

The toxicology and functional impact of ultrafine particles on the respiratory mucosa evaluated in a primary cell based air-liquid interface model

Totta Ehret Kasemo¹, Mathilde Delaval², Anusmita Das^{2,3}, Elias Zimmermann^{2,3}, Jana Panzke², Anja Huber², Johannes Becker^{2,3}, Svenja Offer², Evelyn Kuhn², Seongho Jeong^{2,3}, Maria Steinke^{1,4}, Helena Moratin¹, Martin Sklorz^{2,3}, Ralf Zimmermann², Agmal Scherzad¹, Stephan Hackenberg¹, Sebastiano Di Bucchianico^{2,3}, **Till J. Meyer**¹

University Hospital Würzburg, Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Wuerzburg, Germany
Helmholtz Zentrum München, Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Neuherberg, Germany
University of Rostock, Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, Rostock, Germany
Fraunhofer Institute for Silicate Research ISC, Wurzburg, Germany

Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen Direktor: Prof. Dr. S. Hackenberg

Respiratory mucosa

Respiratory mucosa

How to get the best respiratory mucosa model? Uniklinikum Würzburg

How to get the best respiratory mucosa model? Uniklinikum Würzburg

Primary cell based respiratory mucosa model

Uniklinikum Würzburg

Ultrastructure of the models by TEM

Apical cell culture based on epithelial cells isolated from nasal mucosa biopsies and cultured for a minimum of 26 days at ALI

PET membrane

Autolog fibroblasts

Source of donor tissue?

Disadvantages

- Donor variance
- Donor bias (Disease as indication for surgery)
- Low passaging capability
- Access to primary tissue necessary

Advantages

- Donor variance
- High in vitro in vivo correlation
- Functionality
- Morphology
- Physiology (mucus)
- Possibility for disease specific models
- Personalized medicine

Use of primary cells – an advantage?

Lodes, et. al.; 2020

Use of primary cells – an advantage?

Lodes, et. al.; 2020

Use of primary cells – an advantage?

RNAsec of the respiratory mucosa models

Considerations in model establishment Patient material – how heterogenous is it?

Characterization of the interaction between UFP and cells of the respiratory tract in an **offline** experiment

Using **standardized** ultrafine particles **Carbon Black - Printex 90**

BAYERISCHER PROJEKTVERBUND ULTRAFEINE PARTIKEL

BAY

UFP

Characterization of the interaction between UFP and cells of the respiratory tract in an **online** experiment

Use **live generated** particles by partners with clear characterization **Propane combustion**

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

UFP characterization, Carbon Black – Printex 90 Uniklinikum Würzburg

- Particle size like expected
- Particle agglomerates in dispersion, more agglomerates in cell culture medium

Cytotoxicity after Carbon Black exposition

DNA-damage after Carbon Black exposition

- No genotoxic response at investigated timepoints
- Donor tendencies (repair?)

Uniklinikum Würzburg

Uniklinikum

Cytokine release after Carbon black exposition

Uniklinikum

Barrier integrity after Carbon Black exposition

Uniklinikum

Characterization of the interaction between UFP and cells of the respiratory tract in an **offline** experiment

Using **standardized** ultrafine particles **Carbon Black - Printex 90**

BAYERISCHER PROJEKTVERBUND ULTRAFEINE PARTIKEL

BAY

UFP

Characterization of the interaction between UFP and cells of the respiratory tract in an **online** experiment

Use **live generated** particles by partners with clear characterization **Propane combustion**

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

UFP online exposition in Munich

Involved partners in Munich

- Anja Huber
- Anusmita Das
- Elias Zimmermann
- Evelyn Kuhn
- Jana Pantzke
- Johannes Becker
- Martin Sklorz
- Mathilde Delaval
- Mohammad Almasaleekh
- Ralf Zimmermann
- Sebastiano Di Bucchianico
- Seongh Jeong
- Svenja Offer

Online exposures – compatible with commercial inserts

Online generated UFP-particles

- Particle size peak ~45 nm

Morphology of the "low OC"-particles

LDH release 2 hours after UFP online exposition Uniklinikum Würzburg

Created in BioRender.com bit

DNA-damage 2 h after UFP online exposition

Uniklinikum Würzburg

Uniklinikum Würzburg

Oxidative stress 2 h after UFP online exposition Uniklinikum U

Barrier integrity after UFP online exposition

Cytokine release after UFP online exposition

Uniklinikum Würzburg

Uniklinikum

Summary – UFP and respiratory mucosa models ^{Uniklinikum} U

- Primary cell based respiratory mucosa models
 - High morphological *in vivo in vitro* correlation
 - High functional relevance (ciliary beat, mucus)
 - Potential regeneration capacity
 - Long-term studies plausible
 - Established in complex exposure scenarios
- Effects of UFP on respiratory mucosa models
 - Minor effects on barrier and cell membrane integrity
 - No evidence for severe acute cytotoxicity or genotoxicity
 - In parts non-concentration dependend effects
 - Donor specific reactions

Zilier

ENT clinic Prof. Dr. S. Hackenberg Prof. Dr. A. Scherzad Dr. T. Ehret Kasemo Dr. H. Moratin

Cooperation partner Dr. M. Steinke – Fraunhofer ISC Dr. S. Dembski – Fraunhofer ISC M. Oppmann – Fraunhofer ISC Prof. Dr. S. Schmitz-Spanke – FAU Erlangen R. Alsaleh – FAU Erlangen C. Kersch – FAU Erlangen Prof. Dr. P. Hense – Hochschule Bochum

Helmholtz Munich Prof. Dr. R. Zimmermann Dr. S. Di Bucchianico Dr. M. Delaval A. Huber A. Das E. Zimmermann Dipl.-Ing. E. Kuhn Dr. J. Pantzke J. Becker Dr. M. Sklorz M. Almasaleekh S. Jeong Dr. S. Offer