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Abstract—Workplace Charging Stations (CSs) are well-suited 
to improve grid stability by scheduling the charging process 
over the parking duration and thereby reducing the peak load. 
Therefore, the energy demand and parking duration of single 
charging sessions must be known as well as the future occupancy 
of the CS. Since user IDs are often unknown for privacy reasons, 
this paper investigates how these parameters can be predicted for 
future charging events. The charging behavior is examined for its 
characteristic features, such as location, arrival, and departure 
times. First, calendar, weather, lag and CS-specific f eatures are 
implemented and used to train nine different machine-learning 
algorithms. For the observed data, the Random Forest Regressor 
yields the best results for parking duration and energy demand. 
For parking duration, a 33.7% improvement in Mean Absolute 
Percentage Error (MAPE) over the baseline (the mean parking 
duration) can be achieved. The MAPE of the parking duration 
forecast is 71.0% and for the energy demand, it is 84.0% which 
leads to the conclusion that without the knowledge of user IDs 
predicting the charging behavior of users is possible only to a 
limited extent.

ABBREVIATIONS

CS Charging Station
EMS Energy Management System
EV Electric Vehicle
GB Gradient Boosting
GBR Gradient Boosting Regressor
LGBM Light Gradient-Boosting Machine
Lin.-Reg. Linear Regression
Log.-Reg. Logarithmic Regression
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
NN Neural Network
Quant.-Reg. Quantile Regression
RF Random Forest
RMSE Root Mean Squared Error
RT Regression Tree
SVM Support Vector Machine
XGB eXtreme Gradient Boosting

grown. Many countries are increasingly relying on decen-
tralized renewable energy generation, such as photovoltaic
systems. The additional load on the power grid caused by
the charging infrastructure and the volatile power generation
of renewable energies present challenges for grid stability.
With the help of smart Energy Management Systems (EMSs),
load peaks of CSs can be avoided by scheduling the charging
load over the entire parking duration. CSs at workplaces
are very suitable for this problem, as vehicles are usually
parked for the entire working day. Therefore, many studies
have focused on the optimization of charging infrastructure
at workplaces [1]–[5]. For smart charging the energy demand
and the parking duration of single charging sessions must be
known as well as the future occupancy of the CS. Since user
IDs are often unknown for data protection reasons, it is not
possible to forecast individual charging profiles per user. The
remainder of this paper is organized as follows: Related work
is discussed and the contributions of the present paper are
pointed out. Afterward, the dataset is analyzed and the method
for generating the forecasting models is explained. Finally, the
results and conclusions of this study are presented.

II. RELATED WORK

Existing research (cf. Table I) on the forecasting of CSs
differs mainly in the forecasted parameters, and the use of user
IDs while applying different forecasting models. Using user-
specific information, Frendo et al. [6] compare different re-
gression models to forecast the parking duration for employee
parking based on historical data and optimize prioritization
for smart charging. The dataset contains anonymized user
IDs, so that driver-specific behavior can be identified. User-
specific data is also used in the approaches of Schwenk et al.
[8] and Huber et al. [7], which predict the parking duration
per individual driver for different locations. Chung et al.
[9] predict both the parking duration and energy demand of
charging processes, thereby considering user IDs. Similarly,
Almaghrebi et al. [10] predict the energy demand using user-
specific information. Most approaches that do not use user-
specific information predict the occupancy of CSs [12]–[16].
Only Arias et al. [11] forecast the energy demand based on
historic traffic and weather data and the state of charge at the
beginning of the charging process.

I. INTRODUCTION

In recent years, the number of Electric Vehicles (EVs) 
and the associated charging infrastructure have constantly



TABLE I: Literature comparison of forecasted parameters and used forecasting model

Reference User-ID Forecasted parameters Used forecasting model

[6] ✓ Departure time eXtreme Gradient Boosting (XGB)

[7] ✓ Parking duration, driving distance Quantile Regression (Quant.-Reg.)

[8] ✓ Parking duration, departure time Random Forest (RF)

[9] ✓ Parking duration, Energy consumption Support Vector Machine (SVM), Random Forest (RF)

[10] ✓ Energy consumption Gradient Boosting Regressor (GBR), Random Forest (RF),

Support Vector Machine (SVM)

[11] Energy consumption Support Vector Machine (SVM)

[12] Occupancy Linear Regression (Lin.-Reg.)

[13] Occupancy Logarithmic Regression (Log.-Reg.)

[14] Occupancy Logarithmic Regression (Log.-Reg.)

[15] Occupancy eXtreme Gradient Boosting (XGB), Random Forest (RF),

Gradient Boosting Regressor (GBR), Support Vector Machine (SVM)

[16] Occupancy Regression Tree (RT), Neural Network (NN),

Support Vector Machine (SVM)

The contributions of the present paper are the analysis of
typical workplace charging behavior, the comparison of CS
forecasting models, and the examination of the limitations of
predicting charging behavior when user IDs are not available.
For this purpose, the amount of energy charged, parking
duration, and occupancy are considered simultaneously in
comparison to the comparable literature. In addition, we
investigated how in the present use case clustering can improve
the forecasts.

III. CHARACTERISTICS OF WORKPLACE CHARGING

The forecasting models are based on charging data from the
corporate parking lot of a German automotive supplier. The
data, which covers approximately 16,000 charging sessions,
was collected during the year 2022 from five different sites and
twelve CSs, some of which are only accessible to employees
(non-public). The information available for each charging
session includes the site, CS-ID, start time, end time, and
energy demand.

Table II lists the properties and statistics of the charging
data including the median, the mean value, and the standard
deviation for each CS. The individual CSs are divided into
non-public and public. It should be mentioned that the standard
deviation of the parking duration for some CSs is very high
compared with the corresponding median and mean values.

Fig. 1 shows the proportion of start and end times (in
percent) over the entire week (Monday - Sunday) of the
charging sessions of the individual CSs. On the one hand, it
can be seen that the start times are around 8:00-9:00 am local
time, and the end times are very pronounced at workplaces
and the curves show similarities.

The start and end times result in the parking durations,
whose weekly distribution is shown as heat maps for two typi-
cal CSs in Fig. 2 according to the start time. As expected, there
are no charging processes at the non-public charging station
(Fig. 2a) on the weekend. A large proportion of the charging

sessions last approximately 300 minutes (part-time employees)
and 600 minutes (full-time employees) with an arrival time
between 8:00-9:00 local time (typical for employees). With
CS 4 (Fig. 2b), on the other hand, the charging sessions are
more widespread over the day, considerably shorter, and also
occur on weekends.

CSs can be grouped by similar parking duration distribu-
tions which leads to three clusters:

Parking duration cluster 1:
• Mostly charging sessions shorter than 300 min (Fig. 3a,

bottom)
• Public CSs
• CS-IDs: 3, 4, 5, 12

Parking duration cluster 2:
• The majority of charging sessions last between 500 and

650 min. (Fig. 3a, center). This suggests that there were
many full-time workers.

• Public and non-public CSs
• CS-IDs: 1, 7, 8, 9, 10, 11

Parking duration cluster 3:
• A distribution with two peaks, one at approximately

200 min and one around 600 min, suggests a mixture
of part-time and full-time workers (Fig. 3a, top).

• Non-public CSs
• CS-IDs: 2, 6

In comparison, it can be seen that the distribution of the
charged energy (Fig. 3b) varies slightly among the same CSs.
The most common values are between 10-11 kWh.

IV. METHODOLOGY

The aim is to create forecasting models for the parking
duration and energy demand of individual charging sessions.
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Fig. 1: Proportion of start (top) and end (bottom) times (in percent) over the entire week (Monday - Sunday) of the charging
sessions of the individual CSs
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(a) CS-ID 2 of parking duration cluster 3
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(b) CS-ID 4 of parking duration cluster 1

Fig. 2: Distribution of the parking duration depending of the start time of the charging session per weekday

In addition, a forecasting model will be developed for the oc-
cupancy of a selected CS with eight charging points. After data
cleaning and feature engineering, the best-performing models
are selected. Subsequently, the influences of the features are
analyzed and cluster-specific models for optimized forecasting
are investigated. These steps are explained below.

A. Data Cleaning
During the cleaning process, charging sessions shorter
than 15 min and sessions longer than 24 hours are
removed because both are not relevant for load shifting.
In addition, sessions with unrealistically high charged
energy and charging power as well as charging sessions

with less than 1 kWh of charged energy were removed
because of implausibility. After cleaning the dataset ap-
proximately 15,800 charging sessions remain.

B. Feature Engineering
The features can be categorized into date-time features
(time of day, weekday, month, calendar week), calendar
features (holidays, school holidays, bridge days, boolean
if the next day is a holiday), weather features (tempera-
ture, humidity, and wind speed), and CS specific features
(site ID, CS ID, charge point ID, nominal power, publicly
accessible). For the occupancy model, additional lagged
features of up to one week from the past are used.
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(a) Charging duration distributions.
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(b) Charged energy distributions.

Fig. 3: Distributions of representative CSs from the different parking duration clusters: Charging duration cluster 1 (bottom),
charging duration cluster 2 (center), charging duration cluster 3 (top)

TABLE II: Statistical data of the charging characteristics per CS based on the whole dataset

Parking Duration Charged Energy

CS-ID Public /
Non-Public

Number
Charging
Processes

Median
Parking
Duration

(min)

Mean
Parking
Duration

(min)

Standard
Deviation

Parking Duration
(min)

Median
Charged
Energy
(kWh)

Mean
Charged
Energy
(kWh)

Standard
Deviation

Charged Energy
(kWh)

1 Non-Public 527 558 471.71 198.11 11.85 13.82 13.24
2 Non-Public 4004 381 414.11 267.24 10.43 13.86 11.15
3 Public 417 200 233.53 167.47 11.34 15.78 11.32
4 Public 983 200 278.99 251.70 10.94 16.06 12.51
5 Public 813 232 295.81 201.10 10.70 14.85 12.78
6 Non-Public 913 455 426.17 197.03 10.80 14.45 13.53
7 Non-Public 1817 522 479.83 190.94 10.75 15.57 12.19
8 Public 1306 523 479.91 141.78 9.78 14.62 10.64
9 Public 1752 496.5 450.70 155.22 11.89 18.52 14.43

10 Non-Public 347 476 438.36 166.79 11.36 19.81 16.99
11 Public 2354 498 437.07 177.29 11.05 17.36 14.36
12 Public 575 197 437.10 448.76 9.53 11.59 7.82

Total 15808 452.5 419.31 231.13 10.72 15.48 12.71

C. Training
For training a train-test-split of 80/20 is applied and the
loss function is the Root Mean Squared Error (RMSE).
In the case of time series data for the occupancy forecast,
the last 20% of the time series is used for validation. The
model-specific hyperparameters are optimized with the
training data using Bayesian Optimization with a 5-fold-
cross-validation.

D. Model Selection
In total, nine different machine learning models and two
baseline models, within three different scope variables
(parking duration, energy, and occupancy) are compared.

Each model is optimized using hyperparameter optimiza-
tion. For the parking duration and energy demand, the
mean and median values are used as baseline models.
The baseline model for the occupancy is the occupancy
of the previous week. The model that performed best on
the RMSE is selected for further analysis.

E. Analysis 1: Detailed feature analysis
In this step, the selected model is trained with combi-
nations of feature sets. For each feature set, the model
parameters are optimized using hyperparameter optimiza-
tion.



F. Analysis 2: Evaluation of data clustering for forecast
optimization
As mentioned previously, the CSs have different charging
patterns. It is tested whether creating cluster-specific
models can improve forecasting results. Therefore, each
cluster was grouped according to whether the stations are
private or public. The other two clustering categories are
the parking duration clusters and CS specific models.

V. RESULTS

First, the results for the parking duration and the charged
energy are presented. The best model is further used to
investigate the influence of features and clustering. Afterward,
as the only time-series forecast, the results of the occupancy
are shown.

A. Model comparison for parking duration and energy de-
mand

The model comparison (Table III) shows that the Random
Forest model performs best for the parking duration and the
energy demand forecast in terms of the RMSE, followed by
the Light Gradient-Boosting Machine (LGBM) model. For the
parking duration, a MAPE of 72.6% is achieved, which cor-
responds to a Mean Absolute Error (MAE) of 135.3 min. The
rather simple Linear Regression and Bayesian Ridge models
achieve the worst results but still achieve better predictions
than the base models.

For the energy demand, the Random Forest model achieved
the best RMSE of 12.4 kWh. It must be emphasized, that the
median baseline model is the best in terms of MAPE and
MAE. This shows that the models were optimized for the
RMSE.

In Fig. 4 the forecasted parking duration is compared to
the mean and the actual observed parking duration. It can be
observed that the algorithms can follow the curve with certain
deviations for short and long parking durations.
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Fig. 4: Forecasting results for the parking duration of the test
dataset with the Random Forest model

B. Feature comparison

By subsequently adding feature sets, it is possible to
examine how the forecasting results change depending on
the features. Because date-time features are cyclic, they can
be converted into a cyclic representation using sine-cosine
encoding. The results of the parking duration forecast (Ta-
ble IV), which can also be transferred to the energy demand
forecast, show that the algorithm works slightly better with
the non-cyclic features. Furthermore, it can be seen that the
weather features have no positive effect on the forecast and
are therefore not used for further considerations.

C. Clustering

The aim is to investigate which forecasts can be improved if
specific models are developed for similar CS. For this purpose,
the Random Forest model with the continuous, calendar, and
CS features is trained for the following specific grouped CSs
and compared to the model that was trained on all station data:

• One model for each CS.
• One model for each parking duration cluster from Chap-

ter III.
• Separate models for public and non-public CSs.
It can be observed that clustering generally only has a minor

influence on the predictions (Table V). This means that the
Random Forest model can learn relevant clusters from the
entire dataset.

If a separate model is created for each CS, no improvement
can be achieved compared to the universal model for all CS
or the other clusters (Fig. 5). In the case of CS 1 and 8 the
CS-specific model performs worse than the other models.
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Fig. 5: Forecasting results for the parking duration of the
test data set applying the described cluster variants using the
Random Forest models evaluated for the individual CSs

D. Occupancy forecasts

Based on the session data, the occupancy of CS 2 with eight
charge points is calculated and converted to a time-series with



TABLE III: Model comparison of the forecasting results of the test data for parking duration, energy consumption and occupancy

Parking duration Charged energy Occupancy

Modell MAPE
(%)

MAE
(min)

RMSE
(min)

MAPE
(%)

MAE
(kWh)

RMSE
(kWh)

MAE
(%)

RMSE
(%)

Linear Regression 85.3 162.7 223.3 90.3 9.34 12.93 10.41 15.96
Decision Tree 73.4 142.0 204.7 88.1 9.16 12.81 8.46 16.21
Gradient Boosting Regressor 73.8 137.4 194.1 84.3 8.81 12.42 7.54 14.20
LGBM Regressor 73.7 137.6 193.9 84.2 8.78 12.41 7.25 13.98
XGBoost 73.9 137.9 197.0 84.4 8.83 12.45 7.45 13.68
Random Forest 72.6 135.3 193.4 84.0 8.78 12.40 7.25 14.20
Bayesian Ridge 85.4 162.9 223.4 90.4 9.35 12.93 10.41 15.97
Support Vector Machine 73.6 149.3 208.6 90.8 9.39 12.80 9.62 17.94
MLP Regressor 83.1 156.0 214.6 87.3 9.19 12.89 9.17 17.48
Baseline Mean 106.3 192.3 235.6 93.5 9.51 13.09
Baseline Median 113.9 190.1 236.4 57.5 8.27 13.98
Baseline Last week 9.18 17.46

TABLE IV: Comparison of the forecasting results of the test
dataset depending on different feature sets for the parking
duration with Random Forest

Features MAPE MAE RMSE

Date-time Calendar CS Weather (%) (min) (min)

Continuous 84.9 159.7 219.6

Continuous ✓ 84.1 158.9 219.1

Continuous ✓ ✓ 71.0 130.9 190.3

Continuous ✓ ✓ ✓ 72.2 134.8 193.3

Cyclic 84.5 159.4 219.4

Cyclic ✓ 84.4 159.4 219.3

Cyclic ✓ ✓ 71.9 132.3 190.8

Cyclic ✓ ✓ ✓ 72.6 135.3 193.4

15 min intervals. In addition, lagged features are added that
contain the values of the same time interval of the past days, as
well as their mean values. Since the charging behavior during
Christmas time differs a lot from normal charging behavior
and there is only one year available the last week of the year
2022 was excluded. After the forecast, in post-processing, the
forecasts are rounded to multiples of 12.5%. Comparing the
forecasting models, XGBoost performed best in terms of the
RMSE (Table III) with a 2% better MAE than the baseline
model - the occupancy of the week before. On average, the
forecast is off by less than one occupied charger, with an MAE
of 7.25%. But this analysis also includes weekends and night
times, which are easier to predict. The plot of the forecasts
(Fig. 6) demonstrates, that the algorithm was able to learn that
there are no charging events on weekends. However, it failed to
learn the characteristics of holidays (e.g. November 1st, 2022).

VI. CONCLUSION AND OUTLOOK

This paper deals with the feasibility of predicting the
charging behavior of EVs at workplace CSs which includes
the parking duration and required energy per EV and the
occupancy of the entire CS. These findings are important for
the design and operation of CSs. The data set consists of
anonymous charging sessions of one year providing the arrival
and departure times and the amount of energy charged.

First, the charging data from different locations is processed
and their characteristics are examined. Furthermore, various
common machine learning algorithms are systematically ap-
plied to the dataset and their suitability is assessed. Our
findings indicate that meteorological features have minimal
impact, even resulting in a decline in the results. The lack of
user-specific data posed a major challenge for the forecast, as
it is not possible to differentiate between part-time and full-
time employees.

Therefore, further studies should investigate how the re-
sults can be improved using user-specific data. Furthermore,
it should be investigated how the importance of features,
such as public holidays, changes when the dataset covers a
longer period. We recommend investigating the influence of
incentivizing users to specify the departure time to improve
the precision of the forecast.
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TABLE V: Results of cluster-specific models and model trained by all data (in brackets) of the test data with Random Forest

Parking duration Energy Demand

Cluster MAPE (%) RMSE (min) MAE (min) MAPE (%) RMSE (kWh) MAE (kWh)

Public 62.5 (64.4) 172.1 (172.6) 118.3 (118.5) 85.1 (85.8) 12.07 (12.11) 8.97 (9.0)

Non-public 67.8 (66.3) 187.2 (185.0) 138.6 (137.2) 73.4 (74.0) 11.34 (11.35) 7.44 (7.49)

Parking duration cluster 1 133.5 (131.2) 254.4 (252.5) 169.5/(166.6) 90.1 (89.4) 11.08 (11.02) 8.18 (8.14)

Parking duration cluster 2 42.8 (44.5) 145.3 (145.8) 102.6 (104.3) 86.0 (87.0) 12.17 (12.16) 9.01 (9.10)

Parking duration cluster 3 88.2 (89.5) 217.0 (214.5) 157.0 (156.4) 65.3 (66.5) 10.65 (10.65) 6.56 (6.66)
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Fig. 6: Forecasted occupancy for the test period with XGBoost
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