POLITECNICO **MILANO 1863**

Enhancing fine PM emissions assessment from urban traffic through bottom-up approach: case study for the city of Milan

Andrea Piccoli, Valentina Agresti, Marco Bedogni, Giovanni Lonati, Guido Pirovano

UFP Conference 3-4 July 2024 Brussels

- Exhaust and non-exhaust emissions from road traffic are the most relevant contributors to airborne particulate matter (PM) in urban areas, especially in the warm season when space heating sources are not active
- Emission quantification, temporal modulation and spazialization are key points for developing accurate air quality modelling studies
- Annual emissions data are usually available from emission inventories, mostly obtained through top-down (TD) approach and related to the whole urban area, thus lacking of detailed space and time resolution

> Air quality model development

 Lagrangian puff model Linear Plume in Grid (LPiG) for hybrid modeling techniques in CAMx Eulerian chemical and transport model

- Emission assessment enhancement
 - Bottom-up modeling chain for road traffic emissions to connect a traffic model to the air quality model using a macroscopic approach to traffic and emission modeling
- > Test case analysis
 - ✓ Analysis of an **electric mobility scenario** in an urban area: the **Milan test case**

- > Air quality model development
 - Lagrangian puff model Linear Plume in Grid (LPiG) for hybrid modeling techniques in CAMx Eulerian chemical and transport model
- Emission assessment enhancement
 - Bottom-up modeling chain for road traffic emissions to connect a traffic model to the air quality model using a macroscopic approach to traffic and emission modeling
- Test case analysis
 - ✓ Analysis of prospected **mobility scenarios** in an urban area: the **Milan test case**

Rationale for emission assessment enhancement

- Modelling air quality with street detail requires great accuracy in estimating input road traffic emissions
- Spatial gridded emission from inventories are not suitable for hybrid Eulerian-Lagrangian (CAMx + LPiG) systems

Effects of local intervention on traffic may be not properly reproduced by gridded emissions

Bottom-Up Traffic Emission Model

Create high accuracy bottom-up emission fields for the road transport sector in Milan to be used as base for the green mobility scenarios assessment

CAMx Ready Files

Giovanni Lonati

Methods – Traffic modeling

> Private traffic data from AMAT (Milan municipality mobility agency)

- Macroscopic traffic modeling approach
 Model simulation for 19069 road links in
- Model simulation for 19069 road links i the city of Milan
- \checkmark Hourly traffic results for a working day
- ✓ Fractional composition of traffic for vehicle macro classes (cars, motorcycles, L&HDVs)
- ✓ Zonal fleet composition according to current restrictions to circulation

Methods – Traffic modeling

> Private traffic data from AMAT (Milan municipality mobility agency)

- Zonal fleet composition according to current restrictions to circulation
 - Milan Low Emission Zone (LEZ AREAC)
 - urban area with restrictions for heavy duty vehicles (ZTLME)
 - highways (TANG)
 - area without specific restrictions

Methods – Traffic temporal profiling

Monthly, weekly and hourly profiles based on traffic counts data

А

Hour

Giovanni Lonati

Bottom-Up Traffic Emission Model

> Public traffic data from Milan municipality

Urban Public transport service including buses and electric bus

- ✓ Based on Open Data¹ of Bus and Trolleybus
- ✓ Three main steps:
 - Assignment of bus routes to the urban road network through map matching programs (FMM)
 - > Computation of the total daily public traffic for each road link
 - Definition of monthly, weekly and daily profiles for the public traffic flows variation
 - Bus fleet composition (EURO classes) evaluated based on municipality data (50% Euro4 or older)

1 - <u>https://dati.comune.milano.it/group/32bbfe8c-ca16-4ec3-bd6f-c12380ca3a11?tags=TPL&page=1</u>

Bottom-Up Traffic Emission – Traffic module

Private

Public

Giovanni Lonati

Bottom-Up Traffic Emission Model – Traffic & emission module

Giovanni Lonati

Methods – Emission model

- HERMESv3_bu model (Guevara et al., 2020)
 - ✓ High-Elective Resolution Modelling Emission System version 3 for Bottom-Up
 - \checkmark Can estimate anthropogenic emission from various sectors including Road Traffic
 - ✓ COPERT V methodology
 - ✓ Both exhaust and non-exhaust (wear) emissions
 - ✓ Includes road dust resuspension

vehicle-type dependent resuspension emission factors correction factor as a function of the number of hours after a precipitation event

Hourly $PM_{2.5}$ road transport emissions estimated for an area of Barcelona city at (a) the road link level (kg km⁻¹ h⁻¹) and (b) grid cell level (1 km×1 km) (kg h⁻¹) (c) Barcelona city total annual NO_x and PM₁₀ road transport emissions (t yr⁻¹)

Giovanni Lonati

Bottom-Up Traffic Emission Model - Post-Processing steps

3 consecutive tools to create road links emission for CAMx while reducing the computational effort for CAMx

Reduces the number of roads by merging consecutive short links that lie in a straight line

IOIO Sums hourly emission for each old**IOIO** road links into the new longer links

515 Road Links

IOIO Writes the CAMX ready hourly road **IOIO** links emission file for each day

Base map and data from OpenStreetMap and OpenStreetMap Foundation (CC-BY-SA). © https://www.openstreetmap.org and contributors.

Bottom-Up traffic emission modelling chain

Giovanni Lonati

Bottom-Up vs Top-down emission estimates

Gridded annual emissions NOx (tons year⁻¹) for the traffic sector in the city of Milan

Giovanni Lonati

Bottom-Up vs Top-down emission estimates

Gridded annual emissions PM10 (tons year⁻¹) for the traffic sector in the city of Milan

Giovanni Lonati

Bottom-Up vs Top-Down emission estimates

Annual emissions (tons year⁻¹) for the private and public traffic sector in the city of Milan

		Top-down	Difference				
	Private traffic	Public traffic	Total road traffic	Public/Total traffic ratio	Total road traffic	Absolute	%
SO ₂	7.88	0.34	8.22	4.13 %	8.58	-0.35	-4.12
NH ₃	47.83	0.15	47.98	0.31 %	56.50	-8.53	-15.09
NOx	3966.21	382.11	4348.32	8.79 %	4394.09	-45.77	-1.04
VOC	1534.43	14.89	1549.33	0.96 %	1508.72	40.61	2.69
PM10	425.46	23.03	448.50	5.14 %	299.14	149.36	49.93
ос	65.84	2.00	67.84	2.95 %	48.90	18.95	38.74
PM2.5	258.40	13.42	271.82	4.94 %	219.68	52.14	23.74

Giovanni Lonati

Bottom-Up vs Top-Down emission estimates

Annual emissions (tons year⁻¹) for the private and public traffic sector in the city of Milan

	Bottom-up				Top-down	Difference	
	Private traffic	Public traffic	Total road traffic	Public/Total traffic ratio	Total road traffic	Absolute	%
SO ₂	7.88	0.34	8.22	4.13 %	8.58	-0.35	-4.12
NH3	47.83	0.15	47.98	0.31 %	56.50	-8.53	-15.09
NOx	3966.21	382.11	4348.32	8.79 %	4394.09	-45.77	-1.04
VOC	1534.43	14.89	1549.33	0.96 %	1508.72	40.61	2.69
PM10	425.46	23.03	448.50	5.14 %	299.14	149.36	49.93
ос	65.84	2.00	67.84	2.95 %	48.90	18.95	38.74
PM2.5	258.40	13.42	271.82	4.94 %	219.68	52.14	23.74

Giovanni Lonati

Bottom-Up vs Top-Down emission estimates

Annual emissions (tons year⁻¹) for the private and public traffic sector in the city of Milan

		Bottom-up				Top-down	Difference	
		Private traffic	Public traffic	Total road traffic	Public/Total traffic ratio	Total road traffic	Absolute	%
	NOx	3966.21	382.11	4348.32	8.79 %	4394.09	-45.77	-1.04
\Rightarrow	PM10	425.46	23.03	448.50	5.14 %	299.14	149.36	49.93

Giovanni Lonati

Conclusions

- ✓ The high resolution of traffic data allowed to precisely reconstruct the main features of the emission spatial distribution over the urban area
 - LEZ presents lower emissions from private traffic compared with the surrounding areas thanks to a cleaner vehicle fleet and lower traffic volumes
- Bottom-up emission estimates in agreement with top-down inventory data for gases
 PM10 emissions estimated by bottom-up are 49% higher than the top-down inventory thanks to the inclusion of resuspension
- ✓ Bottom-up modelling chain input slightly improved PM10 simulation results compared with the top-down approach, lowering the underestimation of observed values
 - a better spatialization of emissions and inclusion of dust resuspension are the main reasons for these improvements

Conclusions

Improvement in PM10 simulation results

Giovanni Lonati

Conclusions

Improvement in PM10 simulation results

Giovanni Lonati

Final remarks

- The BU approach provided several advantages compared to the standard TD approach: better <u>spatialization</u> of emissions, higher <u>level of control</u> of every step of the process, as updated <u>emission factors</u>, vehicle <u>fleet composition</u>, traffic <u>temporal profiling</u>
- The <u>flexibility</u> of the modelling chain is crucial to simulate the impacts of <u>mobility policies</u>: reduction of traffic flows promoted by *behavioural changes*, the implementation of *Zero Emission Zones* or city-wide *low-speed limits*
- Inclusion of resuspension is a strength point of the BU emission model, as the future of road traffic is headed towards <u>electric vehicles</u> whose weight could lead to <u>lower reductions</u> of primary PM emissions
- ✓ Access to <u>traffic data</u> is the main limitation of BU approach, as refined road traffic data is usually challenging to acquire
- ✓ **Correction factor** for dust resuspension assessment to be defined based on local studies

Thanks for you attention

Giovanni Lonati