KIT | KIT-Bibliothek | Impressum | Datenschutz

Testing Spintronics Implemented Monte Carlo Dropout-Based Bayesian Neural Networks

Ahmed, Soyed Tuhin ORCID iD icon 1; Danouchi, Kamal; Hefenbrock, Michael; Prenat, Guillaume; Anghel, Lorena; Tahoori, Mehdi B. 1
1 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)

Abstract:

Bayesian Neural Networks (BayNNs) can inherently estimate predictive uncertainty, facilitating informed decision-making. Dropout-based BayNNs are increasingly implemented in spintronics-based computation-in-memory architectures for resource-constrained yet high-performance safety-critical applications. Although uncertainty estimation is important, the reliability of Dropout generation and BayNN computation is equally important for target applications but is overlooked in existing works. However, testing BayNNs is significantly more challenging compared to conventional NNs, due to their stochastic nature. In this paper, we present for the first time the model of the non-idealities of the spintronics-based Dropout module and analyze their impact on uncertainty estimates and accuracy. Furthermore, we propose a testing framework based on repeatability ranking for Dropout-based BayNN with up to 100% fault coverage while using only 0.2% of training data as test vectors.


Volltext §
DOI: 10.5445/IR/1000172817
Veröffentlicht am 25.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000172817
Vorab online veröffentlicht am 09.01.2024
Schlagwörter Self-testing, testing Bayesian neural networks, Monte Carlo Dropout, functional testing, functional safety
Nachgewiesen in Dimensions
arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page