ

−1
t q̃2∇tṽ −∇⊥

t Λ
−1
t q̃1∇tb̃)⟩

≤ ∥p− p̃∥2HN + ∥p− p̃∥HN (∥q − q̃∥HN ∥∇tp̃∥HN + ∥q∥HN ∥∇t(p− p̃)∥HN )

≤ ∥p− p̃∥2HN (1 + 2
κ∥q∥

2
HN )

+ ∥p− p̃∥HN ∥q − q̃∥HN ∥∇tp̃∥HN + κ
2 ∥∇t(p− p̃)∥2HN .

Integrating in time yields

∥p− p̃∥2L∞HN + κ
2 ∥∇t(p− p̃)∥2L2HN

≤ ∥p− p̃∥2L∞HNT (1 + 2
κ∥q∥

2
L∞HN )

+
√
T∥p− p̃∥L∞HN ∥q − q̃∥L∞HN ∥∇tp̃∥L2HN

≤ ∥p− p̃∥2L∞HNT (1 + 2
κ∥q∥

2
L∞HN + 4∥∇tp̃∥2L2HN )

+ T
4 ∥q − q̃∥2L∞HN .

Choosing T such that

T (1 + 2
κ∥q∥

2
HN + ∥∇tp̃∥2L2HN ) ≤ T + 2T∥pin∥HN (1 + 8

κ ) <
1
2 ,

it follows, that

∥p− p̃∥2X ≤ 1
2∥p− p̃∥HN + T

4 ∥q − q̃∥2L∞HN .

We hence conclude, that

∥p− p̃∥2X ≤ 1
2∥q − q̃∥2X .
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Appendix A

Mathematical Background
and Notation

Fourier transformation

We consider the Fourier transformation on the space T × R. Due to linearity,
all the properties can be deduced by the Fourier transformation on R and the
Fourier series on T. In the following, we list the main properties (see [Gra14]).

Let f ∈ L2(T× R), we define for (k, ξ) ∈ Z× R it’s Fourier transform as

Ff(k, ξ) := f̂(k, ξ) : = 1
2π

∫ 2π

0

dx

∫
dy e−i(kx+ξy)f(x, y)

For a function g ∈ L2(Z× R) we define the inverse Fourier transform

F−1g(x, y) := ǧ(x, y) : = 1
2π

∑
k

∫
dξ ei(kx+ξy)g(k, ξ).

Then, it holds that

F ◦ F−1 = IdL2 F−1 ◦ F = IdL2 .

The Fourier transformation acts as an isometry on L2, i.e. for all f ∈ L2

∥f∥L2 = ∥f̂∥L2 .

For functions f such that ∂xf ∈ L2 and ∂yf ∈ L2 it holds that

(∂xf)
∧ = ikf̂ ,

(∂yf)
∧ = iξf̂ .
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Sobolev and Gevrey spaces

For 1 ≤ p ≤ ∞ and s ≥ 0 the spaces Lp and Hs corresponds to the classical
Lebesgue and Sobolev spaces for functions on the set T × R. Sobolev spaces
satisfy the Sobolev embedding

∥f∥L∞ ≲ ∥f∥Hs

for s > 1.
For time dependent functions we define LpHs = Lp(0, T ;Hs) as the space

with the norm

∥ · ∥LpHs = ∥∥ · ∥Hs∥Lp(0,T ).

There are different definitions of Gevrey classes and spaces. The main con-
cept is that functions in Gevrey spaces decay exponentially in the Fourier vari-
ables on the L2 norm. In the following, we will provide two definitions, the one
we use in Chapter 3 and a more general version.

Let 1 ≤ σ, then a function f ∈ L2(T × R) belongs to the Gevrey-σ spaces
(in sense of Chapter 3) if∑

k

∫
exp(λ|ξ| 1

σ )|f̂(k, ξ)|2 dξ

for some constant λ > 0.
For the more general version, let 1 ≤ σ, we define the Gevrey-σ class as the
Gevrey spaces Gλ,N

σ for λ > 0 and N ≥ 0 with

Gλ,N
σ := { f ∈ L2 : ∥f∥Gλ,N

σ
< ∞ } (A.1)

with

∥f∥2
Gλ,N

σ
=
∑
k

∫
dξ ⟨k, ξ⟩N exp(λ|k, ξ| 1

σ )|f̂ |2(k, ξ). (A.2)

The λ is called the radius of convergence.

Notations

For two real numbers a, b ∈ R, we denote the minimum and maximum as

min(a, b) = a ∧ b,

max(a, b) = a ∨ b.

We write f ≲ g if there exists a constant C independent of all relevant pa-
rameters such that |f | ≤ C|g|. Furthermore, we write f ≈ g if f ≲ g and
g ≲ f .
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Moreover, for any vector or scalar v we define

⟨v⟩ = (1 + |v|2) 1
2 .

For a function f ∈ L2(T × R) we denote the x-average and its L2-orthogonal
complement as

f=(y) =

∫
T
f(x, y)dx,

f̸= = f − f=.
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Appendix B

Derivation of the MHD
Equations from the
Navier-Stokes and Maxwell
Equations

In this appendix, we derive the MHD equations from the Navier-Stokes and
Maxwell Equations. We follow the book of Davidson [Dav16]. The MHD equa-
tions model an electrical conduction and non-magnetic fluid and are derived
from the Navier-Stokes and Maxwell equations under the vanishing charge den-
sity assumption. The MHD equations are derived in three steps. First, we write
down the governing equations, then we explain the simplifications and finally
we derive the MHD equations.

Governing Equations

A (conduction) fluid satisfies the Navier-Stokes equation

∂tV + V · ∇V +∇Πv = ν∆V + F,

div(V ) = 0,
(B.1)

Here V is the fluid velocity, Πv is the fluid pressure, ν is the fluid viscosity and
F is the applied forces.

The conduction fluid generates an electric and magnetic field which satisfies
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Maxwell’s equations

∇ · E = ρ
ε ,

∇ ·B = 0,

∇× E = −∂tB,

∇×B = µJ + µε∂tE.

(B.2)

Here E is the electric field, B is the magnetic field, J is the current density, ρ is
the charge density, ε is the permittivity of free space and µ is the magnetic con-
stant. In a conducting fluid, the current density is proportional to the Lorentz
force

f = q(E + V ×B) (B.3)

on free charges, with q as the charge.
In a stationary conductor, the current density J is proportional to the force

applied to free charges, and thus, the Ohmic law J = σẼ applies there. For a
conducting fluid, we consider the electric field measured in a moving frame with
the velocity of the conducting fluid

J = σ(E + V ×B). (B.4)

With the electrical conductivity σ.
The Lorentz force (B.3) affects the moving particles, but we are more inter-

ested in the volumetric version. Thus we sum over the charge q of a unit volume
of the conductor. Then the sum over charges is the density

∑
q = ρ and the

sum over moving charges is the current
∑

qV = J and so we obtain the force

F = ρE + J ×B. (B.5)

Simplification for the MHD Equations

The charge density ρ in a conducting fluid is small and negligible compared to
other effects. Thus for the MHD equations, we assume that

ρ = 0. (B.6)

Due to the charge conservation, we obtain that the current is divergent free

∇ · J = −∂tρ = 0.

The second simplification is, for the last term of (B.2) the µε∂tE only is relevant
on relativistic scales. Therefore it can be neglected in the model and we obtain

∇×B = µJ. (B.7)
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Derivation of the MHD equations

Then with (B.6) and (B.7) Maxwell’s equations (B.2) change to the pre Maxwell
equations

∇ · E = 0, (B.8)

∇ ·B = 0, (B.9)

∇× E = −∂tB, (B.10)

∇×B = µJ. (B.11)

In the following, we establish a closed formula for the magnetic and velocity
field. We apply (B.10), (B.4) and (B.11) to infer

∂tB = −∇× E

= −∇× ( 1σJ − V ×B)

= − 1
σµ∇×∇×B +∇× (V ×B).

Then we define the resistivity κ := 1
σµ and use ∇ · V = ∇ ·B = 0 to infer

− 1
σµ∇×∇×B = κ∆B,

∇× (V ×B) = B · ∇V − V · ∇B.

Therefore, for B we obtain the equation

∂tB + V · ∇B = κ∆B +B · ∇V

div(B) = 0.
(B.12)

From (B.5), (B.6) and (B.11) we infer

F = J ×B = curl(B)×B = B · ∇B − 1
2∇|B|2.

We define the pressure Π = Πv +
1
2∇|B|2 and thus we obtain for (B.1)

∂tV + V · ∇V +∇Π = ν∆V +B · ∇B,

div(V ) = 0.
(B.13)

Combining the equations (B.12) and (B.13) we infer the MHD equations

∂tV + V · ∇V +∇Π = ν∆V +B · ∇B,

∂tB + V · ∇B = κ∆B +B · ∇V,

div(B) = div(V ) = 0.
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