
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Preventing Refactoring Attacks on
Software Plagiarism Detection through
Graph-Based Structural Normalization

Master’s Thesis of

Robin Manuel Maisch

At the KIT Department of Informatics
KASTEL – Institute of Information Security and Dependability

First examiner: Prof. Dr. Ralf H. Reussner
Second examiner: Prof. Dr.-Ing. Anne Koziolek

First advisor: Timur Sağlam M.Sc.
Second advisor: Nils Niehues M.Sc.

20. November 2023 – 21. May 2024

I declare that I have developed and written the enclosed thesis completely by myself. I
have not used any other than the aids that I have mentioned. I have marked all parts of the
thesis that I have included from referenced literature, either in their original wording or
paraphrasing their contents. I have followed the by-laws to implement scientific integrity
at KIT.

Karlsruhe, 21. May 2024

. .
(Robin Manuel Maisch)

Abstract

Detecting software plagiarisms among code by students remains a challenge. Plagiarists
often obfuscate their work by modifying it just enough to avoid detection while preserving
the code’s runtime behavior in order to create an equally valid solution. This type of
modification is commonly known as refactoring. State-of-the-art plagiarism detection
tools use token-based comparison of submissions, which renders them immune against
several types of refactoring obfuscation by their very design. Other types of refactorings,
however, still create very effective plagiarisms. This thesis presents a novel approach that
uses graph transformations as a means to normalize the structure of code submissions.
This normalized structure is not affected by refactoring attacks. The normalization engine,
implemented as a transformation system for code graphs, was integrated into a token-
based plagiarism detection tool. We evaluate our approach on four relevant types of
obfuscation attack schemes. From the results, we conclude that the approach is not only
on-par with the state of the art in their efficacy against all attack schemes, but it even
outperforms it by a large margin on combined refactoring attacks.

iii

Zusammenfassung

Die Erkennung von Software-Plagiaten aus einer Menge von studentischen Code-Abgaben
stellt nach wie vor eine Herausforderung dar. Solche Code-Plagiate werden häufig äu-
ßerlich verändert, um unentdeckt zu bleiben; jedoch soll sich ihr Laufzeitverhalten nicht
verändern, damit das Plagiat eine ebenso gültige Lösung darstellt wie das Original. Genau
solche Veränderungen werden als Refaktorisierungen bezeichnet. Aktuelle Werkzeuge
zur Plagiatserkennung verwenden in der Regel tokenbasierten Vergleich zwischen Ab-
gaben, und sind dadurch inhärent gegen einige Arten von Refaktorisierungsangriffen
immun. Komplexere Refaktorisierungen können Plagiate hingegen erfolgreich vor Plagi-
atserkennern verbergen. Diese Arbeit stellt einen Ansatz vor, der Code-Abgaben in eine
normalisierte Struktur überführt, auf der Refaktorisierungsangriffe unwirksam sind. Diese
Normalisierung wird durch ein Transformationssystem für Code-Graphen umgesetzt, das
wir in einen tokenbasierten Plagiatserkenner integriert haben. Wir werten den Ansatz auf
vier relevanten Kategorien von Verschleierungsangriffen aus. Die Ergebnisse zeigen, dass
dieser Ansatz nicht nur in allen betrachteten Kategorien mindestens auf dem Niveau des
aktuellen Stands der Technik ist, sondern diesem in seiner Resilienz gegen kombinierte
Refaktorisierungsangriffen sogar weit überlegen ist.

v

Contents

Abstract iii

Zusammenfassung v

1. Introduction 1
1.1. Contribution . 2
1.2. Structure of the Thesis . 2

2. Foundations 3
2.1. Code Plagiarism . 3
2.2. Software Plagiarism Detection . 5
2.3. Current Plagiarism Detection Tools . 6
2.4. Plagiarism Generation Tools . 8
2.5. Refactoring . 8
2.6. Graph-Based Code Analysis . 9
2.7. Refactorings as Code Graph Transformations 11

3. Related work 13
3.1. Token-Based Plagiarism Detection . 13
3.2. Refactorings on Code Graphs . 14

4. Threat Model 15
4.1. Threat Model Definition . 17
4.2. Distinction Against Related Work . 18

5. Graph-Based Structural Normalization 19
5.1. The Defense Mechanism – Overview . 19
5.2. Workflow of a CPG Transformation System 20
5.3. Representation of Transformations . 22
5.4. Transformation Calculation . 25
5.5. Pattern Matching Algorithm . 26
5.6. Node Management . 27
5.7. Order of Transformation Application . 30
5.8. Graph Linearization and Tokenization . 31

6. CPG Transformations for Refactoring Obfuscation Resilience 35
6.1. Removing Elements . 36
6.2. Moving Members . 42

vii

Contents

6.3. Inlining Elements . 43
6.4. Semantically Equivalent Replacement . 46

7. Evaluation 49
7.1. Goal-Question-Metric Plan . 50
7.2. Data Sets . 51
7.3. Generated Plagiarisms by Attack Scheme 51
7.4. Approaches Used for Comparison . 54
7.5. Results . 54
7.6. Discussion . 63
7.7. Threats to Validity . 64

8. Limitations and Future Work 67

9. Conclusion 69

Bibliography 71

A. Appendix 76
A.1. Isomorphism Detection Algorithm – Pseudo Code 77

viii

List of Figures

2.1. Token-based Plagiarism Detection Pipeline 5
2.2. Example: Evaluation Order Graph (1) . 9
2.3. Example: Evaluation Order Graph (2) . 10
2.4. Transformation Formalization . 12

5.1. Example: A Refactoring as an Obfuscation Attack 19
5.2. CPG Transformation System . 21
5.3. Transformation Application . 21
5.4. Example: Graph Transformation . 22
5.5. Transformation Operations . 26
5.6. Example: Tree Map . 28
5.7. Example: Inline Single-Use Variables . 31

6.1. Transformation Remove Empty Method 36
6.2. Transformation Remove Empty Constructor 37
6.3. Transformation Remove Empty Class . 38
6.4. Transformation Remove Getter . 39
6.5. Transformation Remove Unsupported Method 40
6.6. Transformation Remove Unsupported Constructor 41
6.7. Transformation Move Constant to Only Using Class 42
6.8. Transformation Inline Single-Use Variable 43
6.9. Transformation Inline Single-Use Constant 44
6.10. Transformation Unwrap Optional.of() . 45
6.11. Transformation Unwrap Optional.get() . 46
6.12. Transformation For Statement to While Statement 47
6.13. Transformation Invert Negated If Condition 48

7.1. Evaluation – Linearization . 55
7.2. Evaluation – Insertion Attacks . 56
7.3. Evaluation – LLM Obfuscation Attacks 57
7.4. Evaluation – LLM Generation Attacks . 58
7.5. Evaluation – Refactoring Attacks . 59
7.6. Evaluation – Runtime and Reliability . 62

ix

List of Tables

2.1. Plagiarism Levels . 4
2.2. Code Clone Types . 4

5.1. AST-Based Tokenization vs. EOG-Based Tokenization 34

xi

List of Algorithms

1. Relative Node Order Algorithm . 30
2. CPG Isomorphism Detection Algorithm 77

xiii

1. Introduction

Lecturers commonly use assignments as a means to enforce engagement with the subject
matter of the course throughout the semester. While this is intended as an opportunity for
the students to gain valuable insight and skills that will help them in their future careers
[43], students often find assignments to be a considerable burden, given that they must
develop and submit a solution prior to a deadline, which is then graded and may affect
their final grade or their admission for the exam.

A number of factors may cause some students to be tempted to resort towards cheating
[11] as a way to escape the ongoing pressure, such as the inability to keep up with the
subject, failure to meet the time constraints, or fear that an inadequate submission will
adversely impact their academic performance [6]. Depending on the type and context of
the assignment, universities consider plagiarism to be a serious academic offense which
can result in severe penalties. Still, plagiarism in student submissions remains a prevalent
issue.

In computer science education, assignments often take the form of programming assign-
ments where students submit a set of code files. As these code files are fully digital, they
are particularly easy to share, modify, and resubmit by other students. For this reason, code
plagiarism in computer science education has been subject to research for decades [43],
which has produced a wide range of strategies and automatic tools to compare submissions
and identify suspiciously similar pairs among them [28]. Currently, token-based plagiarism
detection is the state of the art [21, 10, 19], which does not compute similarity scores from
the source code of submissions, but from a list of tokens intended to “characterize the
essence of a program’s structure” [33]. The abstraction introduced by the tokens makes
plagiarism detection immune against a range of basic attacks, such as identifier renaming
and the modification of comments.

Several recent contributions to the field of plagiarism detection aim to design a countermea-
sure against other specific types of obfuscation attacks, such as reordering of independent
statements [38], or the insertion of dead statements [20]. This thesis presents an approach
to make plagiarism detection resilient against refactoring attacks, where code is modified so
as to change its structure—thus effectively obfuscating the plagiarism against token-based
plagiarism detection—but its visible behavior is preserved, so that the refactored code
should be an equally adequate solution as the original. As this definition is rather general,
many attack schemes in the literature can be regarded as a refactoring attack, including
all attack schemes mentioned so far.

The present approach to mitigating refactoring attacks revolves around transforming
code into a normalized structure with regard to semantically equivalent alternatives. The

1

1. Introduction

concept of code normalization was used in other works to address the fact that with the
certain degree of freedom which frequently arises when writing code comes opportunities
to obfuscate plagiarisms. While the approach can cover a wide variety of attacks, each
attack has to be addressed separately by a specialized transformation, or possibly a set
of transformations, and due to the sheer number of possible attacks, we can never cover
all of them. The evaluation was conducted in four stages, using automatically generated
plagiarisms of one specific attack type each. These plagiarized programs were generated
based off of real-world solutions to programming assignments, submitted by university
students.

1.1. Contribution

This thesis provides three main contributions to the state of the art.

(C1) A CPG transformation system was designed and implemented as a framework to
counter refactoring obfuscation attacks. This transformation system was subsequently ex-
tended by a graph linearization and tokenization component, so that it could be integrated
into a token-based plagiarism detection tool.

(C2) An initial selection of thirteen refactoring transformations was collected and integrated
in the CPG transformation system. These transformations, covering a wide variety of
refactoring attack schemes, lay the foundation for the resiliency of token-based plagiarism
detection against refactoring attacks.

(C3) The effectiveness of the CPG transformation system and its integrated selection
of transformations as a means to normalize code and counter refactoring attacks was
systematically evaluated in four stages, covering various attack schemes inside and outside
the area of refactoring attacks.

1.2. Structure of the Thesis

The rest of this thesis is laid out as follows: In Chapter 2, key concepts related to token-
based plagiarism detection, refactorings, and code graphs are introduced. Chapter 3 shows
how the present approach is distinct from related work. Chapter 4 demonstrates how
refactorings constitute effective attacks on token-based plagiarism detection, develops
the basic idea of how such attacks can be mitigated, and defines what we can and cannot
expect from this mechanism. Chapter 5 is a detailed description of the components of the
CPG transformation system, which is the core contribution of this thesis. The selected
transformations, the attacks that they target, and how they affect the submissions in terms
of their code structure and the resulting token list, are illustrated in Chapter 6. Chapter
7 presents the design and the results of the evaluation, which assesses the resilience of
the approach against four distinct obfuscation attack schemes. In Chapter 8, we discuss
limitations of the present approach, pointing towards potential further research on the
topic. Finally, Chapter 9 summarizes the content of this work, concluding the thesis.

2

2. Foundations

In this chapter, we introduce the key concepts for the thesis. We discuss the problem of
software plagiarism in programming assignments, the state-of-the-art approach to detect
such plagiarism as well as other interesting proposals, the use of graphs in code analysis,
and how refactorings can be conceptualized as transformations on a code graph.

2.1. Code Plagiarism

Definition. In her PhD thesis, Cosma [6] observes that there is no universally accepted
definition of what constitutes software plagiarism, which contributes to the fact that among
educators, there is no consent as to whether a given instance of plagiarism is punishable,
and which sanctions are adequate. She then suggests a first definition:

“Source-code plagiarism in programming assignments can occur when a student reuses
source-code authored by someone else and, intentionally or unintentionally, fails to
acknowledge it adequately, thus submitting it as his/her own work. [...]” [6, p. 66f.]

Cosma also names multiple aspects about the act of plagiarism that may be considered
when determining the severity of an instance of plagiarism, e.g., the source, whether the
source deliberately shared their solution with the plagiarist, and the software artifact
subject to plagiarism (e.g., design, architecture, code, comments). Simon et al. [43] argue
that a key factor to reaching academic integrity is that clear guidelines are communicated
to the students indicating which sources of assistance and code are acceptable and which
are not, and that the students must be encouraged to see programming assignments as an
opportunity to reaching learning goals that will prove important for their future.

Much like code plagiarism, code cloning involves reusing code without acknowledging
it. However, the context is different: while code plagiarism occurs in academia where
students are required to submit code according to a specification or task description, code
cloning occurs when existing code is copied and pasted as a basis for further development
in the same project, generally resulting in redundant code which is considered bad practice
[14, p. 72]. Still, code clones are prevalent in productive code. The study of Baker [1]
on two pieces of software concluded that 19 and 20 percent of the code were redundant,
respectively.

Code cloning is also subject to extensive amounts of research, yielding a multitude of
tools for clone detection and elimination. Similar to software plagiarism detection, code
clone detection revolves around finding large matches between parts of code, so the

3

2. Foundations

mechanisms of both are similar. Rattan, Bhatia, and Singh [34] review 72 tools for clone
detection, classifying them into 24 comparison algorithms based on 13 intermediate
representations.

Classification. Fiaidhi and Robinson [13] introduce a classification scheme of software
plagiarisms which consists of seven levels, increasing in their potential to alter the un-
derlying program structure. Karnalim [18] lists 50 types of plagiarism attacks of all seven
levels (plus a newly introduced intermediate level), listed in Table 2.1.

Level Changes Examples
L0 Verbatim copy
L1 Changes in comments and whitespace
L2 L1 + Changes in identifiers Rename variable, rename class
L2.5 L2 + Changes in packages and imports Fully qualified class name↔ import

L3 L2.5 + Changes in declarations Declaration location, order, visibility,
and assigned value; dummy variables

L4 L3 + Changes in program modules Extracted methods; dummy methods

L5 L4 + Changes in program statements
Method calls; data types;

usage of operators and control
structures; order of operands

L6 L5 + Changes in decision logic
introduction of control structure;

loop↔ recursive method;
loop boundary

Table 2.1.: Levels of plagiarism and characteristic examples [13], [18].

In the domain of code cloning, Davey et al. [9, p. 4] introduced a different classification
system that originally featured four types, but has since been expanded to include other
types based on artifact and granularity [34, p. 1167], all listed in Table 2.2.

Type Type name Typical changes/
relation between clones

Plagiarism
Level

T1 Exact clones White space, comments L0-1

T2 Renamed/
parameterized clones T1 + Identifiers, literals, types L2-5

T3 Near miss clones T2 + Statement insertion/deletion L5

T4 Semantic clones Functionally similar, but
no textual similarity >L6

Structural clones Common design basis –
Function clones Clone on function-level granularity –

Model-based clones Clone in (e.g., graphical) model artifacts –

Table 2.2.: Types of code clones [34, p. 1167]. Types 1-3 are also referred to as the group of
textual clones [36, p. 14]. The rightmost column gives an approximate mapping
of the code clone types to the plagiarism levels.

4

2.2. Software Plagiarism Detection

2.2. Software Plagiarism Detection

In the history of research about plagiarism detection, metric-based approaches were
prevalent for some time, e.g., [13], where as many as 24 metrics are used. Since the early
2000s, token-based plagiarism detection is the state of the art [21, 10, 19], although other
approaches have been suggested, such as graph-based plagiarism detection [21]. This
section describes the structure and principles of token-based plagiarism detection tools,
like JPlag [33], Moss [41], and Dolos [22].

2.2.1. Token-based Plagiarism Detection Pipeline

Figure 2.1 gives an overview over the typical architecture of a token-based plagiarism
detection tool. Each submission in the set of submissions (the corpus) may consist of one
file or a directory containing any number of files of the same language, e.g., a programming
language like Java, C/C++, or Python, a model description language like EMF, or natural
language.

Parsing and Tokenization. Each file is first transformed to a list of tokens (see below).
While there are no specified requirements concerning the inner workings of a language
module, they typically lex and parse each file to an abstract syntax tree (AST), then traverse
the AST and generate a specific token when entering and/or exiting a visited node. Each
submission is mapped to a single token list, concatenating the tokens from the individual
files.

Tokens. A token is a language-agnostic abstract representation of a language-specific syn-
tactic element of the code, like a variable reference, a record declaration, or the beginning
of an else block. Tokenization is intended to reduce the input down to its essence, i.e., its
structure is preserved, whereas other aspects are discarded, e.g., formatting. Therefore,
abstraction by tokenization renders similarity detection immune to textual plagiarism

obfuscation.

Results

JPlag

/* My first class.*/

class MyClass {

 /**This is an id.*/

 private int id;

 public int getID(){

 // Magic ID!

 return 5;

 }

}

/* My first class.*/

class MyClass {

 /**This is an id.*/

 private int id;

 public int getID(){

 // Magic ID!

 return 5;

 }

}

/**

 * My first class.

 */

class MyClass {

 /**

 * This is an id.

 */

 private int id;

 public int getID(){

 // Magic ID!

 return 5;

 }

}

C/C++
Language Module

Java
Language Module

Python
Language Module

. . .

Comparison
(Greedy String Tiling)

Submissions
(*.java, *.cpp, ...) Token Lists

Report of the
Similarity Metric

(*.zip)

(B,C)

(A,B)
(A,C)

0%

100%CLASS_START

MEMBER_DECL

METHOD_DECL

BLOCK_START

CLASS_START

MEMBER_DECL

METHOD_DECL

BLOCK_START

Figure 2.1.: The pipeline of a token-based plagiarism detection tool, using JPlag [33] as
an example. Adapted from [20].

5

2. Foundations

The comparison algorithm. The token lists generated from the corpus are fed to a com-
parison algorithm in pairs. The comparison algorithm used may differ between tools, but
often a variation of Greedy String Tiling with Running Karp-Rabin Matching [47] is used,
which is a runtime-optimized heuristic approach to determining a maximum matching

of token subsequences between the pair. This means that, in total, the portion of both
submissions covered by the matches is maximal. Wise suggests that matches of a length
of 1 or 2 are insignificant for the purpose of matching programming languages [47, p. 3].
Thus, the minimal length of a significant match is a customizable parameter and serves as
the central means to balance the precision/recall trade-off appropriate to the nature of the
used language.

Output. For every pair of submissions, a range of similarity metrics are calculated from
the found matches, usually given in percent. Finally, the results are made available to the
user, e.g., in a text file, or via a UI in a web browser. Some plagiarism detection tools allow
to examine pairs of submissions with special highlighting indicating matching sections, so
that the user can easily assess whether highly similar submissions are suspicious.

2.3. Current Plagiarism Detection Tools

The next section presents software plagiarism tools to highlight the diversity of the various
approaches.

2.3.1. MOSS

Moss [41], short for Measure Of Software Similarity, is a closed-source “automatic system
for determining the similarity of programs”1 provided as an online service for free, where
users can upload submissions via a script. Moss uses winnowing and fingerprinting

on short subsequences of tokens which enables it to find matching subsequences in
other submissions very efficiently. Users can access the results online for 14 days after
submission.

Even though few changes seem to have been made to its core functionality since its original
release in 1994, Moss is very popular to this day, and treated as the de-facto standard in
the literature.

2.3.2. JPLAG

JPlag [33] is an open-source2 token-based software plagiarism detector that is commonly
cited in the literature as “well known” and “widely used” [7, p. 2]. From a corpus of
submissions, JPlag generates a set of files (the report) that, for each pair of submissions,
1Source: https://theory.stanford.edu/~aiken/moss/, visited last on 09.05.2024
2https://jplag.com, visited last on 07.05.2024.

6

https://theory.stanford.edu/~aiken/moss/
https://jplag.com

2.3. Current Plagiarism Detection Tools

contain information about matching parts between them, and a resulting similarity metric.
The JPlag package comes with the report viewer, a browser-based UI which lists the
submission pairs ordered by the similarity metric. For each pair of submissions, the UI can
display code of both submissions alongside each other, highlighting matching parts in a
manner similar to common diff visualizers, which aids the user during manual inspection
of suspicious cases.

Since its release, JPlag has been described as a “commonly used” [21, p. 875], “promising”
[29, p. 25] tool for software plagiarism detection in the literature. In their survey of source
code similarity detection tools, Novak et al. [29, p. 14, p. 25] found that, among a set of
five tools, JPlag was the most frequently referenced tool in the articles reviewed, and
Moss and JPlag were most frequently compared to each other, indicating high relevance.
At present, more innovation is put into JPlag than on any other similar tool.

2.3.3. DOLOS

Maertens et al. [22] present Dolos, a token-based software plagiarism detection tool that
offers support for a broad range of languages, and a modern, user-friendly graphical user
interface. The ample language support is made possible through its use of the tree-sitter
parsing library; parsers based on that library are available for more than twenty languages.
Based on its use of winnowing and fingerprinting, the comparison algorithm is apparently
closely related to Moss.

2.3.4. GPLAG

Unlike token-based plagiarism detection tools, graph-based approaches to software plagia-
rism detection use a graph representation of the input code as the basis for comparison.
As isomorphism detection on graphs and subgraphs is NP-complete, measures must be
taken for these approaches to scale with the size and length of the corpus.

Liu et al. [21] present GPlag, a tool that identifies similar submissions by detecting
subgraph isomorphism between PDGs. To decrease the computation time, they propose
two methods to identify pairs of PDGs that are unlikely to be isomorphic, based on metric
properties of the PDGs. Park et al. [31] propose to eliminate dead code through backwards
slicing, which reduces the size of the PDGs and thus optimizes the computation time of
the subgraph isomorphism detector.

2.3.5. A-CFG

Chae et al. [4] introduce the API-labeled control flow graph (A-CFG) which indicates the fre-
quency and order of API calls in a submission. From the A-CFG, a score vector is computed,
which in turn is used to determine the relative similarity of pairs of submissions.

7

2. Foundations

2.4. Plagiarism Generation Tools

Devore-McDonald and Berger [10] note that software plagiarism detectors which use
string matching can be broken by insertion attacks. They present Mossad, an automatic
plagiarism generation tool that uses random insertion of source code lines—from the
source itself and an optional entropy file—to break up any matching token sequence of
relevant length. After each iteration of insertion, the tool checks whether the result still
compiles and whether the similarity score of the original and the result falls below a set
target threshold, using the software plagiarism detector Moss as an oracle. The authors
conclude that Mossad can successfully break current versions of Moss and JPlag, which
has inspired further research and development in this area, see Section 3.1.

Ko et al. [19] present Coat, a “Code ObfuscAtion Tool to evaluate the performance of
code plagiarism detection tools”. Coat applies a set of eight types of obfuscation attacks
on code, roughly covering the range of Level 1 to Level 5 plagiarisms (see Table 2.1 in
Section 2.1). Comparing Moss, JPlag, and the token-based tools Sim and Sherlock which
both use the Running Karp-Rabin Matching algorithm, they conclude that “overall, [...]
JPlag produced the best results.” [19, p. 36]

As the ability of large language models (LLMs) to generate vast amounts of high-quality
code in any programming language continues to improve, they provide a new opportunity
to obtain a solution to a programming assignment from an external source. Niehues [25]
created a sample of LLM-generated solutions by submitting the assignment instructions
to ChatGPT, and another sample where ChatGPT was tasked to obfuscate a given solution.
In the evaluation of his approach to improve the effectiveness of token-based plagiarism
detection, he concluded that in most cases, LLMs failed to effectively obfuscate the input
submissions, and that state-of-the-art token-based plagiarism detection finds high similar-
ities in submissions fully generated by LLMs. His approach raises the minimum similarity
between ten fully generated solutions to over forty percent, which is considerably higher
than the average pair of original submissions of his data set. These results suggest that, if
more than one fully LLM-generated solution is submitted, token-based plagiarism detectors
might be able to detect them as if they were plagiarisms of each other.

2.5. Refactoring

Refactoring is the act of applying a series of incremental modifications to the internal
structure of software, each preserving the observable behavior of the program [11, p. 45],
but improving certain qualities about the code. This is an effective way to un-clutter
code that has been extended many times over the course of the project’s lifetime and may
facilitate further extensions to the code [11, p. 50 ff.].

In the domain of refactoring, Fowler’s book [14] is commonly named the standard reference.
It encompasses a catalogue of more than seventy refactorings, with a case study detailing
the effect of each refactoring and the steps required to apply it by hand.

8

2.6. Graph-Based Code Analysis

logger.warn("Similarity of {} and {}: {}%", id1, id2, similarity*100);

callee arg0 arg1 arg2 arg3

MemberCall
Expression

base

Member
Expression

warn

Reference
logger

Reference
id2

Reference
id1

Reference
similarity

Literal
"Similarity..."

Literal
100

lhs rhs

Binary
Operation

*

...

Figure 2.2.: A code snippet and the corresponding AST (black) and EOG (green).

2.6. Graph-Based Code Analysis

Due to the intricate interactions between elements of code, graphs are a commonly used
representation as a basis for many types of static code analysis. In this section, a selection
of types of tree and graph structures are briefly described.

Abstract Syntax Trees (ASTs) represent the structure of code as specified by the grammar
of the used programming language. As the structure of the code is implicit to the AST,
structural elements—such as parentheses around expressions determining the precedence
of evaluation—are not represented explicitly. The AST is the result of lexing and parsing
source code.

(Intraprocedural) Control Flow Graphs (CFGs) operate on individual method bodies. Their
nodes represent blocks of code, and an edge between block 𝐴 and block 𝐵 indicates that
there is an execution path where the code of 𝐵 is executed immediately after the code of
𝐴.

Evaluation Order Graphs (EOGs) are an extension to CFGs from blocks to nodes: the nodes
of methods are connected via EOG edges in the order of a hypothetical evaluation. EOGs
are well suited as a basis for data flow analyses like variable liveliness analysis, variable
definition and usage analysis, name analysis, type analysis etc. Given an AST node 𝑛, a
EOG typically represents the traversion of 𝑛 by post-fix depth-first order: It connects the
predecessor of 𝑛 to the child nodes of 𝑛 in order, and finally reaches 𝑛 itself.

Example 1: Standard statement. The EOG of the statement depicted in Figure 2.2 shows
the typical postfix depth-first order of traversion.

Example 2: Control statement. In the case of control statements, the EOG order is adapted:
the node of the control statement (for, while, if, switch, ...), is evaluated after the condition
expression and serves as the branching node. The iteration statement of a for statement
is evaluated after its body, and before its condition. This is illustrated in Figure 2.3. For
branching nodes, the EOG edges are attributed with their respective Boolean value.

9

2. Foundations

for (int index = 0; index <= 10; index++) sum += index;

initializer condition increment statement

FALSE
ForStatement

value

Variable
Declaration

index

Literal
0

lhs rhs

Binary
Operation

<=

Literal
10

Reference
sum

lhs rhs

Assign
Statement

+=

Reference
index

Reference
index

input

Unary
Operation

++

Reference
index

TRUE

...

Figure 2.3.: A control statement and the corresponding AST (black) and EOG (green).

Another interesting type of syntactical element with an unusual EOG is shorthand logical
operators, where the first operand also serves as a branching node. One EOG edge connects
the left operand to the operation node (in case the left operand already determines the
result of the operation), the other to the right operand (otherwise).

Dependency Graphs.

• Control Dependency Graphs (CDGs) connect control statements to their control-
dependent statements, i.e., the control statement has multiple direct successors, and
the control statement determines which successor is executed.

• Data Dependency Graphs (DDGs) connect variable definitions 𝑑𝑒 𝑓𝑥 and variable
references 𝑟𝑒 𝑓𝑥 where the value of the variable 𝑥 at the evaluation time of 𝑟𝑒 𝑓𝑥 may
be the one set by 𝑑𝑒 𝑓𝑥 . The transitive DDG relation 𝑛 −→

𝐷𝐷𝐺

∗ 𝑟𝑒 𝑓𝑥 thus determines all
nodes 𝑛 that could impact the value of 𝑥 at the time the 𝑟𝑒 𝑓𝑥 is evaluated.

• Program Dependency Graphs (PDGs) [12] combine CDGs and DDGs. A typical use
case of PDGs is program slicing. The backwards slice of a node n is the set of nodes
that is reachable in a backwards search starting at n, and this set contains all nodes
that may affect the computation of n [46]. Interprocedural PDGs, connected via
call edges, are also referenced by their alternative name System Dependency Graphs

(SDGs) [17].

Call Graphs connect method calls to the declaration of the called method. In object-
oriented languages featuring dynamic binding, any number of methods may be the target
in response to the method call at runtime. Compilers use call graphs for interprocedural
analyses and optimizations.

Code Property Graphs (CPGs) combine properties of ASTs, CFGs and PDGs. Yamaguchi
et al. [48] introduced CPGs as a tool for software vulnerability analysis, which remains
one of its main applications to this day. Current open-source libraries offer automatic
generation of CPGs for many programming languages, and even additional edges that
cover data types, for example.

10

2.7. Refactorings as Code Graph Transformations

2.7. Refactorings as Code Graph Transformations

A formalization of refactorizations as graph transformations has been suggested by Mens
et al. [24], which is outlined below. They used their formalism to define two refactoring
transformations, Encapsulate Variable and Pull Up Method, and were able to prove preser-
vation of behavior on both of these transformations. Note that the following summary is
only for the sake of a better understanding of the theoretical concepts behind the approach
described in this thesis; many of the notions and notations will not be used in the rest of
this work.

A CPG is a typed, labeled, directed graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 , ℓ𝐺) over Σ,Δ where

• 𝑉𝐺 is a set of nodes,
• Σ is a set of node labels (indicating their node type),
• ℓ𝐺 : 𝑉𝐺 → Σ is a mapping between nodes and their label,
• Δ is a set of edge labels (indicating their edge type), and
• 𝐸𝐺 ⊆ (𝑉𝐺 × Δ ×𝑉𝐺) is a set of labeled directed edges.

An occurrence of a graph 𝑆 in a graph 𝐺 (both over Σ,Δ) is an injective mapping
𝑜𝑐 = (𝑜𝑐𝑉 , 𝑜𝑐𝐸), 𝑜𝑐𝑉 : 𝑉𝑆 → 𝑉𝐺 , 𝑜𝑐𝐸 : 𝐸𝑆 → 𝐸𝐺

so that
• ∀𝑣𝑆 ∈ 𝑉𝑆 : ℓ𝐺 (𝑜𝑐𝑉 (𝑣𝑆)) = ℓ𝑆 (𝑣𝑆)
(the node types of corresponding nodes are equal).

• ∀𝑒𝑆 = (𝑣, 𝛿,𝑤) ∈ 𝐸𝑆 : 𝑜𝑐𝐸 (𝑒𝑆) = (𝑜𝑐𝑉 (𝑣), 𝛿, 𝑜𝑐𝑉 (𝑤))
(the source node, type, and target node of corresponding edges are consistent).

A refactoring can be described as a parameterized graph production 𝜋 = (𝐿, 𝑅, 𝑒𝑚𝑏𝑖𝑛, 𝑒𝑚𝑏𝑜𝑢𝑡)
where

• 𝐿 = (𝑉𝐿, 𝐸𝐿) and𝑅 = (𝑉𝑅, 𝐸𝑅), the left-hand side and right-hand side of the production,
are graphs over (Σ,Δ) and

• 𝑒𝑚𝑏𝑖𝑛, 𝑒𝑚𝑏𝑜𝑢𝑡 ⊆ (Δ ×𝑉𝐿) × (Δ ×𝑉𝑅) are called embeddings (to be explained shortly).

The production 𝜋 can then be applied to a graph 𝐺 = (𝑉𝐺 , 𝐸𝐺) iff there is an occurrence
𝑜𝑐𝐿 of 𝐿 in 𝐺 . Let 𝑆 = (𝑉𝑆 , 𝐸𝑆) := 𝑜𝑐𝐿 (𝐿) ⊆ 𝐺 be the image of 𝐿 in 𝐺 . The application of 𝜋
to 𝐺 results in a graph 𝐺′ s.t. there is an occurrence 𝑜𝑐𝑅 of 𝑅 in 𝐺′, while 𝐺 \ 𝑆 = 𝐺′ \ 𝑆′
remains unchanged. Let 𝑆′ = (𝑉𝑆 ′, 𝐸𝑆 ′) := 𝑜𝑐𝑅 (𝑅) ⊆ 𝐺′ be the image of 𝑅 in 𝐺′.

The embedding sets 𝑒𝑚𝑏𝑖𝑛 and 𝑒𝑚𝑏𝑜𝑢𝑡 specify the mapping of the outer edges, i.e., edges
that connect the parts of the graph involved in the refactoring, 𝑆 and 𝑆′, to the unchanging
parts of the graph, 𝐺 \ 𝑆 = 𝐺′ \ 𝑆′. 𝑒𝑚𝑏𝑖𝑛 contains pairs ((𝛿, 𝑣), (𝛿′,𝑤)) s.t. each incoming

edge (𝑢, 𝛿, 𝑜𝑐𝐿 (𝑣)) ∈ 𝐸𝐺 must correspond to an incoming edge (𝑢, 𝛿′, 𝑜𝑐𝑅 (𝑤)) ∈ 𝐸𝐺 ′ . 𝑒𝑚𝑏𝑜𝑢𝑡
is constructed analogously for outgoing edges. See Figure 2.4 for an illustration. Notice that
the type of the edge might change, e.g., when encapsulating a field, a variable reference is
replaced by a method call to a getter method.

11

2. Foundations

Remark. In model transformations, a generalization of graph transformations on a CPG,
an interface or glue graph 𝐾 serves the purpose of the embeddings, consisting of the "outer
vertices" (those connected to the rest of the graph) of 𝐿 and 𝑅. These vertices, together
with their edges to the rest of the graph, are preserved by the transformation; thus, a glue
graph does not provide the same level of flexibility as an embedding.

The parameterized nature of this formalization means that the graphs 𝐿 and 𝑅 do not
necessarily represent one subgraph specifically, but rather graph patterns that a matching
instance can essentially be plugged into.

The typed nature of the graph means that there is a set of tuples T = {(𝜎1, 𝛿, 𝜎2), ...} ⊆
Σ × Δ × Σ, so that

∀(𝑢, 𝛿, 𝑣) ∈ 𝐸𝐺 : (ℓ𝐺 (𝑢), 𝛿, ℓ𝐺 (𝑣)) ∈ T ,
defining precisely which types of nodes a given edge type 𝛿 may connect. Note that 𝛿 may
not be unique in those tuples. The authors use a type graph [24, p. 257] TG instead of a
set T which incorporates nodes and edges of all allowed combinations, and they check
for type-correctness by verifying that a given graph is isomorphic to TG, which is not
required for the purpose of this thesis.

The relation between 𝐺 and 𝐺′ as defined above is formally described like this [24, p.
261]: “𝐺 directly derives 𝐺′ using 𝜋 via 𝑜𝑐𝐿 and 𝑜𝑐𝑅 .” Alternatively, the informal shorthand
𝜋 (𝐺) = 𝐺′ could be used.

Based on these definitions, Mens et al. continue to define formally under which cir-
cumstances a CPG is considered well-formed, how to prove that a refactoring preserves
well-formedness, and the precise mechanics of the application of a refactoring to a graph.

Figure 2.4.: Illustration of the relation of the original graph𝐺 , the left- and right-hand side
𝐿 and 𝑅 of a transformation 𝜋 and their occurrences, the transformed graph
𝐺′, and an embedded edge ((𝛿, 𝑣), (𝛿′,𝑤)). Adapted from [24, p. 261].

12

3. Related work

In this section, we discuss recent contributions relevant to this thesis. First, we will
take a look at extensions to token-based plagiarism detection that address new types of
obfuscation attack schemes, input types, and intermediate representations. Then, we will
cover a code transformation framework that aims to improve software quality.

3.1. Token-Based Plagiarism Detection

Several strategies to make token-based plagiarism resilient against a variety of attacks
have been researched.

Resilience Against Specific Attacks. Krieg [20] describes approaches to defend against the
introduction of dead variable declarations, unreachable code, and general insertion attacks
like those used by Mossad. Sağlam et al. [38] use PDGs as an intermediate representation
to detect dead code and counter local confusion [33, p. 1034] attacks, i.e., reordering of
independent statements.

Niehues [25] presents a fully language-independent approach to combine adjacent token
matches that are separated only by a few tokens, which is another effective way to counter
insertion and reordering attacks, but also semantic-agnostic obfuscation attacks and AI-
based obfuscation attacks.

Types of Submission Artifacts. Furthermore, recent contributions extend the area of
plagiarism detection from code submissions to various other types of artifacts. Sağlam et
al. introduce an approach for plagiarism detection on metamodels [40], and on tree-shaped
models such as UML diagrams [37], with the latter approach claiming strong resilience
against AI-generated obfuscation attacks. Strittmatter [44] describes an approach for
plagiarism detection on state charts.

Token-Based Approach on Low-Level Instructions. Karnalim [18] presents an approach
where tokens represent Java Bytecode instructions instead of structural elements of code.
He argues that low-level instructions generalize over the syntactic sugar of a language,
which makes a plagiarism detection tool immune against textual changes, like renaming,
and changing comments or whitespace, but also against semantic-preserving replacement
of instructions. For his evaluation, he collected a catalogue of over fifty plagiarism attack
types and created an equal number of plagiarisms using only one attack type each. Com-
paring the effectiveness of the bytecode-based approach to two approaches based on source
code, Karnalim concludes that the bytecode-based approach was the most effective.

13

3. Related work

A similar approach was evaluated by Heneka [16], who presents a language-independent
approach to token-based plagiarism detection using LLVM IR as an intermediate repre-
sentation. Heneka states that the language-specific approaches for Java and C++ were
more effective at detecting plagiarism than the LLVM-based approach, concluding that the
information lost in the process of the abstraction of low-level representations are indeed
valuable for plagiarism detection. However, this abstraction step did prove to increase the
resilience against obfuscation attacks.

Devore-McDonald and Berger [10] also argue that compiler optimization and comparison
of assembly instructions are an effective countermeasure to dead code insertion attacks.
They point out multiple drawbacks of this approach: Upon discovering a suspiciously
similar pair of submissions, there is currently no technical aid that would map matching
sequences of assembly instructions back to the source code, which makes it hard to
manually trace these matches. Furthermore, this approach relies on the existence of a
compiler that can produce a suitable representation of the submissions, which is unclear
for programming languages that are typically compiled just-in-time.

Preprocessing. Novak [28] identifies various code snippets that occur commonly but
contribute little functionality, thus diluting similarity measures in plagiarism detection.
Examples of common code are getter and settermethods, as well as empty classes, functions,
and blocks. Novak proposes to preprocess the code by removing common code, leaving
more original code for comparison to generally decrease the similarity rating and the false
positive rate. He also suggests other preprocessing techniques that are widely used in
the literature, such as the removal of templates or base code supplied to students by the
instructors, and the removal of comments from the code.

In a report by Simon et al. [42], the authors collect types of task-specific common code that
does contribute functionality to the code, but no originality. Examples include the main
method, input and output routines, base code that the instructors supply to the students,
and code needed to initialize external libraries. Their study finds that the removal of these
elements can increase the effectiveness of plagiarism detection.

3.2. Refactorings on Code Graphs

Cordy et al. [5] present TXL, a transformation system and DSL for defining and applying
refactorings to source code. The transformations defined in TXL operate on a strictly
syntactical level, so semantic information cannot be used in the preconditions. Thus, TXL
would not have been a suitable transformation engine for this thesis.

Expanding further on TXL, Grant and Cordy [15] present Rust, an interactive interface
that automatically detects and highlights parts of code suitable for refactoring. By selecting
and applying refactorings, a range of typical code smells can incrementally be eliminated
to increase the software quality.

14

4. Threat Model

A core benefit of token-based plagiarism detectors is that they are resilient against code
modifications on a lexical level, i.e., a set of plagiarisms of a code file where identifiers,
comments, strings, and formatting are changed still all result in the same token sequence.
Even variable and field types can be exchanged for similar types if all accesses stay valid
(e.g., replace a 32-bit integer with a 64-bit integer type). Thus, all these types of attacks
pose no threat to the plagiarism detection.

By contrast, structural modifications to the code that do not change its observable be-
havior, which we will refer to as refactorings, are inherently bound to change the token
sequence. The typical intention of such refactorings is to change a quality about the code,
such as maintainability, but they are also a valid means to break token-based plagiarism
detection.

Example. Any for loop can be refactored to a while loop (see 6.4.1), as demonstrated in
the following schematic with a typical token representation:

for (<init>; <cond>; <iter>) {

<body>;

}

<init>;

while (<cond>) {

<body>;

<iter>;

}

FOR_STATEMENT;

VARIABLE_DECLARATION;

ASSIGNMENT;

ASSIGNMENT;

FOR_BLOCK_BEGIN;

...;

FOR_BLOCK_END;

VARIABLE_DECLARATION;

ASSIGNMENT;

WHILE_STATEMENT;

WHILE_BLOCK_BEGIN;

...;

ASSIGNMENT;

WHILE_BLOCK_END;

The differences between the token sequences representing either control structure will
likely break a matching token sequence, which is to say the refactored code version is
unlikely to be recognized as a plagiarism of the original by a token-based plagiarism
detection tool.

To counter a refactoring attack with a singular refactoring 𝑅, we could apply 𝑅 to both
the original and the plagiarism, so that the original becomes equal to the plagiarism (and
the plagiarism remains the same); or we could try to restore the original by applying the

15

4. Threat Model

inverse refactoring 𝑅 of 𝑅 to both the original and the plagiarism, so that the plagiarism
becomes equal to the original (and the original remains unchanged). Either way, from two
different versions we create two equal versions that a token-based plagiarism detection
tool can easily identify as a potential case of plagiarism.

This thesis presents an approach that uses an extension of this idea to make a token-
based plagiarism detection tool more resilient against typical refactoring attacks. In the
real scenario, however, we are missing much of the knowledge that was available in the
example above.

1. It is not known which pairs of submissions are originals and plagiarisms (unless
current approaches already detect these plagiarisms).

2. It is not known which kinds of refactorings plagiarists might have used to create a
plagiarism.

3. It is not known which parts of the original code might have been altered by a
refactoring.

From 2., it is clear that we can never cover all types of refactorings. To get an approximation
of the complete set, we need to define a set of refactorings that are likely to be used by our
model adversary, and that are suitable for obfuscating a plagiarism from a token-based
plagiarism detection tool.

From 3., it is clear that, given the set of all the code locations where a refactoring can
possibly be applied, there is no valid method to select specific code locations to apply
it to; instead, we need to apply the refactoring at all code locations possible. Thus, it is
impossible in general to reconstruct the original code structure precisely. This, however,
is not essential to the successful application of this approach; instead, we aim to create
two equal versions from two different versions or—at least—two versions that are more
similar than the submissions as they were submitted.

From 1., it is clear that it is essential that we must select the refactorings for our approach
specifically with the risk of false positives in mind. While pairs of originals and plagiarisms
(OP-pairs) shall becomemore similar to each other after refactoring them, pairs of unrelated
originals (OO-pairs) should be made even less similar at best, but never more similar to an
equal extent as the OP-pairs, or to a larger extent. To put it more briefly, the approach
should make OP-pairs and OO-pairs more distinguishable by their similarity ratings than
the current approach.

Now that we introduced the concept of a plagiarism generated by a refactoring attack, we
can define a precise threat model. After that, the general idea of the defense mechanism is
illustrated.

16

4.1. Threat Model Definition

4.1. Threat Model Definition

The approach introduced in this work shall be evaluated by its effectiveness in defending
against the following scenario:

• A plagiarist P obtains a complete, syntactically and semantically correct submission
S created by a fellow student/participant A, the author, as a solution to a given
programming task.

• P modifies S by, manually or especially automatically, applying refactorings to
different portions of code.

– We limit the refactorings to those that preserve the semantic of the code, so
that the result of each application of a refactoring is again complete as well as
syntactically and semantically correct.

– The portion of code resulting from one application of a refactoring may again be
a candidate for the same refactoring and/or other refactorings and may therefore
be refactored multiple times.

• The result of all refactorings is a new submission S’ that may be unrecognizable
as a plagiarism of S when compared by a human or a state-of-the-art token-based
plagiarism detection tool.

• A submits S and P submits S’ for assessment and grading.

Refactorings considered in the threat model include:

• The semantic-preserving replacement of control structures,

• The extraction of variables (including class constants),

• The movement of class constants to other classes,

• The usage of API calls to replace implemented functionality,

• The insertion of dead code,

• The addition of common code, be it used or unused, and

• The semantic-preserving reordering of code elements.

On the other hand, we do not focus on plagiarism attacks that involve the use of large
language models (LLMs). Also, we do not consider how the use of a refactoring on code
will affect any of its qualities.

17

4. Threat Model

4.2. Distinction Against Related Work

The approach presented in this paper is distinct from existing work in the combination of
three aspects.

Threat model. To the author’s knowledge, strategies to counter refactoring attacks have
not been subject to research yet. Related works have dealt with more specific attack
schemes, like manipulation on the textual level (Moss[41], JPlag without normalization
[33], Dolos [22]), reordering [38] or dead and unreachable code insertion [20]. Other
works presented approaches that were immune to specific refactoring attacks because of
the intermediary representation of the code but are vulnerable against refactoring attacks
in general [21].

Usage of Code Graphs. In contrast to GPlag [21], this approach uses a code graph only
as an intermediary representation of the code, but then tokenizes the code graph to a
token list, which is subsequently used for comparison. Even though Liu et al. argue that
isomorphism algorithms are much more efficient on PDGs than on general graphs, it is
the quadratic number of comparisons in terms of the number of submissions which is
bound to lead to a long runtime in real use cases. A-CFG [4], on the other hand, uses a
CFG as the intermediary representation and metrics for comparison, which are not derived
from the general structure of the submissions, but restricts itself to the order and number
of API calls. The present approach aims to combine the power that comes with the rich
information content of the CPG with the efficiency of runtime-optimized token-based
comparison. Furthermore, it will run isomorphism detection only linearly often in the
number of transformations and the size of the submissions.

Transformation of the Submissions. Other approaches apply removal of dead code or
effectively discard dead code before comparison (GPlag [21], JPlag with token sequence
normalization [20, 38]), but otherwise leave the general structure intact. In contrast, the
present approach may alter, move, and/or remove major parts of the structure, while
preserving their semantic content; the scale of these changes depends on the selection of
transformations.

18

5. Graph-Based Structural Normalization

In Chapter 4, we established that a wide variety of refactorings can be used as a tool
to create a plagiarism that current state-of-the-art plagiarism detectors may not be able
to detect. The following chapter presents the first main contribution of this thesis: we
describe the structure and workflow of a CPG transformation system as a framework to
make token-based plagiarism detection resilient against refactoring attacks.

5.1. The Defense Mechanism – Overview

As discussed in the foundations (see Section 2.2.1), a token-based plagiarism detector
transforms the code submissions into token lists, and then compares the token lists
using a comparison algorithm. The tokens for a submission are created by traversing an
intermediate representation of the code, typically the AST, and outputting tokens for a
selected set of code elements that are deemed structurally relevant.

The approach presented in this thesis uses a code property graph (CPG), an AST extended
by more edges which indicate various relations between nodes. Before the token list is
created, the rich data of the CPG is used to detect specific structures in the code which are
subsequently rearranged to perform refactoring transformations. These transformations
intend to reverse refactorings that an attacker might have applied to the code by creating
a normalized representation of the code.

Example. See Figure 5.1 for an example on how a refactoring may alter the token list.
A new variable is extracted from a statement, and a variable reference is inserted at the
original position of the extracted subexpression. This modification of the code also affects
its token representation: the tokens of the subexpression move in front of the tokens
of the statement in the token list, and a new token for the new variable declaration is
added. Through these changes, a matching token sequence will likely be broken. As

return balance * power(1 + getRate(), time); RETURN APPLY APPLY

double factor = 1 + getRate();

return balance * power(factor, time);

VARDEF APPLY

RETURN APPLY

Figure 5.1.: The refactoring Extract Variable is effective in manipulating the token list, and
thus can be used as an obfuscation attack.

19

5. Graph-Based Structural Normalization

extracted variables are often used one time only, as is the case in the example, a sensible
normalization of the code could eliminate all single-use variables by inlining them if
possible; the resulting normalized code would then be invariant under variable extraction
attacks.

When integrated into a plagiarism detection tool, a CPG transformation system should
incorporate a selection of transformations that strikes the balance between the effective
action against refactoring attacks and the preservation of the semantic core of the code to
limit the risk of false positives.

5.2. Workflow of a CPG Transformation System

Figure 5.2 shows the flowchart of a CPG transformation system. This section summarizes
the entire process briefly, and the following sections cover each step in more detail.

The input to the CPG transformation system is a set of transformations, represented as
pairs of a source and a target graph pattern each, and the code submission files.

(a) In a preparation step, the source and target graph patterns are compared to determine
the individual operations required to build the target graph from the source graph.
transformationOperations = compare(sourcePattern, targetPattern)

(b) For each submission, a collective CPG is constructed from all submission files.
cpgRoot = createCpg(files)

(c) The structure of the CPG and the properties of the individual CPG nodes are compared
to the source graph pattern of each transformation, yielding a list of matches.
matches = findMatches(sourcePattern, cpgRoot)

(d) From each match of a transformation, the transformation operations are instantiated
with the concrete nodes of the match.
for (match in matches)

concreteOperations = instantiate(transformationOperations, match)

(e) The transformation instance is applied to the subgraph involved in the match.
for (operation in concreteOperations) operation.apply()

(f) Finally, a linear order is determined on the CPG nodes, in which the nodes are then
tokenized. The token list is the input to the subsequent comparison algorithm.
nodeList = linearize(cpgRoot)

tokens = tokenize(nodeList)

Next, we have a look at graph patterns for refactoring transformations, and which kinds
of properties are necessary to check to ensure their validity.

20

5.2. Workflow of a CPG Transformation System

Source Code
(*.java)

Source Code
(*.java)

Source Code
(*.java)

Code Property
 Graph

CPG
Construction

(b)

Transformation
Application

(c-e)

Linearization
& Tokenization

(f)
Token List

Transformation
Graph Patterns

Source Target

Transformation
TemplateTransformation

Calculation
(a) Source Ops

Figure 5.2.: A flowchart of the CPG transformation system, the core of the present ap-
proach.

Transformation
Template

Source Ops

Transformation Application

Code Property
 Graph

Isomorphism
Detection

(c)

Matching
Subgraphs
Matching
Subgraphs
Matching
Subgraphs

Operation
Application

(e)

Transformation
Instantiation

(d)

Figure 5.3.: A flowchart of the transformation application component.

21

5. Graph-Based Structural Normalization

5.3. Representation of Transformations

Following the example of Mens et al. [24], CPG transformations will be represented as
a pair of graph patterns which represent the structure of a subgraph required to apply
the transformation (the source graph pattern) and the structure that represents the same
subgraph after the transformation (the target graph pattern). The source and target
graph patterns serve two main purposes: The difference between the two graph patterns
determines the transformation operations that form the transformation, and the source
graph pattern is the template in the search for matching subgraphs of a concrete CPG to
which the transformation shall be applied.

5.3.1. Overview

Just like the CPG is a set of nodes connected by directed edges, a graph pattern is a set
of node patterns connected by asymmetric relations. A node pattern represents one CPG
node and contains all the specifications needed to determine whether a given concrete
node matches the node pattern. Before we examine the different elements more closely,
we consider an example.

Figure 5.4 shows a source graph pattern and a target graph pattern representing the
transformationMove constant to only using class. This transformation is supposed to revert
the formation of constant classes, where a set of constants is moved from their respective
original classes to a new class that contains no methods, only constants.

In text form, this is the list of requirements for a match:

• In a class definingClass, a constant must be defined, i.e., a static final field.
• The constant must be used at least once.

FieldDecl
constDeclaration

ClassDecl
definingClass

fields

FieldDecl
constDeclaration

localProperty
"static", "final"
in modifiers

locatedInClass

Reference
constReference

ClassDecl
usingClass

localProperty
usages.length

> 0

matchProperty

not equal

forall
usages

ClassDecl
definingClass

fieldsFieldDecl
constDeclaration

ClassDecl
usingClass

Figure 5.4.: The transformation Move constant to only using class, represented by a source
and target graph pattern.

22

5.3. Representation of Transformations

• The references to this constant must all be located in the same class usingClass.
• The usingClass must not be equal to the definingClass.

If all these requirements apply, the transformation moves the constant declaration from
the definingClass to the usingClass, according to the target graph pattern.

Note that the relation of a class declaration to its field declarations is already present in an
AST; however, to relate a declaration to its non-local references, the extensive analyses
used in the construction of the CPG are necessary.

Note also that the only purpose of the constReference node pattern is for the description of
a matching property; it is not involved in the transformation. For this reason, constDecla-
ration is marked as a terminal node for this transformation (illustrated by the double oval)
indicating that all its related nodes should be preserved as they are. The transformation
calculation will thus not recursively step into the related nodes of constDeclaration.

In the following subsections, the various categories of node pattern properties are de-
scribed.

5.3.2. Local Node Pattern Properties

The most basic properties of a node pattern are local, i.e., the property can be evaluated
with only the candidate node at hand. These are:

• the node type, e.g., a field declaration, a method parameter, a return statement.
• properties concerning attributes of the node, such as the identifier of a variable
declaration, the value of a literal, or the modifiers of a method declaration.

• properties concerning the number of 1-to-n-related nodes (see below), e.g., a setter
method should have exactly one parameter and one statement (an assignment); an
unused variable should have exactly zero references to it.

5.3.3. Node Pattern Relations

In a CPG, there are various types of directed edges between nodes which express different
types of relations, such as a parent-to-child relation in an AST, or a dependency relation
of a DDG. We will use the term relation to generalize over CPG edges and any other kind
of computable relation between nodes. Note that a relation type defines the type of nodes
that it connects, e.g., the edge type If condition connects if statements to expressions.

We divide relations by their cardinality as follows:

• simple relations, or 1-to-1 relations, which relate at most one node to a reference
node, e.g., the body of a method, the condition of an if statement, or the surrounding
class definition of a statement.
A simple relation may also be understood as a partial function 𝑟 : Node ⇀ Node.

23

5. Graph-Based Structural Normalization

• multi relations, or 1-to-n relations, which may relate any number of nodes to a refer-
ence node, e.g., the parameters of a method, the members of a class, the references
to a variable.
A multi relation may also be understood as a set-valued function 𝑟 : Node→ P(Node).

From these relations, we can construct relation properties which are tuples (𝑟, 𝑝) of a
relation 𝑟 and a node pattern 𝑝 . For a candidate node 𝑛 to satisfy the relation property
(𝑟, 𝑝), 𝑛 must be related to another node 𝑛′ with the relation 𝑟 so that 𝑛 matches 𝑝 . We
differentiate three types of relation properties:

• simple relation properties, or 1-to-1 relation properties
𝑛 ⊢ (𝑟, 𝑝) :⇔ 𝑟 (𝑛) ≠ null ∧ 𝑟 (𝑛) ⊢ 𝑝

Example: The relation locatedInClass of the node pattern constReference to the node
pattern usingClass in Fig. 5.4 is a simple relation property.

• existential relation properties, or 1-of-n relation properties, where of all 1-to-n-related
nodes, one matching node is sufficient to satisfy the matching property

𝑛 ⊢ (𝑟, 𝑝) :⇔ ∃𝑛′ ∈ 𝑟 (𝑛) : 𝑟 (𝑛) ⊢ 𝑝

Example: The relation fields of the node pattern definingClass to the node pattern
constDeclaration in Fig. 5.4 is a 1-of-n relation property.

• universal relation properties, or n-of-n relation properties, where of all 1-to-n-related
nodes, one mismatching node is sufficient to break the matching property

𝑛 ⊢ (𝑟, 𝑝) :⇔ ∀𝑛′ ∈ 𝑟 (𝑛) : 𝑟 (𝑛) ⊢ 𝑝

Example: The relation usages of the node pattern constDeclaration to the node pattern
constReference in Fig. 5.4 is a n-of-n relation property.

Note that for simple relation properties and n-of-n relation properties, one iteration of
the matching algorithm may only ever find one match, whereas a 1-of-n relation property
may yield as many different matches as there are related nodes.

5.3.4. Match Properties

Match properties extend over more than one relation and may include any number of nodes
from the match. Typical instances include cyclic graph patterns, i.e., cases where multiple
different chains of relations must (or must not) lead to the same node. In Figure 5.4, for
example, we require that the definingClass and the usingClass be unequal.

5.3.5. Roots of Code Property Graphs

Although CPGs inherently violate the properties of a tree, they still contain the AST
structure of the represented code. When traversing or comparing CPGs, in many cases it
makes sense to traverse the underlying AST and start at its root, which we will therefore

24

5.4. Transformation Calculation

also declare the root node of a CPG or any of its subgraphs. Analogously, graph patterns
have a dedicated root node pattern that should be selected so that all relevant node patterns
can be reached via transitive relations. In practice, it turned out that it is very convenient
to allow graph patterns to have multiple root node patterns to restrict the graph pattern
to the most relevant parts. See Section 6.3.1 for an example.

5.3.6. Wildcard Parent Nodes

In many transformations where a node shall be removed or replaced, that node can occur
in many different contexts in the AST. For example, an expression node can occur as a
method call argument, as the initialization value for a declaration, or as an operand to
an operation. To gain flexibility regarding the context of a root node, we introduce the
concept of the wildcard parent node pattern to graph patterns, serving as a placeholder
pattern for the AST parent of a node. Unlike regular node patterns, wildcard parent node
patterns do not specify their node type, nor the kind of edge that connects it to the proper
root pattern (the wildcard edge). Again, Section 6.3.1 serves as an example.

5.4. Transformation Calculation

Given a source graph pattern and a sequence of transformation steps, one can construct the
target graph by applying the transformation steps to the source graph pattern. On the other
hand, to extract the transformation steps from a pair of source and target graph patterns
is less trivial and requires an idea of what kinds of manipulations graph transformations
should be able to perform.

First, to identify the pairs of node patterns that should be compared, we need to relate
node patterns of the source and target graph pattern to each other. To that end, we assign
roles to node patterns for a specific graph transformation. If a source node pattern and a
target node pattern share the same role, they shall represent the same node of the CPG in
every instance of the transformation. We call node patterns with the same role in their
respective graph patterns equivalent.

I present a set of five types of transformation steps, called operations, which cover a wide
variety of graph transformations for our scenario. Assuming that a node pattern𝑚 of the
source graph 𝑆 is compared to the pattern 𝑛 of the target graph 𝑇 , related to their parent
node pattern 𝑝 by the relation 𝑟 , then

• If an equivalent of 𝑛 does not exist in 𝑆 , create an equivalent node of 𝑛 and add it to
the node set of 𝑆 .

• If the roles of𝑚 and 𝑛 are different, replace𝑚 by the equivalent node of 𝑛 in 𝑆 .

• If 𝑛 is null, remove the edge from 𝑝 to𝑚 in 𝑆 .

25

5. Graph-Based Structural Normalization

r r

S T

create
r

S'

r
replace rr

S T S'

r
remove

S T S'

r
set

r

S T S'

...
r r

S T

insert r

S'

...

Figure 5.5.: Scheme of the five transformation operations.

• If𝑚 is null and 𝑟 is a 1-to-1 relation, set the equivalent of 𝑛 in 𝑆 as the target of the
relation of 𝑝 .

• If𝑚 is null and 𝑟 is a 1-to-n relation, insert the equivalent of 𝑛 in 𝑆 as a child of 𝑝 .

The operations set and insert are different from each other in that insertion involves an
index.

5.5. Pattern Matching Algorithm

The pattern matching algorithm, which we will also call the isomorphism detection
algorithm, compares node patterns to concrete nodes, and creates a mapping of node
patterns to nodes, called the match. The current node that is being compared to the node
pattern will be referred to as the candidate node.

Just as in the transformation calculation (Section 5.4), the entry point of the graph pattern
for the comparison is the (first) root. To avoid comparisons that can clearly not produce a
match, we only initialize the comparison with nodes of the correct type, e.g., if the root
node pattern is a while statement node pattern, then it is of no use to compare any nodes
other than while statements to it.

For each pair of node pattern and candidate node encountered, the local properties are
checked first. If the candidate node is not of the type specified by the node pattern, then

26

5.6. Node Management

the relation properties cannot exist, e.g., an assignment statement does not have any
fields relations as required from the definingClass node pattern in Figure 5.4. If the local
properties are satisfied, then the node pattern will be mapped to the candidate node in all
current matches. Otherwise, the comparison for the current candidate node terminates.

Secondly, the relation properties are checked as described in Section 5.3.3, and for each
relation property, the related node pattern is recursively compared to the related node of
the candidate node. If a match already contains a mapping from a node pattern to a node
n, and the current candidate node is not n, then it is a mismatch. If the mapped node and
candidate node are equal, then the algorithm can step out of that comparison to avoid
infinite loops.

Lastly, the match properties are checked against the current matches. It is only at this
point, after we have encountered and matched all involved node patterns, that match
properties can be evaluated. See Algorithm 2 in Appendix A.1 for a pseudo code listing of
the isomorphism detection algorithm.

5.6. Node Management

Regarding the runtime of the CPG transformation system, traversing the CPG (or parts of
it) repeatedly turned out to be especially costly. In most cases, this could be remedied by
collecting and storing the relevant data in a single traversal, and subsequently extracting
the needed data from this data instead of traversing the CPG again. This section describes
three cases where in the design of various analyses or transformations, a large number of
specific nodes needed to be accessed randomly, and how this requirement was dealt with,
also considering the resulting computational efficiency.

5.6.1. Store Root Candidate Nodes by Class

In the process of isomorphism detection, we need to quickly find root candidate nodes of a
specific node type for each transformation and each submission. A suitable data structure
for this is a tree map, which stores key-value elements in a binary tree by a given order <
on the keys. The structural invariant of the tree map is that for every element 𝑛, its left
child element 𝑙 , and its right child element 𝑟 , 𝑙 ≤ 𝑛 ≤ 𝑟 holds. The tree map also supports
operations to get sublists of elements in a range between two given keys.

For our purposes, we use node class objects as keys, and lists of nodes of the corresponding
node types as values. To use a tree map on classes, we need to define a suitable order < on
node classes.

We define the following order <, which uses lexicographic and hierarchic relations: Given
a pair of node types A and B,

• If B is a (direct or transitive) subclass of A, then A < B.

27

5. Graph-Based Structural Normalization

• If A and B share the same immediate superclass, then order A and B lexicographically.

• Otherwise, there must exist a common transitive superclass N of A and B. Find the
immediate subclasses SupA, SupB of N that are different superclasses of A and B,
respectively, and order A and B according to the lexicographic order of SupA and SupB.

A sublist of node types ordered in this manner may look like this example, where the
suffixes indicate the inheritance relations:

Node, Declaration, ClassDeclaration, FieldDeclaration,

Expression, BinaryOperatorExpression, UnaryOperatorExpression,

Statement, AssignStatement, IfStatement, WhileStatement.

In our tree map of node lists, the node lists will we stored in the order of their type. Given
that tree maps are binary, a child node type will not be a subtype of its parent node type
in general. In Figure 5.6, a tree map of integers shows how the order of the keys relates to
the structure of the tree.

Now, we want to get all suitable root candidate nodes for comparison with a node pattern
of a type T from the tree map. Those include not only the nodes of type T itself (which
may be an abstract class), but all subtypes of T. To find and concatenate all these lists of
nodes, we need to find the position of the smallest node type compatible with T, which is
T itself, the position of the greatest subtype T’ of T, and the lowest common ancestor A of
T and T’; then, we collect the nodes of

• T and its right subtree,
• walking up along the edges towards A from T, all parent nodes that are reached from
their left edge and their right subtrees,

• the lowest common ancestor node A of T and T’,
• walking down along the edges towards T’ from A, all child nodes that are exited via
their right edge and their left subtrees,

• T’ and its left subtree.

2

1 4

3

10

12

11

13

...

Figure 5.6.: A tree map with integer keys. The dark nodes represent the range between 3
and 9. The green arrows represent the traversal of the tree to find all nodes in
that range.

28

5.6. Node Management

This traversal is also depicted in Figure 5.6, where the equivalent of T is 3, T’ is 9, and
their lowest common ancestor A is 6.

After each transformation, we need to update this structure; more specifically, if a node
was removed from the CPG, it must be deleted from the tree map, so that it can no longer
be considered as a root node candidate.

5.6.2. Store AST Parents of Potential Root Nodes

In the isomorphism detection step, where the root node pattern shall be compared to
suitable candidate nodes, we need to handle the case where the root node pattern is a
wildcard parent pattern—these do not specify a node type, and so, virtually any node of
the CPG may be considered a suitable candidate.

We solve this by storing a mapping of each CPG node to its AST parent (the parent map)
and starting the isomorphism detection at the child of the wildcard parent pattern, the
proper root, instead of the wildcard parent pattern itself. The wildcard parent and the
wildcard edge can then be determined in constant time by a lookup in the parent map,
completing the mapping of node patterns to nodes in the match.

After applying a transformation, the potential changes need to be reflected in the parent
map. These updates can easily be integrated into each transformation operation.

5.6.3. Relative Order of Nodes

The DFG analysis step detects pairs of nodes that must remain in order relative to each
other during linearization, which is represented in the CPG by additional DFG edges.
Whenever such a pair is determined, the direction of the relation is not immediately clear,
especially considering that these relations can occur across the boundary of a loop. To
determine the relative order of the nodes, we can reuse the parent map with a small
extension: The depth of each node is added to the parent map entries. Algorithm 1 shows
a pseudo code listing for the algorithm.

The calculation of the EOG distance (line 15) involves traversing the EOG, which is exactly
what we are trying to circumvent when trying to reduce the computational effort. However,
most cases can be covered with the linear-time case in line 13, and in the remaining cases,
at least one node is usually rather close to the parent node, e.g., in the condition of a loop
statement, or in an argument of a method call.

29

5. Graph-Based Structural Normalization

Algorithm 1 Relative Node Order Algorithm
1: function relativeOrder(node1, node2) ⊲ returns signed integer
2: parent1← node1
3: parent2← node2

4: while 𝑑𝑒𝑝𝑡ℎ(parent1) ≠ 𝑑𝑒𝑝𝑡ℎ(parent2) do
5: find deeper parent reference and replace it by its parent
6: end while

7: while parent1 and parent2 are not siblings do
8: parent1← 𝑝𝑎𝑟𝑒𝑛𝑡 (parent1)
9: parent2← 𝑝𝑎𝑟𝑒𝑛𝑡 (parent2)
10: end while

11: parent← 𝑝𝑎𝑟𝑒𝑛𝑡 (parent1) ⊲ common AST parent of node1, node2
12: if parent is a block block then
13: return block.𝑐ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥𝑂𝑓 (parent1) − block.𝑐ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥𝑂𝑓 (parent2)
14: else
15: return 𝑒𝑜𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (parent, parent1) − 𝑒𝑜𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (parent, parent2)
16: end if
17: end function

5.7. Order of Transformation Application

To obtain a truly deterministic normalization of the CPG, the transformation step would
have to be treated as a fix-point procedure: As long as any transformation can be applied,
apply it. This requires checking for new matches of each transformation an extensive num-
ber of times. For the sake of runtime optimization, we will define an order on the different
transformations that should produce a close approximation of the fixpoint procedure. This
order has a major influence on the outcome, so it must be defined carefully.

This section describes two kinds of dependencies that occur between transformations that
need to be addressed in the transformation stage.

5.7.1. Dependent Transformations

Given a pair 𝑇1,𝑇2 of transformations, we call 𝑇2 dependent on 𝑇1 if

• as long as 𝑇1 still has matches, the precondition of 𝑇2 cannot hold, or

• the application of 𝑇1 may create additional matches for 𝑇2.

Note that the first condition implies the second. If one or both conditions hold, 𝑇1 should
be applied before 𝑇2, or else matches for 𝑇2 may be left untransformed.

30

5.8. Graph Linearization and Tokenization

Example. We consider the transformations 𝑇1: Remove Unused Constant, which removes a
static final field CONST from a class C if there are no references to CONST in the CPG, and
𝑇2: Remove Empty Class, which removes the class declaration of a class C from the CPG if C
has no members. It is apparent that a class C that contains an unused class constant CONST
cannot be empty, thus the first condition holds. After 𝑇1 is applied to C, C contains one
field less than before. If the field removed by 𝑇1 was the last member of C, then C is now
empty and should match the source graph pattern of 𝑇2, thus the second condition holds.
If 𝑇2 was to be applied before 𝑇1, potential new matches of 𝑇2 after 𝑇1 would be missed.

5.7.2. Overlapping Instances of the Same Transformation

In the transformation step for a given transformation 𝑇 , all current matches for 𝑇 are
collected before the first transformation is applied. This can lead to an invalid CPG if
different matches share nodes. Consider the sequence of statements shown in Figure 5.7.

int i1 = 0;

int i2 = i1;

int i3 = i2;

(I)
int i1 = 0;
int i2 = 0;

(II)
int i2 = i1;
int i3 = i1;

ERROR: i2 undefined

ERROR: i1 undefined

Figure 5.7.: For the code snippet on the left, two overlapping matches are found for the
transformation Inline Single-Use Variable (right).

A transformation 𝑇 : Inline Single-Use Variable (see Section 6.3.1), which replaces the only
reference to a variable by its assigned value, will find two matches in these statements
and output the following transformation instances:

(I) replace the initial value of i2 by 0 and remove the variable declaration of i1.

(II) replace the initial value of i3 by i1 and remove the variable declaration of i2.

Regardless of which transformation instance we apply first, we will remove a declared
variable that is still referenced in the other transformation operation, so the resulting graph
will be semantically incorrect. To deal with this, we have to validate each match right
before the corresponding transformation instance is applied. If any invalidated matches
are found, they are discarded, and a flag is set to re-run the isomorphism detection in case
new matches have emerged in place of the invalidated matches.

5.8. Graph Linearization and Tokenization

After all transformations are complete, the last step of the CPG transformation system
pipeline is to extract a token list from the CPG as the input to the comparing mechanism.

31

5. Graph-Based Structural Normalization

To this end, a visitor needs to traverse the CPG in a deterministic order and create tokens
for selected node types. As discussed before, in AST-based approaches, the order is
typically depth-first-search order along the AST. In our CPG-based approach, there are
several options at different code levels that in and of themselves may contribute to the
normalization.

Submission level. A submission contains a number of files. The order in which the files
appear in the token list has no influence on the result, as matching token sequences cannot
span across multiple files.

File level. A code file contains a number of top-level elements (TLEs), like classes, records,
enumerations, or interfaces, and matches across multiple of these elements are allowed.
It may be beneficial to try to normalize the order of these elements, but considering (1)
that each of these elements is likely to produce enough tokens to reach the minimal token
match length and the comparison mechanism is already resilient against reordering on a
larger scale, and (2) that declaring multiple TLE per file is discouraged and may even cause
compile-time errors1, the deeper levels should get more attention than the file level.

Class level. A Java class (or record, enumeration, interface, etc.) contains declarations for
fields, constructors, methods, and inner TLEs. At this level, reordering starts to have a
major effect on token matches. These elements can easily be reordered by category, e.g.,
instance fields first, then static fields, class constants, instance methods, static methods,
and then inner TLEs, possibly also sorted by category. The elements of each category
should be sorted recursively.

Fields and Constants. The number of tokens produces by field declarations depends largely
on their initial value. If there are fields with token-producing initial values, like method
calls, then the order of the field declarations plays a role. The field declarations may be
sorted by their length, either measured by the number of tokens or CPG nodes in the
respective AST subtree.

Methods. Of the class-level elements, the methods are likely to produce the largest number
of tokens in total, so matches across method declarations may play a key role, especially if
there are many methods of rather small size. The order by size approach used for fields
may also be applied for methods.

Another interesting option is to order methods by their rank in the call graph, i.e., a depth-
first search is conducted from the main method over the method calls, approximating
the order in which the methods might be called for the first time in a hypothetical run.
However, the construction of the call tree is a considerable effort, and when there are
multiple overriding implementations of the same method in different subclasses, then the
call tree will become only a conservative approximation of the run-time behavior.

A third option is to precalculate the token sequence of the methods and sort the methods
by comparing their token sequence. Using this strategy, we increase the likelihood that
corresponding methods are matched even if their token sequence is shorter than the
1See Java Language Specification, Java SE 17 Edition, last visited on 11.05.2024

32

https://docs.oracle.com/javase/specs/jls/se17/html/jls-7.html#jls-TopLevelClassOrInterfaceDeclaration

5.8. Graph Linearization and Tokenization

minimum token match. However, this leads to a higher similarity even between pairs of
original submissions.

Blocks. The statements of a block, be it a method block or a block of a control statement,
have the greatest potential to break matching token sequences when they are reordered,
as statements are very diverse in structure. However, starting at this level, dependent
elements occur whose order may strongly influence the semantic of the code. These
dependencies thus strictly limit the degree of freedom when reordering statements.

Sağlam et al. [38] discuss reordering tokens as a means to normalize the order of statements,
and the constraints that must be respected in the process. To briefly summarize, they
categorize tokens into a two-dimensional matrix based on (1) the degree of freedom to
which they may to be permutated, and (2) their contribution to the program behavior.
The first factor determines the partial order on the tokens: Tokens with fixed order must
remain in position relative to all other tokens; different accesses to variables must remain
in order relative to one another; and the boundaries of loops must be upheld, even if
a token may occasionally be moved from the end of the loop to the start or vice versa.
For the second factor, the concept of a critical token [38, p. 5] is introduced, meaning a
token that represent code that directly contributes to the visible behavior of the program,
including method calls, class declarations, and control structures. This is the equivalent of
what we will refer to as an essential statement in this thesis. Essential statements are used
to determine dead code, i.e., all statements that have no data flow towards any essential
statements. For the statements that are neither essential nor dead (or irrelevant), we will
use the term relevant.

Deviating from the work of Sağlam et al., our reordering algorithm will operate on nodes
instead of tokens, and the scope of the reordering will be individual blocks (excluding
statements of inner blocks), which should severely limit the number of statements which
are considered for insertion at any one time. Furthermore, control structures will only be
treated as essential if they contain essential statements in their inner blocks; otherwise, the
complete control structure may very well be irrelevant code. Lastly, we relax the restriction
that control statements are in fixed order: Statements may be allowed to swap position
with control statements if there are no data dependencies between the two statements.
This allows for more freedom while reordering while still maintaining the correctness of
the resulting order.

A potential topological order of the statements can be determined as follows:

• Remove any loops from the data dependency graph by discarding all edges that point
backwards.

• Out of the list of statements in the block b, select and remove those that have no
successors in the data dependency graph (DDG), add them into the list ready and
sort them by their category as follows:
1. jumping nodes (return, continue, break)
2. non-essential relevant nodes
3. essential nodes

33

5. Graph-Based Structural Normalization

• While ready is not empty:
– Remove the first statement s from ready and insert it at the top of the block b.
– Reorder the inner blocks of s recursively, if there are any.
– Determine the statements that have become ready now that s is inserted and
add them into their respective category in the ready list.

This procedure keeps dependent statements close together, and if a loop contains an
increment statement for the loop variable, it is placed at the end of the block, if possible
(as it is non-essential and relevant). Moreover, dead statements are eliminated.

To complete the deterministic order of the statements, the individual categories of ready
(jumping, relevant, essential) must also be sorted. The order by AST subtree size or by
number of tokens discussed above can be applied here as well.

Statements. Traditionally, the elements of individual statements are ordered by their
appearance in depth-first search on the AST. In this work, they will be ordered by their
appearance in the EOG instead, which approximates the order in which the individual
nodes are evaluated at runtime. This is also the approximate order in which individual
elements of a compound statement might be extracted, which mitigates such attacks (if
inlining of single-use variables is not applied already).

Example. Table 5.1 shows two equivalent code snippets, where in the second snippet, vari-
ous parts have been extracted to proper statements. This causes a great deal of permutation
in the AST-based tokenization, but no changes to the EOG-based tokenization.

Code snippet AST-based tokenization EOG-based tokenization

for (int i = 0; i < 9; i++) {

double d = sqrt(i);

System.out.println(++d);

}

FOR VARDEF ASSIGN

VARDEF APPLY

APPLY ASSIGN

VARDEF FOR

APPLY VARDEF

ASSIGN APPLY

ASSIGN // i++

int i = 0;

for (; i < 9; i++) {

double d = sqrt(i);

d++;

System.out.println(d);

}

VARDEF

FOR ASSIGN

VARDEF APPLY

ASSIGN

APPLY

VARDEF

FOR

APPLY VARDEF

ASSIGN

APPLY

ASSIGN // i++

Table 5.1.: Linearization of different versions of equivalent code map to the same token list
if traversed along the EOG, but different token lists if traversed along the AST.

This concludes the system description of the CPG transformation system. As it is only
a framework, it has no transformations built in. To complete the approach, we need to
define a set of code transformations suitable for the purpose of code normalization. Let us
now take a look at our proposed selection of transformations, which is the second core
contribution of this thesis.

34

6. CPG Transformations for Refactoring
Obfuscation Resilience

In this chapter, we illustrate a set of thirteen CPG transformation schemes, each of which is
intended to add to the normalization of code graphs while preserving their visible behavior.
It is only when these transformations are integrated into the CPG transformation system
(see Chapter 5) that it becomes an effective approach to detect plagiarisms with high
resiliency against refactoring attacks. The transformation selection represents the second
core contribution of this thesis.

As discussed in Chapter 4, no selection of transformations can ever cover all possible
refactoring attacks. Therefore, the transformations described here shall be understood as
a solid base that may be extended by any user as they see fit.

We divide the transformations into four categories: Transformations that remove elements

exclude elements from the CPG which are regarded as irrelevant in terms of the unique
behavior of the code. Transformations moving members determine elements that are not
defined in the same class where they are used and move these elements closer to the
code that references them. Transformations inlining elements revert the extraction of
code elements to new variables, fields, or methods. Finally, transformations that perform
semantically equivalent replacement address the possibility of two valid possibilities to
express the same semantic and ensure that only one of these possibilities persists in the
code by transforming one option to the other.

The statement reordering and dead code elimination, which are transformations in their
own right, require extensive analysis in order to determine where they can be applied,
and so do not fit the scheme used by the CPG transformation graph, even though they
use the same transformation operations. See Section 5.8 for more information about these
transformations.

Each transformation will be presented in three ways:

• The source and target graph patterns (including the syntactic context needed),

• A schematic code fragment that shows the effect of the transformation on the affected
code, and

• A token list fragment that shows the effect of the transformation on the token list.

As is common for the visualization of graph transformations, the left side (in blue) repre-
sents the state before the transformation, or phrased differently, the precondition, and the
right side (in blue) shows the state after the transformation, the postcondition.

35

6. CPG Transformations for Refactoring Obfuscation Resilience

6.1. Removing Elements

These transformations remove parts of the code that does not represent code relevant to
the program behavior. Among other possibilities, such code may be introduced by dead
code insertion attacks, as a byproduct of other transformations, or as common code, which
we can neglect for the tokenization.

6.1.1. Empty Methods and Constructors

Empty methods and constructors can occur rightfully in code, e.g., to override the non-
empty method of the superclass; in the context of similarity detection, however, they are
considered common code [28] and can therefore be discarded so that more unique parts of
the code are emphasized in the comparison. This transformation removes empty methods
and constructors from classes (or similar structures), which removes 3 + #𝑝𝑎𝑟𝑎𝑚 tokens
from the token list.

Note that methods with a non-void return type cannot be empty, as they need to have a
return statement. Trivial non-void methods are covered in Section 6.1.3.

body

MethodDecl
methodDeclaration

methods

ClassDecl
containingClass

Block
body

localProperty
statements
.isEmpty

ClassDecl
containingClass

public void myMethod() {

}
// removed

METHOD_DECLARATION

PARAM*
METHOD_BODY_START

METHOD_BODY_END

<none>

Figure 6.1.: Illustration and schema for the transformation Remove empty method.

36

6.1. Removing Elements

body

ConstructorDecl
constructorDeclaration

constructors

ClassDecl
containingClass

Block
body

localProperty
statements
.isEmpty

ClassDecl
containingClass

public MyClass(String name,

int id, ...) {

}

// removed

CONSTRUCTOR_DECLARATION

PARAM*
CONSTRUCTOR_BODY_START

CONSTRUCTOR_BODY_END

<none>

Figure 6.2.: Illustration and schema for the transformation Remove empty constructor.

37

6. CPG Transformations for Refactoring Obfuscation Resilience

6.1.2. Empty Classes

Empty classes introduce no new properties or behavior that would distinguish instances
from their supertype, and so there seems to be no compelling reason they should appear
in code. At least, instances of empty classes have different compatibility properties in
generic types and can be identified using explicit type checking. In the context of similarity
detection, empty classes are considered common code [28] and can thus be discarded to
avoid meaningless matches, removing three tokens from the token list.

The transformation defines empty classes to be classes with no fields, methods, or inner
classes.

ClassDecl
classDeclaration

classes

PackageDecl
containingPackage

localProperty
fields

.isEmpty

localProperty
methods
.isEmpty

localProperty
innerClasses
.isEmpty

PackageDecl
containingPackage

public MyClass {

}
// removed

CLASS_DECLARATION

CLASS_BODY_START

CLASS_BODY_END

<none>

Figure 6.3.: Illustration and schema for the transformation Remove empty class.

38

6.1. Removing Elements

6.1.3. Getter Methods

Getter methods regularly appear in large numbers in object-oriented code, many of which
share the same structure. Although their use is encouraged for the sake of data encapsula-
tion, in similarity detection, they cause a large number of matches that are not considered
meaningful. As common code [27], they can be discarded, removing at least four tokens
from the token list.

Note that calls to the removed gettermethod are kept, whichwould create invalid references
in the code. In the CPG, this causes no problems.

MethodDecl
getterMethod

methods

ClassDecl
containingClass

bodyreturnType

Type
returnType

statement0

Block
body

returnValue

ReturnStatement
returnStatement

localProperty

!= void

Expression
returnValue

localProperty
is constant, or

is a field reference

localProperty
statements
.length == 1

ClassDecl
containingClass

public String getName() {

return this.name;

}

// removed

METHOD_DECLARATION

PARAM*
METHOD_BODY_START

RETURN

METHOD_BODY_END

<none>

Figure 6.4.: Illustration and schema for the transformation Remove getter.

39

6. CPG Transformations for Refactoring Obfuscation Resilience

6.1.4. Unsupported Methods and Constructors

Methods and constructors that immediately throw an exception when called, which we
will call unsupported, are not explicitly listed as a form of common code by Novak [27] or
Simon et al. [42], but as these methods are evidently not supposed to be called, they do not
represent part of the program behavior and can therefore be omitted. This transformation
removes unsupported methods and constructors from the CPG, which removes at least
4+#𝑝𝑎𝑟𝑎𝑚 tokens for themethod declaration, and possibly some tokens for the construction
of the Exception object.

Note that the example code snippets and tokens in Figures 6.1 and 6.2 show only one
possible example instance. Any method or constructor whose body contains only a throw
statement will be matched by this transformation.

methods

ClassDecl
containingClass

body

MethodDecl
methodDeclaration

statement0

Block
body

ThrowStatement
throwStatement

localProperty
statements
.length == 1

ClassDecl
containingClass

public void myMethod(String name,

int id, ...) {

throw new MyException("Error!");

}

// removed

METHOD_DECLARATION

PARAM*
METHOD_BODY_START

NEW_OBJECT

THROW

METHOD_BODY_END

<none>

Figure 6.5.: Illustration and schema for the transformation Remove unsupported method.

40

6.1. Removing Elements

constructors

ClassDecl
containingClass

body

ConstructorDecl
constructorDeclaration

statement0

Block
body

ThrowStatement
throwStatement

localProperty
statements
.length == 1

ClassDecl
containingClass

public MyClass(String name,

int id, ...) {

throw new MyException("Error!");

}

// removed

CONSTRUCTOR_DECLARATION

PARAM*
CONSTRUCTOR_BODY_START

NEW_OBJECT

THROW

CONSTRUCTOR_BODY_END

<none>

Figure 6.6.: Illustration and schema for the transformation Remove unsupported constructor.

41

6. CPG Transformations for Refactoring Obfuscation Resilience

6.2. Moving Members

This category of transformations moves members of classes to other classes where they
are most relevant, according to a usage analysis. As of now, only one transformation of
this category was selected. Another related example is auxiliary methods, which, much
like constants, are commonly collected in utility classes, even if these auxiliary methods
are ultimately used in other classes only.

6.2.1. Moving Constants from Constant Classes

This transformation is designed to counter the formation of constant classes, i.e., special
classes with the only purpose to act as a central storage for constants. The transformation
moves a constant declaration if all of its usages are located in the same other class. This
causes at least one token to move within the token list.

FieldDecl
constDeclaration

ClassDecl
definingClass

fields

FieldDecl
constDeclaration

localProperty
"static", "final"
in modifiers

locatedInClass

Reference
constReference

ClassDecl
usingClass

localProperty
usages.length

> 0

matchProperty

not equal

forall
usages

ClassDecl
definingClass

fieldsFieldDecl
constDeclaration

ClassDecl
usingClass

public class MyConstants {

public static final String MESSAGE

= "Yes(Y) or No(N)";

}

public class MyClass {

void printMessage() {

output.print(MESSAGE);

}

}

public class MyConstants {

// removed

}

public class MyClass {

public static final String MESSAGE

= "Yes(Y) or No(N)";

void printMessage() {

output.print(MESSAGE);

}

}

CLASS_DECLARATION

FIELD_DECLARATION

...

CLASS_DECLARATION

...

CLASS_DECLARATION

...

CLASS_DECLARATION

FIELD_DECLARATION

...

Figure 6.7.: Illustration and schema for the transformation Move constant to only using

class.

42

6.3. Inlining Elements

6.3. Inlining Elements

Inlining transformations reverse the extraction of elements to new named constructs, e.g.,
subexpressions to variables, class members to new classes. The respective tokens are
moved within the token list, therefore extraction refactorings constitute an effective attack
against token-based plagiarism detectors.

6.3.1. Single-Use Variables and Constants

The extraction of a subexpression to a new variable or constant constitutes a Level 3
plagiarism, see Table 2.1 in Section 2.1. Such an extraction refactoring often produces a
single-use variable or constant. Thus, in order to balance the risk of information loss and
the potential benefit of this transformation for the similarity detection, we opt to inline
variable declarations only if they are used exactly once. In this case, the transformation
replaces the variable/constant reference by its value and removes the variable/constant
declaration, removing one token and moving the expression tokens.

In the case of variables, this transformation only preserves the semantic of the code if all
subexpressions can be guaranteed to have the same value in the position of the usage as
in the position of the former variable declaration. To determine whether this is the case, a
data flow analysis is required.

wildcardEdge0

?
wildcardParent0

initializer

VariableDecl
containingClass

localProperty
usages.length

== 1

usages0

Reference
usage

Expression
variableValue

wildcardEdge1

?
wildcardParent1

matchProperty
expression value is
preserved up to the

reference

?
wildcardParent0

Expression
variableValue

wildcardEdge1

?
wildcardParent1

double singleUse = expression;

// ...

return singleUse * otherTerm;

return expression * otherTerm;

<variable value>

VARIABLE_DECLARATION

...

<variable usage>

...

<variable value>

<variable usage>

Figure 6.8.: Illustration and schema for the transformation Inline single-use variable.

43

6. CPG Transformations for Refactoring Obfuscation Resilience

In the case of class constants, it may occur that the expression assigned the constant is
not constant per se, i.e., if evaluated at different instances during execution, their value
may vary. However, as this can be seen as an edge case, and for the sake of not being
overly restrictive, the transformation does not verify that the value of the constant is truly
constant.

fields

ClassDecl
containingClass

usages0initializer

FieldDecl
constantDeclaration

localProperty
"static", "final"
in modifiers

localProperty
usages.length

== 1 Reference
usage

Expression
constantValue

wildcardEdge

?
wildcardParent

ClassDecl
containingClass

Expression
constantValue

wildcardEdge

?
wildcardParent

public static final

double singleUse = expression;

// ...

return singleUse * otherTerm;

return expression * otherTerm;

<constant value>

FIELD_DECLARATION

...

<field usage>

...

<field value>

<field usage>

Figure 6.9.: Illustration and schema for the transformation Inline single-use constant.

44

6.3. Inlining Elements

6.3.2. Unwrapping Optional Values

This refactoring replaces an optional value (an Optional object) by its wrapped value.
This is accomplished with two distinct transformations: The first transformation replaces
calls to Optional.of(expression) by the proper expression, which removes one token
from the token list. The second transformation replaces calls to Optional::get() by the
expression on which the method is called, also removing one token. Both methods are
identified with the fully qualified name.

While these two transformations cannot transform all functionality of the Optional in-
terface, they are sufficient to counter simple attacks where a variable is changed to an
Optional object containing its value. As a potential extension, calls to the methods
Optional::isPresent and Optional::isEmpty can be replaced by null checks.

wildcardEdge

?
wildcardParent

invokes

MemberCallExpr
memberCall

argument0

MethodDecl
methodDeclaration

localProperty
name equals
"Optional.of"

Expression
argument

localProperty
arguments

.length == 1

wildcardEdge

?
wildcardParent

Expression
argument

Optional<Type> maybeValue

= Optional.of(expression);

Type realValue = expression;

<expression value>

METHOD_CALL

VARIABLE_DECLARATION

<expression value>

VARIABLE_DECLARATION

Figure 6.10.: Illustration and schema for the transformation Unwrap Optional.of().

45

6. CPG Transformations for Refactoring Obfuscation Resilience

wildcardEdge

?
wildcardParent

callee invokes

MemberCallExpr
memberCall

base

MemberExpr
memberExpr

Expression
optionalReference

classDeclaration

MethodDecl
methodDeclaration

localProperty
name equals
"Optional.get"

ClassDecl
classDeclaration

localProperty
name equals

"java.util.Optional"

localProperty
arguments

.length == 0

wildcardEdge

?
wildcardParent

Expression
optionalReference

return maybeValue.get(); return realValue;

METHOD_CALL

<expression value>
<expression value>

Figure 6.11.: Illustration and schema for the transformation Unwrap Optional.get().

6.4. Semantically Equivalent Replacement

Unlike the previous categories, when performing semantic-preserving transformations,
the result is not necessarily less code, but other code that has indistinguishable visible
program behavior.

6.4.1. For Loop to While Loop

According to the research of Karnalim [18], exchanging equivalent loop types is a common
type of Level 5 plagiarism. A classical example is the transformation of a for loop to a
while loop, which follows a standard pattern. While equally possible, it is more complex
to go the opposite way and construct a for loop from a while loop, as a meaningful loop
variable must first be identified.

This transformation replaces a for statement with a block containing the loop variable
initialization and a while statement. The while statement uses the condition of the for
statement, and the increment statement is moved to the end of the while block. This
changes the type of three tokens from types specific to for loops to types specific to while

loops, and moves the token of the iteration statement to the very end of the while block
token.

46

6.4. Semantically Equivalent Replacement

Note that the additional surrounding block around the while statement is necessary to
keep the semantic correct. This is because the loop variable becomes undefined after the
end of the for statement, and so, it must also become undefined after the while statement,
which can be accomplished with the additional block. Without it, identifiers may clash if a
variable with an equal identifier is declared later in the method, for example, by another
loop statement.

wildcardEdge

?
wildcardParent

initializer

condition iteration

body

ForStatement
forStatement

VariableDecl
initialization

Statement
iteration

Expression
condition

Statement
body

condition body

WhileStatement
whileStatement

wildcardEdge

?
wildcardParent

VariableDecl
initialization

statement0 statement1

Block
surroundingBlock

Expression
condition

Statement
body

Statement
iteration

statement0 statement1

Block
whileBody

for (int i = 0; i < iMax; i++) {

// for body statements

}

{

int i = 0;

while (i < iMax) {

// for body statements

i++;

}

}

VARIABLE_DECLARATION

FOR_STATEMENT

FOR_BODY_START

<body statements>

FOR_BODY_END

ASSIGN

VARIABLE_DECLARATION

WHILE_STATEMENT

WHILE_BODY_START

<body statements>

ASSIGN

WHILE_BODY_END

Figure 6.12.: Illustration and schema for the transformation For Statement to While State-

ment.

47

6. CPG Transformations for Refactoring Obfuscation Resilience

6.4.2. Negated If-Else Condition

Current IDEs offer to automatically invert the condition of an if statement and exchange
its then and else blocks if that is possible. This transformation reverts the swap if the
condition is surrounded by a negation operator, and removes the negation operator. As
the negation operation is not represented in the token list, only the tokens of the then and
else blocks swap position.

condition

thenStatement
elseStatement

IfStatement
ifStatement

UnaryOperator
Expression

negation

Statement
thenStatement

localProperty

operator == '!'

operand

Expression
innerCondition

Statement
elseStatement

thenStatement
elseStatement

IfStatement
ifStatement

Statement
elseStatement

Statement
thenStatement

condition

Expression
innerCondition

if (!expression) {

// then statements

} else {

// else statements

}

if (expression) {

// else statements

} else {

// then statements

}

<condition>

IF_STATEMENT

THEN_BLOCK_START

<then statements>

THEN_BLOCK_END

ELSE_BLOCK_START

<else statements>

ELSE_BLOCK_END

IF_BLOCK_END

<condition>

IF_STATEMENT

THEN_BLOCK_START

<else statements>

THEN_BLOCK_END

ELSE_BLOCK_START

<then statements>

ELSE_BLOCK_END

IF_BLOCK_END

Figure 6.13.: Illustration and schema for the transformation Invert negated If condition.

48

7. Evaluation

In this chapter, we want to evaluate the novel CPG transformation system in order to assess
whether it accomplishes its two major design goals: We aimed to improve the general
resilience of token-based plagiarism detection against obfuscation attacks while preserving
its performance and reliability. To this end, the evaluation was set up as follows:

Ten data sets of submissions with plagiarisms were collected. The original submissions
are real-world submissions by university students, from which other authors have created
seven plagiarisms with multiple different attack schemes. Three new data sets with a total
of 450 new plagiarisms were generated using automatic refactoring obfuscation attacks.

As a representative of the state of the art to compare our approach to, we chose JPlag, as it
is widely used and open-source (see Section 2.3.2). To evaluate the effects of the respective
linearization and tokenization of the approaches, we disabled all other components of both
approaches and ran them on the data sets. This was to ensure that the observed effects of
the CPG approach would not be biased by the token selection and linearization method.

Next, the CPG approach and JPlag were run on all ten data sets with their full optimization
capacity. The results were accumulated sorted by the attack scheme used, so that the
quality of the plagiarism detection could be compared separately for each attack scheme.
As a measure for the plagiarism detection quality, we used the average distinctiveness of
the similarity of plagiarisms and originals. During both runs, the processing time of each
submission was recorded.

The results show that the CPG approach is considerably more effective at distinguishing
refactoring plagiarisms from originals. For all other attack types, the distinctiveness of
plagiarisms and originals of the CPG approach matched those of JPlag.

In the next sections, the individual components of the evaluation are described. Then, we
look at the results and discuss our conclusions. Finally, we consider potential threats to
validity.

49

7. Evaluation

7.1. Goal-Question-Metric Plan

With the design of the CPG transformation system and a selection of transformations, we
intend to make token-based plagiarism detection more resilient against the serious issue of
obfuscation attacks. As an early step in the design phase, a Goal-Question-Metric (GQM)
plan [2] was set up in order to link the achievement of this goal to concrete metrics.

The individual questions and metrics of the GQM plan address various functional and
non-functional aspects of our primary objective. Given that the CPG normalization is
the core novelty of this approach, we will assess its impact most carefully, based on four
different obfuscation attack schemes.

G.1 Make plagiarism detection more resilient against refactoring obfuscation attacks

Q.1.1 How does the linearization by the CPG approach affect the quality of plagia-
rism detection?

M.1.1.1 Compare the similarity metrics of JPlag and the CPG approach with no
normalizations enabled.

Q.1.2 How does the normalization by the CPG approach affect the quality of plagia-
rism detection?

M.1.2.1 Compare the similarity metrics of JPlag and the CPG approach with all
normalizations enabled.

G.2 Preserve the performance of JPlag

Q.2.1 How does the generation of the CPG and linearization affect the runtime of
the CPG approach?

M.2.1.1 Compare the runtime of JPlag and the CPG approach with no normaliza-
tions enabled.

Q.2.2 How does the application of the transformations affect the runtime of the
CPG approach?

M.2.2.1 Compare the runtime of JPlag and the CPG approach with all normaliza-
tions enabled.

M.2.2.2 Compare the runtime of the CPG approach with all and without any
normalizations enabled.

Q.2.3 How reliable is the CPG approach?

M.2.3.1 Compare the failure rate of the dedicated language modules and the CPG
approach with all normalizations enabled.

50

7.2. Data Sets

7.2. Data Sets

This section presents the data sets from which plagiarisms were generated for the evalua-
tion.

PROGpedia Task 19 and 56. The PROGpedia data set [30] contains the submissions to
sixteen real-world programming tasks by undergraduate computer science students at the
University of Porto, submitted in Java, Python, C++, and C. For the evaluation, the Java
submissions for task 19 and task 56 were used, as they contained the greatest number of
valid solutions, and the solutions had more LOC than other tasks.

In task 19, the students designed an analysis framework for social networks, represented
as graphs, which determines isolated groups of related people, their members, size, and
the total number of groups. The format of input and output data was defined precisely.
The data set contains 244 correct submissions by 175 students written in C, Python, and
Java, including 69 resubmissions. Sağlam et al. [38] prepared a clean subset, which only
contains the final Java submissions and no plagiarisms. The resulting data set contained
𝑛 = 27 single-file submissions ranging from 40 to 345 LOC, with a mean of 131 LOC and a
median of 106 LOC.

In task 56, the students were assigned an optimization problem where they had to find
the minimal spanning tree of a set of nodes and determine the total length of its edges.
Again, the format of input and output data was given. The data set contains 108 correct
submissions by 89 students written in C, C++, and Java, including 19 resubmissions. Sağlam
et al. [38] prepared a clean subset, which only contains the final Java submissions and no
plagiarisms. The resulting data set contained 𝑛 = 28 single-file submissions with a range
of 40 to 316 LOC, with a mean of 84.6 LOC and a median of 77 LOC.

The TicTacToe Data Set. The TicTacToe data set consists of submissions for a mandatory
exercise task of the introductory programming course for undergraduate computer science
students at Karlsruhe Institute of Technology (KIT) in Java. The task was to implement a tic-
tac-toe game, which should be playable interactively via a CLI both against a second human
player and the computer. The data set contains 738 submissions written in Java. Sağlam
et al. [38] prepared a clean subset, which contains no plagiarisms, and only submissions
that compile successfully. The resulting data set contained 𝑛 = 626 submissions with a
range of 33 to 662 LOC, with a mean of 236 LOC and a median of 225 LOC. Each submission
contained up to 16 files, with a mean of 3.8 files and a median of 3 files.

7.3. Generated Plagiarisms by Attack Scheme

For the evaluation, nine plagiarized data sets were used that incorporated one of four
specific obfuscation attack schemes each. We base the evaluation on this diverse data
set in order to ensure that the CPG approach preserves the effectiveness of JPlag on all
attack schemes, and to ensure the validity of our results. First, we consider dead statement
insertion attacks, which used to be a severe vulnerability of token-based plagiarism

51

7. Evaluation

detection exploited by Mossad, until this vulnerability was addressed by token sequence
normalization [38]. Next, we include two types of attacks supported by the use of LLMs,
which are an accessible way to generate plagiarisms with little effort or skill. Finally,
we take a look at combined refactoring attacks, which create a structurally different,
semantically equivalent version from a submission without creating dead code.

This section presents the different plagiarized versions of the data sets used for evaluation.
For each plagiarized data set, we give the number of original submissions 𝑜 and the number
of plagiarized submissions 𝑝 .

7.3.1. Insertion Attacks

For his bachelor’s thesis [3], Brödel created the data sets prog19-insert (𝑜 = 27, 𝑝 = 27) and
prog56-insert (𝑜 = 28, 𝑝 = 28) with his tool JPlag-Gen . Much like the automatic plagiarism
generation tool Mossad, JPlag-Gen iteratively inserts random statements into code blocks,
and compiles and runs the intermediate result to check whether the insertion preserved
the semantic of the submission. For each of the 27 and 28 submissions, the respective insert
data sets contain the original and one plagiarism, labeled with the index of the original
submission. The plagiarisms created by Brödel are available via the additional material for
the paper complementing his bachelor’s thesis [39]. Using JPlag-Gen, Niehues created 51
plagiarisms for the TicTacToe data set (tictactoe-insert, 𝑜 = 626, 𝑝 = 51) [26].

7.3.2. LLM-Generated Attacks

Submission Obfuscation Attacks. For his master’s thesis [25], Niehues created the data
sets prog19-obfuscated (𝑜 = 27, 𝑝 = 75), prog56-obfuscated (𝑜 = 28, 𝑝 = 75), and tictactoe-

obfuscated (𝑜 = 626, 𝑝 = 75) by submitting original submissions to ChatGPT with different
prompts to create derived plagiarisms with similar semantics, but different representation
in code. The different prompts were phrased specifically so that the resulting plagiarisms
would look vastly different to traditional token-based plagiarism detection compared to the
originals. For each of the base data sets, five original submissions were selected, and fifteen
plagiarisms were created from each of these submissions, which makes 75 in total.

Fully Generated Submissions. Additionally, Niehues presents the FullyGenerated (𝑜 =

626, 𝑝 = 10) data set where ChatGPT was supplied with the original specification of the
tictactoe task as it was handed out to the students, but no code to build upon, and was
prompted to create a new solution for the task. This process was repeated ten times.

52

7.3. Generated Plagiarisms by Attack Scheme

7.3.3. Refactoring Transformation Attacks

To be able to evaluate the resilience of the CPG transformation system against refactoring
attacks, a new automatic plagiarism generation tool was implemented, which we will
call PlagGen . PlagGen was designed specifically so that the transformations used to
generate the plagiarisms would not be based on the same mechanics as the transformation
system that is supposed to revert these same transformations. It uses the Inria Spoon API
for Java Source Code Analysis and Transformation [32] to parse Java code submissions,
iteratively apply transformations to them, and generate code from the transformed AST.
The following transformations were used in combination:

• Wrap in Optional: Variable declarations are boxed into an Optional object, i.e., assign-
ments use Optional.of to box the assigned value, and variable reading references
use Optional.get to unbox the value.

• Extract Variable: A random set of expressions is selected, each of which is extracted to
a new variable and their original occurrence replaced by a reference to that variable.

• Extract Constant Class: A random set of expressions is selected, each of which is
extracted into a class constant of a new class in a separate file, and their original
occurrence replaced by a reference to that constant.

• Swap If-Else: The conditions of if statements are inverted, either by negating it with
a negation operator around the condition, or by replacing the equality operator ==
by the inequality operator != and vice versa. Also, the then and else statements are
swapped and, if necessary, wrapped into a block statement.

• Insert Unsupported Constructor: A new constructor, which immediately throws a
runtime exception, is added at a random position in the class body.

• Insert Unsupported Method: A new method, which immediately throws a runtime
exception, is added at a random position in the class body.

• Insert Getter : A new method, which immediately returns a field value, is added at a
random position in the class body.

The individual generated plagiarisms are distinct from each other in that a random number
generator decides which of all possible transformation instances are applied, using a
suitable application rate for each transformation.

With PlagGen, fifteen submissions were randomly selected from the prog19, prog56, and
tictactoe data sets, and ten plagiarisms generated for each of them. The results are the new
data sets prog19-transfromed (𝑜 = 27, 𝑝 = 150), prog56-transformed (𝑜 = 28, 𝑛 = 150), and
tictactoe-transformed (𝑜 = 626, 𝑝 = 150).

53

7. Evaluation

7.4. Approaches Used for Comparison

Four approaches were used in the various stages of the evaluation.

Linearization Evaluation: Approaches without optimizations. To evaluate the influence of
the linearization and tokenization, the AST-based default configuration of JPlag (“JPlag”)
was compared to the CPG-based approach with all transformations deactivated (“CPG”).
This ensured that the influence of the linearization and token selection could be examined
in isolation, without interference of transformations, reordering, or other optimizations.

Resilience Evaluation: Approaches with optimizations. To evaluate the resilience of the
CPG approach, JPlag with token sequence normalization enabled (“JPlag-N”) was com-
pared to the CPG-based approach will all transformations and reordering enabled (“CPG-
N”).

For each of these approaches, the minimum token match size was set to 9, the default
value of JPlag for Java submissions.

7.5. Results

For the evaluation of the plagiarism detection quality, the results will be presented in two
ways: First, the distribution of similarity values of all submission pairs will be presented
in a boxplot categorized by the data sets and the approaches used, as well as the relation
between the compared submissions: Pairs of originals and plagiarisms (of that original)
will be labeled as Original vs. Plagiarism or OP for brevity, and pairs of unrelated originals
will be labeled as Original vs. Original or OO.

Secondly, key statistics of the distribution will be presented in a table categorized by
approach and relation between the compared submissions. The rows labeled Diff show
the statistics of the element-wise difference between the similarities from the different
approaches, which (apart from the mean) is different from the difference of the statistics
from the different approaches.

To motivate how we measure the plagiarism detection quality, we assume the following
scenario: an instructor sets out to detect plagiarisms in a submission set. They use a token-
based plagiarism detection tool as a basis for the examination of suspicious pairs. The
result is presented to the instructor as a list of the pairwise similarities, and a histogram.
As it is infeasible to check all 𝑂 (𝑛2) pairs of submissions for plagiarism, the instructor
opts to examine only the most similar pairs.

In this scenario, the correct classification of the unlabeled originals and plagiarisms depends
on the extent to which pairs of originals and plagiarisms are distinctly more similar to
each other compared to pairs of originals. Thus, in the evaluation on our labeled data
sets, we calculate statistical measures of the original pairs𝑚𝑂𝑂 and pairs of originals and
plagiarisms 𝑚𝑂𝑃 and use the difference 𝑚𝑂𝑃 −𝑚𝑂𝑂 , the distinctiveness of plagiarisms
among originals, as an indicator for the plagiarism detection quality of each approach.

54

7.5. Results

7.5.1. Linearization

tictactoe−insert tictactoe−obfuscated tictactoe−transformed

prog56−insert prog56−obfuscated prog56−transformed

prog19−insert prog19−obfuscated prog19−transformed

OO OP OO OP OO OP

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Label

S
im

ila
rit

y Approach

JPlag

CPG

Approach Mean Median IQR Q3

JPlag-N 0.0697 0.0611 0.0711 0.1006
CPG-N 0.1016 0.0942 0.0904 0.1423
Diff 0.0319 0.0291 0.0603 0.0603

Figure 7.1.: Evaluation of the approaches “JPlag” and “CPG” (see Section 7.4) on all data
sets.

Figure 7.1 shows the results of running JPlag with no optimization and the CPG approach
reduced to CPG construction, linearization, and tokenization, without any transforma-
tions or reordering. This isolates the effects of the linearization from those of further
optimizations; the latter are examined in 7.5.2.

Q.1.1 How does the linearization by the CPG approach affect the quality of the plagiarism
detection?

A.1.1 With an average and median difference of three percentage points, the linearization
shows no major effect on the similarity rating; instead, a rather stable offset of three
percentage points is introduced that should have little influence on howwell OP pairs
can be distinguished from OO pairs. Thus, if the CPG approach with transformations
and reordering produces different results than JPlag, where the difference goes
beyond the offset, we can confidently attribute this difference to the transformation
and reordering instead of the linearization and tokenization process.

55

7. Evaluation

7.5.2. Transformations

This section examines the effectiveness of the approaches on specific obfuscation attacks.
We evaluate the approaches on each attack scheme by taking into account only those
plagiarisms that were generated using that particular attack.

7.5.2.1. Insertion Attacks

Figure 7.2 shows the result of running JPlag with optimizations and the full CPG ap-
proach with all transformations and reordering on the data sets plagiarized with insertion
attacks.

prog19−insert prog56−insert tictactoe−insert

OO OP OO OP OO OP

0.00

0.25

0.50

0.75

1.00

Label

S
im

ila
rit

y Approach

JPlag−N

CPG−N

— Originals vs. Originals (OO) —
Approach Mean Median IQR Q3

JPlag-N 0.0700 0.0619 0.0716 0.1015
CPG-N 0.0929 0.0846 0.0863 0.1310
Diff 0.0229 0.0225 0.0579 0.0535

— Originals vs. Plagiarisms (OP) —
Approach Mean Median IQR Q3

JPlag-N 0.9960 0.9964 0.0058 1.0000
CPG-N 0.9978 1.0000 0.0000 1.0000
Diff 0.0018 0.0024 0.0053 0.0053

— Distinctiveness OP vs. OO —
Approach Mean Median Q3

JPlag-N 0.9260 0.9345 0.8985
CPG-N 0.9049 0.9154 0.8690
Diff -0.0211 -0.0201 -0.0482

Figure 7.2.: Evaluation of the approaches “JPlag-N” and “CPG-N” (see Section 7.4) on data
sets with insertion attack plagiarisms.

Q.1.2 How does the normalization by the CPG approach affect the quality of the plagia-
rism detection?

A.1.2 The results show that the similarity distributions on all three data sets are very
similar between the JPlag and CPG approaches. Both approaches produce substantial
disambiguation gaps between OO and OP pairs. Overall, the average distinctiveness
difference is -2.1 percentage points, which can be attributed to the tokenization
offset and the near-perfect results of both approaches. Thus, we claim that the CPG
approach is equally suitable to detect insertion attacks as the JPlag approach with
token sequence normalization.

56

7.5. Results

7.5.2.2. LLM Obfuscation Attacks

Figure 7.3 shows the result of running JPlag with optimizations and the full CPG approach
with all transformations and reordering on the data sets plagiarized with LLM-based
obfuscation attacks.

prog19−obfuscated prog56−obfuscated tictactoe−obfuscated

OO OP OO OP OO OP

0.00

0.25

0.50

0.75

1.00

Label

S
im

ila
rit

y Approach

JPlag−N

CPG−N

— Originals vs. Originals (OO) —
Approach Mean Median IQR Q3

JPlag-N 0.0700 0.0619 0.0716 0.1015
CPG-N 0.0928 0.0846 0.0862 0.1309
Diff 0.0228 0.0225 0.0579 0.0535

— Originals vs. Plagiarisms (OP) —
Approach Mean Median IQR Q3

JPlag-N 0.4485 0.4416 0.6426 0.7632
CPG-N 0.4733 0.4625 0.6318 0.7831
Diff 0.0248 0.0194 0.0862 0.0682

— Distinctiveness OP vs. OO —
Approach Mean Median Q3

JPlag-N 0.3785 0.3797 0.6617
CPG-N 0.3804 0.3779 0.6522
Diff 0.0020 -0.0031 0.0147

Figure 7.3.: Evaluation of the approaches “JPlag-N” and “CPG-N” (see Section 7.4) on data
sets with LLM-obfuscated plagiarisms.

Q.1.2 How does the normalization by the CPG approach affect the quality of the plagia-
rism detection?

A.1.2 The results show that the similarity distributions on all three data sets are very
similar between the JPlag and CPG approaches, if we disregard the offset. Overall,
with an average distinctiveness difference of 0.2 percentage points, we claim that
the CPG approach is equally suitable to detect LLM-based obfuscation attacks as
the JPlag approach with token sequence normalization.

A more detailed investigation showed that the normalization of neither approach alters the
submissions to a substantial degree, which is to be expected as neither of them considers
LLM-based obfuscation attacks explicitly in their threat model.

57

7. Evaluation

7.5.2.3. LLM Plagiarism Generation Attacks

Figure 7.4 shows the result of running JPlag with optimizations and the full CPG approach
with all transformations and reordering on the data sets that contain fully LLM-generated
submissions. For this evaluation specifically, we call human submissions originals and
LLM-generated submissions generated, which extends to the labels of pairs.

FullyGenerated

OO OG GG

0.00

0.25

0.50

0.75

1.00

Label

S
im

ila
rit

y Approach

JPlag−N

CPG−N

— Originals vs. Originals (OO) —
Approach Mean Median IQR Q3

JPlag-N 0.0701 0.0619 0.0716 0.1016
CPG-N 0.0929 0.0847 0.0861 0.1309
Diff 0.0229 0.0226 0.0579 0.0535

— Originals vs. Generated (OG) —
Approach Mean Median IQR Q3

JPlag-N 0.0422 0.0356 0.0647 0.0647
CPG-N 0.0612 0.0512 0.0683 0.0917
Diff 0.0190 0.0079 0.0427 0.0427

— Generated vs. Generated (GG) —
Approach Mean Median IQR Q3

JPlag-N 0.4663 0.4564 0.1774 0.5504
CPG-N 0.4672 0.4777 0.1579 0.5428
Diff 0.0009 -0.0076 0.1373 0.0617

— Distinctiveness OG vs. OO —
Approach Mean Median Q3

JPlag-N -0.0279 -0.0263 -0.0369
CPG-N -0.0317 -0.0335 -0.0392
Diff -0.0038 -0.0147 -0.0108

Figure 7.4.: Evaluation of the approaches “JPlag-N” and “CPG-N” (see Section 7.4) on data
sets with LLM-generated plagiarisms.

Q.1.2 How does the normalization by the CPG approach affect the quality of the plagia-
rism detection?

A.1.2 On average, OG pairs are not distinct from OO pairs in either approach. Indeed, OG
pairs are less similar to each other than OO pairs. With a distinctiveness difference
of -0.38 percentage points, we claim that the CPG approach is equally suitable
to detect LLM-generated submissions as the JPlag approach with token sequence
normalization.

As noted by Niehues [25], the generated submissions are remarkably similar to each other.
For this particular data set, the average GG pair would rank among the most similar pairs
of OO and OG pairs. Again, this is true for both approaches.

58

7.5. Results

7.5.2.4. Refactoring Attacks

Figure 7.5 shows the result of running JPlag with optimization and the CPG approach
with all transformations and reordering on the data sets plagiarized through automatic
refactoring attacks.

prog19−transformed prog56−transformed tictactoe−transformed

OO OP OO OP OO OP

0.00

0.25

0.50

0.75

1.00

Label

S
im

ila
rit

y Approach

JPlag−N

CPG−N

— Originals vs. Originals (OO) —
Approach Mean Median IQR Q3

JPlag-N 0.0700 0.0618 0.0716 0.1015
CPG-N 0.0928 0.0846 0.0862 0.1308
Diff 0.0228 0.0225 0.0579 0.0535

— Originals vs. Plagiarisms (OP) —
Approach Mean Median IQR Q3

JPlag-N 0.5786 0.5956 0.2008 0.6838
CPG-N 0.9854 1.0000 0.0190 1.0000
Diff 0.4068 0.3919 0.1949 0.4940

— Distinctiveness OP vs. OO —
Approach Mean Median Q3

JPlag-N 0.5086 0.5338 0.5823
CPG-N 0.8925 0.9154 0.8692
Diff 0.3840 0.3694 0.4405

Figure 7.5.: Evaluation of the approaches “JPlag-N” and “CPG-N” (see Section 7.4) on data
sets with plagiarisms generated through automatic refactoring transformations.

Q.1.2 How does the normalization by the CPG approach affect the quality of the plagia-
rism detection?

A.1.2 With a median similarity of 100 percent and mean similarity of more than 98 percent
between originals and plagiarisms, the results show that the CPG approach is able
to revert nearly all transformations used to create the plagiarisms and, in most cases
(227 of 450), restore the exact token sequence of the normalized original. The average
distinctiveness difference of the CPG approach is 38 percentage points greater than
that of JPlag with normalization enabled, which of course was not designed to
counter refactoring attacks. Yet again, the offset of two percentage points shows in
the similarity between original pairs.

Note that the distinctiveness difference between the approaches can be arbitrarily increased
by creating even more obfuscated plagiarisms by applying the same transformation to the
submission more times, and that the plagiarism generator was designed specifically to use

59

7. Evaluation

only precisely those transformations that the CPG approach would be able to counter. In
real use cases, we expect that plagiarisms use combined attacks, not all of which will be
covered by the implemented transformations.

While the CPG approach transforms every match that it can find, there are multiple
constellations that may cause some matches to be left untransformed.

• To limit runtime, the CPG is matched against the source graph pattern of each
transformation one or two times only. As transformations may result in new matches
for other transformations, some matches may be left untransformed. The order of
the transformations was chosen carefully so that untransformed matches should
occur as an exception, but this remains a vulnerability of the implementation.

• In the course of the transformed data sets generation, PlagGen uses simple rules
to determine where a refactoring may be applied. In some cases, these refactorings
may turn out to inadvertently change the semantic, in which case the CPG approach
will deliberately not transform them back.

• As the CPG library is still relatively new, there are still some edge cases where
inconsistencies occur, which essentiallymakes the plagiarism generatormore difficult
to beat.

Despite these challenges, the implementation was able to counter the generated attacks.

7.5.3. Nonfunctional Properties

Runtime. Figure 7.6 shows the runtime of the approaches on the different data sets in
milliseconds. These measurements are taken before and after the call to the approaches,
respectively. Overall, the median of the CPG approach with transformations and reordering
runtime is between 86 and 257 percent of the runtime of JPlag, which may amount to a
difference of just several minutes for a large submission set.

Looking into the results in more detail, the runtime of the CPG approach shows to be highly
dependent on the structural complexity of the code. On data sets with linear, short code,
it may even outperform the AST-based approach. On more complex data sets, however,
the CPG approach is slower than JPlag on average, and extreme outliers occur in the
CPG approach which take more than two orders of magnitude more time than the upper
quartile. An investigation into these outliers shows that the DFG analysis needed for the
linearization on block level (Section 5.8) is likely to blame, as its performance depends
heavily on the number of paths through a method. As some methods in the tictactoe data
sets reached a cyclomatic complexity of more than 1501, the runtime of the DFG analysis
becomes unreasonable. Thus, an option was added to skip the DFG analysis of a method if
its cyclomatic complexity exceeds 120, which is still an excessive value. Being a fixpoint
analysis on graphs, the DFG analysis surely leaves room for further optimization.
1To put this value into relation: Watson and McCabe suggest setting a limit cyclomatic complexity of 10 as
a code quality requirement and claim that this value has “significant supporting evidence.” [45, p. 15]

60

7.5. Results

Note also that there is a considerable initialization runtime overhead for both approaches,
which was eliminated by running them on a small sample before the proper evaluation
run.

Impact of the Transformations on the Runtime. To evaluate the runtime of the transfor-
mations, the evaluation procedure was repeated with the DFG analysis and reordering
deactivated.

Q.2.2 How does the application of the transformations affect the runtime of the CPG
approach?

A.2.2 The results showed that in this configuration, the transformations caused a runtime
overhead of 15 to 25 percent. This is a small overhead compared to the DFG analysis.
On all data sets except the tictactoe data sets, the CPG approach without DFG analyses
is faster on average than the AST-based approach.

Reliability. During the evaluation runs, failures of the approaches were recorded to
evaluate the reliability of the CPG approach.

Q.2.3 How reliable is the CPG approach?

A.2.3 All runtime failures could be eliminated. However, the reliability of the CPG approach
depends on whether all language features used in the submissions are covered in
each step of the pipeline. As no exhaustive test has been run, it would not be accurate
to claim perfect reliability for the CPG approach.

61

7
.
E
v
a
l
u
a
t
i
o
n

– prog19-insert –
Approach Mean Min Q1 Median Q3 Max Sum Failures

Java 110 98 106 109 112 137 5923 0
Java-N 100 93 96 97 98 243 5390 0
CPG 89 34 55 74 100 279 4813 0
CPG-N 183 61 103 141 189 985 9855 0

– prog19-obfuscated –
Approach Mean Min Q1 Median Q3 Max Sum Failures

Java 104 94 98 103 107 136 10656 0
Java-N 99 93 95 97 102 118 10096 0
CPG 95 18 64 81 108 363 9683 0
CPG-N 136 30 82 117 161 655 13779 0

– prog19-transformed –
Approach Mean Min Q1 Median Q3 Max Sum Failures

Java 113 100 107 110 114 246 20003 0
Java-N 103 93 98 100 105 148 18182 0
CPG 76 33 60 75 90 187 13396 0
CPG-N 146 59 112 132 160 705 25787 0

– prog56-insert –
Approach Mean Min Q1 Median Q3 Max Sum Failures

Java 107 101 103 106 108 136 5964 0
Java-N 110 94 101 103 106 272 6144 0
CPG 62 26 45 53 65 250 3483 0
CPG-N 120 47 85 107 130 451 6745 0

– prog56-obfuscated –
Approach Mean Min Q1 Median Q3 Max Sum Failures

Java 99 94 96 97 99 146 10238 0
Java-N 97 92 94 96 97 120 10007 0
CPG 62 26 48 55 73 240 6366 0
CPG-N 92 46 73 83 104 333 9498 0

– prog56-transformed –
Approach Mean Min Q1 Median Q3 Max Sum Failures

Java 111 97 105 109 113 203 18706 0
Java-N 104 94 97 98 101 293 17434 0
CPG 74 25 47 62 74 403 12459 0
CPG-N 132 52 96 108 126 415 22234 0

– tictactoe-insert –
Approach Mean Min Q1 Median Q3 Max Sum Failures

Java 124 97 116 121 128 225 84222 0
Java-N 105 94 100 102 106 251 71329 0
CPG 146 24 98 125 166 2892 99137 0
CPG-N 377 40 178 242 367 5246 255935 0

– tictactoe-obfuscated –
Approach Mean Min Q1 Median Q3 Max Sum Failures

Java 102 94 98 100 104 141 68394 0
Java-N 99 92 96 98 100 164 66745 0
CPG 137 25 94 122 158 1925 92214 0
CPG-N 305 32 157 211 311 4470 204422 0

– tictactoe-transformed –
Approach Mean Min Q1 Median Q3 Max Sum Failures

Java 126 95 116 122 132 207 97742 0
Java-N 101 94 98 100 102 210 78732 0
CPG 166 31 104 135 187 2799 128655 0
CPG-N 402 41 186 257 391 5385 311921 0

– FullyGenerated –
Approach Mean Min Q1 Median Q3 Max Sum Failures

Java 109 103 104 106 108 138 1090 0
Java-N 99 94 96 100 103 104 993 0
CPG 59 53 54 57 63 72 592 0
CPG-N 124 105 113 125 128 157 1239 0

Figure 7.6.: Statistics of the runtime in milliseconds, and number of failures during the evaluation.

62

7.6. Discussion

7.6. Discussion

In this section, we summarize what we have learned from the evaluation.

Results of the Evaluation. The results of the evaluation suggest that the CPG approach
does improve the quality of plagiarism detection. While it shows very similar results to
JPlag with token sequence normalization for insertion, reordering, LLM-obfuscated and
LLM-generated attacks (albeit with a relatively stable offset of two to three percentage
points), on refactoring attacks, it outperforms JPlag by 38 percentage points on average.
As discussed before, this considerable distinction value could be increased arbitrarily by
transforming the original even more; likewise, it decreases if transformation attacks are
included that the CPG transformation system cannot deal with yet.

The increase in plagiarism detection quality comes at the cost of a (median per-submission)
runtime of up to 250 percent of JPlag. Submissions with exceedingly complex control
structures may take more than 100 times longer than the average submission runtime, but
a limit of the cyclomatic complexity can be adjusted accordingly, so that any submission
exceeding that limit can be reviewed manually.

While no failures occurred during the final run of the evaluation, we cannot guarantee
perfect reliability. The correct function of the approach depends on covering all kinds of
different language features, some of which may not have appeared in any of the data sets
used for testing and during the evaluation.

Automatic Generation of Refactoring Plagiarisms. During the implementation of PlagGen,
it became apparent that it is equally challenging to create plagiarisms that preserve the
semantic of the original as it is to preserve the semantic in the plagiarism detection
transformations. For example, an expression cannot be extracted to a variable if it is
the case expression of a case statement, an assignment, the target of an assignment, the
condition of a loop statement, a null reference, among many other cases. Similarly, an
expression cannot be extracted into a constant if it contains a method call, a variable
reference, or if it is a type reference. As a last interesting example, the transformation
Wrap in Optional was used on a variable that was later the target of a shorthand assignment
operation, where it is read and written. The transformation could only be applied after the
shorthand assignment was transformed into the long form, where the reading and writing
accesses to the variable are separate.

63

7. Evaluation

7.7. Threats to Validity

This section discusses how the validity of the results could have been compromised, and
how these threats have been dealt with.

7.7.1. Threats to Internal Validity

Test data generation. The transformed data sets, which incorporate plagiarisms created
through refactoring attacks, were all generated by the automatic plagiarism generation
tool PlagGen. If the data sets would have been created by the same mechanism that is
used to detect the plagiarism, this could have introduced a bias. To avoid this, PlagGen
was designed deliberately using different libraries to apply refactorings, so that no part
of the CPG transformation system could be reused. The original submissions that were
selected to create plagiarisms from were determined by a random number generator, so
no bias could arise from the selection.

Selection of existing data sets. Other than the transformed data sets, the insert, obfuscated
and FullyGenerated data sets were used, as they were used by Sağlam et al. [38] and
Niehues [25], which ensured that the data sets are suitable for such an evaluation and that
the results are comparable between the different approaches.

Influence of the rest of the pipeline. Apart from the transformations, the other steps of the
pipeline may have also affected the similarity rating. However, it was demonstrated that
the CPG linearization only introduced an offset in the range of two to three percentage
points to the similarity rating, which should not affect how clearly pairs of originals
and plagiarisms could be distinguished from pairs of unrelated originals. The multiple
reorderingmechanisms clearly do influence the similarity rating. However, as we compared
the CPG approach to JPlag with normalization, which also applies reordering, we still
determined the effect of the transformations accurately. The token selection also may
influence the similarity rating. To mitigate the risk of bias from the token selection, the
token selection of JPlag for Java was closely replicated.

7.7.2. Threats to External Validity

Scale of the effect. As a concept, a CPG transformation system can increase the quality
of plagiarism detection if refactoring attacks were used that are covered in the current
transformation selection. In practice, where instead of pure refactoring attacks, combined
attacks are more likely to be used, and refactorings may be used that are currently not
selected, the distinctiveness of plagiarisms among originals may not be as high as in the
evaluation.

Language independence. The present approach was only evaluated on submissions in
Java; thus, we cannot claim that the results transfer to other languages. This is despite
the fact that the CPG as an intermediary representation accepts other languages such as

64

7.7. Threats to Validity

C++, Python, or Ruby; also, the transformation engine should generally work on other
languages. However, some of the transformations themselves may not be valid in other
languages, especially if they refer to specific API elements. For these language-specific
transformations, code in another language will never match, which is detrimental to the
effectiveness of the transformation selection. For example, a transformation may expect
that a method declaration is located inside a class declaration, as is usually the case in
Java. In Python and C++, this is not a requirement.

It remains to be examined in future research whether the approach is equally effective in
other programming languages.

Plagiarism Detection Tool. While the tokenization and interface of the CPG pipeline were
designed to work with JPlag, the core part of the approach works independently from
the chosen plagiarism detection tool. Thus, other token-based plagiarism detection tools
should be able to use an adaptation of its implementation with little effort.

7.7.3. Threats to Construct Validity

Approach of the evaluation. The evaluation was planned and conducted according to
the Goal Question Metric approach [2]. This ensures that the metrics presented in the
evaluation are not selected or adapted at will once the evaluation is carried out with the
intention to favorably manipulate the results.

Meaningful metrics. The method of comparing similarity ratings between labeled originals
(false positives) and originals vs. plagiarisms (true positives) has been used throughout
the research on code plagiarism and its detection, for example, by Devore-McDonald [10],
Sağlam [40], Krieg [20], Brödel [38], and Niehues [25].

7.7.4. Threats to Reliability

Reproducibility of the results. A reproduction package was published [23] to ensure that
the results of the evaluation are reproducible. It includes the following:

• JPlag, including an implementation of the CPG approach (code base and runnable
JAR file),

• The plagiarized prog19, prog56, and FullyGenerated data sets used for the evaluation,
• The complete results in CSV format,
• The R script used to process the results, and all graphics and tables that it generated.

The tictactoe data sets could not be published due to data protection restrictions.

65

8. Limitations and Future Work

Several factors still limit the effectiveness of the present approach. In this chapter, potential
extensions to the CPG approach are discussed that may be investigated and evaluated in
further research to address these limitations.

Language Independence. Due to time constraints, the CPG approach was evaluated only
on submissions written in Java. Still, it can parse submissions in various other languages,
such as C++, Python, and Ruby. This raises multiple questions:

• Are the transformations of the current CPG approach effective on submissions in
other languages?

• Which transformations could be added to the CPG approach to make it similarly
effective on input in other languages as for input in Java?

• Is the CPG approach effective in detecting plagiarisms across programming lan-
guages?

This research requires suitable testing data in the respective programming languages.

Limitations of Static Analysis. It is known from Rice’s theorem [35] that static analysis
can ultimately only ever approximate the runtime behavior of a program. Plagiarists may
find ways to exploit this fact by designing refactoring attacks in such a way that excessive
analysis will be required to counter them, although we can assume that such an attack
takes considerable effort and knowledge if done manually.

A form of analysis that particularly addresses properties of runtime behavior using static
analysis is abstract interpretation [8]. The insights gained from abstract interpretation
could be used to eliminate dead control flow statements, where the condition is not a
constant expression, but still constantly true or false at runtime.

Limitations by the Selection of Transformations. Due to its special-purpose nature, the
CPG approach is only able to counter the precise refactorings that were considered during
its design. Any other refactoring may still prove to be quite an effective attack against
the CPG approach, at least to a similar extent that it would be against state-of-the-art
approaches. This is the case with the AI-generated attacks: as the CPG approach yields no
significant increase in similarity compared to JPlag with the token sequence normalization
approach, it is safe to assume that ChatGPT uses refactorings which are not yet covered
by the current transformation selection.

Thus, we can increase the effectiveness of the approach by extending the catalogue of
refactorings further.

67

8. Limitations and Future Work

Limitations by the Conservative Nature of the Refactorings. During the conception of
the approach, a great concern was that the transformations might alter the submissions
in such an aggressive manner that the false-positive rate increases to an extent which
would render the approach ineffective. With this in mind, the CPG approach was designed
specifically so that transformations would not change the semantics of the submitted code
(except for common code removal). This means that if a plagiarist changes the semantics by
even so little as to move a variable declaration in front of its parent block, this refactoring
cannot be reverted by the current CPG approach. A variant of this attack, Declare all
variables at the beginning of source code, is described by Karnalim [18, p. 65].

In this specific case, a specialized analysis could determine the latest position in the method
where a variable declaration could be placed (e.g., in the innermost block that contains all
variable usages, immediately before the statement or block that contains the first reference
to the variable). Other similar cases should also be investigated.

API Semantics. Structural elements of code have a well-defined semantic, so we can
easily transform equivalent representations of code to each other using different elements.
However, if the inner workings are hidden behind API calls, then a structural analysis
gives little insight about the behavior of the code and how the code might be represented
in more basic terms. As was done with the Optional class, we could deal with more API
elements through specialized transformations.

68

9. Conclusion

When students plagiarize code by other authors and try to obfuscate the plagiarism, these
obfuscation attacks can often be interpreted as sequences of refactorings. In this thesis,
we examined an approach to make token-based plagiarism detection resilient against
refactoring attacks by transforming the submissions to a normalized structure.

To this end, a CPG transformation system was implemented that calculates the atomic
operations on the CPG necessary to conduct a transformation, finds subgraphs that are
isomorphic to the source graph pattern of a transformation, and applies these operations
while preserving the invariants of the graph, as well as the semantic of the code. The
transformed CPG is linearized and tokenized to a token list, which can be compared
effectively by algorithms like Greedy String Tiling with Karp-Rabin Matching.

More than a dozen transformations were implemented, covering a wide variety of refac-
torings, including, but not limited to the insertion of common code and dead code, the
extraction of new variables and constants, the formation of constant classes, the equivalent
replacement of control statements, and the negation of if-then-else conditions.

The CPG approach was evaluated on data sets that contained plagiarisms obfuscated
by insertion attacks or refactoring attacks, as well as submissions created by an LLM.
The results suggest that the CPG approach shows effectiveness on insertion attacks and
LLM-based attacks on-par to JPlag with token sequence normalization enabled, and near-
perfect effectiveness on the refactoring attacks that it was designed to counter. As we
will learn more from future research about the refactorings which occur in manually
and automatically generated plagiarisms, we are confident that the CPG approach will
continue to be extended and is only just at the beginning of its potential resilience.

69

Bibliography

[1] Brenda S. Baker. “On Finding Duplication and Near-Duplication in Large Software
Systems”. In: Proceedings of 2nd Working Conference on Reverse Engineering. 1995,
pp. 86–95. doi: 10.1109/WCRE.1995.514697.

[2] Victor R. Basili, Gianluigi Caldiera, and Hans Dieter Rombach. “The Goal Question
Metric Approach”. In: Encyclopedia of Software Engineering (2002). Ed. by Rini van
Solingen. doi: https://doi.org/10.1002/0471028959.sof142.

[3] Moritz Brödel. “Preventing Automatic Code Plagiarism Generation Through Token
String Normalization”. BA thesis. Department of Informatics, Karlsruhe Institute of
Technology, Apr. 2023. doi: 10.5445/IR/1000165371.

[4] Dong-Kyu Chae et al. “Software Plagiarism Detection: A Graph-based Approach”.
In: CIKM ’13. Proceedings of the 22nd ACM international conference on Information &

Knowledge Management (Oct. 27, 2013–Nov. 1, 2023). San Francisco, CA, USA, Oct.
2013, pp. 1577–1580. doi: 10.1145/2505515.2507848.

[5] James R. Cordy et al. “Source Transformation in Software Engineering Using the
TXL Transformation System”. In: Information and Software Technology 44.13 (2002),
pp. 827–837. doi: 10.1016/S0950-5849(02)00104-0.

[6] Georgina Cosma. “An Approach to Source-Code Plagiarism Detection and Investiga-
tion Using Latent Semantic Analysis”. PhD thesis. Department of Computer Science,
University of Warwick, July 2008. url: http://wrap.warwick.ac.uk/3575/.

[7] Georgina Cosma and Giovanni Acampora. “A Fuzzy-based Approach to Program-
ming Language Independent Source-Code Plagiarism Detection”. In: FUZZ-IEEE.
2015 IEEE International Conference on Fuzzy Systems. 2015. doi: 10.1109/FUZZ-
IEEE.2015.7337935.

[8] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints”.
In: Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. Los Angeles, California: ACM Press, New
York, NY, 1977, pp. 238–252. doi: 10.1145/512950.512973.

[9] Neil Davey et al. “The Development of a Software Clone Detector”. In: International
Journal of Applied Software Technology 1.3/4 (1995), pp. 219–236. url: http://hdl.
handle.net/2299/617.

[10] Breanna Devore-McDonald and Emery D. Berger. “Mossad: Defeating Software
Plagiarism Detection”. In: ACM Programming Languages 4.OOPSLA (Nov. 2020). doi:
10.1145/3428206.

71

https://doi.org/10.1109/WCRE.1995.514697
https://doi.org/https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.5445/IR/1000165371
https://doi.org/10.1145/2505515.2507848
https://doi.org/10.1016/S0950-5849(02)00104-0
http://wrap.warwick.ac.uk/3575/
https://doi.org/10.1109/FUZZ-IEEE.2015.7337935
https://doi.org/10.1109/FUZZ-IEEE.2015.7337935
https://doi.org/10.1145/512950.512973
http://hdl.handle.net/2299/617
http://hdl.handle.net/2299/617
https://doi.org/10.1145/3428206

Bibliography

[11] Martin Dick et al. “Addressing Student Cheating: Definitions and Solutions”. In:
Working Group Reports from ITiCSE on Innovation and Technology in Computer

Science Education. ITiCSE-WGR ’02. New York, NY, USA: Association for Computing
Machinery, 2002, pp. 172–184. doi: 10.1145/960568.783000.

[12] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Program Dependence
Graph and its Use in Optimization”. In:ACMTransactions on Programming Languages

and Systems. Vol. 9. 1987, pp. 319–349. doi: 10.1145/24039.24041.
[13] Jinan A.W. Fiaidhi and Scott K. Robinson. “An Empirical Approach for Detecting

Program Similarity and PlagiarismWithin a University Programming Environment”.
In: Computers & Education 11.1 (1987), pp. 11–19. doi: 10.1016/0360-1315(87)
90042-X.

[14] Martin Fowler. Refactoring. Improving the Design of Existing Code. 2nd ed. with
contributions by Kent Beck. Pearson Education, Inc., 2019. isbn: 978-0-13-475759-9.

[15] Scott Grant and James R. Cordy. “An Interactive Interface for Refactoring Using
Source Transformation”. In: REFACE ’03. 1st international Workshop on Refactoring:

Achievements, Challenges, Effects. 2003, pp. 30–33. url: https://research.cs.
queensu.ca/home/cordy/Papers/REFACE-WCRE03-RUST.pdf.

[16] Niklas R. Heneka. “Software Plagiarism Detection on Intermediate Representation”.
BA thesis. Department of Informatics, Karlsruhe Institute of Technology, Oct. 2023.
doi: 10.5445/IR/1000168422.

[17] Susan Horwitz, Thomas Reps, and David Binkley. “Interprocedural Slicing Using
Dependence Graphs”. In: ACM Transactions on Programming Languages and Systems

12.1 (Jan. 1990), pp. 26–60. doi: 10.1145/77606.77608.
[18] Oscar Karnalim. “Detecting Source Code Plagiarism on Introductory Programming

Course Assignments Using a Bytecode Approach”. In: 2016 International Conference
on Information & Communication Technology and Systems (ICTS) (Oct. 12, 2016).
2016, pp. 63–68. doi: 10.1109/ICTS.2016.7910274.

[19] Sangujun Ko, Jusop Choi, and Hyoungshick Kim. “COAT: Code ObfuscAtion Tool to
evaluate the performance of code plagiarism detection tools”. In: 2017 International
Conference on Software Security and Assurance (ICSSA). 2017, pp. 32–37. doi: 10.
1109/ICSSA.2017.29.

[20] Pascal Krieg. “Preventing Code Insertion Attacks on Token-Based Software Pla-
giarism Detectors”. BA thesis. Department of Informatics, Karlsruhe Institute of
Technology, Sept. 2022. doi: 10.5445/IR/1000154301.

[21] Chao Liu et al. “GPLAG: Detection of Software Plagiarism by Program Dependence
Graph Analysis”. In: KDD ’06. Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (Aug. 20–23, 2006). Philadelphia,
PA, USA, 2006, pp. 872–881. doi: 10.1145/1150402.1150522.

[22] Rien Maertens et al. “Dolos: Language-Agnostic Plagiarism Detection in Source
Code”. In: Journal of Computer Assisted Learning 38.4 (2022), pp. 1046–1061. doi:
10.1111/jcal.12662.

72

https://doi.org/10.1145/960568.783000
https://doi.org/10.1145/24039.24041
https://doi.org/10.1016/0360-1315(87)90042-X
https://doi.org/10.1016/0360-1315(87)90042-X
https://research.cs.queensu.ca/home/cordy/Papers/REFACE-WCRE03-RUST.pdf
https://research.cs.queensu.ca/home/cordy/Papers/REFACE-WCRE03-RUST.pdf
https://doi.org/10.5445/IR/1000168422
https://doi.org/10.1145/77606.77608
https://doi.org/10.1109/ICTS.2016.7910274
https://doi.org/10.1109/ICSSA.2017.29
https://doi.org/10.1109/ICSSA.2017.29
https://doi.org/10.5445/IR/1000154301
https://doi.org/10.1145/1150402.1150522
https://doi.org/10.1111/jcal.12662

[23] Robin Maisch. Reproduction Package for "Preventing Refactoring Attacks on Software

Plagiarism Detection through Graph-Based Structural Normalization". Version 1.0.
Zenodo, May 2024. doi: 10.5281/zenodo.11182830. url: https://doi.org/10.
5281/zenodo.11182830.

[24] TomMens et al. “Formalizing Refactorings with Graph Transformations”. In: Journal
of Software Maintenance and Evolution: Research and Practice 17.4 (2005), pp. 247–276.
doi: 10.1002/smr.316.

[25] Nils Niehues. “Intelligent Match Merging to Prevent Obfuscation Attacks on Soft-
ware Plagiarism Detectors”. MA thesis. Department of Informatics, Karlsruhe Insti-
tute of Technology, Nov. 2023. doi: 10.5445/IR/1000167446.

[26] Nils Niehues. Reproduction package for: Intelligent Match Merging to Prevent Obfus-

cation Attacks on Software Plagiarism Detectors. Version v1. Nov. 2023. doi: 10.5281/
zenodo.10149535.

[27] Matija Novak. “Effect of Source-Code Preprocessing Techniques on Plagiarism De-
tection Accuracy in Student Programming Assignments”. PhD thesis. Faculty of Or-
ganization and Informatics, University of Zagreb, 2020. url: https://repozitorij.
unizg.hr/islandora/object/foi:4787.

[28] Matija Novak. “Review of Source-Code Plagiarism Detection in Academia”. In:
2016 39th International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO). 2016, pp. 796–801. doi: 10.1109/MIPRO.
2016.7522248.

[29] Matija Novak, Mike Joy, and Dragutin Kermek. “Source-Code Similarity Detection
and Detection Tools Used in Academia: A Systematic Review”. In: ACM Transactions

on Computing Education 19.3 (May 2019). doi: 10.1145/3313290.
[30] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. PROGpedia. Version 1.0.1.

Dec. 2022. doi: 10.5281/zenodo.7449056.
[31] Junhyun Park et al. “An Efficient Technique of Detecting Program Plagiarism

Through Program Slicing”. In: Software Engineering, Artificial Intelligence, Network-
ing and Parallel/Distributed Computing. Vol. 790. Springer International Publishing,
2019. Chap. 13, pp. 164–175. doi: 10.1007/978-3-319-98367-7_13.

[32] Renaud Pawlak et al. “Spoon: A Library for Implementing Analyses and Transforma-
tions of Java Source Code”. In: Software: Practice and Experience 46 (2015), pp. 1155–
1179. doi: 10.1002/spe.2346. url: https://hal.archives-ouvertes.fr/hal-
01078532/document.

[33] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. “JPlag: Finding plagiarisms
among a set of programs”. In: Journal of Universal Computer Science 8.11 (Mar. 2002),
pp. 1016–1038. doi: 10.3217/JUCS-008-11-1016.

[34] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. “Software Clone Detection:
A systematic review”. In: Information and Software Technology 55.7 (2013), pp. 1165–
1199. doi: 10.1016/j.infsof.2013.01.008.

73

https://doi.org/10.5281/zenodo.11182830
https://doi.org/10.5281/zenodo.11182830
https://doi.org/10.5281/zenodo.11182830
https://doi.org/10.1002/smr.316
https://doi.org/10.5445/IR/1000167446
https://doi.org/10.5281/zenodo.10149535
https://doi.org/10.5281/zenodo.10149535
https://repozitorij.unizg.hr/islandora/object/foi:4787
https://repozitorij.unizg.hr/islandora/object/foi:4787
https://doi.org/10.1109/MIPRO.2016.7522248
https://doi.org/10.1109/MIPRO.2016.7522248
https://doi.org/10.1145/3313290
https://doi.org/10.5281/zenodo.7449056
https://doi.org/10.1007/978-3-319-98367-7_13
https://doi.org/10.1002/spe.2346
https://hal.archives-ouvertes.fr/hal-01078532/document
https://hal.archives-ouvertes.fr/hal-01078532/document
https://doi.org/10.3217/JUCS-008-11-1016
https://doi.org/10.1016/j.infsof.2013.01.008

Bibliography

[35] Henry G. Rice. “Classes of Recursively Enumerable Sets and Their Decision Prob-
lems”. In: Transactions of the American Mathematical Society. Vol. 74. 2. American
Mathematical Society, 1953, pp. 358–366. doi: 10.2307/1990888.

[36] Chanchal Kumar Roy and James R. Cordy. A Survey on Software Clone Detection Re-

search. Tech. rep. 2007-541. Ontario, Canada: School of Computing, Queen’s Univer-
sity at Kingston, Sept. 2007. url: http://research.cs.queensu.ca/TechReports/
Reports/2007-541.pdf.

[37] Timur Sağlam et al. “Automated Detection of AI-Obfuscated Plagiarism in Mod-
eling Assignments”. In: ICSE-SEET ’24. 46th International Conference on Software

Engineering: Software Engineering Education and Training. 131. ACM, Apr. 2024. doi:
10.1145/3597503.3639192.

[38] Timur Sağlam et al. “Detecting Automatic Software Plagiarism via Token Sequence
Normalization”. In: ICSE ’24. Proceedings of the IEEE/ACM 46th International Confer-

ence on Software Engineering. 131. Apr. 2024. doi: 10.1145/3597503.3639192.
[39] Timur Sağlam et al. Supplementary Material for "Detecting Automatic Software Pla-

giarism via Token Sequence Normalization". Version v1. Dec. 2023. doi: 10.5281/
zenodo.10430322.

[40] Timur Sağlam et al. “Token-Based Plagiarism Detection for Metamodels”. In: MOD-

ELS ’22. Proceedings of the 25th International Conference on Model Driven Engineer-

ing Languages and Systems: Companion Proceedings. Oct. 2022, pp. 138–141. doi:
10.1145/3550356.3556508.

[41] Saul David Schleimer, Daniel Shawcross Wilkerson, and Alex Aiken. “Winnow-
ing: Local Algorithms for Document Fingerprinting”. In: 2003 ACM International

conference on Management of Data (2003), pp. 76–85. doi: 10.1145/872757.872770.
[42] Simon et al. “Choosing Code Segments of Exclude from Code Similarity Detec-

tion”. In: Proceedings of the Working Group Reports on Innovation and Technology in

Computer Science Education. June 2020. doi: 10.1145/3437800.3439201.
[43] Simon et al. “Negotiating the maze of academic integrity in computing education”.

In: Proceedings of the 2016 ITiCSE working group reports. 2016, pp. 57–80. doi: 10.
1145/3024906.3024910.

[44] Jonas Strittmatter. “Token-based Plagiarism Detection for Statecharts”. BA thesis.
Department of Informatics, Karlsruhe Institute of Technology, Apr. 2023. doi: 10.
5445/IR/1000165276.

[45] Arthur H. Watson and Thomas J. McCabe. Structured Testing: A Testing Methodology

Using the Cyclomatic Complexity Metric. NIST Special Publication 500-235. Computer
Systems Laboratory, National Institute of Standards and Technology, 1996. url:
http://www.mccabe.com/pdf/mccabe-nist235r.pdf.

[46] Mark Weiser. “Program Slicing”. In: IEEE Transactions on Software Engineering SE-
10.4 (July 1984). doi: 10.1109/TSE.1984.5010248.

74

https://doi.org/10.2307/1990888
http://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf
http://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf
https://doi.org/10.1145/3597503.3639192
https://doi.org/10.1145/3597503.3639192
https://doi.org/10.5281/zenodo.10430322
https://doi.org/10.5281/zenodo.10430322
https://doi.org/10.1145/3550356.3556508
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/3437800.3439201
https://doi.org/10.1145/3024906.3024910
https://doi.org/10.1145/3024906.3024910
https://doi.org/10.5445/IR/1000165276
https://doi.org/10.5445/IR/1000165276
http://www.mccabe.com/pdf/mccabe-nist235r.pdf
https://doi.org/10.1109/TSE.1984.5010248

[47] Michael J. Wise. “String Similarity via Greedy String Tiling and Running Karp-
Rabin Matching”. Department of Computer Science, University of Sydney. Dec.
1993. url: https://www.researchgate.net/profile/Michael_Wise/publication/
262763983_String_Similarity_via_Greedy_String_Tiling_and_Running_Karp-

Rabin_Matching/links/59f03226aca272a2500141f4/String- Similarity- via-

Greedy-String-Tiling-and-Running-Karp-Rabin-Matching.pdf.
[48] Fabian Yamaguchi et al. “Modeling and Discovering Vulnerabilities with Code Prop-

erty Graphs”. In: 2014 IEEE Symposium on Security and Privacy. Berkeley, CA, USA,
2014, pp. 590–604. doi: 10.1109/SP.2014.44.

75

https://www.researchgate.net/profile/Michael_Wise/publication/262763983_String_Similarity_via_Greedy_String_Tiling_and_Running_Karp-Rabin_Matching/links/59f03226aca272a2500141f4/String-Similarity-via-Greedy-String-Tiling-and-Running-Karp-Rabin-Matching.pdf
https://www.researchgate.net/profile/Michael_Wise/publication/262763983_String_Similarity_via_Greedy_String_Tiling_and_Running_Karp-Rabin_Matching/links/59f03226aca272a2500141f4/String-Similarity-via-Greedy-String-Tiling-and-Running-Karp-Rabin-Matching.pdf
https://www.researchgate.net/profile/Michael_Wise/publication/262763983_String_Similarity_via_Greedy_String_Tiling_and_Running_Karp-Rabin_Matching/links/59f03226aca272a2500141f4/String-Similarity-via-Greedy-String-Tiling-and-Running-Karp-Rabin-Matching.pdf
https://www.researchgate.net/profile/Michael_Wise/publication/262763983_String_Similarity_via_Greedy_String_Tiling_and_Running_Karp-Rabin_Matching/links/59f03226aca272a2500141f4/String-Similarity-via-Greedy-String-Tiling-and-Running-Karp-Rabin-Matching.pdf
https://doi.org/10.1109/SP.2014.44

76

A.1. Isomorphism Detection Algorithm – Pseudo Code

A. Appendix

A.1. Isomorphism Detection Algorithm – Pseudo Code

Algorithm 2 CPG Isomorphism Detection Algorithm
1: function Compare(node, pattern, matches)
2: finished← {𝑚𝑎𝑡𝑐ℎ ∈ matches | 𝑚𝑎𝑡𝑐ℎ[pattern] = node}
3: invalid← {𝑚𝑎𝑡𝑐ℎ ∈ matches | 𝑚𝑎𝑡𝑐ℎ[pattern] ≠ node}
4: open← {𝑚𝑎𝑡𝑐ℎ ∈ matches | pattern ∉𝑚𝑎𝑡𝑐ℎ.𝑘𝑒𝑦𝑠}

5: if node violates local properties specified by pattern then
6: return finished ⊲ No new matches from this comparison
7: end if

8: open← {𝑚𝑎𝑡𝑐ℎ[pattern ↦→ node] | 𝑚𝑎𝑡𝑐ℎ ∈ open}
⊲ Map pattern to node in all open matches

9: for all relations 𝑟 specified by pattern do
10: if 𝑟 is a simple (1:1) relation then
11: if node has a related node 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 via 𝑟 then
12: open← Compare(𝑟𝑒𝑙𝑎𝑡𝑒𝑑, 𝑟 .𝑝𝑎𝑡𝑡𝑒𝑟𝑛, open)
13: else
14: open← ∅ ⊲ No new matches from this comparison
15: end if

16: else if 𝑟 is an existential (1-of-n) relation then
17: 𝑛𝑒𝑤𝑀𝑎𝑡𝑐ℎ𝑒𝑠 ← ∅
18: for all related nodes 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 of node via 𝑟 do
19: 𝑛𝑒𝑤𝑀𝑎𝑡𝑐ℎ𝑒𝑠 ← Compare(𝑟𝑒𝑙𝑎𝑡𝑒𝑑, 𝑟 .𝑝𝑎𝑡𝑡𝑒𝑟𝑛, open) ∪ newMatches
20: end for
21: open← 𝑛𝑒𝑤𝑀𝑎𝑡𝑐ℎ𝑒𝑠

⊲ open is now non-empty iff any related node matches

22: else if r is a universal (n-of-n) relation then
23: for all related nodes 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 of node via 𝑟 do
24: open← Compare(𝑟𝑒𝑙𝑎𝑡𝑒𝑑, 𝑟 .𝑝𝑎𝑡𝑡𝑒𝑟𝑛, open)
25: end for

⊲ open is now non-empty iff all related nodes match
26: end if
27: end for

28: for all match properties 𝑝 specified in pattern do
29: open← {𝑚𝑎𝑡𝑐ℎ ∈ open | 𝑚𝑎𝑡𝑐ℎ satisfies 𝑝}
30: end for

31: return finished ∪ open
32: end function

77

	Abstract
	Zusammenfassung
	Introduction
	Contribution
	Structure of the Thesis

	Foundations
	Code Plagiarism
	Software Plagiarism Detection
	Current Plagiarism Detection Tools
	Plagiarism Generation Tools
	Refactoring
	Graph-Based Code Analysis
	Refactorings as Code Graph Transformations

	Related work
	Token-Based Plagiarism Detection
	Refactorings on Code Graphs

	Threat Model
	Threat Model Definition
	Distinction Against Related Work

	Graph-Based Structural Normalization
	The Defense Mechanism – Overview
	Workflow of a CPG Transformation System
	Representation of Transformations
	Transformation Calculation
	Pattern Matching Algorithm
	Node Management
	Order of Transformation Application
	Graph Linearization and Tokenization

	CPG Transformations for Refactoring Obfuscation Resilience
	Removing Elements
	Moving Members
	Inlining Elements
	Semantically Equivalent Replacement

	Evaluation
	Goal-Question-Metric Plan
	Data Sets
	Generated Plagiarisms by Attack Scheme
	Approaches Used for Comparison
	Results
	Discussion
	Threats to Validity

	Limitations and Future Work
	Conclusion
	Bibliography
	Appendix
	Isomorphism Detection Algorithm – Pseudo Code

