Symposium: Ultrafine Particles – Air Quality and Climate Session B.4

Nicola Toenges-Schuller^{1*}, Christiane Schneider¹, Michael Elsasser², Bryan Hellack² ¹ AVISO GmbH, Am Hasselholz 15, D-52074 Aachen, Germany ² Umweltbundesamt (German Environment Agency), Paul-Ehrlich-Str. 29, 63225 Langen, Germany *nicola.toenges-schuller@avisogmbh.de

Brussels, 03.07.2024

Introduction

Literature survey on behalf of and funded by UBA (German Environment Agency)

Aims:

- identification of the most relevant sources of UFP, focus on SOA
- comparison of these groups regarding their contributions to PN/UFP concentrations at different sites, their emissions of UFP precursors, and the associated SOA formation potential,
- compilation of reduction potentials

For this,

- > 120 publications were evaluated, of these
- > 110 published within the last 10 years,
- nearly 50 published within the last four years

Overview

Source groups

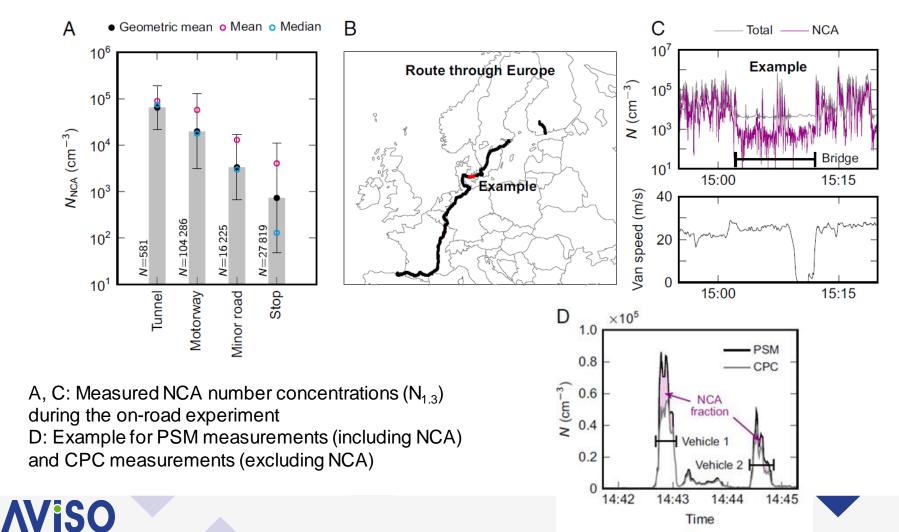
Road traffic, air traffic, shipping, residential heating, and large combustion systems were identified as the most relevant anthropogenic sources for UFP and its precursor substances

- In this talk, the focus is on <u>road traffic</u> as an example
 - currently largest anthropogenic contributor to ambient UFP
 - effects shown here exemplary for road traffic also occur for other combustion sources
- Selected papers on <u>air traffic</u> in the appendix

Ambient PN measurements

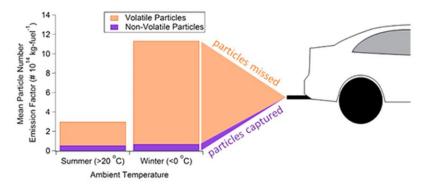
- Compilation of long-time PN measurements at different sites
- Comparison of PN measurements in the vicinity of sources (road, airport, seaside)

Summary


Selected papers on road traffic

Selected papers on road traffic

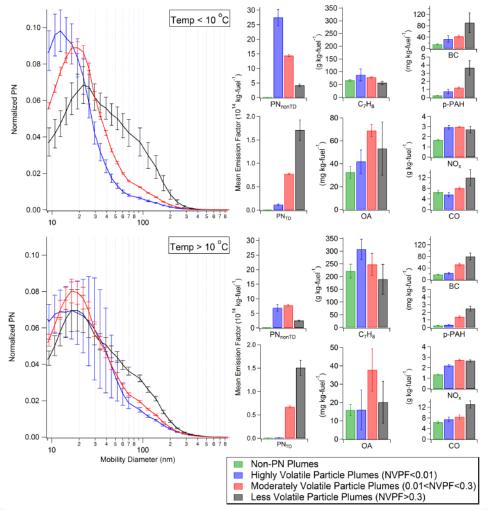
Rönkkö et al. (2017): Traffic is a major source of atmospheric nanocluster aerosol


NCA (nanocluster aerosol, N_{1.3}) measurements during an on-road experiment through Europe of instruments: PSM (particle size magnifier) and CPS (condensation particle counter)

Selected papers on road traffic

Wang et al. (2017): Real-World Emission of Particles from Vehicles: Volatility and the Effects of Ambient Temperature

Several point sampling campaigns at a traffic influenced site in Toronto between 2013 and 2015, automated evaluation of ca. 130'000 plumes

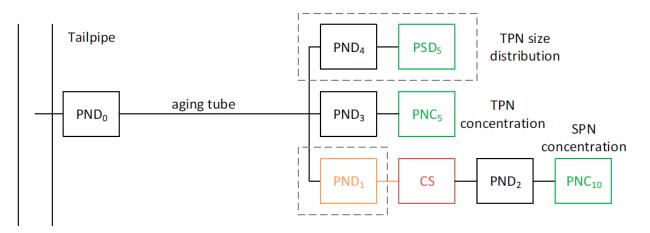

Top: Fleet-average emission factors for solid and volatile particles in Summer and in Winter

Right: particle size distributions for 3 plume categories defined by their non-volatile particle fraction (NVPF) and corresponding average emission factors (EF) or classical air pollutants for T<10°C (top) and T>10°C (bottom)

Gas-phase EF lead to the assumption that

AViso

- Non-PN plumes could be emitted by vehicles of higher emission standards
- Less volatile PN plumes could be emitted by diesel vehicles of lower emission standards



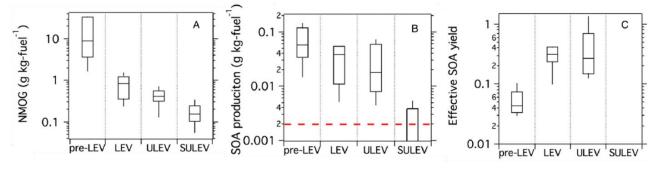
Selected papers on road traffic

Giechaskiel et al. (2022): Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations

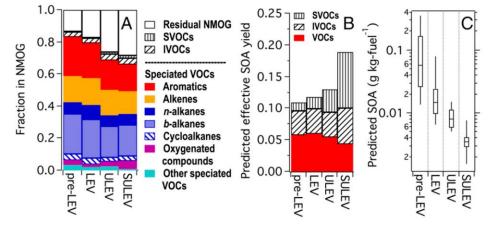
Suggested measurement setup for TPN and SPN for regulation

Chose conditions in diluters and in aging tube such that nucleation is favored -> volatile PN formation potential

- green: Particle Counters/Detectors
- red: Catalytic Stripper (CS): Temperature: 300°C
- PNC: Particle Number Counter
- PND: Particle Number Diluter
- PSD: Particle Size Distribution Instrument


dotted boxes: optional parts

Selected papers on road traffic


Zhao et al. (2017): Reducing secondary organic aerosol formation from gasoline vehicle exhaust

Emission data and SOA-production data from <u>photooxidation experiments</u> with diluted gasoline exhaust for different emission standards

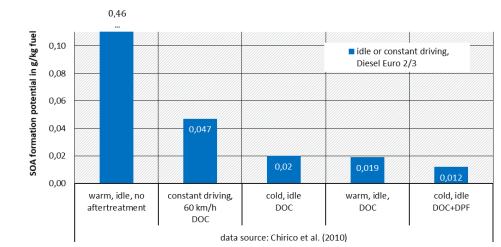
NMOG composition und predicted SOA production

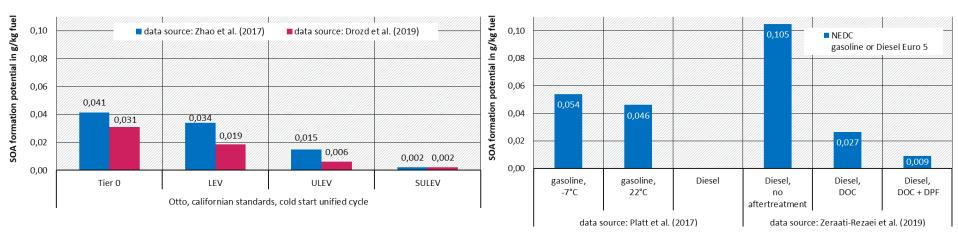
AViso

- NMOG emissions <u>decrease</u> with higher emission standards
- Measured and predicted effective SOA yields <u>increase</u> with higher emission standards
- Measured SOA yields increase stronger than predicted SOA yields, Possible reason:

non-linear dependency of SOA production from NMOG/NO_X-ratio

 <u>NMOG emission decrease dominates</u>: SOA production decreases with higher emission standards


Compilation of SOA formation potentials for PC from several papers (not shown in detail)


<u>Diesel Euro 2/3:</u> without aftertreatment system: ~0,5 g SOA / kg fuel DOC: reduction by factor 24

Diesel Euro 5:

for working DOC and DPF: reductions of over 90% to 0,009 g SOA / kg fuel

Gasoline, SULEV: 0,002 g SOA / kg fuel

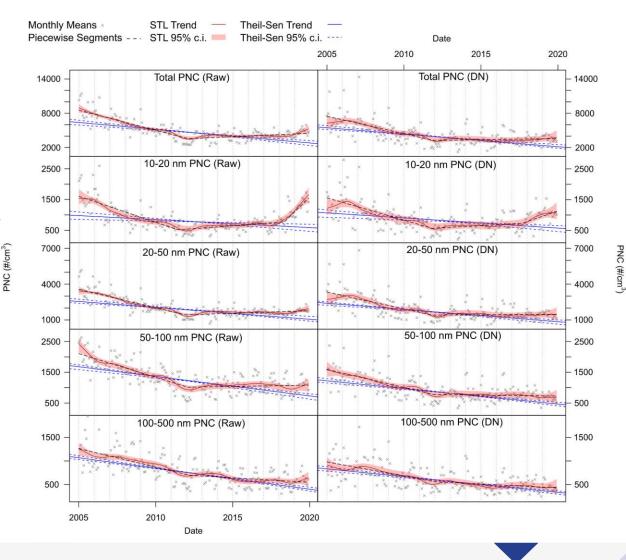
AViSO

Ambient PN measurements

Long-time PN measurements: Trend

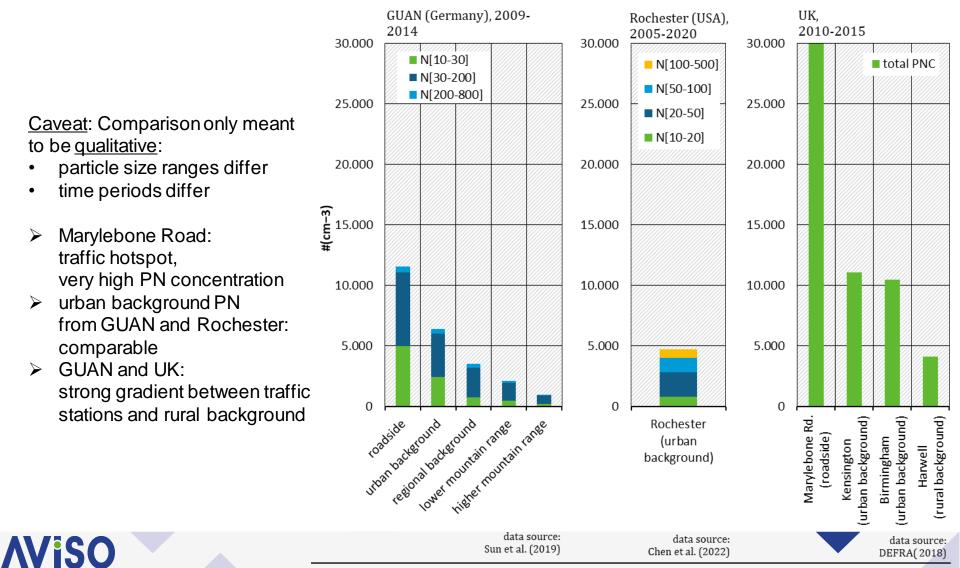
Chen et al. (2022): Long-term trends of ultrafine and fine particle number concentrations in New York State: Apportioning between emissions and dispersion

Hourly PN measurements at an urban background station in Rochester (town in New York State) 2005 to 2019


Plot: Monthly mean PNCs by size class (grey crosses) and trends according to several statistica approaches

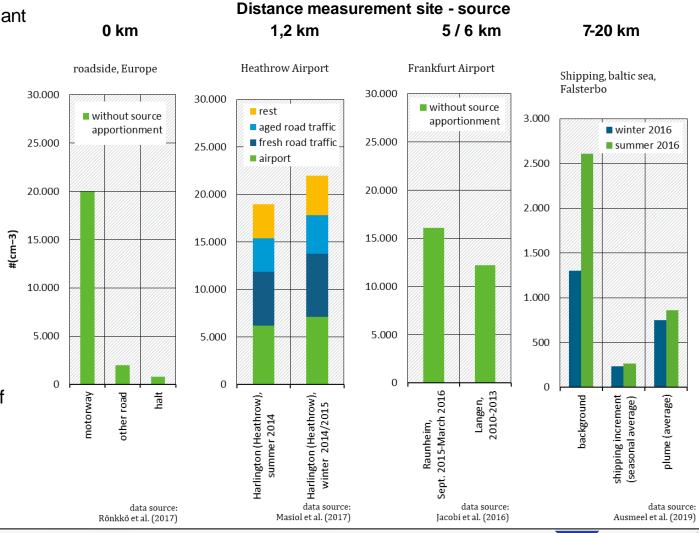
left column: Row data, right column: Dispersion-normalized data

- Overall: <u>decreasing</u> trend
- Since ~2018 increase for nucleation particles


AViSO

 Possible explanation:
 <u>Cleaner</u> air can lead to increasing particle formation

Comparison of long-time PN measurements at different sites


Measurements from the GUAN network (German Ultrafine Aerosol Network), from Rochester (previous slide) and from the UK (published by DEFRA, 2018)

PN measurements in the vicinity of sources

<u>Caveat</u>: Comparison only meant to be <u>qualitative</u>:

- particle size ranges differ
- time periods differ
- distance measurement site – source differ
- PN high in vicinity of sources (~20.000 #/cm³)
- strong gradients
- contribution Heathrow in Harlington: ~1/3 (not shown: measurements near Schiphol comparable)
- Road traffic in vicinity of airports still important

AViso

Summary

Summary (general)

(including papers not selected to show here)

Which source groups are important?

- <u>All the year</u> at ground-based measurement stations in Germany: Road traffic contributes most to total PN and SOA
- <u>Winter</u>:

SOA contributions from wood burning for <u>residential heating</u> important

 Near <u>large point or line sources</u> (e.g., airports, shipping lines, harbours) contributions of these sources may dominate

For all source groups: Volatile contributions dominate

Which gas-phase precursors are important?

- <u>Inorganic gases</u>
 NOx, NH₃, SO₂ as precursors for SIA, secondary inorganic aerosol
- Organic gases:
 - the less volatile they are, the higher is their SOA formation potential (2-dim volatility basis set by Donahue et al., 2012)
 - SOA-formation also by <u>aromatics</u> and other cyclic HC
- <u>Condensates und "delayed primary" PN:</u> actually POA (primary organic aerosol), enter aerosol phase after cooling without further chemical reactions. Should be subject to abatement measures as well as the gas-phase precursors

Summary (Road Traffic)

(including papers not selected to show here)

- For UFP, <u>exhaust</u> emissions are more important than non-exhaust emissions (abrasion)
- Currently, emissions of <u>solid PN > 10 nm</u> are limited larger contributions of volatile and secondary traffic related PN are not accounted for
- Emission limits for the <u>formation potential of volatile PN</u> are theoretically possible, conditions have to be agreed upon
- For increasingly <u>stringent emission standards</u>:
 VOC emissions are reduced, their specific SOA yields are increased, overall, for the SOA formation potential, the reduction dominates
- If emission standards are observed, <u>reductions of traffic related ambient UFP mass</u> are expected in future, so that the relative importance of other source groups will grow
- A decrease in UFP mass not necessarily also reduces PN, cleaner air may favor nucleation over condensation

Summary (Abatement potentials)

(including papers not selected to show here)

Where are abatement potentials?

- <u>Road traffic:</u>
 - Substantial reductions (~90%) for PN (total) and SOA achieved in the past (Euro 5) by catalysts and filters, further reductions (Euro 6, 7) expected if standards are observed
 - Currently limited: Solid particles: up to Euro 6: > 23 nm, Euro 7: > 10 nm Theoretically possible: Limitation of PN formation potential for volatile PN (delayed primary)
- <u>Air traffic and shipping:</u>
 - Air traffic: first limits for solid PN since January 2023, no PN limits for shipping
 - EF for SOA-precursors as high as for road traffic before the introduction of limits
 - EF for PN (total) for air traffic even higher (high temperatures)
 - > Abatement potentials exist
- <u>Residential heating</u>:
 - Potential to reduce emissions of condensables by replacing traditional manual stoves by automatic stoves
- Large combustion plants:
 - Reduction potential by switching off coal-fired power plants

Thank you!

Selected papers on air traffic

Selected papers on air traffic

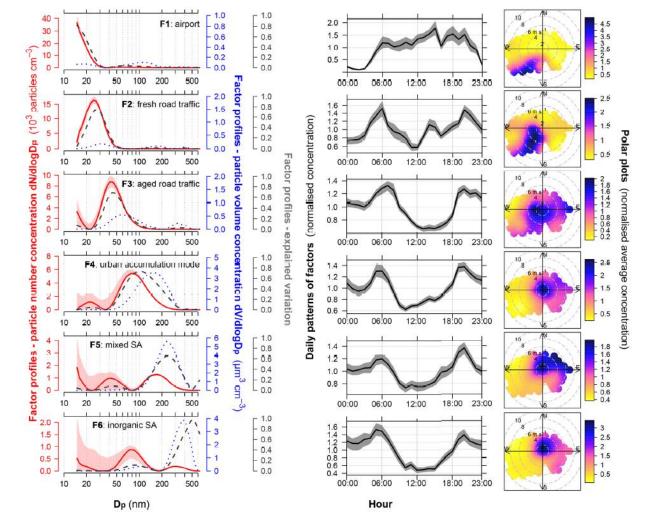
Masiol et al. (2017): Sources of sub-micrometre particles near a major international airport

Measurement campaigns:

Summer 2014 (warm season) Winter 2014/2015 (cold season)

in **Harlington**, village 1,2 km north of **London Heathrow** airport

right: PMF-analysis (warm season)


Main results both seasons:

PN contributions at the site

Airport: **30% to 35%**

AViso

Fresh road traffic: 24% to 36% Aged road traffic: 16% to 21%

Selected papers on air traffic

AViSO

Kılıç et al. (2018): Identification of secondary aerosol precursors emitted by an aircraft turbofan

Measurements of emission indices for a CFM56 variant turbofan motor in a test cell at Zurich Airport after aging

Total NMOG (a) right: Aromatic NMOGs Ð **Results for emission indices** 100 Primary OA Primary eBC From these, Kiliç et al. (2018) Secondary OA 10 Emission index [g kg fuel ⁻¹] - Secondary NO3 Estimate for Zurich 2010: (b) - Secondary SO SOA formation from 100 Zurich airport 10 between 5,5 and 13,2 t 0.1 = For comparison: Road traffic: • ш 0.1 0.01 in an area of 200 km² around Zurich: ca. 94 t 0.01 0.001 Ξ 6 æ 0.001 But: Airport is a point source, so 0.0001 its influence may dominate locally 0.0001 20 40 60 80 100 40 20 60 80 100 n Thrust [%]

Thrust [%]

Literature

Literature

Ausmeel et al. (2019): Methods for identifying aged ship plumes and estimating contribution to aerosol exposure downwind of shipping lanes. Atmospheric Measurement Techniques, 12(8), 4479–4493. https://doi.org/10.5194/amt-12-4479-2019 DEFRA (2018): Ultrafine Particles (UFP) in the UK. DEFRA Donahue et al (2012): A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution Atmospheric Chemistry and Physics, 12(2), 615–634. https://doi.org/10.5194/acp-12-615-2012 Giechaskiel et al. (2022): Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations. Atmosphere, 13(2), Article 2. https://doi.org/10.3390/atmos13020155Drozd et al. (2019) Jacobi et al. (2016): Messung ultrafeiner Partikel im Umfeld des Frankfurter Flughafens. Informationen zum Thema UFP Fluglärmkommission, 28. September 2016 Kilic et al. (2018): Identification of secondary aerosol precursors emitted by an aircraft turbofan. Atmospheric Chemistry and Physics, 18(10), 7379–7391. https://doi.org/10.5194/acp-18-7379-2018Sun et al. (2019) Masiol et al. (2017): Sources of sub-micrometre particles near a major international airport. Atmospheric Chemistry and Physics, 17(20), 12379–12403. https://doi.org/10.5194/acp-17-12379-2017 Platt et al. (2017): Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Scientific Reports, 7(1), 4926. https://doi.org/10.1038/s41598-017-03714-9 Rönkkö et al. (2017): Traffic is a major source of atmospheric nanocluster aerosol. Proceedings of the National Academy of Sciences of the United States of America, 114(29), 7549-7554. https://doi.org/10.1073/pnas.1700830114 Wang et al. (2017): Real-World Emission of Particles from Vehicles: Volatility and the Effects of Ambient Temperature. Environmental Science & Technology, 51(7), 4081–4090 Zeraati Rezaei et al. (2019): Size-resolved physico-chemical characterization of diesel exhaust particles and efficiency of exhaust aftertreatment. Atmospheric Environment, 222, 117021. https://doi.org/10.1016/j.atmosenv.2019.117021 Zhao et al. (2017): Reducing secondary organic aerosol formation from gasoline vehicle exhaust. Proceedings of the National Academy of Sciences of the United States of America, 114(27), 6984–6989. https://doi.org/10.1073/pnas.1620911114