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A B S T R A C T

Biometric systems based on brain activity have been proposed as an alternative to passwords or to complement
current authentication techniques. By leveraging the unique brainwave patterns of individuals, these systems
offer the possibility of creating authentication solutions that are resistant to theft, hands-free, accessible, and
potentially even revocable. However, despite the growing stream of research in this area, faster advance is
hindered by reproducibility problems. Issues such as the lack of standard reporting schemes for performance
results and system configuration, or the absence of common evaluation benchmarks, make comparability and
proper assessment of different biometric solutions challenging. Further, barriers are erected to future work
when, as so often, source code is not published open access. To bridge this gap, we introduce NeuroIDBench,
a flexible open source tool to benchmark brainwave-based authentication models. It incorporates nine diverse
datasets, implements a comprehensive set of pre-processing parameters and machine learning algorithms,
enables testing under two common adversary models (known vs unknown attacker), and allows researchers
to generate full performance reports and visualizations. We use NeuroIDBench to investigate the shallow
classifiers and deep learning-based approaches proposed in the literature, and to test robustness across
multiple sessions. We observe a 37.6% reduction in Equal Error Rate (EER) for unknown attacker scenarios
(typically not tested in the literature), and we highlight the importance of session variability to brainwave
authentication. All in all, our results demonstrate the viability and relevance of NeuroIDBench in streamlining
fair comparisons of algorithms, thereby furthering the advancement of brainwave-based authentication through
robust methodological practices.
. Introduction

In today’s rapidly changing security landscape, the authentication
rocess is a crucial element of access control [1]. The increasing
mpracticality and safety concerns associated with conventional au-
hentication methods, such as passwords [2,3], are driving the devel-
pment of novel biometric solutions. In this domain, user recognition
ased on brain activity has gained increasing attention [4], especially
ith advancements in consumer-grade EEG (Electroencephalogram)

echnology [5–8]. A notable application scenario is Extended Real-
ty (XR), where seamless and secure biometric authentication sys-
ems are urgently needed [9]. Besides, brain biometrics bring broader
enefits, such as enabling hands-free authentication, resistance to
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observation, inherent liveness detection, broad universality, and poten-
tial for revocability [4,10,11].

Unfortunately, the research in brainwave-based authentication is
beset by problems of generalizability, comparability, and reproducibil-
ity. To begin, dataset sharing is sharply curtailed by ethical con-
siderations and privacy laws. Therefore, many studies are based on
self-collected undisclosed datasets, which often leads to results that
are potentially overfitted or optimized to the specific characteristics
of those datasets, with uncertain applicability to other, independent
datasets. Also, the size of the datasets used in studies is severely limited
by the complexity and resource intensiveness of broad data collection.
In fact, most brainwave-based authentication studies have much fewer
than 50 subjects [4,12], so that the evaluations are normally conducted
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on very small datasets. Consequently, the models and hyperparameters
are prone to overfitting, which means the reported results will likely fail
to generalize. To make matters worse, too many authors either neglect
making available their source code or provide code which is inoperable,
with the consequence that researchers are prevented from reproducing
and building upon previous work. Clearly, under circumstances such as
these, our subcommunity of authentication researchers will not make
any significant progress. That is why the time has come for us to
consolidate our practice and advance the research towards consistent,
reproducible, and generalizable findings. To address this gap, we make
the following contributions:

(1) We present NeuroIDBench, the first comprehensive open-
source1 benchmark tool designed to assist researchers in
evaluating their brainwave-based authentication approaches.
NeuroIDBench is engineered to allow for the easy and flexible
integration of new datasets and methods, enabling fair compa-
rability. NeuroIDBench incorporates nine public datasets, which
together contain a substantial number of subjects (n = 285,
Table 2) and multi-session recordings. To determine the im-
pact of preprocessing on performance, NeuroIDBench allows to
apply different sample rejection thresholds as well as sample
length parameters (Section 4.1) and feature extraction methods
(Section 4.2). Also, it implements a baseline with the most pop-
ular authentication algorithms in the state of the art, including
shallow classifiers and deep learning-based approaches. Lastly,
it incorporates two attack scenarios under which to test the
algorithms [13]: (i) known attacker, where the attacker is known
to the authentication model (i.e., enrolled in the system), and, (ii)
unknown attacker, a more realistic situation in which the attacker
biometric data has not been seen by the system previous to the
attack.
(2) We use NeuroIDBench to build a comprehensive bench-
mark of popular brainwave-based authentication algorithms,
providing the first unbiased comparison of approaches.
Namely, we compare six shallow classifiers: SVM (Support Vec-
tor Machine), Random Forest, KNN (K-Nearest Neighbors), LDA
(Linear Discriminant Analysis), Naive Bayes (NB), and Logis-
tic Regression (LR). Besides this benchmark, which covers the
biggest share of solutions in the literature, we provide a second
benchmark for the recent stream of work on deep learning-
based approaches. Specifically, NeuroIDBench implements the
representative similarity-based technique using Twin Neural Net-
works (Section 4.5). Beyond performance across an extensive list
of publicly available EEG datasets, we focus our comparative
analysis on two under-explored aspects in current research:How
robust are different solutions in multi-session scenarios? (Section 4.4)
and What is the impact of the adversary model? (Section 4.3)

Among the key findings in the analysis we observe that Random
Forest consistently outperforms other classifiers and its performance
is comparable to that of Twin Neural Networks. As the latter brings
not only better performance but scalability advantages, we recommend
more research on deep learning-based approaches to move forward,
which is also the path followed in other biometric communities [14–
16]. Furthermore, our results confirm that integrating Power Spectral
Density (PSD) with an Autoregressive (AR) model of order 1 stands
out as the most effective feature extraction approach. When investi-
gating the impact of the adversary model, our results indicate that
the average Equal Error Rate (EER) for known attackers is 2.87%,
while for unknown attackers, it is 4.6%. This trend in performance
degradation underscores the need to evaluate brainwave authentica-
tion solutions under unknown attacker scenarios to provide a realistic

1 https://github.com/Avichaurasia/NeuroIDBench.git
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Fig. 1. Overview of elements in a brainwave-based biometric authentication
process [23].

performance indicator, a practice that is uncommon in current work.
Variations in the performance across datasets confirm that brainwave-
based authentication algorithms validated on single datasets are not
representative, highlighting the need for more robust validation in the
community. Finally, the observed disparities in the results for single-
session versus multi-session authentication reveal a substantial gap that
requires future research in this area.

2. Background and related work

This section lays out the main terminology and background infor-
mation on brainwave-based biometrics and reviews related work in the
area, discussing reproducibility.

2.1. Using brainwaves for biometric authentication

Brainwaves, or EEG signals, represent the electrical activity pro-
duced by neuron interactions in the brain [17,18]. These signals are
commonly recorded from the scalp using specialized sensors. Originally
developed for medical purposes [19], such as diagnosing neurological
disorders [20], EEG technology has expanded its applications signif-
icantly. Its usage now extends to Brain-Computer Interfaces (BCI),
facilitating direct interaction between the human brain and external
devices [21], and enjoys acceptance in the consumer market, especially
for gaming and health-related applications.

Identity verification, commonly known as authentication, involves
a one-to-one comparison to confirm if an individual presenting a previ-
ously registered biometric trait is indeed the same person. In essence,
it addresses the question: ‘‘Are you who you claim to be?’’ This process
is crucial to differentiate legitimate users from imposters. Biometric
authentication comprises two primary phases: enrollment and verifi-
cation [22]. During enrollment, users’ unique biometric characteristics
are captured and stored as templates or used to train and store a
classification model for that user. Each template/user model is linked to
a unique user identifier, such as a username. In the verification phase,
the system compares the current biometric sample with the stored
template or runs it through the classification model, corresponding to
the claimed identity.

The brainwave-based authentication process, depicted in Fig. 1,
unfolds through several key stages:

• Raw EEG Data Acquisition: This initial step captures the brain’s
electrical activity. An effective way to elicit signals useful for
authentication is measuring brain reactions to controlled stimuli,
such as audio or images. These time-locked reactions, called
Event-Related Potentials (ERPs), have shown unique features
to individuate people [24] and are distinguished by their high
Signal-to-Noise Ratio (SNR) [25,10]. Moreover, the ability to
modify the stimuli associated with ERPs enhances the system’s
revocability. This feature is invaluable in mitigating risks associ-
ated with potential data compromise [11]. NeuroIDBench focuses
in ERP-based datasets, given their superior benefits with regard
to alternative brainwave elicitation paradigms.

https://github.com/Avichaurasia/NeuroIDBench.git
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• Signal Pre-processing: The acquired raw EEG data is then re-
fined through pre-processing. This may include filtering out noise,
rejecting artifacts, and downsampling the signal, aiming to iso-
late the purest form of the EEG data for authentication pur-
poses [4]. NeuroIDBench embeds a pre-processing pipeline based
on best-practices for handling ERPs as used in the community [4].

• Feature Extraction: The pre-processed EEG signals are further
analyzed to extract key features. These features can be directly
obtained from the ERP EEG signal, such as power spectral den-
sities, or generated as representation vectors learned by a neural
network. NeuroIDBench implements both kind of approaches.

• User Model/Template Database: This Database stores the user
model learned from the collected features in order to perform
classification, or the template of features representing the user.

• Decision Maker: In the authentication phase, the system eval-
uates the incoming EEG sample, against the stored model/tem-
plate, applying similarity thresholds to decide if it belongs to
a legitimate user or to an impostor. NeuroIDBench incorporates
the most common techniques for machine learning model-based
approaches (SVM, KNN, LDA, NB, LR, RF), as well as the main
approach for template-based authentication using deep neural
networks (Twin Neural Networks).

.2. Adversary model

In addressing the security of brainwave-based authentication sys-
ems, we consider the zero-effort attacker as the primary threat model.
his approach aligns with the standard threat model used in most
rainwave authentication studies. A zero-effort attack is characterized
y an adversary who attempts to gain unauthorized access using their
wn biometric data, without employing any advanced techniques to
imic or falsify another individual’s biometric trait [13]. In this con-

ext, the key challenge in protecting against zero-effort attacks lies in
he biometric system’s ability to accurately distinguish between the
iometric data of an actual user and that of the intruder. The system
ust be adept at minimizing false matches, where the adversary’s

iometric data is erroneously accepted as that of a legitimate user.
In our consideration of zero-effort attacks, we distinguish between

wo types of attackers: known and unknown. A known attacker refers to
ne whose biometric data has previously been exposed to the system,
ypically during the training phase. This exposure can influence the
ystem’s learning and adaptation, potentially affecting its ability to
ccurately identify or reject these attackers later. On the other hand,
n unknown attacker is one whose biometric data has never been
ntroduced to the system. This lack of prior exposure means that the
ystem has no learning or adaptation based on this attacker’s data,
aking it a more realistic and challenging scenario. We expect that
nknown attackers represent a higher risk to the system, as they test the
ystem’s ability to authenticate users based purely on learned patterns
ithout prior knowledge of the attacker. While the unknown attacker

cenario is realistic and should be considered in evaluations, the known
ttacker scenario has been used in some papers. Therefore, we provide
esults for both to demonstrate how unrealistic attacker scenarios can
nfluence outcomes and to encourage researchers to use the unknown
ttacker scenario.

.3. Related work

Presently, two primary methods for brainwave authentication are
tudied in the literature. The first method utilizes shallow classifiers
uilt on time series-based feature extraction techniques, such as Power
pectral Density (PSD) or Autoregressive (AR) models [23,24,33,35].
he second approach involves training specialized deep learning mod-
ls designed explicitly for brainwave data, aiming to extract features
irectly associated with user identity [27,30,34,29]. However, tradi-
3

ional feature extraction methods are not sufficiently effective, as they
Table 1
Comparison of related work on brainwave-based authentication, detailing Dataset
Identity Population (D.P.), Dataset Availability (D.A.), and Code Availability (C.A).
(For papers that had more than one independent dataset. Population of them split
with comma (‘‘,’’) ).

Publication D.P. D.A. C.A.

Arias et al. (2023) [23] 52,40 ✓ ×
Fallahi et al. (2023) [27] 41,40 ✓ ✓

Hernandez et al. (2022) [28] 39 × ×
Bidgoly et al. (2022) [29] 109 ✓ ×
Maiorana(2021) [30] 45 × ×
Sooriyaarachchi et al. (2020) [31] 20 × ×
Gupta et al. (2020) [32] 20 ✓ ✓

Nakanishi et al. (2019) [33] 10 × ×
Lin et al. (2018) [11] 179 × ×
Schons et al. (2018) [34] 109 ✓ ×
Das et al. (2016) [35] 50 × ×

were not originally designed for authentication purposes. Meanwhile,
deep learning approaches require a substantial amount of data to
develop an adequate feature extractor, which is currently scarce in the
field of brainwave authentication. Therefore, it is crucial to determine
the most appropriate hyperparameters based on other datasets in the
field, which can aid in mitigating these challenges.

Table 1 presents an analysis of 11 papers in the realm of brain-
wave authentication. Among these, only two papers have made their
source code available [27,32], and merely five have utilized public
datasets [27,32,23,29,34]. Notably, four of these papers employed two
common public datasets [36,37], reflecting the limited data availabil-
ity, which consequently diminishes the generalizability of the results.
On average, these studies included approximately 70 subjects for their
evaluation purposes. The subcommunity in brainwave-based authen-
tication clearly require more transparency in the research practice as
well as more accessibility in the datasets and source code. To be sure,
the brainwave-authentication subcommunity are, in this regard, not
alone. For example, Olszewski et al. [38] find that the "large and
long-lived’’ subcommunity of machine learning security fail to provide
data (30%) or source code (40%) even in the papers published at
the top-tier security conferences. The authors found out that a full
80% of artifacts are incapable of reproducing the reported results.
It is therefore unsurprising that similar problems should plague the
new and emerging subcommunity in brainwave-based authentication.
Nevertheless, these issues are intensified in brainwave authentication
due to the relatively small size of each dataset, heightening the risk of
overfitting.

Meanwhile, researchers in the field of Brain-Computer Interface
(BCI) encounter similar challenges. Hence, Jayaram and Barachant [26]
proposed a benchmark framework2 for investigating common BCI al-
gorithms across 22 public EEG datasets with over 250 participants.
This framework aims to address issues of reproducibility, lack of open-
source resources, and result compatibility. However, their study did
not cover authentication algorithms. Therefore, it is vital for brainwave
authentication research to adopt an open-source approach and to exten-
sively employ existing public datasets. It is crucial to take such steps
to enhance the robustness of research in this field and to promote a
deeper, more comprehensive exploration of brainwave authentication
techniques.

3. NeuroIDBench

As illustrated in Fig. 2, NeuroIDBench is organized into five inte-
gral components: dataset, preprocessing, feature extraction, evaluation,
and analysis. Our benchmarking workflow is influenced by MOABB
(Mother of all BCI benchmarks) [26] work. In line with our research

2 https://github.com/NeuroTechX/moabb

https://github.com/NeuroTechX/moabb
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Fig. 2. Schematic depiction outlining the architectural structure of the NeuroIDBench codebase, providing a visual overview of its underlying framework [26].
Table 2
Publicly available ERP datasets based on N400 (Semantic Priming) paradigm and P300 (oddball) paradigm.

Paradigm Dataset Year Subjects EEG Device Channels S.Rate Sessions

N400 Pijnacker et al. [39] 2017 45 actiCap 32 500 Hz 1
N400 Draschkow et al. [40] 2018 40 BrainAmp, actiChamp 64 1000 Hz 1
N400 Marzecová et al. [41] 2018 18 BrainAmp 59 500 Hz 1
N400 Mantegna et al. [42] 2019 31 BrainAmp, EasyCap 65 500 Hz 1
N400 ERPCORE: N400 [36] 2021 40 Biosemi 30 1024 Hz 1
N400 Hodapp and Rabovky [43] 2021 33 BrainAmp 64 1000 Hz 1
N400 Rabs et al. [44] 2022 38 BrainVision 26 500 Hz 1
N400 Schoknecht et al. [45] 2022 38 ActiCap, ActiChamp 58 500 Hz 1
N400 Toffolo et al. [46] 2022 24 Biosemi 128 512 Hz 1
N400 Lindborg et al. [47] 2022 40 BrainVision 64 2046 Hz 1
N400 COGBCI: Flanker [48] 2023 29 ActiCap, actiChamp 64 512 Hz 3
N400 Stone et al. [49] 2023 64 TMSi Refa 32 512 Hz 1

P300 BrainInvaders12 [50] 2012 25 NeXus-32 16 128 Hz 1
P300 BrainInvaders13a [51] 2013 24 g.GAMMAcap 16 512 Hz 1
P300 BrainInvaders14a [52] 2014 64 g.Sahara 16 512 Hz 1
P300 BrainInvaders14b [53] 2014 37 g.GAMMAcap 32 512 Hz 1
P300 Gao et al. [54] 2014 30 Neuroscan 12 500 Hz 1
P300 BrainInvaders15a [55] 2015 50 g.GAMMAcap 32 512 Hz 1
P300 BrainInvaders15b [56] 2015 44 g.GAMMAcap 32 512 Hz 1
P300 Mouček et al. [57] 2017 250 BrainVision 3 n.a. 1
P300 Hubner et al. [58] 2017 13 BrainAmp DC 31 1000 Hz 1
P300 Sosulski and Tangermann [59] 2019 13 BrainAmp, EasyCap 31 1000 Hz 1
P300 Lee et al. [60] 2019 54 BrainAmp 62 1000 Hz 2
P300 Simões et al. [61] 2020 15 g.tec 8 250 Hz 7
P300 Goncharenko et al. [62] 2020 60 NVX-52 8 500 Hz 1
P300 Chatroudi et al. [63] 2021 24 g.tec 64 1200 Hz 1
P300 Cattan et al. [64] 2021 21 g.USBamp, g.tec 16 512 Hz 1
P300 ERPCORE: P300 [36] 2021 40 Biosemi 30 1024 Hz 1
P300 Won et al. [65] 2022 55 Biosemi 32 512 Hz 1
aims, we have tailored and refined their methodology to create a
customized benchmarking suite specifically designed for evaluating and
analyzing brainwave authentication systems. In the following, we detail
NeuroIDBench’s components, justifying the design choices.

3.1. Dataset loading

In response to the need for flexible dataset management in EEG
research, we have developed an interface aimed at streamlining the
handling of diverse datasets with various formats, thereby reducing
the burden on researchers. In the past, this field has been constrained
by the laborious task of manually importing and formatting each
dataset individually, often limiting researchers to using only one or
two datasets in their analyses due to these logistical challenges. To
overcome this, our solution is a straightforward Python component that
automatically downloads and processes nine distinct EEG datasets using
4

the MNE Python package,3 a recognized and open-source brainwave
library. This tool not only simplifies the integration of these existing
datasets but also allows for the easy adoption of new datasets into
the benchmark by following established examples and specifying the
relevant event IDs. The expected outcome of this innovation is a
significant enhancement in the use of diverse datasets in research,
promoting the avoidance of overfitting to specific datasets and fostering
more generalizable and robust scientific findings. This development
represents a leap forward in EEG-based research, offering researchers
a more efficient and comprehensive approach to dataset management
and analysis.

In choosing our dataset, we focused on Event-Related Potential
(ERP) paradigms, particularly the P300 and N400, which are the most

3 https://mne.tools/stable/index.html

https://mne.tools/stable/index.html
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Fig. 3. The CNN’s network architecture within the Twin neural Network is designed to produce a condensed 32-bit embedding from brain data samples, serving as an efficient
method to compute latent representations of inputs [27].
well-known and easier to elicit. The P300 reaction is triggered with the
‘oddball’ paradigm, i.e., including a rare stimulus in a sequence [66],
while the N400 is linked to semantic processing [67]. Our selection
methodology involved a thorough review of publicly accessible datasets
utilizing these ERP paradigms. We carefully examined and assessed
over 29 datasets (see Table 2). Ultimately, we chose 9 datasets for fur-
ther investigation. This selection included two multi-session datasets to
examine performance over multiple sessions [48,60], five datasets with
over 30 subjects to evaluate performance in datasets with a relatively
large number of samples [42,36,55,65], and two datasets with just 13
subjects to explore performance in smaller datasets [58,59].

Our prioritization focused on datasets providing raw (unprocessed)
data with ample event information, facilitating the extraction of rele-
vant P300 or N400 samples. This emphasis led to the implementation
of a condition favoring datasets with raw data, allowing us to uniformly
apply standardized pre-processing, feature extraction, and authenti-
cation steps across all selected datasets. This uniform procedure is
crucial for evaluating their performance under comparable experimen-
tal conditions, an unattainable task without access to unprocessed raw
data. Consequently, datasets offering solely pre-processed data were
excluded from our study. Additionally, the necessity for comprehensive
event information was paramount; without it, the assurance of working
with the correct events, intricately associated with the elicitation of
P300 and N400, would have been compromised.

3.2. Pre-processing

In this module, we conduct pre-processing on the standardized MNE
Raw data. Various methods exist for cleansing artifacts; however, the
procedures must remain consistent to ensure the validity of compar-
isons between algorithms or datasets [26]. We adhere to established
best practices commonly employed in pre-processing methodologies
within brainwave authentication studies [4]. To cleanse EEG artifacts,
we begin by implementing bandpass filtering in the range of 1 to 50 Hz.
Subsequently, we extract samples from the raw signals, temporally
aligning the data to a range spanning from −200 to 800 ms relative to
the onset of the stimulus. Afterward, Following the baseline correction,
where we subtract the mean of a baseline period (−200 to 0 ms)
from the entire sample data points to mitigate drift effects like DC
offsets [27]. Finally, we employ a peak-to-peak rejection method to
eliminate large artifacts attributed to eye or muscle movements from
contaminating the EEG data.

While adhering to established pre-processing standards prevalent
in brainwave authentication studies, we recognize the necessity for
researchers to tailor pre-processing approaches to suit their specific
EEG data requirements. To address this need for flexibility, we de-
signed this pre-processing interface with customization options. These
functionalities empower researchers to adjust parameters, including the
selection of sample interval, threshold settings for sample rejection, and
5

the application of baseline correction, making it a more adaptable tool.
3.3. Feature extraction

This module is designed to extract features from pre-processed EEG
data. It specifically focuses on identifying characteristics in both the
temporal and frequency domains. More precisely, it uses Autoregressive
(AR) coefficients to represent time-domain properties and calculates
Power Spectral Density (PSD) to capture frequency domain features.
These calculated features, namely AR coefficients and PSD, are sub-
sequently harnessed as inputs for facilitating authentication through
shallow classifiers. In contrast, for similarity-based authentication, the
module employs the Twin Neural Network (TNN) to generate feature
embeddings. These embeddings, produced by the TNN, play a pivotal
role as inputs for similarity-based authentication approaches.

To compute AR coefficients, our system fits AR models to the pre-
processed samples, employing a one-second duration of time series
data [23]. The estimation of these AR coefficients utilized the Yule–
Walker method [68]. Determining the ideal order for AR modeling
poses a challenge, as higher orders escalate computational demands,
while exceedingly low orders inadequately represent the signal [69].
To address this, our system allows users the flexibility to define their
preferred AR order, enabling a tailored approach aligned with their
specific requirements.

The PSD of each sample is computed across different frequency
bands, namely low (1–10 Hz), 𝛼 (10–13 Hz), 𝛽 (13–30 Hz), and 𝛾
(30–50 Hz), utilizing the Welchs periodogram algorithm [23]. The
calculation involved first determining the PSD for each frequency point
in the 1-second sample. For our PSD computation, we used four time
windows that were all the same size. These windows were applied to
a 1-second ERP sample, with a 50% overlap between each window.
The inclusion of the time window factor was crucial to segregate
the authentic frequency modulation of the EEG induced by attention
from any artifacts that the attentional modulation of ERPs might have
induced [70]. Subsequently, we computed the average PSD within the
specified frequency ranges, enabling us to determine the average power
spectrum of the low, 𝛼, 𝛽, and 𝛾 frequency bands.

Furthermore, NeuroIDBench implements a deep learning based ap-
proach using a TNN with triplet loss function to transform time-series
EEG data into compact brain embeddings. Building on the work of
Fallahi et al. [27], our TNN structure integrates three Convolutional
Neural Network (CNN) branches, each featuring five convolutional lay-
ers, as illustrated in Fig. 3. These branches received 1-second samples
as input, structured in a two-dimensional array where rows correspond
to channel indices, and columns represent discrete-time measurements.
After each convolutional layer, we applied an average pooling layer to
reduce the input vectors’ dimensionality while preserving the unique
characteristics of each brainwave.

However, acknowledging the diverse nature of EEG datasets and the
variability in research requirements, we have extended the flexibility of
our framework; To accommodate varying preferences and dataset char-
acteristics, users can conveniently adjust critical training parameters
such as batch size, the number of epochs for training, and the learning
rate within the tool. Also, the framework allows users to integrate
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Fig. 4. Impact of varying sample duration, ranging from 1 to 2 seconds, on the efficacy of the seven authentication algorithms. These algorithms are applied across nine datasets,
ith the evaluation metric employed being the EER. The evaluation was conducted under the unknown attacker scenario.
p
s

heir neural network architectures. This flexibility accommodates di-
erse methodologies for brainwave authentication studies, empowering
esearchers to assess and compare various deep-learning approaches
cross a wide range of EEG datasets within our tool.

.4. Evaluation

While most EEG studies assess brainwaves in a single-session sce-
ario [71,27,23,29,34,35], it is crucial to examine EEG robustness over
ime. A realistic and often overlooked approach is the multi-session
cenario. To highlight this gap, we provide both single-session and
ulti-session evaluation scenarios in our benchmark tools as follows
Single-Session Evaluation: Under the single-session evaluation,

he training and testing of the features are done utilizing the recorded
ata from a single session. To avoid overfitting and increase the relia-
ility of our authentication system, cross-validation schemes have been
mployed in both known and unknown attacker scenarios.

For the known attacker scenario, we implemented a Stratified cross-
alidation approach with k = 4 to divide the single-session data into

training and testing sets. This choice ensures the representation of
features from both classes in both training and testing data across each
fold. We take the step of eliminating users with fewer than four samples
from the datasets to guarantee sufficient samples for both training and
testing [23]. Conversely, the unknown attacker approach adopts the
GroupKFold cross-validation strategy with k = 4, where grouping is
based on SubjectID, resulting in non-overlapping training and testing
sets for users in each cross-validation round. Evaluation metric results
are aggregated across all folds, providing averaged and comprehensive
reports. In datasets like COGBCI and Lee2019, which had multiple
sessions, we evaluate each session separately, subsequently averaging
the results from all the sessions as single-session evaluation results.
Multi-session evaluation, described later in this section.

Additionally, we actively apply z-scaler normalization to both train-
ing and testing data to address potential issues arising from variations
in feature scales, ensuring equitable contribution from all features
during model training [72]. This approach aligns with established
best practices in machine learning [73], reinforcing the reliability and
generalization capability of our EEG-based authentication system.

Multi-Session Evaluation: The multi-session evaluation method-
logy was applied to two EEG datasets, namely COGBCI [48] and
6

Lee2019 [60]. COGBCI consists of three sessions separated by day inter-
vals, while Lee2019 includes two sessions separated by week intervals.
A cross-validation strategy was employed to address overfitting. This
involved dividing the attacker subjects for the shallow classifiers and
dividing the subject of latent space learning and evaluation.

In this setup, if we denote the EEG samples from the 𝑖th session
as 𝑋𝑖, enrollment is being conducted using 𝑋𝑖, and authentication is
erformed using 𝑋𝑗 , where 𝑗 > 𝑖. For instance, if a dataset had three
essions (i.e., 𝑖 = 1, 2, 3), authentication is performed using 𝑋2 and
𝑋3 after enrolling with 𝑋1 and similarly using 𝑋3 as authentication
samples after enrolling with 𝑋2. This approach ensures that the model
is trained on earlier sessions’ data and tested on subsequent sessions,
mimicking the real-world scenario where user enrollment precedes
authentication. Notably, this logical sequence aligns with common
practices in practical biometric systems. The reported results are the
average of the results from all the testing sessions.

Similar to the single-session evaluation approach, we implemented
data normalization on both training and testing datasets. Specifically,
we applied ’fit and transform’ to the training data, while only ‘trans-
form’ was used for the testing data. Evaluation metrics were computed
for each cross-validation fold and then averaged across sessions for
reporting.

3.5. Analysis

Proper metrics are essential for comparing different methods from
the viewpoint of uniqueness. We have chosen to report EER (Equal
Error Rate) and FNMR (False Non-Match Rate) at various FMR (False
Match Rate) levels, as recommended by the biometric authentication
community [74,75] and international standards [76,77]. The FMR
indicates the likelihood of an unauthorized user being mistakenly
authenticated by the system, reflecting the system’s vulnerability to a
zero-effort attack. The goal is to achieve a low FMR while maintaining
an acceptable FNMR. A high FNMR can result in legitimate users being
repeatedly denied access, negatively impacting the device’s usability.
Therefore, it is crucial to balance FMR and FNMR to ensure robust
security without compromising user experience. The EER represents the
point, threshold, where the FMR and FNMR are equal.

Furthermore, this benchmarking framework is developed with a
primary focus on ensuring ease of use. Our goal is to enable users to
efficiently utilize the framework, even without a thorough grasp of the
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Fig. 5. Influence of varying sample rejection thresholds, spanning from 100 to 400 microvolts, as well as scenarios with no rejection, on the performance outcomes of seven
authentication algorithms. The investigation is conducted across nine distinct datasets, employing the EER as the metric for comprehensive performance assessment, and performance
assessment is done under an unknown attacker scenario.
complex technical aspects of the Python programming language. To
accomplish this, we have created a user-friendly benchmarking script
that proficiently examines a configuration file written in a straightfor-
ward YAML interface. This configuration file serves as a control panel,
enabling users to specify a wide range of parameters and settings. This
system effortlessly automates the complex processes of data extraction,
pre-processing, feature extraction, and classification, as illustrated in
Fig. 2. This streamlined approach eliminates the need for users to delve
into intricate programming complexities. In Appendix B, the procedural
steps for tool installation are detailed, accompanied by illustrative
examples of configuration files for the automated creation of brainwave
authentication pipelines.

4. Benchmarking results and discussion

We began with preprocessing and feature extraction to identify the
best parameters for subsequent experiments. Subsequently, we com-
pared known and unknown attacker models to ascertain the increased
difficulty associated with unknown problems. This was followed by an
investigation into single and multi-session performances with unknown
attacker scenarios. Additionally, we examined the effectiveness of two
primary approaches: shallow classifiers and similarity approaches.

4.1. Preprocessing

This study examines two critical aspects of electroencephalography
(EEG) preprocessing: sample duration and sample rejection. Typically,
researchers utilize a one-second sample, spanning from 0.2 seconds
before to 0.8 seconds after a stimulus. We explore various sample
durations, specifically [1.0, 1.2, 1.4, 1.6, 1.8, 2.0] seconds. It is hypoth-
esized that longer durations may enhance results due to the inclusion
of more information. However, considering the primary objective of
event-related potentials (ERP) is to introduce stimuli for signal-to-noise
ratio (SNR) enhancement, extended samples might inadvertently incor-
porate noise data. Another preprocessing step investigated is sample
rejection, based on peak-to-peak (PTP) signal amplitude. We establish a
minimum acceptable threshold for signal amplitude, rejecting samples
that fall below this threshold. Continuing from the previous section, the
rationale behind PTP sample rejection is the assumption that samples
with high PTP values are likely to be noisy and their removal might
7

enhance the performance of brainwave-based authentication systems.
Our investigation focuses on determining whether this preprocessing
step can indeed improve the efficacy of brainwave authentication and,
if so, identifying the optimal threshold level for PTP sample rejection.

Fig. 4 presents the EER results for the sample duration experiment.
The results indicate that longer samples may enhance outcomes in
shallow classifiers, but no significant improvement was observed in
the case of Twin neural networks. It is important to note that for
longer samples (e.g., 2 seconds), it was necessary to downsample the
sample to mitigate the increased data dimensionality, a step taken due
to hardware limitations as suggested in source code of BrainNet [27]
paper as well.

Fig. 5 displays EER across various PTP rejection thresholds. Results
show that for classifiers like LR, LDA, and NB, a lower threshold
results in a reduced EER. In contrast, RF and SVM displayed no specific
trend, and their performance without sample rejection already sur-
passed other shallow classifiers. For the Twin Neural Network, sample
rejection had either no effect or a negative impact. Overall, the study
found no significant improvement attributable to PTP rejection.

4.2. Feature extraction

We explored Power Spectral Density (PSD) and Autoregressive (AR)
models of different orders as feature extraction methods typically em-
ployed in shallow classifiers. Fig. 6 illustrates the EER for various
configurations of feature extraction across different classifiers. The
findings suggest that the combination of PSD with AR of order 1 yields
superior performance compared to other combinations. Following this,
PSD features alone demonstrate promising results, whereas AR on
its own fails to show stable and robust outcomes. Interestingly, in
the BrainInvaders15a dataset, the AR of order 1 outperformed most
classifiers. In the ERPCORE_P300 dataset, PSD was the predominant
feature leading to superior performance across most classifiers. Addi-
tionally, in the COG_BCI dataset, a higher AR order demonstrated better
performance compared to lower AR orders. These results substantiate
our assertion that analyzing a single dataset can yield results that are
not generalizable to other datasets. However, it is noteworthy that
across all these datasets, the combination of PSD with AR order 1
consistently appears among the top-performing features. Consequently,
we will utilize these features in the subsequent sections of this paper
as the default feature set for shallow classifiers.
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Fig. 6. Comparative performance evaluation of nine datasets under unknown attacker scenario: Employing shallow classifiers and time-frequency domain features, evaluated by
ER.
Fig. 7. Examining the effects of known and unknown attacker models on EER in brainwave authentication across various classifiers and datasets.
.3. Known and unknown attacker approach

The known attacker model represents an unrealistic scenario; how-
ver, given its existence in some previous studies, we investigated
he performance gap between known and unknown attacker scenarios.
ig. 7 displays the EER for these two scenarios, based on a sample
uration of 1 seconds to ensure comparability with previous work.
his analysis was conducted without sample rejection and utilized PSD
8

combined with AR order 1 as the feature extraction method for shallow
classifiers.

The results reveal that the mean EER across datasets degraded by
58.44% for KNN, 275.60% for LDA, 383.91% for LR, 5.83% for NB,
75.94% for RF, 66.61% for SVM, and 75.88% for the Twin neural
network approach. Notably, in some cases, the EER increased several-
fold. These findings suggest that results derived from the known at-
tacker model can be misleading, emphasizing the need for researchers



Journal of Information Security and Applications 85 (2024) 103832A.K. Chaurasia et al.

c
l
c
n

d
o
c
S
o
Z
f
a

k
f
n
s
C
c
O
m
t
c
f

t
h

Fig. 8. Comparing the effectiveness of shallow classifiers and TNN for authentication
against unknown attackers in two multi-session datasets.

to exercise caution and potentially avoid using this model in their
analyses.

4.4. Single session vs. Multi session authentication

For the practical application of brainwave authentication, it is
essential to develop a model capable of handling multi-session authen-
tication. However, there is a notable limitation in the availability of
datasets for multi-session studies. Our investigation focuses on com-
paring single-session and multi-session authentication to understand
the performance gap between these two approaches. We expected an
increase in EER for multi-session authentication, as it represents a more
complex challenge. This increase in difficulty is attributed to additional
noise factors inherent in multi-session settings. Additionally, variations
in EEG electrode placement across sessions and possible changes in
brain states add to the complexity, making multi-session authentication
a more challenging task compared to single-session scenarios.

Fig. 8 presents the results for multi-session authentication, where
the results indicate a significant increase in EER compared to the single-
session results shown in Fig. 7. Notably, LDA and LR, which were not
among the best performers in the single-session scenario, show more
promising results in the multi-session context. These findings highlight
the need for further research focused on multi-session scenarios to
better understand and improve authentication performance in these
more complex settings. The average EERs of 21% and 30% in multi-
session scenarios indicate limitations in the practical implementation
of a brainwave biometric authentication system, especially considering
the False Rejection Rate (FNMR) at False Acceptance Rates (FMR) of
1%, 0.1%, and 0.01%. These rates were respectively 72.61%, 86.70%,
89.50% for the Lee2019 dataset and 84.43%, 94.05%, 94.09% for the
COG_BCI_Flanker dataset (Table 3), suggesting the need for improved
models to achieve lower EERs for real-world applications.

The lower performance of the deep learning approach compared
to shallow classifiers in multi-session scenarios may result from the
limited amount of data available for training feature extraction models.
These models face complex issues across different sessions, such as
changes in hair length, emotional states, and electrode positions, which
complicate effective feature extraction with limited data. In contrast,
classical feature extraction methods like PSD or AR require less data by
relying on expert knowledge and do not need data for learning features.
However, with more data, we expect twin neural network models to
improve and potentially outperform shallow classifiers.

4.5. Shallow classifiers vs similarity-based approach

Comparing the training of a general model to extract identity-
specific features with training individual models for each subject based
9

s

on traditional feature extraction represents two different approaches.
We utilized a twin neural network (TNN) as a representative of the
similarity-based approach. We anticipated that the similarity approach
would yield better results, as it actively seeks to correlate features from
raw brainwaves, unlike shallow classifiers which attempt to discern
differences between PSD and AR features of a subject and attacker’s
samples.

The results revealed that the TNN approach, along with RF, was
among the top-performing models in single-session results (Table 3).
In multi-session results, despite having performance close to RF, other
classifiers like LDA and LR showed better performance (Fig. 8). This
suggests the necessity for either more comprehensive data or an en-
hanced deep learning strategy to surpass traditional classifiers that
utilize straightforward feature extraction methods.

4.6. Comparison with related work

The comparison of our results will initially focus on the results
published by Arias et al. [24] and Fallahi et al. [27]. This is due to the
establishment of our benchmark, which is based on their implemen-
tations. Moreover, both studies utilized the ERPCORE [36] P300 and
N400 datasets, similar to our approach. Arias et al. [24] investigate
the performance of different shallow classifiers within single-session
brainwave authentication. The results indicate 1.9% EER for N400 and
3% EER for P300 paradigm with a sample rejection of 120 𝜇V and RF
classifier, we observe the same results where we achieved 2.9% EER
for P300 and 1.13% EER to N400 paradigm with the sample rejection
of 100 𝜇V and RF classifier. Also, Fallahi et al. [27] acquired 2.01%
and 1.37% respectively for P300 and N400 ERPCORE and 0.14 for
P300:bi2015a dataset [55], where we obtained %1.53, 0.83%, and 0.43
respectively. As can be observed the results are fairly similar and trends
are the same. The small difference in results could be from a different
random seed, version of libraries, and some evaluation parameters like
epoch rejection rate for shallow classifiers and number of epochs for
twin neural networks. To enhance the reproducibility of our result, we
provided a docker container in the GitHub of NeuroIDBench.

Preprocessing: Our results about the impact of sample duration
orroborate prior research on shallow classifiers, which indicates that
onger sample durations can result in reduced EER or increased ac-
uracy [24,78–80]. However, the current version of the twin neural
etwork requires modification to effectively utilize longer samples.
Feature Extraction: The results of our feature extraction analysis

emonstrate that PSD features notably outperform AR features, corrob-
rating findings from Huang et al. [81]. However, there is a lack of
onsensus in the literature regarding the optimal order for AR features.
tudies by Arias et al. [23] and Brigham [82] suggest that lower AR
rders yield better results, whereas research by Kaewwit et al. [83] and
hang et al. [69] indicates improved outcomes with higher orders. Our
indings align with the former, showing that lower-order AR features
re more effective in 8 out of 9 datasets analyzed.
Known and Unkown attacker: In exploring scenarios involving

nown and unknown attackers, Wu et al. [84] conducted research but
ound no notable performance decline in the unknown attacker sce-
ario, and even reported an improvement. Similarly, Panzino et al. [85]
tudied the same issue and observed only a 5% decrease in accuracy.
ontrarily, Arias et al. [23] and Fallahi et al. [27] reported an in-
rease in Equal Error Rate (EER) ranging from 10% to 17.5 times.
ur results indicate that the unknown attacker scenario is consistently
ore effective than the known attacker scenario, although the extent of

his difference varies across different datasets and models. An average
alculation across nine datasets and seven models shows that the EER
or unknown attackers is 60.2% higher than known attacker scenarios.
Single and Multi-session: Multi-session analysis is crucial for

he practical application of brainwave authentication, yet it presents
eightened challenges compared to single-session scenarios. In multi-

ession environments, the availability of public datasets is notably
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Table 3
Comparative Analysis of Average EER and FNMR at 1%, 0.1%, and 0.01% FMR thresholds across nine Datasets. The evaluation encompasses
both single-session and multi-session Schemes, with a focus on classifiers’ performance in the unknown attacker scenario. Values are presented
in percentages.

Dataset Evaluation Metric KNN LDA LR NB RF SVM TNN

%EER 2.44 12.92 5.14 4.45 0.46 0.74 0.43
BrainInvaders15a Single-Session FNMR at 1% FMR 19.87 71.26 43.39 31.55 0.69 2.06 2.12

FNMR at 0.1% FMR 34.62 83.22 58.55 38.77 1.47 4.54 3.70
FNMR at 0.01% FMR 46.56 89.52 71.30 45.55 2.06 6.01 5.11

%EER 5.72 4.75 3.41 10.16 0.90 2.73 0.81
ERPCORE_N400 Single-Session FNMR at 1% FMR 22.70 35.83 25.67 76.06 1.96 7.54 1.17

FNMR at 0.1% FMR 45.11 72.76 68.53 94.55 4.95 15.87 3.96
FNMR at 0.01% FMR 52.66 75.26 68.54 97.80 5.11 15.87 3.96

%EER 6.87 5.73 3.45 9.11 1.37 3.68 1.53
ERPCORE_P300 Single-Session FNMR at 1% FMR 26.65 39.28 30.03 59.55 4.36 10.47 4.30

FNMR at 0.1% FMR 46.59 65.97 55.84 84.84 7.67 19.11 9.63
FNMR at 0.01% FMR 49.88 67.50 55.88 88.83 7.83 19.11 9.63

%EER 3.28 1.58 0.84 5.89 0.36 0.55 0.03
Huebner_LLP Single-Session FNMR at 1% FMR 26.48 8.41 5.06 34.01 0.31 0.51 0.02

FNMR at 0.1% FMR 54.90 25.74 16.71 51.88 0.78 0.79 0.02
FNMR at 0.01% FMR 74.21 54.26 32.76 63.84 1.38 1.19 0.05

%EER 8.56 4.76 3.50 20.05 3.78 4.04 4.76
Mantegna2019 Single-Session FNMR at 1% FMR 31.26 38.30 28.26 86.57 9.88 11.04 19.61

FNMR at 0.1% FMR 58.51 71.97 63.33 96.54 22.65 23.88 46.53
FNMR at 0.01% FMR 66.94 73.53 63.42 98.23 22.93 23.88 46.53

%EER 4.22 6.31 7.73 9.11 0.38 0.79 0.04
Sosulski2019 Single-Session FNMR at 1% FMR 21.60 33.08 28.77 50.93 0.42 1.59 0.01

FNMR at 0.1% FMR 45.47 37.98 35.01 63.00 0.68 3.34 0.05
FNMR at 0.01% FMR 65.65 45.01 41.66 76.08 1.09 4.94 0.09

%EER 4.46 5.33 2.86 12.89 1.27 1.96 1.02
Won2022 Single-Session FNMR at 1% FMR 18.37 45.10 27.72 84.48 3.38 4.93 2.07

FNMR at 0.1% FMR 44.87 76.98 69.14 96.63 8.88 13.68 8.66
FNMR at 0.01% FMR 67.33 89.96 84.89 98.84 14.82 20.06 14.31

%EER 7.69 5.05 3.82 9.62 3.16 4.18 11.00
COG_BCI_Flanker Single-Session FNMR at 1% FMR 32.11 36.73 27.70 56.51 11.30 14.25 51.74

FNMR at 0.1% FMR 52.84 57.97 49.48 70.61 16.97 21.00 62.66
FNMR at 0.01% FMR 57.13 59.91 49.51 73.15 17.23 21.00 62.66
%EER 38.35 24.80 27.75 43.54 37.44 32.39 30.37

COG_BCI_Flanker Multi-Session FNMR at 1% FMR 82.36 82.63 79.68 92.20 83.64 76.98 84.43
FNMR at 0.1% FMR 92.44 90.18 88.06 96.65 88.68 84.08 94.05
FNMR at 0.01% FMR 94.11 90.29 88.06 97.11 88.87 84.08 94.09

%EER 6.93 3.47 1.48 20.85 2.14 2.17 1.39
Lee2019 Single-Session FNMR at 1% FMR 20.71 26.65 10.79 90.89 4.90 4.56 3.53

FNMR at 0.1% FMR 42.90 58.43 38.52 97.18 11.11 11.63 13.56
FNMR at 0.01% FMR 58.08 71.00 52.93 97.96 14.06 15.70 19.39
%EER 26.13 13.63 12.65 31.64 17.73 11.99 20.68

Lee2019 Multi-Session FNMR at 1% FMR 63.67 66.56 58.93 94.84 55.84 45.57 72.61
FNMR at 0.1% FMR 82.23 85.21 84.53 99.50 70.39 62.54 86.70
FNMR at 0.01% FMR 89.96 88.16 89.79 99.95 74.92 67.81 89.50
t
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scarcer, and the practice of open-source sharing becomes more con-
strained. Results from various studies, such as Maiorana [30], demon-
strate reasonable EER as low as 4.8%. Seha et al. [86] also reported a
marginal difference of less than 0.5% EER between single and multi-
session scenarios under specific feature extraction methods and LDA
classifiers. Furthermore, Wu et al. [84] observed a 1.3% improvement
in false rejection rate performance in the second session compared to
the first session in single-session scenarios. In contrast, our research
reveals a significant disparity between single-session and multi-session
results, with our best outcome showing an 11.99% EER. This finding
aligns with Huang et al. [81], who also reported a substantial difference
between within-session and cross-session evaluations. However, it is
important to note that the studies by Maiorana [30], Seha et al. [86],
and Wu et al. [84] do not provide public datasets or open-source code
for other researchers to utilize and build upon. Therefore, there is an
urgent need for more open-source and publicly available datasets in
multi-session studies in this field. In fact, understanding the exact state
of this challenge is crucial to determine what steps are necessary to
advance the field.
10

b

Shallow Classifiers vs Similarity-Based Approach: The current
rend in biometric authentication leans towards deep learning ap-
roaches. We observed the same trend in brainwave authentication
here several papers based on TNN [27,30,34] or CNN [29] to improve
uthentication. However, a comparison between shallow classifiers and
eep learning methods is essential. This is because the scarcity of
ata can hinder the training of deep learning networks, particularly in
anaging the high variation in brainwave data. Several studies [87,27]
emonstrate that deep learning approaches can outperform shallow
lassifiers. However, our large-scale benchmark emphasizes, despite the
mpressive results of TNN, they do not consistently surpass shallow
lassifies, Notably, in multi-session scenarios, TNNs underperform, po-
entially due to insufficient data to accommodate the high variability
etween sessions.

. Limitations

The two main limitations observed while conducting research to de-
elop our benchmark are the shortage of publicly available datasets and
he evolving ethical and privacy concerns in the deployment of EEG-
ased biometric systems. These challenges underscore critical areas for
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future research and development to enhance the reliability and ethical
assurance of EEG authentication.

Publicly Available Datasets: Currently available public datasets
re not designed for authentication purposes. They often have a low
umber of subjects, usually fewer than 70, and mostly provide data
rom a single session, making it difficult to evaluate the robustness of
EG authentication over time (Table 2). Additionally, most datasets use
edical-grade devices for data collection, complicating performance

stimation in real-world scenarios. Therefore, there is a need to col-
ect authentication datasets that include a larger number of subjects
over 500), with at least three sessions, and various environmental
onditions, such as variations in noise, lighting, hair length, and emo-
ional states. This will enable proper training and evaluation of models
nd allow for comparisons with well-known biometrics such as face
ecognition models.
Ethical and Privacy Implications: As EEG authentication research

dvances towards practical applications, increasing attention is being
aid to the ethical aspects of collecting and using brain data for au-
hentication. Previous studies have looked into privacy concerns from
esearchers [88,89] and users [90,91], identifying the need for protect-
ng these data. The main issue is that EEG can reveal highly sensitive
ersonal information, including emotional states [92], medical condi-
ions [93], attention levels [94], and gender [95]. Therefore, collecting
rain data raises the risk of harmful data breaches and introduces new
ossibilities for abuse or misuse. For example, an honest-but-curious
uthentication provider could perform unauthorized behavioral moni-
oring or exploitation of brain reactions for commercial purposes. This
otential threat is aggravated by the lack of user awareness regarding
he sensitivity of brain data when using commercial BCIs [96]. Beyond
rivacy-related concerns, there is a risk of bias in deployed EEG-based
uthentication systems if not trained with a diverse set of people.
his type of issue has been observed in face recognition software that
erforms poorly when used by subjects who belong to underrepresented
roups [97].

To address these concerns, we recommend the following general
uidelines for ethical practice. In terms of data collection for research,
esearchers must adhere to the ethical standards established in the
enlo Report [98] and inform subjects about potential risks through

onsent forms. For real-world EEG authentication, it is crucial to de-
elop robust template protection methods to prevent authentication
roviders from accessing raw EEG data, protecting against potential
eaks and inferences. Systems should be trained to ensure fairness
nd reduce algorithmic bias, which entails the collection of inclusive
atasets that capture the diversity of all potential users. Similarly,
road studies on the social acceptance and diverse user needs should be
onducted to guide a responsible human-centered development of EEG
iometrics. Finally, it is important to implement effective transparency
echanisms beyond unusable privacy policies to communicate to BCI
sers what the collected data and privacy risks are.

. Conclusion and future work

In conclusion, NeuroIDBench is presented as a comprehensive
enchmarking tool for EEG authentication, particularly supporting
RP-based methods. As an open-source platform, it currently supports
datasets and 7 classifiers. It can easily be adapted to include new

atasets and classifiers, allowing for the investigation of different
ethodological research questions. Our results highlight that epoch

ejection does not significantly affect outcomes. PSD combined with
R order 1 emerges as a recommended default feature set for shallow
lassifiers. Known attacker evaluation can misleadingly indicate lower
ER. Multi-session evaluation is significantly more challenging than
ingle-session evaluation. Moreover, it appears that due to the limited
vailability of data, deep learning approaches do not consistently
utperform shallow classifiers in brainwave-based authentication.

We encourage researchers to contribute to this open-source project,
iding in the development of more practical and diverse EEG-based
11

uthentication systems.
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Appendix A. Receiver Operating Characteristic (ROC) curves

ROC curves play a pivotal role in assessing the performance of
biometric systems like brainwave authentication. These curves provide
a graphical representation of the system’s ability to distinguish between
genuine users and impostors by plotting FMR against 1-FNMR across
various threshold values. In brainwave authentication systems, ROC
curves help in determining the optimal threshold for achieving the
desired balance between sensitivity and specificity, thereby ensuring
the system’s effectiveness in accurately identifying authorized users
while minimizing the risk of false positives and false negatives.

A.1. Single session evaluation (unknown attacker scenario)

See Figs. A.9–A.17.

A.2. Multi session evaluation (unknown attacker scenario)

See Figs. A.18 and A.19.

Appendix B. Installation and running the tool

The benchmarking tool is available on our Github repository.4
Developed in Python, the tool leverages various statistical and machine-
learning libraries, necessitating the establishment of a Python environ-
ment as a preliminary step. The subsequent procedures delineate the
steps to set up the operational envirmoment and replicate outcomes
utilizing the NeuroIDBench tool.

4 https://github.com/Avichaurasia/NeuroIDBench.git

https://github.com/Avichaurasia/NeuroIDBench.git


Journal of Information Security and Applications 85 (2024) 103832A.K. Chaurasia et al.

u

Fig. A.9. ROC for dataset BrainInvaders15a in Single Session Evaluation under
nknown attacker Scenario.

Fig. A.10. ROC for dataset COG_BCI_Flanker in Single Session Evaluation under
unknown attacker Scenario.

B.1. Establishing the running environment

The first step after extracting the tool from Github is to set up the
running environment first. An optimal approach that involves creating
a Python virtual environment dedicated to the framework, achieved
through the creation of a Conda environment. This environment en-
capsulates all Python dependencies essential for executing the tool
seamlessly. Alternatively, users may opt to containerize the Python
package using Docker, thereby providing an isolated environment that
encapsulates all dependencies required to execute the tool within the
container. This approach ensures reproducibility and facilitates the
seamless deployment of the benchmarking tool.

Setting up the Conda Environment
To successfully run this Python project, creating and configuring a

suitable Python environment is essential. The following steps need to
be followed to set up the environment:

1. Python Installation: Initially, verifying the presence of Python
12

in our operating system is crucial. If Python is not pre-installed,
Fig. A.11. ROC for dataset ERPCORE_N400 in Single Session Evaluation under
unknown attacker Scenario.

Fig. A.12. ROC for dataset ERPCORE_P300 in Single Session Evaluation under
unknown attacker Scenario.

it can be acquired straight from the official Python5 website.
Subsequently, we adhere to the installation instructions out-
lined in the website, customized to suit our operating system.
If Anaconda has been successfully installed, it is noteworthy
to mention that the Anaconda installation often includes the
Python programming language. If the action above is taken, it
is possible to go to the subsequent stage.

2. Anaconda Installation (if needed): Suppose Anaconda is not
currently installed, and it is desired to utilize it to manage
Python environments. In that case, it is possible to get the
software by downloading it from the official website, which can
be accessed at Anaconda6 website. Installation may be accom-
plished according to the instructions tailored to each operating
system. Anaconda provides a user-friendly method for creating
and administrating virtual environments through the use of

5 https://https://www.python.org/downloads/
6 https://www.anaconda.com/products/individual

https://https://www.python.org/downloads/
https://www.anaconda.com/products/individual
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Fig. A.13. ROC for dataset Huebner_LLP in Single Session Evaluation under unknown
attacker Scenario.

Fig. A.14. ROC for dataset Mategna2019 in Single Session Evaluation under unknown
attacker Scenario.

Conda. This specific characteristic has significant value in data
science and scientific computing initiatives.

3. Virtual Environment Creation: It is advisable to establish a
virtual environment to segregate the dependencies of this spe-
cific project from other Python packages installed on our system.
Virtual environments help maintain clean and distinct Python
environments for individual projects. To create a virtual envi-
ronment, follow these steps:

• Navigate to Project Directory: To begin, we access the
terminal or command prompt and proceed to the project’s
root directory by utilizing the cd command.
For example: cd /path/to/project

• Environment Configuration File: Check if the project
includes an environment configuration file. This file is
typically named environment.yml or requirements.txt and
lists the required Python packages and their versions.

• Create Virtual Environment:Subsequently, the requisite
command is executed to generate a virtual environment
by using the configuration file. An example of a command
13
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Fig. A.15. ROC for dataset Won2022 in Single Session Evaluation under unknown
attacker Scenario.

Fig. A.16. ROC for dataset Lee2019 in Single Session Evaluation under unknown
attacker Scenario.

that may be used for Conda environments is the use of a
environment.yml file:
For example: conda env create -f environment.yml
we can also utilize requirement.txt to create the virtual
environment by using the pip command:
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt

4. Activate the Virtual Environment: After the virtual environ-
ment has been established, proceed to activate it. Activation is
a crucial process that guarantees using an isolated environment
and its corresponding dependencies in our project. To activate
the conda environment, it is necessary to utilize the proper
command according to the operating system in use:
For example: conda activate master_thesis (for MacOS/Linux)

etting up Docker Container
To containerize a project, we typically use a tool like Docker. Here’s

step-by-step guide on how to do it:
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Fig. A.17. ROC for dataset Lee2019 in Single Session Evaluation under unknown
attacker Scenario.

Fig. A.18. ROC for dataset COG_BCI_Flanker in Multi Session Evaluation under
unknown attacker Scenario.

1. Install Docker on the local machine if we have not already.
Install docker from the official Docker7 website.

2. Create a dockerfile in the root directory of the framework.
This file will contain the instructions for Docker to build our
container.

3. Get the Python docker image python:3.8-slim-buster from
Docker Hub.8

4. Edit the dockerfile with the following steps:
FROM python:3.8-slim-buster
WORKDIR /app
ADD ./app
COPY requirements.txt ./
RUN pip install –upgrade pip
RUN apt-get update && apt-get install -y ∖
build-essential ∖
libblas-dev ∖

7 https://www.docker.com/
8 https://hub.docker.com/
14
Fig. A.19. ROC for dataset Lee2019 in Multi Session Evaluation under unknown
attacker Scenario.

liblapack-dev ∖
gfortran ∖
libhdf5-dev ∖
cython ∖
pkg-config ∖
RUN pip install –no-binary=h5py h5py
RUN pip install -r new_requirements.txt
WORKDIR /app/neuroIDBench
CMD [‘‘python’’, ‘‘run.py’’]

5. Build the docker image from the dockerfile, using the following
command:
docker build -t dockerfile.

B.2. YAML configurations

Once the Python environment or Docker container is developed,
we need to edit the YAML configuration files that can be found as
single_dataset.yml under the configuration_files folder. Following are
some of the examples of the YAML configuration files that can be
utilized to perform automated benchmarking and reproduce the results
for the single dataset.

Listing 1: Benchmarking pipeline using the dataset’s default parameters
and auto-regressive features with SVM classification

name: " BrainInvaders2015a "

dataset:
- name: BrainInvaders2015a

from: neuroIDBench.datasets

pipelines:
" AR+SVM ":

- name: AutoRegressive
from: neuroIDBench.featureExtraction

- name: SVC
from: sklearn.svm
parameters:

kernel: ’rbf’
class_weight: " balanced "
probability: True

https://www.docker.com/
https://hub.docker.com/
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Listing 2: Benchmarking pipeline using dataset’s parameters and Auto
Regressive order with SVM classification

name: " BrainInvaders2015a "

dataset:
- name: BrainInvaders2015a

from: neuroIDBench.datasets
parameters:

subjects: 10
interval: [-0.1, 0.9]
rejection_threshold: 200

pipelines:
" AR+SVM ":

- name: AutoRegressive
from: neuroIDBench.featureExtraction
parameters:

order: 5

- name: SVC
from: sklearn.svm
parameters:

kernel: ’rbf’
class_weight: " balanced "
probability: True

isting 3: Benchamrking pipeline for dataset BrainInvaders15a with AR
nd PSD features with classifier SVM

name: " BrainInvaders2015a "

dataset:
- name: BrainInvaders2015a

from: neuroIDBench.datasets
parameters:

subjects: 10
interval: [-0.1, 0.9]
rejection_threshold: 200

pipelines:
" AR+PSD+SVM ":

- name: AutoRegressive
from: neuroIDBench.featureExtraction
parameters:

order: 5

- name: PowerSpectralDensity
from: neuroIDBench.featureExtraction

- name: SVC
from: sklearn.svm
parameters:

kernel: ’rbf’
class_weight: " balanced "
probability: True

isting 4: Benchamrking pipeline for dataset BrainInvaders15a with
win NN
name: " BrainInvaders2015a "

dataset:
- name: BrainInvaders2015a
15

from: neuroIDBench.datasets
parameters:
subjects: 10
interval: [-0.1, 0.9]
rejection_threshold: 200

pipelines:
" TNN ":

- name : TwinNeuralNetwork
from: neuroIDBench.featureExtraction
parameters:

EPOCHS: 10
batch_size: 256
verbose: 1
workers: 1

Listing 5: Benchamrking pipeline for dataset BrainInvaders15a with
shallow classifiers and twin NN

name: " BrainInvaders2015a "

dataset:
- name: BrainInvaders2015a

from: neuroIDBench.datasets
parameters:

subjects: 10
interval: [-0.1, 0.9]
rejection_threshold: 200

pipelines:
" TNN ":
- name: TwinNeuralNetwork

from: neuroIDBench.featureExtraction
parameters:

EPOCHS: 10
batch_size: 256
verbose: 1
workers: 1

" AR+PSD+SVM ":
- name: AutoRegressive

from: neuroIDBench.featureExtraction
parameters:

order: 6

- name: PowerSpectralDensity
from: neuroIDBench.featureExtraction

- name: SVC
from: sklearn.svm
parameters:

kernel: ’rbf’
class_weight: " balanced "
probability: True

Listing 6: Benchamrking pipeline for multi-session dataset COGBCI:
FLANKER with shallow classifiers and Twin NN
name: " COGBCIFLANKER "

dataset:
- name: COGBCIFLANKER

from: neuroIDBench.datasets
parameters:

subjects: 10

interval: [-0.1, 0.9]
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rejection_threshold: 200

pipelines:
" TNN ":
- name: TwinNeuralNetwork

from: neuroIDBench.featureExtraction
parameters:

EPOCHS: 10
batch_size: 256
verbose: 1
workers: 1

" AR+PSD+SVM ":
- name: AutoRegressive

from: neuroIDBench.featureExtraction
parameters:

order: 6

- name: PowerSpectralDensity
from: neuroIDBench.featureExtraction

- name: SVC
from: sklearn.svm
parameters:

kernel: ’rbf’
class_weight: " balanced "
probability: True

isting 7: Benchamrking pipeline for User i.e., Reseracher’s own MNE
ata with shallow classifiers and Twin NN

name: " User "

dataset:
- name: UserDataset

from: neuroIDBench.datasets
parameters:

dataset_path: <local_dataset_path >

pipelines:
" AR+PSD+SVM ":

- name: AutoRegressive
from: neuroIDBench.featureExtraction
parameters:

order: 6

- name: PowerSpectralDensity
from: neuroIDBench.featureExtraction

- name: SVC
from: sklearn.svm
parameters:

kernel: ’rbf’
class_weight: " balanced "
probability: True

" TNN ":
- name : TwinNeuralNetwork

from: neuroIDBench.featureExtraction
parameters:

EPOCHS: 10
batch_size: 256
verbose: 1
workers: 1

" AR+PSD+RF ":
16

- name: AutoRegressive
from: neuroIDBench.featureExtraction
parameters:
order: 6

- name: PowerSpectralDensity
from: neuroIDBench.featureExtraction

- name: RandomForestClassifier
from: sklearn.ensemble
parameters:

class_weight: " balanced "

isting 8: Benchamrking pipeline for User i.e., Reseracher’s own EEG
ata and Researchers’s own customized method for Twin NN

name: " User "

dataset:
- name: UserDataset

from: neuroIDBench.datasets
parameters:

dataset_path: <local_dataset_path >

pipelines:
" TNN ":

- name : TwinNeuralNetwork
from: neuroIDBench.featureExtraction
parameters:

user_tnn_path: <local_path_to_TNN >
EPOCHS: 10
batch_size: 256
verbose: 1
workers: 1

B.3. Automated benchmarking

After setting the parameters for the benchmarking for single dataset.
The automated benchmarking can be performed either by running the
automation script from the command line terminal or by running the
script within the Docker container.

Running the tool using command line terminal
Execute the following command from the root directory:
python brainModels/run.py

Running the tool using Docker
Open the docker desktop installed on our local machine and execute

the docker image my_dockerfile.
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