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Abstract: Algeria, the main fire hotspot on the southern rim of the Mediterranean Basin, lacks a
complete fire dataset with official fire perimeters, and the existing one contains inconsistencies.
Preprocessed global and regional burned area (BA) products provide valuable insights into fire
patterns, characteristics, and dynamics over time and space, and into their impact on climate change.
Nevertheless, they exhibit certain limitations linked with their inherent spatio-temporal resolutions
as well as temporal and geographical coverage. To address the need for reliable BA information in
Algeria, we systematically reconstructed, validated, and analyzed a 40-year (1984–2023) BA product
(NEALGEBA; North Eastern ALGeria Burned Area) at 30 m spatial resolution in the typical Mediter-
ranean ecosystems of this region, following international standards. We used Landsat data and the
BA Mapping Tools (BAMTs) in the Google Earth Engine (GEE) to map BAs. The spatial validation
of NEALGEBA, performed for 2017 and 2021 using independent 10 m spatial resolution Sentinel-2
reference data, showed overall accuracies > 98.10%; commission and omission errors < 8.20%; Dice
coefficients > 91.90%; and relative biases < 3.44%. The temporal validation, however, using MODIS
and VIIRS active fire hotspots, emphasized the limitation of Landsat-based BA products in temporal
fire reporting accuracy terms. The intercomparison with five readily available BA products for 2017,
by using the same validation process, demonstrated the overall outperformance of NEALGEBA.
Furthermore, our BA product exhibited the highest correspondence with the ground-based BA esti-
mates. NEALGEBA currently represents the most continuous and reliable time series of BA history
at fine spatial resolution for NE Algeria, offering a significant contribution to further national and
international fire hazard and impact assessments and acts as a reference dataset for contextualizing
future weather extremes, such as the 2023 exceptional heat wave, which we show not to have led to
the most extreme fire year over the last four decades.
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1. Introduction

Fire is an intrinsic process of the Earth’s system [1], which is projected to increase
in burned areas (BAs) owing to climate change and escalating anthropogenic effects [2].
Among all forest disturbances, fire is the major forest destructive agent in the Mediterranean
Basin [3], where heat wave-related fires may increase in the future [4]. When looking across
the African side of the Mediterranean Basin, Algeria is the main fire hotspot [5]. Throughout
history, this country has witnessed an unprecedented series of large extreme fires [6], with
a record-breaking heatwave in the summer of 2023, which affected ecological and socio-
economic assets [7,8], even resulting in human casualties. These fires may seriously degrade
forest habitats in this country, a large part of which may not be restored [9]. However,
accurate and spatially explicit BA data about this region, as in several Middle Eastern and
North African countries, are scarce or even lacking [10].

Remote sensing has become the most efficient tool for addressing all fire management
aspects, including the generation of BA products [11]. Unlike ground-based fire datasets
that are often biased, incomplete or exhibit inconsistencies [12–14], satellite-derived BA
products provide spatially and temporally consistent and reliable information about fires
on regional and global scales [15]. In practice, several pixel-level BA products have been em-
ployed in a wide range of research works, including global fire trends [16], characterization
of fire regimes [17,18], climate impact on fire patterns [19,20], fire emission modeling [21]
and fire model benchmarking [22], and to derive global databases of single fire events [23].

Early global BA products were based on the coarse resolution data from the SPOT-
VGT, ERS2-ATSR2, ENVISAT-AATSR, NOAA-AVHRR, PROBA-V, and MODIS sensors [15].
In the last few years, major efforts have been made to develop comprehensive global
and regional BA products, according to two major programs: the ESA Fire Disturbance
Climate Change Initiative (FireCCI) and the NASA MODIS Land Science Team. The current
global BA products from the ESA FireCCI project include FireCCI51 (2001–2020; 250 m),
which derives from the MODIS surface reflectance imagery coupled with thermal anomaly
observations [24]; FireCCILT11 (1982–2018; 5 km) from AVHRR LTDR [25], including new
developments; and sensors as in FireCCIS310 (2019; 300 m) from Sentinel-3 SYN coupled
with VIIRS active fire hotspots [26]. Perspectives with newly delivered medium-resolution
sensors have been evaluated regionally, such as FireCCISFD11 and FireCCISFD20 (2016
and 2019, respectively; 20 m) from the Sentinel-2 MSI coupled with the active fire data
for sub-Saharan Africa [27,28]. On the other hand, MCD64A1 collection 6.1 (2000–present;
500 m) is NASA’s current standard global BA product, which derives from MODIS daily
surface reflectance imagery combined with MODIS active fire data [29].

Other available coarse-resolution products from different agencies include the Coper-
nicus Climate Change Service Burned Area product, version 1.1 (C3SBA11) (2017–2022;
300 m) from Sentinel-3 OLCI data [30], and the European Forest Fire Information System
(EFFIS) BA product (2000–present; 250 m and 20 m) from the MODIS and Sentinel-2 im-
agery [31]. Additional efforts have been made to provide finer-resolution BA products—a
major end-user request [32]. Landsat-based BA mapping includes the novel 30 m resolution
Global Annual Burned Area Maps (GABAM 1985–2019; 30 m), which derived from the
Landsat dense time-series data by means of a global automated BA mapping approach [33]
in the Google Earth Engine (GEE) [34]. In the same context, albeit with limited spatial
coverage, other products include the Monitoring Trends in Burn Severity (MTBS 1984–2022;
30 m) across the whole of the U.S. [35], and the Landsat Collections 1 and 2 BA products
for CONUS (1984–2022; 30 m) [36].

Although freely accessible to the scientific community with widespread use on differ-
ent spatio-temporal scales, the above-mentioned BA products exhibit certain limitations.
These are mainly caused by the inherent coarse spatial resolution that results in very high
omission rates of small burned patches [27,28,37–39], particularly in the Mediterranean
Basin where smaller fires happen [10,40], poor temporal fire reporting accuracy to prevent
a fire seasonality analysis [33], and limited spatio-temporal coverage [35,36], which restrict
their usage in other areas of the globe.
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In Algeria, the available ground-based fire dataset provides invaluable information
that can hardly be obtained by satellite-based systems. This includes, among others, the
exact date and time of ignition/intervention/extinction, burned vegetation type and species,
origin, and causes of fires. Nevertheless, this dataset is acknowledged to be incomplete,
lacks fire perimeters, and displays discrepancies in fire extent terms. This is attributed
to the visual estimation of fire-affected areas, which is often conservative, especially in
inaccessible areas. Furthermore, a standardized BA estimation protocol across local forest
services in the country is lacking.

Considering these limitations in both national statistics and the performance of ex-
isting BA datasets, the development of a reliable and long-term BA product for such an
insufficiently investigated part of the Mediterranean Basin would strengthen future re-
search into forest management plans and for understanding Mediterranean fire hazards
in this southern part of the Mediterranean Basin [5,13]. This would allow for accurate
in-depth analyses of the fire regime over lengthy periods, and for us to learn the factors
that underlie fire occurrence and propagation in this region with a Mediterranean climate,
but with substantial socio-economic and political differences compared to the more-studied
Euro-Mediterranean side.

In recent years, several BA-mapping approaches have been developed for different
study regions using medium-resolution data [41,42], including the BA Mapping Tools
(BAMTs) [43]. By leveraging the powerful capabilities of the GEE’s cloud computing
platform [34], the BAMTs constitute not only a significant stride as innovative, time-efficient,
and resource-conserving tools for accurate multi-year BA mapping [10,39] but also the
creation of independent reference data for validation exercises [44–46].

Based on these premises, we aim to exploit these efficient tools for systematically
reconstructing the fire history in NE Algeria. Specifically, we (1) generate a BA product
from the Landsat Collection-2 Surface Reflectance (LC2SR) product covering the 1984–2023
period; (2) assess its spatio-temporal consistency; and (3) provide pieces of evidence for a
significantly revised BA estimate compared to existing BA products (GABAM, FireCCI51,
C3SBA11, MCD64A1, and EFFIS) and a ground-based fire dataset. This work constitutes the
mandatory initial step for creating a spatially explicit BA database following international
standards for the whole of Algeria to further open a major research field for fire hazard,
impacts, and vulnerability assessments that lead to firefighting and fire management
policies [47].

2. Material and Datasets
2.1. Study Area

The study area is in NE Algeria, on the southern rim of the Mediterranean Basin, and
spans longitudes from 3.71◦E to 8.68◦E and latitudes from 36.21◦N to 37.08◦N. The total
study area covers 17,036 km2. It includes the coastal “Wilayas” (administrative provinces)
of Annaba, Béjaïa, El-Tarf, Jijel, Skikda, and Tizi Ouzou in a narrow strip that stretches
440 km in length and up to 96 km in depth, with altitudes ranging from m.s.l. to 2291 m
(Figure 1a,b). Landscapes are typically Mediterranean, dominated by forests, shrubs, and
grasslands, where the mean annual rainfall varies from 725 to 924 mm (Figure 1c and
Table 1). The main forest types are composed of oaks, such as cork-oak (Quercus suber L.),
Algerian oak (Quercus canariensis Willd.), African oak (Quercus afares Pomel.), and holm
oak (Quercus ilex L.), and of conifers, such as maritime pine (Pinus pinaster Aiton.), Aleppo
pine (Pinus halepensis Miller.), and Atlas cedar (Cedrus atlantica (Endl.) Carrière.). Our
study area is acknowledged as being one of the regional plant biodiversity hotspots in
the Mediterranean Basin [48]. It harbors the densest, richest, and most pristine forest
ecosystems, which are reflected in four National Parks (Djurdjura, Gouraya, Taza, and
El-Kala) that form part of the UNESCO World Network of Biosphere Reserves (WNBR) [49].
However, this region experiences the highest incidence of fires in the country [50,51] owing
to high fuel availability, extreme climate conditions in summer (prolonged drought and
Saharan heat waves) and increasing anthropogenic activities [5].
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Table 1. Total land area and natural vegetation type areas and mean annual rainfall (P) in the six 
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Vegetation/Wilaya P (mm) ** 
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Annaba 1411.52 609.40 80.74 235.47 0.66 825 
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El-Tarf 2885.32 1420.59 157.65 601.80 0.76 792.6 

Jijel 2397.22 1437.11 61.75 693.88 0.91 924.1 
Skikda 4146.60 1924.21 295.43 1096.41 0.80 725 

Tizi Ouzou 2969.21 1661.12 133.80 727.29 0.85 913 
* Based on the ESA WorldCover 2021 map [52], ** data from the National Meteorological Office 
(ONM). 
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Figure 1. (a) Location of the study area (NE Algeria) in the Mediterranean Basin; (b) land use
cover (source: © ESA WorldCover project 2021/Contains modified Copernicus Sentinel data (2021)
processed WorldCover consortium [52]), and (c) elevation (source: Shuttle Radar Topography Mission
(SRTM) 1 Arc-Second Global [53]).

Table 1. Total land area and natural vegetation type areas and mean annual rainfall (P) in the six
studied wilayas.

Wilayas Area (km2)
Natural Vegetation Areas (km2) * Natural

Vegetation/Wilaya P (mm) **Tree Cover Shrubland Grassland

Annaba 1411.52 609.40 80.74 235.47 0.66 825
Béjaïa 3226.11 1434.69 278.52 1138.15 0.88 767.6
El-Tarf 2885.32 1420.59 157.65 601.80 0.76 792.6

Jijel 2397.22 1437.11 61.75 693.88 0.91 924.1
Skikda 4146.60 1924.21 295.43 1096.41 0.80 725

Tizi Ouzou 2969.21 1661.12 133.80 727.29 0.85 913

* Based on the ESA WorldCover 2021 map [52], ** data from the National Meteorological Office (ONM).

2.2. Input Data
2.2.1. Landsat and Sentinel-2 Imagery

The NASA/USGS Landsat program has launched eight Earth Observation (EO) satel-
lites to date. These satellites have been continuously collecting data on the Earth’s land
surface for over 50 years, the world’s longest EO data series (1972–present day) [54]. Dif-
ferent multispectral and thermal sensors have been developed, including Landsat 1–5
MSS (1972–1999), Landsat-4 TM (1982–1993), Landsat-5 TM (1984–2012), Landsat-7 ETM+

(1999–2021), and the currently operational Landsat-8 OLI/TIRS (2013–present day) and
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Landsat-9 OLI-2/TIRS-2 (2021–present day) [55]. Landsat instruments from TM to OLI-
2/TIRS-2 eras have been generating scenes over 185 km swath width using the Worldwide
Reference System-2 (WRS-2) with seven, eight and 11 spectral bands at 15 m (panchro-
matic), 30 m (visible, NIR, SWIR, coastal/aerosol, and cirrus), and 60–120 m (thermal
bands) spatial resolutions every 16 days, reduced to 8 days when two satellites are com-
bined (currently, Landsat 8 and 9). The ESA/Copernicus Sentinel-2 Mission comprises a
constellation of two identical EO satellites, Sentinel-2A and 2B, which have been simul-
taneously orbiting the Earth since July 2015 and July 2017, respectively. The Sentinel-2
MSI sensor captures scenes of 110 × 110 km2 using the Military Grid Reference System
(MGRS) with 13 spectral bands at 10 m (visible and NIR), 20 m (red edge and SWIR),
and 60 m (atmospheric bands) every 10 days, or every 5 days with both satellites com-
bined [56]. In this work, the LC2SR images from the last five Landsat satellites (1984–2023)
and Sentinel-2 Level-1C Top of Atmosphere (TOA) reflectance images (2017 and 2021)
were used, both available as image collections in the Earth Engine Data Catalogue (EEDC)
“https://developers.google.com/earth-engine/datasets (accessed on 20 October 2022)”.

2.2.2. Global Burned Area Products

To evaluate our generated BA product, a comparison to different existing BA products
was conducted. For this purpose, five readily available BA products with different spatial
resolutions were used:

1. The GABAM is the first and only medium-resolution BA product at 30 m resolution
with a global scale and long-term BA data to date. A novel automatic pipeline [33]
was applied to generate the annual global BA maps from the Landsat time-series on
the GEE platform [34] from 1985 to 2019. Nevertheless, 1986, 1988, 1990, 1991, 1993,
1994, 1997 and 1999 are unavailable. Yearly GABAM composites were downloaded
as 10◦ × 10◦ tiles in GeoTIFF format at ftp://124.16.184.141/GABAM, accessed on
09 February 2023.

2. The FireCCI51 provides monthly global BA maps at 250 m spatial resolution based
on a hybrid algorithm coupling daily surface reflectance imagery and the active fire
data from MODIS for 2001–2020 [24]. The FireCCI51 pixel product in GeoTIFF format
was downloaded at https://doi.org/10.5285/58f00d8814064b79a0c49662ad3af537,
accessed on 18 April 2023.

3. The C3SBA11 delivers monthly global BA maps at 300 m spatial resolution from
2017 onwards, using an adaptation of the FireCCI51 BA algorithm to Sentinel-3 OLCI
data [26]. The pixel BA product was obtained from the C3S Climate Data Store (CDS)
in NetCDF files at https://doi.org/10.24381/cds.f333cf85, accessed on 20 April 2023.

4. The MCD64A1 collection 6.1 BA mapping approach combines daily surface reflectance
images with the active fire data from MODIS to produce monthly global BA maps at
a spatial resolution of 500 m from 2000 to the present [29]. The product is provided
by the USGS Land Processes Distributed Active Archive Centre (LP-DAAC) and was
obtained in GeoTIFF format from the Application for Extracting and Exploring Analy-
sis Ready Samples (AppEEARS) service “https://lpdaacsvc.cr.usgs.gov/appeears/
(accessed on 20 April 2023)”.

5. The EFFIS BA product provides daily updates on fire contours with information on
the initial and final dates of burn detection, total area affected by fire, administrative
units, and vegetation type for 49 countries in Europe, the Middle East, and North
Africa (MENA) from 2000 to the present. The EFFIS Rapid Damage Assessment
(RDA) module performs BA delineation by processing daily imagery from the MODIS
instrument at a spatial resolution of 250 m [31]. Since 2018, EFFIS fire contours have
been generated using the 20 m resolution Sentinel-2 imagery. For Algeria, EFFIS
fire contours are available only for 2004 and 2005, and from 2009 onwards. The
EFFIS BA product was provided in the ESRI Shapefile format from the EFFIS of the
European Commission Joint Research Centre “https://effis.jrc.ec.europa.eu (accessed
on 29 April 2023)”.

https://developers.google.com/earth-engine/datasets
ftp://124.16.184.141/GABAM
https://doi.org/10.5285/58f00d8814064b79a0c49662ad3af537
https://doi.org/10.24381/cds.f333cf85
https://lpdaacsvc.cr.usgs.gov/appeears/
https://effis.jrc.ec.europa.eu
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2.2.3. Active Fire Products

Active fire observations from the MODIS and VIIRS sensors were leveraged to examine
the temporal fire reporting accuracy of our BA product by comparing detected burn dates
to active fire dates. In line with this, the standard MCD14ML collection 6.1 product from
MODIS onboard Terra and Aqua provides the systematic detection of active fires worldwide
at a 1 km resolution from November 2000 to the present day [57]. In contrast, the 375 m
standard VIIRS VNP14IMGML collection 1 product offers better accuracy in detecting
active fires from January 2012 onwards [58]. These datasets were provided as feature point
data in the ESRI Shapefile format by the Fire Information for Resource Management System
(FIRMS) “https://firms.modaps.eosdis.nasa.gov/download/ (accessed on 4 April 2023)”.

2.2.4. Ground-Based Fire Dataset

Ground-based annual BA estimates over the 1985–2023 period for the six wilayas under
study were provided by the Directorate General of Forests (DGF), which operates under
the authority of the Algerian Ministry of Agriculture and Rural Development (MADR),
Algeria. The DGF oversees fire prevention and control and develops national strategies
and action plans for fire management across the country. Fire statistics are collected from
40 local forest services of the different wilayas that are regularly affected by fires [50].
However, detailed single-fire datasets have been recently compiled only for the 2012–2023
period, where detailed information is provided: smallest administrative division, forest
name or locality, latitudes/longitudes, date and time of ignition/intervention/extinction,
burned vegetation type, and more. Here, we note that the minimum recorded fire size is
not standardized across years and wilayas—a common feature that has been previously
reported in Spain [59], France [60] or Tunisia [13], for which a standard threshold of 0.1 ha
is usually assumed.

2.2.5. Land Cover Map

The ESA WorldCover project produced 10 m resolution global land cover maps for
2020 and 2021 from Sentinel-1 and Sentinel-2 data with 11 land cover classes conforming to
the UN-FAO’s Land Cover Classification System (LCCS) [52]. The land cover map of 2021
for our study area was obtained in GeoTIFF format from ESA at https://worldcover2021.
esa.int/downloader, accessed on 6 May 2023.

3. Methodology
3.1. Burned Area Generation

In 2014, Bastarrika et al. [61] developed a Landsat interactive BA mapping procedure,
named the BA Mapping Software (BAMS). This software allowed us to supervise the BA
mapping between single pre- and post-fire images by adopting a two-phase supervised
strategy [62]. This approach has been widely employed to create fire reference perimeters to
validate global and regional BA products [63–65], and to operationally reconstruct historical
fires in Greece (1984–1991 and 1999–2011) [66], Argentina (1999–2011) [67] and Tunisia
(1984–2010) [13]. However, it heavily depended on the system’s computational capacity and
had several limitations, including the inability to work with higher-resolution Sentinel-2
data and maintenance difficulties due to changes in the Landsat data format and metadata,
which led to frequent malfunctioning and uncontrolled commissions over agricultural and
cloud-shadowed areas [43]. To address these limitations, Roteta et al. [43] proposed the
BA Mapping Tools (BAMTs). The current version (BAMTs v1.7) presents a set of six tools
implemented in the GEE environment [34], which include BA mapping (BA Cartography
tool), the selection of validation areas (VA tool) and image dates (VA Dates tool), reference
data creation (RP tool), validation (Assessment tool), and image data visualization (Image
Viewer). The JavaScript API scripts for these tools with a user guide are publicly available
at https://github.com/ekhiroteta/BAMT, accessed 20 October 2022).

To generate our BA product, yearly pre- and post-fire consecutive multitemporal
composites covering the study area were derived using 10,406 surface reflectance images

https://firms.modaps.eosdis.nasa.gov/download/
https://worldcover2021.esa.int/downloader
https://worldcover2021.esa.int/downloader
https://github.com/ekhiroteta/BAMT
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from the LC2SR product for the 1984–2023 period using the BA Cartography tool. Clouds
and cloud shadows were masked using Landsat pixel_qa band. For each year, the pre-fire
period was defined from 1 January to 30 April, and the post-fire period from 1 May to 31
December , following Roteta et al. [43]. This was done to employ the maximum number of
cloud-free scenes and thus reduce BA omissions and capture all the fires with detection
delays caused by the Landsat revisit time (8–16 days). The BA Cartography tool is a semi-
automatic BA algorithm that performs a supervised classification of Landsat or Sentinel-2
data based on a Random Forest (RF) machine-learning classifier [68]. The RF model is
widely applied for BA extractions from medium-resolution data [33,43,69].

In addition to six reflectance bands over the visible near-infrared (VNIR) and short-
wavelength infrared (SWIR), three spectral indices are computed for each Landsat im-
age during the pre-and post-fire periods: the normalized difference vegetation index
(NDVI) [70]; the normalized burn ratio (NBR) [71]; and the normalized burn ratio 2
(NBR2) [72]. The date with the lowest NBR value (the date of the strongest burn signal)
was used to generate image mosaics, meaning that each pixel has its specific mosaicking
date. Then, a difference image was generated by subtracting the post- and pre-fire image
composites. Subsequently, the delineation of burned patches was achieved through an
iterative training process of the RF classifier, starting with an initial set of burned and
unburned training sample polygons, defined based on both temporal composites and
the difference image (post-fire–pre-fire). The classification output was visually inspected
with each iteration, and new polygons were incrementally added to the training dataset
of the model to reduce commission and omission errors. This strategy continued until a
satisfactory delineation accuracy of the burned patches was obtained. A shapefile vector
layer was used as a mask to limit the processing extent to our study area where an aver-
age of 38,894 burned and 45,723 unburned training samples (pixels) were manually and
visually delineated every year [33,69]. Next, a two-phase supervised strategy to balance
errors of commission and omission [61,62] was employed on the RF probability images. In
the first phase, seed pixels with strong burned signals were extracted using a threshold
based on the average probabilities of the burned training samples. In the second phase, a
region-growing process was applied up to a 50% threshold outwardly from the seed pixels
to capture the entire burned patch using Rook’s case contiguity, where only the burned
patches containing at least one seed pixel were labeled as burned.

Finally, each annual BA map was exported as four 2◦ × 2◦ tiles at the 30 m resolution
in the ESRI Shapefile format, and a thorough fire-by-fire interactive visual quality check
was performed in a GIS environment to ensure the highest quality of the final burned
patches. This allowed a few anomalies to be eliminated, such as very few continuous strip
lines (one to two pixels wide), often starting from the edge of detected burned patches.
These errors are caused mainly by the Landsat-7 ETM+ SLC failure. Each burned polygon
has a single attribute: indicating either the approximate burn detection date or null values
for unobserved areas (i.e., clouds and cloud shadows).

At this step, it is important to note that the supervised BA contouring process under
the BA Cartography tool may not be accomplished because of GEE’s scaling errors [43].
This issue was specifically encountered with years holding large amounts of BA. To avoid
this shortcoming, we opted for a balanced and conservative approach when training the
burned/unburned samples by avoiding very large polygons and complex geometries. The
procedural steps for the generation and validation of the BA product (Phase I and II) and
the intercomparison analysis (Phase III) are given in Figure 2.
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3.2. Spatio-Temporal Validation
3.2.1. Spatial Validation

Validation plays a pivotal role in ensuring the integrity and reliability of satellite-
derived BA products. The Committee on Earth Observation Satellites (CEOS) Working
Group on Calibration and Validation (WGCV) defines validation as “the process of assess-
ing, by independent means, the quality of the data products derived from those system
outputs” [73]. The spatial validation of our BA product was performed using two val-
idation years: 2017 and 2021. These years were selected because they hold the largest
annual BA during the Sentinel-2 era (2015–present). Sentinel-2 data were used to create
the independent reference data. To assess the temporal fire reporting accuracy of the BA
product, the burn detection dates from the BA Cartography tool were compared to the
active fire dates from MODIS and VIIRS.

Five validation areas were sampled for 2017 and 2021 by the VA tool following a
stratified random sampling methodology [74,75]. At each sampling unit, this tool incorpo-
rates two key stratification criteria: the predominant Olson biomes [76] and fire activity
according to FireCCI51 or MCD64A1. To ensure comprehensive and robust validation,
long sampling units (LUs) lasting 100 days, and consisting of 110 × 110 km2 tiles with
a minimum temporal frequency of 30 days between consecutive Sentinel-2 images and
cloud cover below 10%, were employed. This approach ensures a long data series with
frequently available cloud-free images to create reliable reference data from continuous
and frequent ground observations throughout the validation years. As the generation of
high-quality reference perimeters in validation areas of 110 × 110 km2 (~12,000 km2) is
time-intensive, the VA tool was designed to create smaller sampling units at the center of
each Sentinel-2 tile [24,64,77]. However, this subsampling resulted in sampling units not
being representative across our study area. To solve this problem, we manually generated
a tessellated grid with 168 cells of 20 × 20 km2 (400 km2) over the originally sampled
validation areas [45]. Thereafter, we selected the cells with the greatest fire activity based
on the BA estimates from FireCCI51 in the corresponding validation years. In all cases,
ten cells were selected as new validation sites, with two cells assigned to each sampled
Sentinel-2 tile, all of them lying in the Mediterranean forest biome (Figure 3).
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To properly date the validation period, the CEOS Land Product Validation Subgroup
(CEOS-LPVS) recommends generating reference data from multitemporal pairs of images
rather than single pairs of pre- and post-fire images [77]. Therefore, 227 Sentinel-2 consecu-
tive images with cloud cover below 10% were identified for each validation site using the
VA Dates tool. Validation periods were about 5–7 months for 2017 and 4–8 months for 2021
(Table A1).

Satellite-derived BA product validation requires independent reference data at a
higher spatial resolution than the product to be validated [78]. Accordingly, the RP tool
was used to extract the 10 m resolution reference perimeters (RPs) from the selected pairs
of consecutive Sentinel-2 images at each validation site. The RP tool performs the same BA
mapping exercise as the BA Cartography tool, previously used in Section 3.1, albeit with
some modifications. Instead of temporal composites, single-image pairs from the pre- and
post-fire periods were employed. Additionally, the SLC image or QA60 and B1 bands were
used to mask clouds and cloud shadows. Likewise, the RF classifier was iteratively trained
by defining burned and unburned training pixels until the optimal delineation of burned
patches was achieved.

It is important to note that the “cloud cover” information used by the VA Date tool to
select the cloud-free Sentinel-2 images at each validation site is that of the entire Sentinel-
2 scene (110 × 110 km2) stored in the image metadata rather than being specific to the
manually sampled validation sites (20 × 20 km2). Consequently, very few consecutive dates
were excluded in the reference data creation step owing to high cloud cover that obstructed
ground observations. The resulting Sentinel-2 reference data (hereinafter referred to as
“S2RD”) were exported in the ESRI Shapefile format. A single attribute is given to the S2RD
vector layers to indicate burned and unobserved polygons. Finally, a visual quality control
of the short units of the RPs was performed before merging them into long temporal units
at each validation site [69,77,79] (Figures A1 and A2).

At each validation site, the 2017 and 2021 BA maps were compared to their coun-
terparts from S2RD. The commission error (CE), omission error (OE), overall accuracy
(OA), Dice coefficient (DC) [80], and relative bias (RelB) were computed employing the
assessment tool based on the confusion matrix [81]. These accuracy metrics are widely used
to assess the accuracy of satellite-derived BA products [44,79,82]. Additional metrics were
also considered to measure the total area correctly detected as burned (SurfBA) or unburned
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(SurfUB). Similarly, SurfCE and SurfOE represent the total committed and omitted burned
surfaces, respectively.

3.2.2. Temporal Validation

The burn detection dates in the BAMTs-derived product were determined based on
the most frequently occurring date (the mode) for all the pixels in each detected burned
patch in the Landsat post-fire composite [43]. Consequently, these dates do not imperatively
correspond to the effective burn dates. To assess our BA product’s temporal reporting
accuracy, the temporal delay in days was computed between the burn detection dates and
the active fire dates from the MODIS and VIIRS hotspots [27,28,69]. Nevertheless, this
analysis was performed by bearing in mind all the burned patches in the entire study area
for a temporal validation period spanning from 2001 to 2023 rather than at the validation
sites, because taking specific years as the number of burned patches to be compared was
insufficient. To accomplish this, 1 × 1 km2 windows were created around the yearly active
fire hotspots from MCD14ML from 2001 to 2011, which represents the approximate MODIS
pixels. Similarly, windows of 375 × 375 m2 were defined around the VNP14IMGML
hotspots from 2012 to 2023. Next, the most frequent dates from the active fire windows
that intersected the individual burned patches in the corresponding years were extracted
and then compared to the burn detection dates (Figure A3).

This analysis was performed on 33.68% of the burned patches (N = 22,236), which
represented the intersection rate with the active fire windows from MODIS and VIIRS.
Burned patches were found in 49.14% of the active fire windows (N = 9030 from MCD14ML
and N = 34,745 from VNP14IMGML) between 2001 and 2023. The remaining burned patches
(66.32%) were not found in the active fire windows, which can be explained by active fire
sensors’ native coarse spatial resolution or satellite overpass. In addition, environmental
conditions like thick smoke plumes and dense vegetation cover significantly reduce fire
detection. Ideally, the MODIS sensor routinely detects active fires of ~0.1 ha and, under
ideal observational conditions, fires up to ~50 m2 in size can be captured, but those of lesser
extents or with low emitted fire radiative power (FRP) may not be detected [83]. Conversely,
the VIIRS sensor has a minimum theoretical detectable fire size of ~20 m2 at 1200 K fires
burning in the daytime and one half at 900 K instantaneous fires at nighttime [58].

3.3. Intercomparison Analysis

In this section, an intercomparison was made between our validated BA product
(hereinafter referred to as NEALGEBA; NE Algeria BA) and five existing BA products
with different spatial resolutions and input data in terms of omissions and commissions.
Furthermore, cross-correlation and temporal trend analyses were performed using the
ground-based BA estimates from the DGF.

3.3.1. Spatial Accuracy

To highlight the differences in terms of burned patch delineation between NEAL-
GEBA and existing BA products, the accuracy metrics (CE, OE, DC, RelB) obtained for all
the BA products were compared. To this end, the same Sentinel-2 reference data at the
same previously selected validation sites of 2017 were used to assess GABAM, C3SBA11,
FireCCI51, MCD64A1, and EFFIS since this is the common year between all these BA prod-
ucts [44,69]. The 2017 BA maps from FireCCI51 and MCD64A1 were already available as
image collections in the GEE’s data catalog and were directly evaluated for spatial accuracy
against the S2RD in the assessment tool, whereas the GABAM, C3SBA11, and EFFIS maps
were first adjusted to its required format. It is important to note that GABAM does not
provide the burn date, as required by the assessment tool, but indicates only the year of
burn. To overcome this situation, we assigned approximate burn detection dates to the
burned patches on the 2017 GABAM map by overlaying the BA map from NEALGEBA.
The burned patches with the largest overlap were assigned the same burn detection date,
while those with no overlap were not dated.
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3.3.2. Cross-Correlation with Ground-Based Fire Dataset

To assess NEALGEBA product’s performance in BA estimation terms, a cross-correlation
analysis was performed among the total annual BA estimates from our product, existing
BA products, and the ground-based fire dataset from the DGF over the 13 available years
during the 2004–2019 period using the “PerformanceAnalytics” R-package [84]. However, the
C3SBA11 product was not considered since only three years were available (2017, 2018, and
2019) among the overlapping years between the BA products. Here and in the subsequent
step (Section 3.3.3), exclusively, land cover class 10 (tree cover), class 20 (shrubland), and
class 30 (grassland) from the ESA WorldCover map 2021 [52] were assumed to represent
the spatial extent of natural vegetation landscapes, which was used to mask out detected
burned patches outside these classes from NEALGEBA and existing BA products. This was
carried out following the definition of wildfires in Algeria [50], based on which the fraction of
cropland fires is not taken into consideration when reporting BA estimates by the local forest
services of the DGF.

3.3.3. Temporal Burned Area Trends

Here, the temporal trends of the annual BA estimates from the filtered NEALGEBA
and DGF datasets for the 1985–2023 period (the DGF dataset lacks data for 1984) were
analyzed using the Mann–Kendall trend test [85,86] and Sen’s slope estimator [87]. These
two non-parametric methods are widely used to test the significance of trends in fire
regimes [88].

4. Results
4.1. Analysis of the Generated BA Product
4.1.1. Spatio-Temporal Patterns

The BA mapping phase resulted in the generation of spatially explicit annual BA maps
covering all fires occurring in the natural landscapes and rural areas of the six wilayas
on the NE coast of Algeria at the 30 m resolution for the 1984–2023 period (Figure 4a). In
the last four decades, the total mapped BA was 1.16 M ha, with an average of 29,130.5 ha
year−1 affecting forests (65.2%), shrublands (9.30%), grassland (22.2%), croplands (2.79%)
and other types (<0.6%). This BA is double the official BA estimate from the DGF (0.65 M
ha). The total annual BA showed wide temporal variability in the last 40 years, with 68.8%
of the total BA occurring in 13 peak years above the mean. The most extreme years were
1994, 2000, 2017, and 2021, when more than 15.0%, 6.6%, 5.3%, and 8.4% of the total BA
were observed, respectively. These years accounted for up to 35.3% of the total BA in the
entire time series. Conversely, the lowest annual BAs were found in 1984, 1996, and 2018,
which represent less than 1% of the total BA over the entire study period (Figure 4b). The
study area showed a high fire recurrence rate with more than 52.7% of the total BA affected
by two fire events or more in the last four decades (Figure 4c). Indeed, the total mapped BA
(1.16 M ha) was twice the extent of the land affected by at least one fire (0.58 M ha). Only
47.3% of this land was burned once, while 25.9% was burned twice and 25.8% was affected
by three fires or more (Figure 4c).

Besides temporal variability, the annual BA showed wide spatial variability between
the different wilayas. The fraction of burned burnable land represented 101.2% (2.53%
year−1) in El-Tarf, 94.5% (2.36% year−1) in Béjaïa, 81% (2.025% year−1) in Tizi Ouzou, 78.6%
(1.96% year−1) in Annaba, 67.3% (1.68% year−1) in Skikda and 61.8% (1.54% year−1) in
Jijel. When looking at the fire event spatial pattern independently of their surface, the
kernel density estimation (KDE) analysis showed fire hotspots in the Tizi Ouzou and
Béjaïa wilayas characterized by high ignition rates (Figure 5a). However, when fires were
weighted by their sizes, the WKDE showed more fire hotspots in the Skikda, Annaba, and
El-Tarf wilayas (Figure 5b).
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Figure 5. Kernel density distribution according to NEALGEBA in NE Algeria from 1984 to 2023.
(a) Kernel density estimation (KDE); (b) BA-weighted kernel density estimation (WKDE); and
(c) spatial distribution of fire size classes.

4.1.2. Fire-Size Distribution

The minimum detectable fire size equaled ~0.1 ha, which corresponds to the areal unit
covered by a Landsat pixel on the ground. The maximum fire size was 26,300 ha, which
occurred in the Tizi Ouzou wilaya in 2021. Fire size distribution using all the fire patches (N
= 98,259) followed the self-organized criticality hypothesis [89] up to a fire size threshold of
1.5 ha, below which some small fires could be missing (Figure 6).
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4.1.3. Fire Seasonality

Fire seasonality, based on fire number and BA, could be generated on 22,115 fire
patches, which could be dated out of the 66,018 fire patches identified over the 2001–2023
period when the VIIRS/MODIS hotspots were available. NE Algeria displays typical
Mediterranean fire activity, and July and August are the most burnable months, which
prolong to September and October (Figure 7).
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4.2. Spatio-Temporal Validation
4.2.1. Spatial Validation

The results of the accuracy assessment of the NEALGEBA maps of 2017 and 2021 at
the 10 validation sites using S2RD are presented in Table 2. The corresponding validation
images are found in Figures A4 and A5. For the validation year 2017, the OA was 98.22%,
with a CE of 7.96%, an OE of 8.19%, and a DC of 91.92%. Notably, validation site 31SEA-E3
had the highest OE with 30.16%, which resulted in an underestimation of the total BA
of 23.19% and the lowest DC (79%) of all the validation sites. The highest commissions
(CE = 9.65%) occurred at 32SMF-Y3. The overall RelB indicated a slight underestimation
of the total BA of 0.24%. The total area correctly detected as burned was 19,551 ha, while
170,000 ha of unburned surface was correctly detected at all the validation sites (covering
200,000 ha). Additionally, the product misclassified 1692 ha of the unburned surface
as burned and omitted 1743 ha of the burned surfaces. For 2021, the product achieved
comparable results to those for 2017 in terms of OA (98.15%) and commissions (7.92%),
albeit with a twofold decrease in omissions (4.76%) that resulted in a higher DC (93.63%).
Of all the validation sites, the highest commissions and omissions were for 32SKF-P3 with
values of 25.38% and 14.88%, respectively, and a RelB value of 14.08%. The DC was the
lowest at all validation sites with 79.52%. The total area correctly detected as burned was
27,070 ha, and 168,984 ha was correctly detected as unburned. There were instances where
the product incorrectly classified 2553 ha of unburned surface as burned and omitted
1352 ha of the burned surface. Overall, cloud coverage was the primary source of BA
omissions, while most commissions were caused by the BA algorithm over land covers
spectrally akin to fire affected surfaces, such as harvested croplands, labored lands, water
bodies, and shadowed areas.
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Table 2. Spatial validation results of the NEALGEBA maps of 2017 and 2021 at all the validation
sites. CE: commission error, OE: omission error, OA: overall accuracy, DC: Dice coefficient, and RelB:
relative bias, all expressed as percentages. SurfBA: surface correctly detected as burned, SurfUB:
surface correctly detected as unburned, SurfCE: committed burned surface, SurfOE: omitted burned
surface, all expressed as hectares.

Sentinel-2 Tiles Validation Sites
Accuracy Metrics

Years CE OE OA DC RelB SurfBA SurfUB SurfCE SurfOE

31SEA
E-3 2017 9.08 30.16 98.99 79.00 −23.19 846 43,061 84 365
F-3 2021 9.71 2.92 96.91 93.56 7.52 9957 33,354 1106 299

31SFA
I-2 2017 6.06 4.93 98.81 94.50 1.21 2343 20,219 151 121
G-3 2021 4.65 4.93 97.40 95.21 −0.29 11,871 32,953 767 615

32SKF
Q-3 2017 7.36 12.13 98.11 90.19 −5.16 4167 42,813 331 575
P-3 2021 25.38 14.88 98.78 79.52 14.08 985 40,011 335 172

32SLF
V-2 2017 5.51 10.00 98.51 92.19 −4.75 3650 37,280 213 406
U-2 2021 11.56 6.37 99.53 90.96 5.87 679 27,759 89 46

32SMF
Y-3 2017 9.65 3.12 96.73 93.50 7.22 8545 26,627 913 276
X-3 2021 6.66 5.78 98.78 93.78 0.94 3578 34,907 255 219

Overall
2017 7.96 8.19 98.22 91.92 −0.24 19,551 170,001 1692 1743
2021 7.92 4.76 98.15 93.63 3.43 27,070 168,984 2553 1352

4.2.2. Temporal Validation

The NEALGEBA product showed a significant fire detection delay compared to the
active fire hotspots from MODIS and VIIRS. On average, burned pixels were detected
42.55 days after the hotspot detection: 21.07% on the first 15 days, 46.47% in the first month,
and 75.67% in a 2-month window (Figure 8). This disparity is attributed to Landsat’s low
temporal revisit frequency (8–16 days), which could be worsened by the unavailability of
cloud-free images for BA extraction purposes.
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4.3. Intercomparison Analysis
4.3.1. Spatial Accuracy

The evaluation of the NEALGEBA product versus existing BA products showed its
overall outperformance (Figure 9). Indeed, NEALGEBA had the lowest CE (7.96%), the
highest DC (91.92%), and the best total BA estimation compared to S2RD (RelB = −0.24%).
Despite being generated using the same input data (30 m Landsat images) and having a
lower OE (3.89%), GABAM obtained a higher CE (13.33%) than NEALGEBA (7.96%), which
resulted in an overestimated BA (RelB = 10.89%) compared to our product. As expected,
coarser resolution products based on MODIS and Sentinel-3 OLCI: FireCCI51, MCD64A1,
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EFFIS, and C3SBA11 produced the highest CEs and Oes and the lowest DCs, with a significant
lack of estimation of the total BA compared to S2RD. Specifically, FireCCI51, C3SBA11, and
MCD64A1 had CEs ≥ 37.43%, which resulted in a marked overestimation of the total BA
that reached 58.39%, 43.10%, and 36.03%, respectively. However, these three products had
lower omissions ≤ 14.89% compared to the EFFIS product (≥33.26%). The last one had the
highest OE of all the assessed BA products, which led to the highest BA underestimation rate
(RelB = −12.69%). Detailed results of the accuracy assessment of the GABAM, FireCCI51,
C3SBA11, MCD64A1, and EFFIS BA maps of 2017, along with their corresponding validation
images, appear in Tables A2–A6, and in Figures A6–A10, respectively.
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The visual analysis clearly shows that all the detected large, burned patches were
consistent in all the BA products, although most relatively small fires were captured only
by medium spatial resolution products (NEALGEBA and GABAM) (Figure 10a). GABAM
demonstrated good spatial matching with S2RD but obtained a high CE (13.33%) at all
the validation sites (Table A2). This resulted in relatively extended burned patch limits
compared to NEALGEBA. In other words, GABAM tended to overestimate the BA and
included other areas that may not have been burned. NEALGEBA showed higher OEs
at all the validation sites, which resulted in slightly reduced burned patches compared to
S2RD (Table 2). This indicates a tendency to exclude some burned patches, which leads to
reduced BA compared to GABAM. These products slightly underestimate or overestimate
burned areas, respectively, compared to the higher-resolution reference data from Sentinel-2.
Furthermore, both omitted a few small, burned patches and misclassified a few unburned
pixels as burned. It is important to consider the trade-off between the CEs and OEs when
evaluating the performance of BA maps.
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C3SBA11, MCD64A1, and EFFIS, and the reference data (S2RD) at the validation sites in 2017.

Conversely, the larger pixel size in FireCCI51 (250 m), C3SBA11 (300 m), and MCD64A1
(500 m) led to the size of burned patches being significantly overestimated. These products
overlooked small fires and were unable to accurately delineate larger ones. They also
displayed difficulty in discerning neighboring fire patches by perceiving them as single
fire events, and they omitted the unburned islands in the main fire patches, which meant
that the total BA was perpetually overestimated. EFFIS displayed a smoothing effect that
oversimplified fire perimeters, with a loss of details inside burned patches (unburned
islands), which led to significant BA commissions. Particularly in this product, no fires
were captured at validation site 31SEA-E3; an important part of the BA extent was omitted
at validation site 32SKF-V2; and relatively small and spatially fragmented fires, at a distance
from large, burned patches, were completely omitted at the remaining validation sites. This
resulted in significant omission errors. As Figure 10b depicts, the total detected amount of
BA at the five validation sites in S2RD of 2017 was 21,295 ha. This was slightly reduced in
NEALGEBA with 20,400 ha and slightly higher in GABAM with 23,140 ha. Due to high
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commissions in FireCCI51, C3SBA11, and MCD64A1, the amount of BA was overestimated
with 34,610 ha, 31,610 ha, and 29,690 ha, respectively, whereas EFFIS significantly detected
less BA with only 18,880 ha due to high omission values.

4.3.2. Cross-Correlation with Ground-Based Fire Dataset

The evaluation of the different BA products compared to the DGF dataset was per-
formed using the log10-transformed total annual BA estimates over the 13 overlapping
years that comprised the 2004–2019 period between the different products. In general, the
distinct BA products showed a strong correlation with the DGF data over the entire study
area (Figure 11a). NEALGEBA, FireCCI51, and MCD64A1 obtained the highest correlations
(r = 0.96), while GABAM yielded a slightly lower value (r = 0.94) even though it had the
same spatial resolution as NEALGEBA (30 m). EFFIS had the lowest correlation with the
DGF dataset. On the scale of the different wilayas, NEALGEBA demonstrated a better
correspondence with the DGF estimates than existing BA products (Figure 11b).
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4.3.3. Temporal Trends of the Burned Area

The temporal evolution of total annual BA estimates from NEALGEBA and DGF
displayed a consistent increasing trend over the 1985–2023 period (1984 is unavailable
in the DGF dataset) yet differ in the annual rate, with NEALGEBA showing significant
trends. For all the wilayas combined, NEALGEBA showed a significant increase rate of
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532.4 ha year−1 at 10% (p-value = 0.053) in the total annual BA, while DGF showed a lower
increase rate (197.1 ha year−1; Figure 12a). At the wilaya scale, the annual BA from the
two products showed significant positive trends at 5% (p-value ≤ 0.05) for the two products
in Béjaïa and was only significant for NEALGEBA in Jijel (p-value = 0.05) and El-Tarf at
10% (p-value = 0.056). In general, NEALGEBA showed higher increased BA rates (182.2,
105.6, and 67.9 ha year−1 in Béjaïa, Jijel, Skikda, and El-Tarf, respectively; Figure 12b).
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5. Discussion

In this analysis, we reconstructed and validated 40 years (1984–2023) of historical fire
events at fine spatial resolution in typical Mediterranean ecosystems of NE Algeria. The
newly generated NEALGEBA product represents the first and most continuous time series of
BA at fine spatial resolution in this part of the Mediterranean Basin, which faces a substantial
fire occurrence threat. The BA product generation (phase I) proved the high potential and
reliability of the BA Cartography tool in generating spatially consistent annual BA maps
based on a Random Forest supervised classification and a two-phased strategy [43,62].
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Despite being labor-intensive and heavily relying on the visual interpretation of pre- and
post-fire temporal composites, this semi-automatic procedure enabled high control over
CEs and OEs and thus improved the BA product’s quality. The analysts’ expertise is
more involved in selecting representative burned (seeds) and unburned samples with an
iterative analysis of BA delineation [45]—a considerable asset that is not provided with fully
automated methods [33]. Additionally, the visual quality control and manual refinement of
the generated fire perimeters allowed us to reduce potential anomalies such as those caused
by the sensor. The RP, VA, VA dates, and assessment tools greatly facilitated the spatial
validation exercise of satellite-derived BA products compared to previous studies [64,90],
all in accordance with the BA assessment standardized protocol endorsed by the CEOS.
These tools ensured the creation of high-quality reference data (RP tool) from consecutive
10 m cloud-free Sentinel-2 images (VA Date) located at the validation sites preselected by
stratified random sampling (VA tool). The assessment tool allowed for a full-automatic
comparison of the BA maps to the Sentinel-2 reference data and reported accuracy metrics
(CE, OE, DC, and RelB) at each validation site.

The accuracy assessment of the 2017 and 2021 NEALGEBA maps showed remarkable
results, with CEs of 7.96% and 7.92%, OEs of 8.19% and 4.76%, and DCs of 98.22% and
98.15%, respectively. These metrics are consistent with better performance than those
obtained in the original case study in south-eastern Australia, in which a BA product
for the 2019/2020 fire season was generated and validated using the same input data,
with a CE of 11.80%, an OE of 8.90% and a DC of 89.60% [43]. However, the larger
pixel size (30 m) in NEALGEBA led to a subtle alteration in the extent of the burned
patches, which meant that their boundaries slightly extended outwardly compared to the
independent reference perimeters from the 10 m Sentinel-2 data. We also observed that
almost all the spatially isolated small, burned patches were misclassified as burned, mainly
in 2021. This was due to the algorithm’s limitation of discriminating small, spectrally
confusing surfaces with a similar spectral response to the burned surfaces. For the 2021
fire season, most of the BAs were in mountainous areas, which made it quite challenging
to select representative and sufficient burned seed pixels to capture the entire burned
patches and thus to reduce omission errors. We attempted to avoid burned pixels in
shadowed areas to reduce commissions on the classification map. Moreover, the algorithm
failed to ensure the continuity of some large, burned patches, and omissions occurred
mostly on the edges of the main burned patches and on unburned islands, with very
few small isolated burned patches that were completely omitted. Overall, the obtained
accuracy metrics indicated the NEALGEBA product’s spatial consistency. However, the
temporal validation using the active fire hotspots from MODIS and VIIRS underlined its
limitation for accurately reporting fire events over time. This is explained by the long
revisit time of the Landsat satellites (8–16 days), atmospheric conditions (i.e., clouds),
and temporal compositing, which could significantly delay BA detection. This is not
uncommon in medium-resolution products [43,69] compared to MODIS-derived products
that incorporate active fire information [24,29], and it underscores the need for further
development to improve temporal uncertainty. Employing data from satellite sensors with
a higher observation frequency, such as Sentinel-2 and the active fire hotspots from VIIRS,
would reduce temporal reporting delays [27].

Coarse-resolution BA products were found to significantly overestimate the total BA
on a finer spatial scale due to a larger pixel size (≥250 m), unlike the continental scale,
on which the total BA was overly underestimated when compared to more accurate data
from the Sentinel-2 MSI sensor [27,28,37,38]. In addition, their limited temporal coverage
(2001–present) prevents long-term fire studies compared to the BA products generated
from the Landsat data archive dating back to 1984. The validation of the 2017 EFFIS BA
map showed that the latter presented the highest omissions of all the assessed BA products,
which resulted in a considerable underestimation of the total BA, plus a smoothing effect
on fire perimeters that roughly delineated the burned patches. These inconsistencies have
been previously reported in [41,91,92] and are attributed to the 250 m coarse-resolution
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input data from MODIS used to generate the EFFIS product. On the other hand, GABAM
is, to date, the only available global high-resolution BA product to provide BA mapping
at finer spatial resolution to reliably detect smaller burned patches [33]. However, this
product was generated in yearly composites by providing only the year of burn rather than
the approximate burn detection date, which prevents a fire seasonal analysis. Moreover,
while GABAM has the longest time span amongst global BA products (1985–2019), some
years are still unavailable. In addition to the reported commissions over agricultural lands,
significant systematic errors were observed when we examined the GABAM annual maps
versus the corresponding Landsat post-fire image composites in a Long SWIR/NIR/Red
color composition and NEALGEBA. The former represents BA commissions over water
bodies, unburned forest areas, clouds, flares in oil/gas facilities, and Landsat strip errors
(Figure A11a–c). Additionally, significant errors occurred in 2002 (Figure A11d) and
were perhaps caused by the significant alteration of the primary functioning mode of
Landsat-5 TM’s scan mirror, known as the scan angle monitor (SAM), which led to internal
synchronization problems. This failure caused diagonal patches of anomalous observations
with remarkably high reflectance values in the long shortwave infrared (SWIR2) towards the
scene footprint edges and led to false fire detections. The SAM system was then switched
to an alternative one called the bumper mode [93], which overcame this anomaly. The
semi-automatic BA extraction procedure, which uses the BA Cartography tool along with a
thorough visual inspection of the mapped burned patches, allowed these anomalies to be
mitigated and consistent results to be obtained on the NEALGEBA annual maps. Overall,
these limitations highlight the challenges and complexities involved in using existing BA
products to accurately characterize local and regional fire regimes, especially over lengthy
periods. The newly generated BA product herein presented serves as a surrogate to existing
BA products by offering improved spatio-temporal resolutions, allowing for a thorough
assessment of fire impacts on forest ecosystems and, in turn, assisting in designing strategies
and adapted action plans to mitigate their severity in NE Algeria. Additionally, BAMTs
can be easily used by managers of forests and protected areas in Algeria to operationally
extract burned perimeters and to integrate complementary field data, especially the day
and time of ignition, which reduces temporal uncertainties.

Our first evaluation of the newly generated NEALGEBA could properly address
the fire seasonal distribution that spans from July to October and peaks in August. This
result is in accordance with the seasonal drought and fire weather index seasonality
characterizing our region [5]. A similar fire season length is reported in neighboring
Tunisia [13] and in Portugal [94], and it is slightly longer than the usual July-September
fire season reported in Morocco [95], Italy [96,97], Greece [98], Bulgaria [99], and the
Iberian Peninsula [100]. The length of the fire season in our region may be shaped by
the early and late fire-prone weather conditions favored by climate change effects and
socio-economic factors [5,9]. Regarding affected vegetation, we obtained a fraction of
burnable areas affected by fires reaching 2.95% year−1, in fair agreement with Portugal
(3.31%), making our BA estimates on the highest range of variability observed in the
Mediterranean Basin. Only 0.19% was observed from Tunisia [13], Lebanon (0.58%),
France (0.53%), Greece (0.57%), Spain (0.84%), and Italy (1.14%), as reviewed in [10]. We
also detected an increasing trend in BA (532.4 ha year−1) over the region. This trend is
different from that in the northern part of the Mediterranean, where a general decreasing
fire trend has been observed [101]. More precisely, an abrupt decrease was observed in
France in 1990 with increasing firefighting expenditures [60]; there was an increase in the
1980s and 1990s then a decrease after 2000 in Spain, owing to land abandonment [59,102];
and a decreasing trend was observed in Greece [14]. In the Middle East and North Africa,
no trends have been particularly observed since the 1980s [10,13], consistent with our
study. However, the recent collapse of political regimes led to an abrupt increase in
the BA in Tunisia [103], which we did not detect in Algeria, which was not affected
by this political collapse. Throughout history, Algeria has been marked by significant
political events that have led to heavy burning periods, such as the Algerian Civil War
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(the Black Decade) in the 1990s [6], which was reflected by the highest peak in BA
observed in 1994. Algeria has remained quite stable since 2011, when the Arab Spring
started in the southern Mediterranean Basin, and thus did not affect the BA during
this recent period. Here we note the exceptional heat wave that hit the region in 2023
with record-breaking temperatures in April [104] and in July 2023, with some casualties
during fire events, which were widely reported in the media but did not lead to the most
extreme fire year compared to 1994 and 2021. Hence, NEALGEBA appears as a keystone
database to provide accurate information on burned areas and temporal trends, and as a
reference database to allow for the objective contextualization of fire years, to be further
used in fire weather analyses, fire impacts assessments, fire model benchmarking or
Euro-Mediterranean initiatives of fire-related issues.

In its current version, NEALGEBA covers all types of fires that have occurred across
all landscapes in NE Algeria from 1984 through 2023. However, this product, as is the case
with all satellite-derived BA products, exhibits specific limitations that necessitate reporting
for future improvements. First, the burn dates indicated in our product do not match
the effective fire dates, when the fires were actively burning. The BA Cartography tool
computes the modal date from all pixels within each detected burned patch in the yearly
Landsat post-fire composite. This results in significant fire detection delay, which impacts
the product’s temporal fire reporting accuracy, especially in large fires lasting several days.
We highlight here that using data at a higher temporal resolution from Sentinel-2 MSI could
significantly reduce this disparity [27,28,39]. Second, the product’s commission errors
were primarily observed over agricultural lands (harvested or plowed croplands), which
exhibit similar spectral features to burned areas, characterized by abrupt changes in the
reflectance data, particularly in the near and shortwave infrared bands [28,33,36,61,62,105].
Here, we should also emphasize the high uncertainties associated with the detection
of cropland fires [106]. Third, very large fire events enduring several days may not be
effectively captured as single burned patches due to the low revisit frequency of Landsat
satellites and the availability of cloud-free images. Some large fire patches may not be
spatially contiguous, owing to low burn signals over shadowed areas, sparse vegetation,
or discontinuity in vegetation cover. Additionally, spotting fires can result in spatially
isolated burned islands from the main fire patches. Fourth, Landsat sensor anomalies were
one of the main challenges, especially the Landsat-7 ETM+ SLC failure, which affected
most of its time coverage. Post-processing procedures have been applied to mitigate
commissions caused by these anomalies. However, some omissions or late fire detections
(strips within an actual fire patch) should be acknowledged. Regarding future work, we
envisage complementing the NEALGEBA product with detailed information contained
in the ground-based fire inventories from local forest services of the DGF, especially for
extreme fire events. For instance, burn detection dates can be corrected, thus reducing the
product’s temporal uncertainties. Possible attributes include forest name or locality, date
and exact time of ignition/intervention/extinction, burned vegetation type and species,
land ownership, cause of ignition, perpetrator of the fire, fire reporter, weather conditions,
participating bodies in fire suppression, damage assessment, and investigation. Ongoing
efforts involve expanding NEALGEBA to a country-level BA product with the continuous
mapping of fire-affected areas for the upcoming years using higher-resolution imagery
data from Sentinel-2 MSI. This aims to provide an accurate characterization of the spatio-
temporal patterns of fires across a larger geographical scale.

6. Conclusions

This paper presents a new spatially explicit fire database (NEALGEBA) in the Mediterr
anean-type ecosystems of NE Algeria, performed following a thorough quality checking
of international standards. NEALGEBA provides a reconstruction of 40 years (1984–2023)
of historical fire events from Landsat data to be used as a reference for the ongoing global
processing of burned area datasets. We could demonstrate the higher performance of our
approach to both the coarse resolution currently available and the global yet discontinuous
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Landsat-based GABAM, leading to a final dataset increasing the official annual BA provided
by the national forest service DGF by 46.28%.

NEALGEBA also offers Algerian forest managers and policymakers valuable insights
into the spatio-temporal distribution and magnitude of fire events at a fine resolution in the
most fire-prone region of the country. Such databases represent the keystone prerequisite to
further characterizing fire regime and identifying the key driving factors of fire occurrence.
Furthermore, this dataset significantly contributes to further national and international fire
hazard and impact assessments. It will act as a reference for contextualizing future fire
extremes in Mediterranean scale synthesis, such as the 2023 exceptional heat wave, which
we show not to have led to the most extreme fire year over the last 40 years.

Author Contributions: Conceptualization, M.E.K., M.J.B. and H.M.; methodology, M.E.K., M.J.B.,
and H.M.; validation, M.E.K., and H.M.; formal analysis, M.E.K., A.K., A.M., F.M., M.J.B., and
H.M.; investigation, M.E.K.; data curation, M.E.K.; writing—original draft preparation, M.E.K.;
writing—review and editing, M.E.K., A.K., A.M., S.R., F.M., M.J.B. and H.M.; visualization, M.E.K.
and H.M.; supervision, M.J.B. and H.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The NEALGEBA product is publicly available in Zenodo at https://doi.
org/10.5281/zenodo.10684711 [107].

Acknowledgments: We thank the Directorate General of Forests (DGF), Algeria for providing the
national fire database. M.E.K. acknowledges the financial support granted by the Vice-Rectorate for
International Relations and Cooperation for Development of the University of Alicante. This work is
part of the PhD thesis of M.E.K.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Validation sites, validation periods, and number of Sentinel-2 images for validation years
2017 and 2021.

Sentinel-2 Tiles Validation Sites Years

Validation Period

Length in Days Start End Sentinel-2 Images

31SEA
E-3 2017 170 19/06/2017 06/12/2017 20
F-3 2021 120 23/06/2021 21/10/2021 20

31SFA
I-2 2017 170 19/06/2017 06/12/2017 18
G-3 2021 225 11/05/2021 22/12/2021 29

32SKF
Q-3 2017 205 17/05/2017 08/12/2017 21
P-3 2021 225 11/05/2021 22/12/2021 26

32SLF
V-2 2017 205 17/05/2017 08/12/2017 21
U-2 2021 110 18/07/2021 05/11/2021 22

32SMF
Y-3 2017 185 04/05/2017 05/11/2017 21
X-3 2021 230 08/05/2021 24/12/2021 29

Total Sentinel-2 images 227

https://doi.org/10.5281/zenodo.10684711
https://doi.org/10.5281/zenodo.10684711
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Figure A1. (a–g) Short units and (h) long units of the reference data at validation site 32SLF-V2 for 
the 2017 validation year. 
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Table A2. Spatial validation results of the 2017 GABAM map. CE: commission error, OE: omission
error, OA: overall accuracy, DC: Dice coefficient, and RelB: relative bias, all expressed as percentages.
SurfBA: surface correctly detected as burned, SurfUB: surface correctly detected as unburned, SurfCE:
committed burned surface, SurfOE: omitted burned surface, all expressed as hectares.
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Table A3. Spatial validation results of the 2017 FireCCI51 map.

Sentinel-2 Tile Validation Site
Accuracy Metrics

CE OE OA DC RelB SurfBA SurfUB SurfCE SurfOE

31SEA E-3 55.69 15.09 96.67 58.24 91.61 1029 41,853 1293 183
31SFA I-2 33.22 4.87 94.37 78.47 42.46 2344 19,204 1166 120
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Table A4. Spatial validation results of the 2017 C3SBA11 map.

Sentinel-2 Tile Validation Site
Accuracy Metrics

CE OE OA DC RelB SurfBA SurfUB SurfCE SurfOE

31SEA E-3 44.82 22.43 97.67 64.48 4059 940 42,382 763 272
31SFA I-2 30.97 6.42 94.78 79.45 3555 2306 19,336 1034 158
32SKF Q-3 39.27 27.29 92.64 66.18 1974 3448 40,914 2230 1294
32SLF V-2 26.31 8.97 95.95 81.44 2353 3692 36,175 1318 364
32SMF Y-3 42.16 3.35 82.10 72.37 6711 8525 21,325 6215 295

Overall 37.94 11.19 92.77 73.06 4310 18,911 160,132 11,561 2383

Table A5. Spatial validation results of the 2017 MCD64A1 map.

Sentinel-2 Tile Validation Site
Accuracy Metrics

CE OE OA DC RelB SurfBA SurfUB SurfCE SurfOE

31SEA E-3 44.14 34.32 97.65 60.37 17.59 796 42,517 629 416
31SFA I-2 35.10 9.65 93.69 75.54 39.21 2226 19,166 1204 238
32SKF Q-3 35.90 23.46 93.43 69.77 19.42 3630 41,111 2033 1112
32SLF V-2 33.42 11.79 94.53 75.88 32.50 3578 35,697 1796 478
32SMF Y-3 39.62 10.50 83.21 72.11 48.23 7894 22,359 5180 926

Overall 37.43 14.89 92.74 72.12 36.03 18,124 160,850 10,842 3170

Table A6. Spatial validation results of the 2017 EFFIS map.

Sentinel-2 Tile Validation Site
Accuracy Metrics

CE OE OA DC RelB SurfBA SurfUB SurfCE SurfOE

31SEA E-3 0.00 100.00 97.27 0.00 −100.00 - 43,146 - 1211
31SFA I-2 18.12 15.98 96.27 82.93 2.61 2070 19,912 458 394
32SKF Q-3 24.45 63.64 92.53 49.09 −51.88 1724 42,586 558 3018
32SLF V-2 21.77 21.94 95.74 78.14 −0.21 3166 36,612 881 890
32SMF Y-3 25.51 17.79 88.86 78.16 10.36 7252 25,056 2483 1569

Overall 23.56 33.26 94.06 71.26 −12.69 14,212 167,312 4380 7082
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Figure A11. Examples of the BA detection anomalies observed on the GABAM annual BA maps 
(blue) vs. the corresponding post-fire image composites (displayed in a Long SWIR/NIR/Red color 
composition) and NEALGEBA (red). 
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