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Abstract: Image semantic segmentation using deep learning algorithms plays a vital role in identify-
ing different rock-forming minerals. In this paper, we employ the U-net model for its architecture
that guarantees precise localization and efficient data utilization. We implement this deep learning
model across two distinct datasets: (1) the first dataset from the ALEX Streckeisen website, and (2) the
second dataset from the Gabal Nikeiba area, South Eastern Desert of Egypt. Our model exhibits
excellent performance in both datasets, with an average accuracy of precision at 0.89 and 0.83, recall
at 0.80 and 0.78, and F1 score at 0.82 and 0.79, respectively, helping in identifying and detecting
rock-forming minerals in thin-section images. The model’s most exceptional performance is clearly in
eleven different basement rock-forming minerals with precision up to 0.89, recall at 0.80, and F1 score
at 0.82 on average. This study is significant as it represents the key to identifying and detecting
minerals in the thin sections of rock samples in Egypt and the Arabian–Nubian Shield as a whole.
By significantly reducing analysis time and improving accuracy compared to manual methods, it
revolutionizes geological research and resource exploration in the region.

Keywords: U-net; deep learning; thin sections; image segmentation

1. Introduction

On an image-thin section, mineral identification and textural description require
microscopic investigation with interpretation and counting data obtained using a light
microscope [1–9]. Petrography is a specialized discipline that involves extensive knowl-
edge in identifying and classifying minerals and textural relationships within the rock [3].
According to the mineral compositions of the rocks, thin-section photos display color, grain
size, shape, internal cleavage, structure, and other features [6,10]. These attributes offer
valuable information on the petrographic properties of rocks. It is difficult to interpret some
minerals in a rock-thin section, even for an experienced petrologist, since they are small,
dark, or opaque. To identify minerals, other techniques may be used in addition to light
microscopy, such as scanning electron microscopy (SEM) and electron probe microanalysis
(EPMA), or bulk measurements, such as X-ray diffraction (XRD) [3].

As a result of point counting or grid-based statistics, workflows are used to deal
with the massive amounts of data present in a single slide and accelerate the collection
of representative quantitative data [3,6,11,12]. Despite being reliable and well-liked, this
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method skips over a lot of information on each image’s thin section or even entire thin
sections in order to save time. This manual process requires a significant amount of time,
money, and effort to complete. There are several approaches to categorizing information in
an image using computer vision algorithms [3,13,14]. An algorithm that has seen a training
set of photos is used to predict the class of a fresh observation using classification learning.
A subfield of computer vision called semantic segmentation aims to identify the class label
that each pixel in an image represents. In addition to autonomous vehicles [3,15], satellite
image classification is another popular semantic segmentation approach [3,14,16,17]. These
applications involve transforming pixels into meaningful output labels (e.g., boat, plane, car,
road, person, tree, sky, etc.) as a result of extensive effort. Instance segmentation is a step
further that seeks to group associated pixels into a region with a boundary, e.g., one quartz
grain is distinct and separate from another. This study is not intended to address instance
segmentation. However, using a “watershed” algorithmic approach as a post-processing
step to an output image can still be suggested [3,18].

In the field of petrology, semantic segmentation is still in its infancy, while non-
transferrable networks and small classification schemes for sandstones examine distinct ob-
jects from the organic petrology discipline [18–20]. Mlynarczuk and Skiba [21] demonstrate
how this field is developing. Segmentation cannot be performed without a pixel-by-pixel
label set [12]. With the purpose of labeling 2-dimensional RGB images captured by digital
cameras linked to light microscope equipment, Shell Research developed Computer Aided
Petrology (CAP) in the early- to mid-2000s. Through this method, a subject matter expert
manually obtains an image.

Image segmentation plays a pivotal role in discriminating the mineral composition of
rock units, particularly in the field of petrographic studies [22–30]. This process involves
partitioning a digital image of a rock sample into multiple segments, each representing dif-
ferent minerals or textures. By applying machine learning algorithms, such as convolutional
neural networks (CNNs), researchers can automate the identification and classification
of these segments with high accuracy. These models are trained on datasets containing
labeled images, enabling them to learn the unique features and patterns associated with
various minerals [23–26]. Once trained, the machine learning models can analyze new rock
images, segmenting and identifying mineral compositions quickly and efficiently. This
approach not only enhances the precision of mineralogical analysis but also significantly
reduces the time and effort required compared to traditional manual methods, thereby
advancing the capabilities and scope of petrographic studies [23].

This study shows that the semantic segmentation of thin-section images from two
datasets (dataset 1 with 10 images and dataset 2 with 5 images) can provide comprehensive
scene understanding within a classification framework. Additionally, it can compute basic
attributes much faster than an expert petrologist. In addition, experts may be able to gain
some knowledge of all the thin sections while refining their interpretations of the primary,
secondary, and accessory minerals—all of which are essential for refocusing their efforts on
microscopy methods other than light microscopy.

Let us further assume that thin-section image analysis may yield additional quantita-
tive geometric parameters (e.g., contact length, number of nearest neighbors, and preferred
orientation). If so, a greater range of assessment models for applications in geomechanics
and rock physics can be directly fed by these data. In order to achieve this, we train seman-
tic segmentation models to extract classification information from 2D RGB images taken
on the thin slices of basement rocks using the deep neural encoder–decoder architectures
of U-net. An excellently hand-labeled collection of training photos is used to train this
model. The following is the organization: First, we discuss the training dataset, the seman-
tic segmentation networks, and the general effectiveness of the trained model to predict
mineralogy using thin-section images. Next, we discuss the impact of the hyperparameters
of the preferred model. Finally, we present a thorough statistical and petrological review of
the preferred model, discuss limitations and opportunities, and present our conclusions.
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One of the objectives of this study is to implement a novel deep learning image
processing technique for the automatic identification of rock-forming mineral systems that
help in creating detailed geological maps of the study area with high precision, as well as
to investigate thin-section approaches that could help identify the minerals in the study
area and their extension.

2. Materials and Methods
2.1. Geologic Setting and Petrography of the Study Area

The Nikeiba area belongs to the North Arabian–Nubian Shield (ANS) and is located
in the South Eastern Desert of Egypt between latitudes 23◦49′N to 23◦53′N and longitudes
34◦18′E to 34◦24′E, with an area of ~416 km2 (Figure 1). In this area, different types of litho-
logical rocks are exposed including mafic metavolcanics, a metagabbro–diorite complex,
granodiorites, syenogranites, alkali feldspar granites, and quartz syenites (Figure 2a–c).
Many quartz veins dissect the above-mentioned units (Figure 2d) and microgranite dykes.
These rock units are well discriminated using Sentinel-2 decorrelation stretch image (b12,
b8, and b3 as RGB) (Figure 1b). Mafic metavolcanics and the metagabbro–diorite show
intrusive contacts with granitic rocks. On the other hand, syenogranites show gradational
contact with alkali feldspar granites. Many faults, mainly NW-SE, N-S, and E-W, dissect
the area [31]. The proposed methods used in this paper are clearly shown in Figure 3. In
this paper, we used two datasets (Figures 4 and 5), which are described in detail in the
following sections.

Syenogranites are pale pink to reddish-brown in color, and medium- to coarse-grained
(Figure 2a). They are composed mainly of K-feldspar (55–60 vol.%), quartz (22–28 vol.%),
plagioclase (10–15 vol.%), biotite (3–5 vol.%), muscovite (<1 vol.%), riebeckite, and arfved-
sonite (Figure 5a–c). Chlorite and epidote are the main alteration minerals. Accessory
minerals include zircon, apatite, beryl, and Fe-Ti oxides. Alkali feldspar granites are pink
to red in color, and medium- to coarse-grained (Figure 2b). The main mineral constituents
are K-feldspar (60–65%), quartz (24–30 vol.%), plagioclase (4–6 vol.%), biotite (~2 vol.%),
riebeckite, and arfvedsonite (Figure 5d). Zircon, apatite, beryl, and opaque minerals are
accessories, whereas chlorite and sericite are the alteration products of biotite and feldspar,
respectively. Quartz syenites are medium- to coarse-grained and dark grey to pale pink in
color (Figure 2c). Microscopically, they are composed of K-feldspar (65–70 vol.%), quartz
(15–18 vol.%), sodic amphibole (arfvedsonite, riebeckite) (~6 vol.%), biotite (~4 vol.%),
and accessory plagioclase (Figure 5e). Zircon, apatite, allanite, and opaque minerals are
accessories. The alteration minerals of biotite and feldspar include chlorite and sericite,
respectively (Figure 5e). For this study, we selected ten minerals that represent the dif-
ferent rock-forming minerals of the granitic rocks of the Nikeiba area. These minerals
include primary magmatic minerals (quartz, K-feldspar, plagioclase, biotite, muscovite,
and riebeckite–arfvedsonite), secondary minerals (chlorite), and accessory minerals “zircon
and apatite”.
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Figure 1. (a) Location map of the study area [32,33]. (b) The Sentinel-2 decorrelation stretch (b12,
b8, and b3 as RGB) image. (c) The geological map of the Gabal Nikeiba area produced from inte-
grated remote sensing, field observation, and petrography modified after Abdel Gawad et al. [31].
Abbreviations: Mv, mafic metavolcanics; Mgb, metagabbro–diorite complex; Gd, granodiorite; SG,
syenogranites; AFG, alkali feldspar granites; QS, quartz syenites.
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Figure 2. Field photographs of the Gabal Nikeiba granites. (a,b) A close-up view of syenogranites
and alkali feldspar granites, respectively. (c) A panorama view of quartz syenites. (d) Quartz vein at
the periphery of alkali feldspar granites.
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Figure 3. Workflow diagram for the proposed method.
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Figure 4. The datasets used from ALEX Strekeisen (https://www.alexstrekeisen.it). (a) The cross-
polarized light (XPL), Plane-polarized light (PPL), segmentation results of the stacked images of (XPL)
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and (PPL), and vector images, respectively, of biotite, quartz, and plagioclase crystals in granites.
Vector image as a result of converting a segmented raster image to a polygon in ArcGIS Pro version 3.0.
Every pixel in an image is tagged with a semantic segmentation class. (b) Biotite and quartz crystals
in granites. (c) Biotite, quartz, and plagioclase in granites. (d,e) Chlorite, quartz, and plagioclase
in granites. (f) Olivine and plagioclase crystals in troctolite. The fractures are due to the increase
in volume due to the serpentinization. (g,h) Talc veins in a serpentinite. (i) Wedge-shaped titanite
crystals in the interstitial space of quartz are associated with biotite in granites. (j) Tourmaline crystals
in the interstitial space of large quartz crystals. XPL and PPL images, 2× (field of view = 7 mm).
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Figure 5. The datasets used from the Gabal Nikeiba area. (a) The cross-polarized light (XPL), Plane-
polarized light (PPL), segmentation results of the stacked images of (XPL) and (PPL), and vector
images, respectively, of biotite, quartz, and plagioclase crystals in granites. Vector image as a result of
converting a segmented raster image to a polygon in ArcGIS Pro version 3.0. Every pixel in an image
is tagged with a semantic segmentation class. (b) Biotite and quartz crystals in granites. (c) Biotite,
quartz, and plagioclase in granites. (d,e) Chlorite, quartz, and plagioclase in granites.
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2.2. Image Datasets

In general, there are only a few label sets available for petrology. In order to create
these sets and to compare several methods for automatic mineral identification in thin-
section images, we produced a dataset with pixel-level segmentation masks for images
containing various minerals. These datasets are divided into subgroups representing
various mineralogical compositions. The datasets were gathered from two distinct sources:
(1) the first dataset comprises high-resolution photographs from Alex Strekeisen’s website
(https://www.alexstrekeisen.it); (2) the second dataset includes different granitic samples
collected in the Nikeiba area, South Eastern Desert of Egypt. We prepared 24 thin sections
from the specimens gathered in the Nikeiba area of Egypt’s Eastern Desert for microscopic
analysis at the Geology Department of Kafrelsheikh University using a Kemet Geoform
thin sectioning machine (Kemet International Ltd, Parkwood Trading Estate, Maidstone,
United Kingdom). These sections were polished after being cut into billets, impregnated
with white epoxy resin, mounted on glass slides, and ground to a final thickness of 30 µm.
The process involved the careful polishing of the surface. The materials used included
white epoxy (Resin A&B) and silicon carbide powder in various grit sizes: 220, 400, 600,
800, 1000, and 1200.

The petrographic analysis of the second dataset was conducted using an Olympus
TH4-200 standard polarizing microscope equipped with a UC-30 digital camera [33,34].
Labeling images were taken using optical microscopes with 4× or 10× magnification,
resulting in pixel resolutions ranging from 0.84 to 2.08 pixels/µm. The first dataset of Alex
Strekeisen consists of 10 main minerals (Table 1). Our second dataset from the granites
of the Nikeiba area comprises ten different types of rock-forming minerals (Table 1). It is
essential to emphasize that despite the fact that an experienced geologist can investigate
many more minerals in a thin section, we only include 16 minerals in our work because
gathering a huge collection of thin sections with the hand annotation of all the used minerals
is resource-expensive.

Table 1. Hyperparameters were tested for all base networks.

Hyperparameters Spanned Range

Learn Rate Schedule Piecewise
Learn Rate Drop Period 2

Learn Rate Drop Factor 0.8

Initial Learn Rate 0.001
L2 Regularization 0.1

Max Epochs 75
Mini Batch Size 3

Shuffle Every epoch

2.3. Preparing Thin-Section Samples for Deep Learning Analysis

The workflow of the methodology employed in this study is illustrated in Figure 3.
Preparing thin-section training samples for deep learning in petrography requires a meticu-
lous and technical approach. This begins with capturing images under two distinct lighting
conditions: cross-polarized light (XPL) and Plane-polarized light (PPL) (Figures 4 and 5).
These imaging techniques are essential in petrography as they highlight different aspects
of the mineral components in the thin sections. XPL and PPL images provide comple-
mentary information about the rock samples’ mineral composition, texture, and structure
(Figures 4 and 5). Obtaining high-quality and representative images under both lighting
conditions is vital for the subsequent steps in the data preparation process.

Once the XPL and PPL images of the thin sections are obtained, the next critical
step is image registration. This process involves adjusting and aligning the XPL and PPL
images to match each other perfectly. Image registration is crucial as it ensures that the
features observed in the XPL and PPL images correspond to the same areas of the thin

https://www.alexstrekeisen.it
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section. Accurate alignment is essential for effectively combining data from both imaging
modalities. This alignment allows for a more comprehensive analysis of the mineral
components, combining the information obtained from both polarized light conditions.

After aligning the XPL and PPL images, they are stacked to form a single composite
image. This composite image consists of six bands—three from the XPL image and three
from the PPL image. Arranging the photos in this way forms a multi-dimensional dataset
that captures the optical information from both types of polarized light. The next crucial
step involves segmenting this stacked image (Figures 4 and 5). This segmentation process
isolates different regions within the image, facilitating the subsequent labeling process.
By merging different segments under their respective labels, the process effectively cate-
gorizes various mineral components and other features in the thin sections. This step is
fundamental in preparing the data for more detailed analysis and classification.

The final step in preparing the training samples involves two key activities: building a
vector layer for labeling and tiling the stacked images (Figures 4 and 5). The vector layer is
meticulously constructed to label different mineral components within the sections. This
layer includes major minerals and, importantly, mirror labels for secondary components
(Figures 4 and 5). This detailed labeling is vital for training deep learning algorithms to
recognize and classify different minerals accurately. The last step is converting the stacked
images and their corresponding vector layers into fixed-size square tiles. The tiles and their
associated masks are input into a deep learning model like the U-net algorithm, which is
commonly utilized for image segmentation. This method of dividing the images into tiles
and applying masks is essential for effectively training deep learning models. It enables
them to recognize and learn mineralogical characteristics in thin-section samples accurately.

2.3.1. Train, Validation, and Testing Datasets

In the labeled dataset, the images were randomly assigned to three subgroups: 960 im-
ages for training, 194 images for validation, and 234 images for testing. Every RGB image
and its label are sized at 775 × 518 pixels. In this study, the model was initially fit using
a training dataset with an optimized set of hyperparameters (Table 1) as the learning
method [34]. Predicting the responses to the observations in the validation dataset was
then accomplished using the fitted model. In the next phase, we tuned hyperparameters
(Figures 4 and 5) based on model performance against the validation dataset.

To perform semantic segmentation of thin-section images, we used a convolutional
neural network based on a popular U-Net architecture (Figure 6) with batch normalization
layers [35,36]. Adding residual connections inside convolution blocks increases learning
speed and overcomes the vanishing gradient problem [37]. Using typical patch-based
methodologies to train a neural network with uneven input will produce poor results. To
address the issue of data imbalance, we applied a modified version of the specific data
balancing strategy suggested by Kochkarev et al. [38]. Specifically, during the generation
step, the patch probability maps that were based on the distance to the nearest class were
replaced with the area of a certain class in the patch. Optimal hyperparameters for models
based on Resnet-34 and the U-net network are listed in the right column.

2.3.2. CNN Architectures and Models

We applied semantic segmentation convolutional neural networks (CNNs) to classify
each pixel in a thin-section image. This produces an image segmented according to the
petrological class defined by the labeling schemes (16 classes). There are multiple types of
networks for semantic segmentation, including ResNet34 and U-Net. All of these networks
are effective and trainable, and they make use of the limited GPU resources available in the
MATLAB libraries. Briefly, ResNet34 and U-Net include different network layers and have
convolutional kernels of size 3 × 3, max pooling size 2 × 2, and a stride of two (Figure 6).
ResNet 34 utilizes exactly the same 3 × 3 convolutional kernels, located at the beginning
and end of the network. It makes connections between each of the two convolutional layers.
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Both base architectures include a softmax (probability) layer to get the highest probability
pixel outcome from the classification procedure (Figure 6).
 

5 

 
 

 
 

Figure 6. The whole network architecture of the deep learning U-net method.

Exploring the U-Net Architecture: An Overview of its Structure for Efficient Image
Segmentation U-Net is a convolutional neural network architecture developed primarily
for biomedical image segmentation. This architecture is notable for its efficiency and
accuracy in segmenting images, even with limited data. The structure of U-Net can be
described in four main sections:

1. Downsampling (Contracting Path): The first part of U-Net is the contracting path,
which is a typical convolutional network. This path contains the continual application
of two 3 × 3 convolutions (unpadded convolutions), each followed by a rectified linear
unit (ReLU) and a 2 × 2 max pooling operation with stride 2 for downsampling. At
each downsampling step, the number of feature channels is doubled. This part of the
network captures the context in the input image, essential for accurate segmentation.

2. Bottleneck: After several layers of downsampling, the U-Net reaches its bottleneck.
This is the lowest level of the network, where it has the smallest spatial dimension of
feature maps. In the bottleneck, two 3 × 3 convolutions are applied, followed by a
ReLU. This section is crucial as it allows the network to process features at the lowest
resolution, capturing the most abstract representations of the input data.

3. Upsampling (Expanding Path): Following the bottleneck, the network then transi-
tions into the expansive path, which includes a sequence of upsampling and convolu-
tion operations. The upsampling of the feature map is followed by a 2 × 2 convolution
(“up-convolution”) that halves the number of feature channels. Then, a concatenation
is performed with the correspondingly cropped feature map from the contracting
path. This step is crucial for the network to learn precise localization, a critical aspect
of accurate segmentation.

4. Final Layer: The final layer of the network is a 1 × 1 convolution that maps each
feature vector to the desired number of classes in the output segmentation map. This
layer produces the final segmentation map, where each pixel in the image is classified
into a specific class. The architecture’s use of expansive paths and concatenation with
high-resolution features from the contracting path allows for precise localization and
detailed segmentation.
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3. Results and Discussion
3.1. Experiments Setup

In this paper, we conducted a series of experiments focusing on a subset of data,
including image training datasets for three different types of mineral thin sections. These
initial experiments were crucial for fine-tuning the various parameters we used in our
study. To carry out these experiments, we employed the U-net deep learning model, which
is renowned for its efficiency and accuracy in image segmentation tasks. The model was
configured with specific parameters: a maximum of 20 epochs, a batch size of 8, and a
learning rate tailored for optimal performance. Additional model arguments included
settings for class balancing, mix-up, focal loss, and ignore classes, with a chip size set at
128 and the monitoring of the validation loss.

Further technical details of our experimental setup include the choice of RESNET34 as
the backbone model, which is highly regarded for its performance in image classification
tasks. We also utilized a pre-trained model to leverage previously learned patterns and
features, enhancing the model’s effectiveness. The validation data comprised 10% of the
total dataset, ensuring a robust evaluation of the model’s performance. An essential feature
of our model training was the “STOP_TRAINING” functionality, which automatically
halted training when no further improvements were observed, thereby optimizing the
training process and preventing overfitting.

The entire configuration and adjustment of these specifications were carried out
within the ArcGIS Pro version 3.0 environment, utilizing its deep learning toolbox. This
environment provided a stable and efficient platform for manipulating the deep learning
parameters and models, ensuring precise and reliable outcomes in our experiments. The
integration of these advanced tools and settings in the ArcGIS Pro version 3.0 environment
was crucial for achieving the high level of accuracy and efficiency required in our study of
the mineral thin sections.

In our recent experiments, we focused on training data analysis using a balanced
dataset, where 50% was allocated for validation and the other 50% for training [39]. This
methodology was applied across 50 epochs to ensure comprehensive learning and evalua-
tion. The results of these experiments were meticulously documented and presented in
Figures 7–9. Figure 7 offers a detailed look at the training and validation loss graph. This
visual representation provides insights into the model’s performance over the course of the
training process, highlighting the loss metrics during each epoch for both the training and
validation phases.
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 Figure 7. Training and validation loss graph of the dataset.
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 Figure 8. (a–j) The results of the ground truth and prediction masked images of the first dataset.
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Figure 9. (a–e) The results of the ground truth and prediction masked images of the second dataset of
the Gabal Nikeiba area, South Eastern Desert, Egypt.
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3.2. Comparing the Two Datasets

A detailed overview of the model’s performance across various classes, with a focus
on the precision, recall, and F1 score metrics, for the two datasets is shown in Table 2.

Table 2. Evaluation matrix result for each class and the total average in the two datasets used.

The First Dataset from ALEX Strekeisen (https://www.alexstrekeisen.it)

M
etrics

Q
uartz

Plagioclase

B
iotite

C
hlorite

O
livine

Serpentine

Tourm
aline

Titanite

Talc

B
ackground

A
verage

precision 0.81 0.78 0.90 0.89 0.87 0.88 1.00 0.78 0.94 0.92 0.89

recall 0.85 0.77 0.93 0.80 0.94 0.98 0.62 0.77 0.76 0.26 0.80

F1 0.83 0.78 0.91 0.84 0.91 0.93 0.77 0.77 0.84 0.40 0.82

The Second Dataset from the Gabal Nikeiba Area, South Eastern Desert, Egypt

M
etrics

Q
uartz

Plagioclase

B
iotite

K
-feldspar

R
iebeckite

A
rfvedsonite

M
uscovite

A
patite

Z
ircon

B
ackground

A
verage

precision 0.91 0.81 0.77 0.91 0.95 0.84 0.79 0.92 0.76 0.68 0.83

recall 0.79 0.90 0.98 0.94 0.90 0.77 0.62 0.51 0.89 0.46 0.78

F1 0.84 0.85 0.86 0.92 0.92 0.80 0.69 0.66 0.82 0.55 0.79

• Quartz: The first dataset shows strong precision at 0.81 and recall at 0.85, leading
to a balanced F1 score of 0.83, whereas the second dataset of the Gabal Nikeiba area
displays excellent precision at 0.91 and recall (0.79) (Table 2), leading to a very high
F1 score. This indicates a reliable performance in correctly identifying quartz and
effectively reducing false negatives (Figures 8 and 9).

• Plagioclase and Biotite: These minerals demonstrate high precision in the two datasets,
ranging from 0.77 to 0.90, and recall from 0.77 to 0.98 (Table 2), suggesting the model’s
strong capability in accurately identifying these minerals and consistently detecting
their instances (Figures 8 and 9).

• K-feldspar: In the Nikeiba area, it has strong precision (0.91) and recall (0.94), resulting
in a very high F1 score (0.91) (Table 2). This result indicates that the model is very
accurate in the detection of K-feldspar (Figure 9).

• Riebeckite and Arfvedsonite: These minerals belong to alkali amphibole and are
present in the three different types of the Gabal Nikeiba granites (syenogranite, alkali
feldspar granites, and quartz syenites) (Figure 5). They show a very high precision
range from 0.84 to 0.95 and recall range from 0.77 to 0.90, leading to a strong F1 score
of 0.80 and 0.92 (Table 2). This result exhibits the accuracy of the model in identifying
and detecting these minerals (Figure 9).

• Muscovite: It shows moderate precision (0.79) and moderate recall (0.62), resulting in a
moderate F1 score of 0.69 in the Nikeiba area, which implies the moderate performance
of the model in both identifying and detecting the muscovite (Figure 9d).

• Chlorite, Olivine, and Serpentine: These minerals run only in the first dataset, and
they exhibit excellent precision ranging from 0.87 to 0.89 and recall from 0.80 to 0.98,
resulting in a high F1 score of 0.84, 0.91, and 0.93, respectively (Table 2), indicating
that the model shows exceptional performance in both accurately identifying and
consistently detecting chlorite, olivine, and serpentine (Figure 8d–h).

• Titanite and Talc: These classes belong to the first dataset, and they have high precision
(0.78 and 0.94, respectively; Table 2) but moderate recall (both at 0.77 and 0.76; Table 2),

https://www.alexstrekeisen.it


Remote Sens. 2024, 16, 2276 16 of 21

indicating the model’s effectiveness in correctly identifying them, though with some
missed instances (Figure 8g–i).

• Tourmaline: It also runs in the first dataset and has perfect precision (1.00); its recall
is significantly lower at 0.62, leading to an F1 score of 0.77 (Table 2). This suggests
that while the model accurately identifies tourmaline, when it detects it, it misses a
considerable number of instances (Figure 8j).

• Zircon: In the Nikeiba area, it is a prevalent accessory mineral (Figures 4e and 8e). It
has high precision (0.76) and strong recall (0.89), leading to a strong F1 score of 0.82
(Table 2). This indicates that the model accurately identifies and consistently detects
the zircon (Figure 9e).

• Apatite: It is an accessory mineral in all the granitic phases of the Nikeiba area
(Figure 4a). It has excellent precision (0.92) and low recall (0.51), leading to an F1 score
of 0.66 (Table 2). This implies that the model accurately identifies and detects apatite
with some missed instances (Figure 9a).

• Background: Notably, the model achieves a moderate to high precision range (0.68 to
0.92) in identifying the background in the two datasets but has a low recall (0.26 to
0.46, respectively), leading to a lower F1 score range from 0.40 to 0.55 (Table 2). This
implies that while the model accurately identifies background, when it does, it often
fails to detect it.

The overall average scores across all the classes of the first dataset (precision = 0.89,
recall = 0.80, and F1: 0.82) are slightly high compared to the second dataset of the Nikeiba
area with precision equal to 0.83, recall = 0.78, and F1 = 0.79 (Table 2). This reflects a highly
effective model with solid capabilities in accurately identifying and consistently detecting
various classes, though with some variation across different classes in both datasets. The
lower recall for background suggests an area for potential improvement, highlighting the
need for enhanced detection in this aspect.

Finally, we have successfully developed a model capable of detecting more distinct
classes of petrographic features, namely 11 classes, significantly surpassing the previous
methodologies [23–27,40]. This improvement is primarily attributed to the utilization of the
ResNet-34 architecture, which strikes an optimal balance between depth and computational
efficiency. Unlike the more cumbersome ResNet-134, ResNet-34 offers a streamlined struc-
ture that enhances both processing speed and model performance. This architectural choice
has enabled us to achieve a more refined and accurate classification of the petrographic
samples, facilitating more comprehensive analysis and interpretation in geological studies.

Furthermore, our method leverages the full resolution of the petrographic images by
employing a sophisticated tiling strategy. This approach involves dividing high-resolution
images into smaller, manageable tiles, thereby increasing the effective size of the training
dataset without compromising the detail and quality of the data. In contrast, the pre-
vious methods relied on downsampling to create lower-resolution images, which often
resulted in the loss of critical textural and structural information. By maintaining full
resolution, our model is better equipped to capture the intricate features necessary for
accurate classification, leading to a more precise and reliable petrographic analysis.

A comparative analysis of mineral percentages identified in thin sections using an
automated mineralogy method versus traditional, manual point counting (“ground truth”)
is illustrated in Table 3. Each row represents a separate thin section analyzed, with its pre-
dicted mineralogy based on the automated method and the actual mineralogy determined
by point counting. The percentage of each mineral identified is listed, allowing for a direct
comparison of the accuracy of the automated method.
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Table 3. Evaluation of the input thin section and predicted images in the two datasets.

The First Dataset from ALEX Strekeisen (https://www.alexstrekeisen.it)

Input
thin-section

image
Figure 8a Figure 8b Figure 8c

Ground
truth

mineral

Q
uartz

Plagioclase

B
iotite

B
ackground

B
iotite

Q
uartz

+
B

ackground

Q
uartz

Plagioclase

B
iotite

B
ackground

Percentage 32.03 41.77 18.99 7.21 98.39 1.61 28.09 36.60 63.40 0.00

Predicted
mineral

Q
uartz

Plagioclase

B
iotite

B
ackground

B
iotite

Q
uartz

+
B

ackground

Q
uartz

Plagioclase

B
iotite

B
ackground

Percentage 23.00 51.40 22.37 3.22 97.33 2.67 15.50 37.14 45.26 2.11

Difference 9.03 −9.63 −3.38 3.99 1.06 −1.06 13.41 −0.54 18.15 −2.11

Input
thin-section

image
Figure 8d Figure 8e Figure 8f

Ground
truth

mineral

Q
uartz

Plagioclase

B
iotite

C
hlorite

B
ackground

Q
uartz

Plagioclase

B
iotite

B
ackground

Plagioclase

O
livine

B
ackground

Percentage 21.23 28.81 10.60 32.85 0.26 11.97 56.73 29.76 1.54 47.85 52.15 0.00

Predicted
mineral

Q
uartz

Plagioclase

B
iotite

C
hlorite

B
ackground

Q
uartz

Plagioclase

B
iotite

B
ackground

Plagioclase

O
livine

B
ackground

Percentage 22.14 32.42 12.34 39.37 0.00 9.63 59.41 24.48 6.48 42.25 56.62 1.14

Difference −0.91 −3.61 −1.74 6.52 −0.26 2.33 −2.68 5.28 −4.94 5.60 −4.46 −1.14

https://www.alexstrekeisen.it
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Table 3. Cont.

The First Dataset from ALEX Strekeisen (https://www.alexstrekeisen.it)

Input
thin-section

image
Figure 8g Figure 8h Figure 8i Figure 8j

Ground
truth

mineral

Serpentine

Talc

B
ackground

Serpentine

Talc

B
ackground

Q
uartz

B
iotite

Titanite

B
ackground

Q
uartz

Tourm
aline

B
ackground

Percentage 76.16 23.84 0.00 75.80 24.20 0.00 86.99 5.91 6.29 0.82 84.09 11.02 4.89

Predicted
mineral

Serpentine

Talc

B
ackground

Serpentine

Talc

B
ackground

Q
uartz

B
iotite

Titanite

B
ackground

Q
uartz

Tourm
aline

B
ackground

Percentage 76.28 22.82 0.90 78.46 21.35 0.19 85.15 5.13 6.12 3.61 84.41 10.99 4.60

Difference −0.11 1.01 −0.90 −2.66 2.85 −0.19 1.84 0.78 0.17 −2.79 −0.32 0.03 0.29

The second dataset from the Gabal Nikeiba area, South Eastern Desert, Egypt

Input
thin-section

image
Figure 9a Figure 9b Figure 9c Figure 9d Figure 9e

Ground
truth

mineral

K
-feldspar

B
iotite

A
patite

Q
uartz

K
-feldspar

A
rfvedsonite

B
ackground

K
-feldspar

A
rfvedsonite

R
iebeckite

B
ackground

Q
uartz

Plagioclase

M
uscovite

Q
uartz

K
-feldspar

A
rfvedsonite

Z
ircon

Percentage 60.69 37.31 1.39 8.94 81.58 9.39 0.10 94.37 4.18 1.34 00.11 50.50 45.66 3.84 7.41 51.30 38.78 2.51

Predicted
mineral

K
-feldspar

B
iotite

A
patite

Q
uartz

K
-feldspar

A
rfvedsonite

B
ackground

K
-feldspar

A
rfvedsonite

+
R

iebeckite

Q
uartz

Plagioclase

M
uscovite

Q
uartz

K
-feldspar

A
rfvedsonite

Z
ircon

Percentage 61.58 36.80 1.62 7.36 84.69 7.85 0.11 94.05 5.95 47.94 47.56 4.50 5.09 49.20 42.35 3.36

Difference −0.89 0.51 −0.23 1.58 −3.11 1.54 −0.01 0.32 −1.78 2.56 −1.90 −0.66 2.32 2.10 −3.57 −0.85
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The “Difference” column highlights the discrepancies between the automated and
manual methods for each mineral and thin section. The positive values indicate an overesti-
mation by the automated method, while the negative values represent an underestimation.
This column is crucial for assessing the reliability and potential biases of the automated
approach. For instance, the thin-section image (Figure 8c; Table 3) shows a substantial
difference in the biotite percentage, suggesting the automated method may struggle to
differentiate biotite from the other minerals in certain contexts. This is due to human error
in labeling the biotite crystals due to their variable textures (subhedral plated and flakes)
and colors (pale greenish-brown, pale green, brown, and dark red–brown). Additionally,
some biotite crystals may be affected by hydrothermal alteration and converted to several
minerals like chlorite, muscovite, and clay minerals [41]. Overall, this table provides a
valuable snapshot of the performance of the automated mineralogy technique, paving the
way for further investigation into its strengths, limitations, and potential refinements.

4. Conclusions

In this study, we applied semantic segmentation deep learning techniques to petro-
logical imaging, focusing on automatic mineral detection in rock thin-section images. Our
approach is based on the U-Net framework with ResNet 34 as a backbone. In this study,
we evaluated the performance of the U-Net deep learning algorithm using two distinct
datasets. The first dataset from ALEX Strekeisen encompasses a diverse range of classes
with high average scores, demonstrating robust model capabilities. The second dataset,
specific to the Nikeiba area, serves as a comparative benchmark to assess the model’s gen-
eralizability. By comparing the results from these datasets, we aim to identify the areas of
strength and potential improvement in the model’s segmentation performance. The overall
average scores across all the classes of the first dataset—precision (0.89), recall (0.80), and F1
(0.82)—are slightly higher compared to the second dataset of the Nikeiba area, which has
precision equal to 0.83, recall equal to 0.78, and an F1 score of 0.79. These metrics indicate
that the model performs effectively in accurately identifying and consistently detecting
various classes, although there is some variation in performance across different classes
in both datasets. The differences in these scores underscore the model’s robustness and
capability, yet they also reveal areas where further refinement might be beneficial. One
noteworthy area for potential improvement is the recall for the background class, which
is lower in comparison to other classes. This suggests that the model may occasionally
miss instances of the background class, indicating a need for enhanced detection strategies
in this specific aspect. By addressing this shortcoming, the overall performance of the
model can be further optimized, ensuring more comprehensive and reliable detection
across all the classes. Moreover, the findings from this study can be applied to enhance
thin-section mineral identification across the Arabian–Nubian Shield, demonstrating the
broader applicability of the modern deep learning models in petrographic studies.
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