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A B S T R A C T

Spatial heterogeneity is a pervasive feature of soils, affecting the distribution of carbon sources as well as their
microbial consumers. Heterogeneous addition of substrates typically results in delayed microbial growth
compared to homogeneous addition, and this effect has frequently been attributed to spatial separation of mi-
croorganisms from their food. We investigated the importance of two other potential causes of this effect, the
availability of nutrients and oxygen, by measuring heat and CO2 release along with O2 consumption from soil
samples after homogeneous or heterogeneous addition of glucose as well as with or without further addition of a
nutrient solution. We then employed a microbial-explicit model to quantitatively interpret our observations. The
results revealed that delayed growth after spatially heterogeneous substrate addition was primarily caused by
nutrient limitation. While sufficient co-location of all entities - substrate, microorganisms, and nutrients - is
required for optimal growth, spatial separation of glucose and microorganisms only played a minor role in our
experiment. Model simulations captured the dynamics based on aerobic growth and maintenance, utilizing a
simple formulation of nutrient limitation coupled with dynamic transition of microbes between activity and
dormancy. The model predicted an overall lower microbial activity over the course of the incubation in treat-
ments with heterogeneous substrate addition. Despite reduced rates, neither the experimental carbon and energy
balances nor modeling showed an effect of heterogeneity on the growth efficiency after 50 h of incubation. In all
treatments, energy use efficiency exceeded carbon use efficiency by 9–21%. We found no evidence of anaero-
biosis. The application of a bioenergetic framework facilitated the interpretation of complex experimental data
and quantitatively captured the mechanisms underlying the effects of spatial heterogeneity.

1. Introduction

The fate of organic carbon (C) entering soil or stored as soil organic
matter (SOM) is of critical importance to future climate change and to
the provisioning of soil ecosystem services, and it is mediated in large
part by soil microorganisms (Bardgett et al., 2008; Phillips and Nick-
erson, 2015; Crowther et al., 2019). The processes and factors control-
ling the decomposition and cycling of C and especially the fraction of
consumed C that is used by microbes to form new biomass, often termed
the microbial carbon use efficiency (CUE), have thus played a central

role in soil research for decades (Manzoni et al., 2018). Yet, the
complexity and variability of natural soil environments that arises from
the simultaneous occurrence of many physico-chemical (e.g., diffusion
and sorption) and biological processes (e.g., diverse metabolic activity
and microbial interactions) continue to challenge our understanding of
microbial carbon cycling and especially CUE (Sinsabaugh et al., 2013;
Geyer et al., 2016; Hagerty et al., 2018).

One important source of such challenges is the high degree of spatial
and temporal heterogeneity in soils, both regarding the distribution of C
substrates (e.g., Peth et al., 2014; Schlüter et al., 2022) as well as their
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potential microbial consumers (e.g., Raynaud and Nunan, 2014).
Availability and input of C as well as suitable habitat in soils are
necessarily patchy, e.g., concentrated in the rhizosphere or detritu-
sphere, and the ecological relevance of this heterogeneity for microbial
strategies and communities as well as for SOM persistence is well
recognized (Kuzyakov and Blagodatskaya, 2015; Nunan, 2017; Leh-
mann et al., 2020). Multiple studies have evaluated the effect of sub-
strate spatial heterogeneity on microbial C use by manipulating the
substrate distribution experimentally. C derived from various com-
pounds, ranging from labile C sources (Shi et al., 2021) to pesticides
(Pinheiro et al., 2015), plant litter (Gaillard et al., 1999; Kandeler, 1999;
Coppens et al., 2006; Magid et al., 2006; Poll et al., 2006; Védère et al.,
2020) and plant-derived organic matter (Inagaki et al., 2023) has been
used for this purpose. The role of spatial heterogeneity was also inves-
tigated by manipulating soil spatial structure (Strong et al., 2004; Juarez
et al., 2013; Tian et al., 2015). The results of such experiments revealed
pronounced effects of spatial heterogeneity, like a steep decline in ac-
tivity with increasing distance from substrate hotspots, or a reduced and
delayed activity in the case of heterogeneous substrate addition when
compared to homogeneous addition (but see Juarez et al., 2013 and the
subsoil results in Inagaki et al., 2023).

Mechanistically, several processes could explain these experimental
observations. Granted that most soil microbes are expected to follow
stationary sit-and-wait strategies (Nunan et al., 2020), the most
frequently offered explanation invokes the spatial separation between
microbial consumers and C sources. In this situation, the availability of
assimilable substrate is mediated by the diffusion of monomers (either
added directly or resulting from the decomposition of polymers) and
enzymes (to decompose polymers, Or et al., 2007) as well as by physical
C source accessibility (Dungait et al., 2012). Conceptually, a reduction
and delay in activity in the case of heterogeneous substrate distribution
may then result from a considerable portion of soil microbes that cannot
access the substrate and remains C- and energy-limited. However, other
limitations may also occur, especially under local excess of substrate.
For example, low availability of essential nutrients like nitrogen (N) has
the potential to limit the rate of anabolism and thus microbial growth
even if sufficient C is present. Such imbalanced stoichiometry reduces
CUE and alters SOM utilization in natural soils, for example due to
N-mining (Manzoni et al., 2012; Chen et al., 2014; Manzoni, 2017;
Chakrawal et al., 2022), and might lead to overflow respiration (Russell
and Cook, 1995). Likewise, microbial growth can be impeded if the rate
of energy acquisition through catabolism is limited by local O2 avail-
ability in the soil. While this is very common under water-saturated
conditions, the mechanism is also relevant at intermediate moisture
levels, in particular in microsites with high microbial activity, where the
demand-driven onset of anaerobiosis may lower the rate and efficiency
of microbial carbon use (Loecke and Robertson, 2009; Schlüter et al.,
2019; Kim et al., 2021; Lacroix et al., 2023).

These mechanisms, depending on local availability of substrate,
nutrients, and oxygen, likely mediate the effect of substrate spatial
heterogeneity to varying degrees in situ, but untangling their contribu-
tions in particular experimental settings is a challenging task.

Theoretical and modelling frameworks frequently used to interpret
experiments (e.g., Korsaeth et al., 2001; Kuka et al., 2007; Moyano et al.,
2013; Babey et al., 2017; Zech et al., 2022) recently turned towards
leveraging the coupling between C and energy fluxes in soil as a new
avenue to elucidate the microbial metabolism and specifically CUE and
energy use efficiency (EUE) (e.g., Chakrawal et al., 2020; Bajracharya
et al., 2022; Gunina and Kuzyakov, 2022; Wang and Kuzyakov, 2023).
For example, several studies evaluated the calorespirometric ratio (CR,
Hansen et al., 2004; Barros et al., 2016) of heat to CO2 production during
microbial growth in soil, both experimentally (e.g., Barros et al., 2010;
Herrmann and Bölscher, 2015) and theoretically (Chakrawal et al.,
2020, 2021, Endress et al., 2024). These efforts demonstrated the po-
tential of the framework to, e.g., monitor changes in microbial CUE or to
detect a switch to anaerobic metabolism, especially if CR observations

are supported by modelling efforts to disentangle and quantify these
effects. However, this integration of experimental data with
process-based bioenergetic models that include an explicit representa-
tion of microbial biomass and its dynamics is still at an early stage, a
challenge that persists with regard to biogeochemical models more
generally (Wieder et al., 2015; Marschmann et al., 2019).

In this study, we investigated the impact of substrate spatial het-
erogeneity on the dynamics and the efficiency of soil microbial growth
from the perspective of coupled C and energy fluxes. To that end, we
measured CO2 and heat production after either homogeneous or het-
erogeneous addition of glucose as a labile C- and energy source. Based
on similar studies, we hypothesized (i) that heterogeneous substrate
application would result in lower and delayed microbial growth
compared to a homogeneous treatment. To distinguish the potential
limiting factors underlying such a pattern, we also monitored the con-
sumption of O2 throughout the incubations and factorially added nu-
trients along with glucose. Using this design, transitions to anaerobic
pathways due to local O2 deficiency can be detected both in the CR as
well as in the direct O2 measurements, while local nutrient depletion in
hotspots with excess glucose would be alleviated in treatments where
glucose is supplied in combination with additional nutrients. We further
hypothesized (ii) that these mechanisms are more important causes of
reduced microbial growth compared to the spatial availability of glucose
itself. Finally, we combined our experimental findings with a simple
microbial-explicit model including coupled C- and heat fluxes during
growth on glucose to analyze and interpret our results in a quantitative
framework, and to discern the degree to which growth limitation (e.g.,
by O2 or nutrients) can be inferred from the C- and energy balance.

2. Materials and methods

2.1. Incubation setup

The soil used in this experiment is classified as a Haplic Luvisol and
was sampled during September 2021 from the experimental site of
Dikopshof, University of Bonn, Germany, established in 1904
(Holthusen et al., 2012; Seidel et al., 2021). Relevant characteristics of
the soil are given in Table S1. The soil was sieved through a 2 mm mesh,
air dried and stored at room temperature. It was then preincubated at a
water content of 14% (w/w, 45.5% of water holding capacity, WHC) for
10 days before the start of the experiment. Water loss due to evaporation
was compensated by regular water addition, and any seedlings growing
during the preincubation were removed by hand.

Four treatments were considered to investigate the effect of substrate
heterogeneity in soil. The soil samples were either amended with a so-
lution of glucose in water or glucose in a nutrient solution ((NH4)2SO4
9.5 g/L, KH2PO4 14.75 g/L, MgSO4(H2O)7 19 g/L)) at a rate of 1 mg
glucose per g soil and with a C:N:P ratio of 10:1:1. In addition, appli-
cation of glucose was either drop by drop on the soil surface without
additional mixing, inducing a heterogeneous substrate distribution, or
the soil was manually well mixed after substrate amendment. The added
solutions brought the final soil water content to 16% (w/w, 52 % WHC).

2.2. Calorimetry and respirometry measurement

CO2 efflux after substrate addition was monitored using a Respi-
rometer (Respicond V, Sweden) in which 25.8 g (DW) of soil were
incubated in 280 ml vessels that were kept in a water bath at a constant
temperature of 20 ◦C. CO2 release rate (mg CO2 h− 1) was quantified via
the decrease in the conductance of a KOH solution (10 ml, 0.6 M) in the
vessels (Chapman, 1971; Nordgren, 1988). Heat release was measured
from 3.88 g (DW) soil incubated in 20 ml glass ampoules using an
isothermal calorimeter (TAM Air, TA Instruments, Germany) at the same
constant temperature of 20 ◦C. A comparable soil height of 0.9 cm as
well as a minimum headspace to soil ratio of 4 was used in both the
Respicond vessels and TAM Air ampoules. The vessels used for the
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incubations are shown in Fig. S1.

2.3. O2 measurement

In a parallel setup, we measured O2 consumption via needle-type O2
microsensors (NFSG-PSt1, PreSens Precision Sensing GmbH, Regens-
burg, Germany) that were placed in the headspace of 20 ml glass am-
poules with the same experimental setup as used for the TAM Air
measurements. O2 saturation (%, 100% = 21.22 kPa) was monitored
every 15 min.

2.4. Microbial biomass quantification and determination of residual
glucose

Additional incubations were carried out for well-mixed samples with
only glucose addition (i.e., without nutrient addition) for the determi-
nation of microbial biomass production via an increase in double-
stranded DNA (dsDNA) as well as quantification of the residual
amount of glucose. Again, these incubations were carried out in 20 ml
ampoules ensuring the same experimental setup as used for the TAM Air
measurements. 300 mg of fresh soil was sampled destructively at several
time points (0, 18, 21, 25, and 47 h after substrate addition). The dsDNA
in the soil was extracted using the PowerSoil DNA isolation kit (QIAGEN,
Germany) with small modifications in the protocol by performing an
additional physical cell lysis using a homogenizer (Precelleys-24, PEQ-
LAB, Germany) in three batches each for 45 s at 5000 rpm. DNA quan-
tification was done by a NanoDrop ND-8000 spectrophotometer
(Thermo Fisher Scientific, Dreieich, Germany). An increase in the mi-
crobial biomass was related to changes in the DNA by a conversion
factor of fDNA = 16.5 calculated as (Zheng et al., 2019):

fDNA=
MBCi
DNAi

(Eqn. 1)

Here,MBCi is the initial amount of soil microbial biomass carbon (MBC)
as determined by chloroform fumigation extraction (155 μg C g− 1 soil,
details in S1 Text), and DNAi is the initial dsDNA content of the soil (9.4
μg DNA g− 1). For the quantification of residual glucose, 200 mg of soil
(DW), taken at 0, 3, 6, 21, 23, and 24 h after glucose addition to the soil,
was dispersed in 30 ml of DI water followed by shaking on a rotary
shaker at room temperature for 30 min. Afterwards, the suspension was
centrifuged at 4000 rpm for 10 min. Thereafter, 20 ml of supernatant
was transferred to determine residual glucose by a glucose colorimetric/
fluorometric assay kit MAK263 (Sigma-Aldrich, Germany) in which
glucose is oxidized to generate a fluorometric product, proportional to
the glucose amount. Glucose quantification was performed based on the
manufacturer’s protocol.

CO2 measurements were performed with 4 replicates, all other ex-
periments were performed in triplicate. All process rates (CO2 and heat
production, O2 consumption) were corrected by subtracting the average
rates of unamended (control) incubations, which were also performed in
triplicate.

2.5. Calculations and statistics

Analysis of CO2 and heat production. Maximum rates of CO2 and
heat release as well as their corresponding time points were determined
from the time series of all replicates. For heat release, maximum rates
and time points could be identified unambiguously from the raw time
series. For CO2 and O2, we applied a moving average with a window
width of 2 h to the time series prior to determination of maximum rates
and time points to enable unambiguous identification. The results were
tested for the effects of substrate heterogeneity and nutrient addition
using a two-way ANOVA with contrasts between treatments at a sig-
nificance level α = 0.05 as implemented in the emmeans package (v.
1.8.9, Lenth, 2023) in R (v. 4.3.2, R Core Team, 2023).

Cumulative and dynamic ratios. The cumulative ratios of heat to
CO2 production (CR), heat production to O2 consumption (CRO2) and
CO2 production to O2 consumption (respiratory quotient, RQ) were
calculated using the respective mean cumulative values after 50 h of
incubation time. Standard deviations were estimated via error propa-
gation of the standard deviations of the constituting variables (S1 Text).
Due to initial disturbance in the Respicond and the calorimeter, the first
2.5 h were discarded for the cumulative analysis (but raw data are
provided in S1 Data). The effects of substrate heterogeneity and nutrient
addition were tested using an approximate permutation test for pairwise
differences (van den Broek, 2012) with 10000 bootstrap iterations
(details in S1 Text).

The dynamic ratios were calculated hourly from the corresponding
rate data (mean of replicates). To mitigate the fluctuations caused by the
high temporal resolution, the rates were smoothed using a moving
average with a width of 4 h prior to calculating ratios. Due to the high
sensitivity of the dynamic ratio to even small perturbations, it was
calculated in the interval between 5 h and 50 h of incubation time to
avoid artifacts caused by initial disturbance.

CUE and EUE. Apparent carbon and energy use efficiency was
estimated from the cumulative release of CO2 and heat, respectively,
after 50 h of incubation time, i.e.,

CUES=1 −
CCO2

CGlu

EUES = 1 −
Q

ΔEGlu

Here, CCO2 and Q denote the mean cumulative CO2 and heat produced
per gram of soil after 50 h, respectively, whereas Cglu and ΔEGlu denote
the initial amount of carbon and energy added as glucose per gram of
soil. We use the subscript s for CUE and EUE to denote the substrate-
based nature of these estimates (Hagerty et al., 2018) and emphasize
that these rely on the assumption of complete substrate consumption at
the time of calculation (Wang and Kuzyakov, 2023). Again, the effects of
substrate spatial heterogeneity and nutrient addition were tested using a
two-way ANOVA with contrasts.

O2 consumption. O2 saturation Osat [%] was converted to mol per
gram soil (DW) via the ideal gas law according to

O2

[
mol
g

]

=
Osat
100

⋅Oatm⋅
V
T⋅R

⋅
1
W

where Oatm = 21.22 [kPa] denotes the atmospheric oxygen partial
pressure, V = 0.019 [l] is the estimated volume of air in the ampoule, T
= 293.15 [K] is experimental temperature, R= 8.314 [J/(mol*K)] is the
gas constant, andW= 3.88 [g] is the dry weight of the soil sample (DW).

2.6. Modeling

We use a modified version of the ordinary differential equation
(ODE) model presented in (Endress et al., 2024) to quantitatively
simulate the coupled carbon and energy fluxes during microbial growth
on glucose in soil. In contrast to the original formulation, the model only
includes aerobic metabolism, but considers an additional nutrient
limitation.

The model structure (Fig. 1) includes three carbon pools: biomass X,
glucose S, and CO2, similar to the complex physiological model used in
Chakrawal et al. (2021). It represents the microbial utilization of added
glucose following Monod kinetics (at rate U) for aerobic growth, as well
as maintenance respiration, fueled first by glucose (exogenous mainte-
nance, MS) and later by biomass consumption (endogenous mainte-
nance, MX, see Wang and Post, 2012). In addition, the model also
accounts for changes in microbial activity via the index of physiological
state r (Panikov, 1996; Blagodatsky and Richter, 1998), which partitions
the biomass into an active, growing fraction rX as well as a dormant
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fraction (1-r)X that only performs maintenance, depending on substrate
availability. Finally, we also model nutrient limitation by including an
additional unspecified nutrient pool N, which acts as an additional
essential component for the anabolic reaction and also follows
Michaelis-Menten kinetics (i.e., the growth kinetics U now depend on
two substrates, carbon S and nutrient N, Zinn et al., 2004). In contrast to
glucose, which is added in batch at time 0, the model nutrient concen-
tration gradually replenishes at a rate I(N0–N) proportional to the de-
gree of nutrient depletion, thus mimicking diffusive (re-)supply from the
surrounding soil.

To investigate the potential impact of a delayed CO2 detection due to
diffusion of CO2 from the soil to the KOH solution, we also implemented
a model variant with an additional carbon pool representing the con-
centration of CO2–C accumulating in the KOH solution (CAlkali). This
pool is characterized by slightly delayed dynamics due to the additional
transport process, and it is utilized for all subsequent analyses of the
modified model instead of the (soil) CO2 pool that is used in the standard
model.

All model ODEs were implemented in Python (version 3.9.18) and
simulations were obtained via numerical integration using the ‘Radau’
method of the solve_ivp function in the Scipy package (Virtanen et al.,
2020). Initial biomass and glucose concentrations were set to the
experimental values, whereas initial cumulative heat and CO2 were set
to 0. The initial nutrient concentration as well as the initial active
fraction of microbes were treated as free parameters. The model was
calibrated against the measured rates of heat and CO2 release of the
individual treatments, i.e., we obtained 4 sets of optimized parameter
values corresponding to the combinations of substrate spatial hetero-
geneity (homogeneous, heterogeneous) and nutrient addition (with,
without). Parameter optimization was done using the
Levenberg-Marquardt algorithm in the minimize function of the lmfit
package (Newville et al., 2023) with upper and lower bounds on indi-
vidual parameters.

The detailed model formulation and rationale as well as an in-depth
description of the numerical procedures are provided in the supple-
mentary materials and methods (S1 Text). A list of all variables and
parameters including their units is provided in Table S2.

3. Results

3.1. CO2 and heat release and O2 consumption

The rates of CO2 and heat release as well as O2 consumption showed
a broadly consistent pattern indicating substantial microbial growth

after batch glucose input in all treatments, with a distinct maximum
after 20–25 h (Fig. 2). However, both the mode of glucose application
and the addition of nutrients had characteristic and interacting effects
on the observed dynamics.

In treatments without nutrient addition, heterogeneous application
of glucose resulted in significantly lower maximum rates of carbon and
heat release (Fig. 2 a, c), which reached only 50–55% of the maximum
values observed after homogeneous glucose application (ANOVA results
in S1 Data). On the other hand, both CO2 and heat continued to be
released at elevated rates in these incubations over the full 50 h dura-
tion, whereas they returned to near-basal levels within that time span in
samples with homogeneous glucose addition (Fig. 2a–c). While less
pronounced, these characteristics were also present in the measured
rates of O2 consumption (Fig. 2e). Headspace O2 concentrations
remained oxic throughout the experiment in all treatments (Fig. S2).

In contrast, such effects of heterogeneous substrate application were
strongly reduced in treatments with nutrient addition. Maximum rates
of CO2 and heat release as well as O2 consumption were similar or only
slightly lower in heterogeneous treatments when compared to homo-
geneous ones, and all rates also decreased to similar levels within 50 h
(Fig. 2b–d,f). Nonetheless, maximum values in incubations with het-
erogeneous glucose application were reached slightly later (~2 h) than
in those with homogeneous application. While this effect was only sig-
nificant for heat, it was entirely absent in the treatments without
nutrient addition (ANOVA results in S1 Data).

Thus, the effect of heterogeneous substrate application was most
pronounced in samples without added nutrients. At the same time,
nutrient addition altered the observed dynamics only in the case of
heterogeneous substrate application, with barely any discernible impact
in samples with homogeneous application.

3.2. Cumulative calorespirometric ratios and respiratory quotient

The ratios of cumulative heat release to CO2 release as well as to O2
consumption (CR and CRO2, respectively) showed similar values with no
significant differences across treatments. The same was true for the
respiratory quotient (RQ) of CO2 release to O2 consumption. Hence,
from a cumulative perspective, neither the mode of substrate application
nor the addition of nutrients had a significant effect (Fig. 3).

Furthermore, no ratio indicated any substantial deviation from
values expected for aerobic metabolism in our incubation after 50 h.
Specifically, the observed average CR values of 344–403 kJ/mol C agree
with predictions for efficient aerobic growth on glucose, which lie in the
range of ~250–469 kJ/mol C (Barros et al., 2010). Similarly, average

Fig. 1. Dynamic model structure representing aerobic microbial growth after glucose addition to soil. Microbial biomass X is initially in a largely inactive state
(fraction 1-r), but quickly becomes active (fraction r) in the presence of substrate S. This substrate is consumed following Michaelis-Menten kinetics at a rate U and
partitioned between anabolic and catabolic pathways according to a growth yield coefficient Y. The uptake rate is further co-limited by the availability of a proxy
nutrient pool N required for anabolism. Moreover, both active and inactive biomass produce additional CO2 and heat via exogenous maintenance (MS, fueled by
glucose consumption) and endogenous maintenance (MX, fueled by biomass consumption). The total modelled CO2 and heat production is used to calibrate the model
against experimental observations for each treatment. A detailed model description is provided in S1 Text.
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CRO2 varied between 411 and 439 kJ/mol O2, while anaerobic heat
contributions would elevate this ratio above the theoretical prediction of
469 kJ/mol O2 (enthalpy of combustion of glucose, Hansen et al., 2004).
Finally, the average RQ in all treatments was not significantly different
from 1, which is the expected value for the aerobic decomposition of
carbohydrates.

3.3. CUE and EUE

Both CUES and EUES based on cumulative CO2 and heat release after
50 h indicated efficient aerobic growth with an average growth yield of
0.56–0.63 (carbon-based) and 0.65–0.68 (energy-based) across treat-
ments (Fig. 4a). Generally, EUE was slightly higher than CUE in all in-
cubations (i.e., observations are above the dotted line in Fig. 4a), and
their relationship was in line with the theoretical expectation for aerobic

growth on glucose (dashed and solid lines in Fig. 4a, details in S1 Text).
Moreover, the observed relationship between CUES and CR also was
broadly consistent with theory (Fig. 4b), although the quantitative
prediction depends on the assumed composition of microbial biomass as
summarized by its degree of reduction, γB (which is controlled by the C:
N ratio of biomass, see Hansen et al., 2004; Chakrawal et al., 2020; Yang
et al., 2024 and S1 Text). However, both CUES and CR showed sub-
stantial variability, in particular for the treatment with homogeneous
glucose application and no nutrient addition, which was characterized
by larger deviations in the CO2 release rate between replicates (Fig. 2a).

Overall, neither the mode of substrate application nor the addition of
nutrients significantly affected CUES, while nutrient addition slightly
reduced EUES irrespective of the mode of substrate application (ANOVA
results in S1 Data).

3.4. Model behavior and performance

The dynamic model achieved good fits to the experimental obser-
vations in all treatments (Fig. 2 a-d, R2 = 0.89–0.97) and adequately
represented the general dynamics of CO2 and heat release over the 50 h
after addition of glucose. In particular, the model captured the pro-
longed release of CO2 and heat in the case of heterogeneous substrate
application without nutrient addition (Fig. 2 a, c) via its simple repre-
sentation of nutrient dynamics.

The model also achieves a very good correspondence with experi-
mental measurements of remaining glucose over time in the one treat-
ment where this data is available (Fig. S3a). There was also a broad
agreement between the predicted microbial biomass growth in the
model and that inferred from dsDNA, although the relative biomass
increase in the model (2.45-fold after 50h) exceeded the relative in-
crease in dsDNA in the same treatment (which increased 1.84-fold,
Fig. S3b, details in S1 Text).

The calibration results for all parameters and treatments along with
uncertainty estimates are provided in S1 Data. Generally, the optimized
values of most parameters were well comparable for all treatments and
showed a plausible range and pattern (e.g., high aerobic yield co-
efficients and higher maintenance costs for the active fraction than the
inactive fraction, calibration results in S1 Data). However, the param-
eters controlling the activity state of the microbial population differed
between treatments with homogeneous and heterogeneous glucose

Fig. 2. Experimental observations (mean ± SD) and model simulations of CO2 production (a, b, n = 4), heat production (c, d, n = 3) production and O2 consumption
(e, f, n = 3) in soil after glucose amendment. The top row shows results obtained without nutrient addition (open symbols), while the bottom row shows results with
addition of NPK solution (filled symbols). In both cases, rates of CO2 and heat production as well as O2 consumption differed markedly between homogeneous
(circles) and heterogeneous (triangles) addition of glucose to the soil.

Fig. 3. Experimental ratios (mean ± SD) calculated from cumulative CO2
production, heat production and O2 consumption after 50 h of incubation time.
Open symbols indicate incubations without nutrient addition, filled symbols
indicate incubations with NPK addition. Circles indicate homogeneous addition
of glucose; triangles indicate heterogeneous addition. Dashed lines indicate the
theoretical predictions for the corresponding ratios for the case of aerobic
glucose catabolism.
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application. Specifically, the model predicted a lower initial active
fraction of microbes as well as an overall lower activity over the course
of the whole incubation in treatments with heterogeneous substrate
application (Fig. S3c), regardless of nutrient addition. In terms of model
calibration, this difference is tied to the overall slower dynamics in those
treatments (see 3.1), and it can be intuitively thought of as a smaller
fraction of the biomass being exposed (and reacting) to the available
glucose, as expected in the case of heterogeneous application.

In terms of CR, the (purely aerobic) growth reaction used in the
model corresponds to the solid line in Fig. 4b. However, the actual
relationship between model CUES and CR is altered by the maintenance
metabolism (details in S1 Text) and broadly resembled experimental
observations after calibration. Nonetheless, model CR tended to be
lower than observations in all treatments other than the incubations
with homogeneous substrate application and no nutrient addition,
indicating that the final calibration slightly overestimated cumulative
CO2 release compared to cumulative heat release in those treatments
(Figs. 2 and 4b).

3.5. Dynamic CR and model variant with delayed CO2 detection

The dynamic CR calculated from the rates of heat and CO2 produc-
tion showed strong temporal variation in all treatments, including
values well above and below those expected for simple aerobic growth
(Fig. S4). Specifically, rate-based CR was high early in the incubation
followed by a drop after the time of peak activity during the retardation

phase, and while this general pattern was observed for all treatments, it
was more pronounced in the case of heterogeneous substrate addition
(Figs. S4c and d).

Although the dynamic model captured such a qualitative shift from
high to low CR, it did not reproduce the quantitative details, especially
the very high values during the exponential growth phase (Fig. S4).
However, the introduction of a moderate delay of the measured CO2
release rate in the modified model variant improved the CR represen-
tation considerably (Fig. 5). In particular, the model delay of 1.2–1.8 h
due to diffusion of CO2 from the site of production in the soil to the site
of detection in the KOH solution (Fig. 5a and b) resulted in a pronounced
and characteristic pattern in the dynamic model CR similar to obser-
vations (Fig. 5c). While the model fit to the rate data improved only
slightly across treatments compared to the standard model (R2 =

0.93–0.99 instead of 0.89–0.97), this difference was much more pro-
nounced in the CR, where small changes in modelled rates induced large
changes in modelled CR due to its nature as quotient (with R2 improving
from − 0.09-0.81 to 0.27–0.81, Fig. S4).

4. Discussion

4.1. Substrate spatial heterogeneity induces nutrient limitation of
microbial growth

We observed marked differences in the dynamics of CO2 and heat
release from an arable soil after the heterogeneous drop-by-drop

Fig. 4. Estimates of CUE, EUE and CR (mean ± SD) based on cumulative CO2 and heat production after 50 h of incubation. Black symbols are based on experimental
observations, red symbols were obtained from corresponding model simulations. The solid and dashed lines show the theoretical CUE-CR relationships for aerobic
growth on glucose assuming a biomass degree of reduction (γB) corresponding to C:N ratios of 5 (γB = 4.2) and 10 (γB = 4.5), respectively (Yang et al., 2024). Symbol
styles correspond to Fig. 3 a EUES and CUES were comparable across treatments and are in line with theoretical predictions. b Relationship between estimated CUES
and CR.

Fig. 5. Potential time delay between the production of CO2 by microbes in the soil and its experimental detection in the alkali solution complicate the evaluation of
dynamic CR. a In a modified model variant, CO2 diffuses to the site of detection (e.g., alkali solution), where it accumulates in an additional pool (CAlkali). b In the
modified model, the measured rate of CO2 release (i.e., CAlkali) is systematically delayed compared to the standard model, which assumes instantaneous detection
after production by microbes in the soil. c If CR is calculated from the ratio of the rates of heat and (measured) CO2 release, the systematic delay of CO2 in the
modified model induces a temporal pattern that is qualitatively similar to those observed in experimental data (shown are the results for homogeneous glucose
application and with nutrient addition, all curves and fits are shown in Fig. S4).
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application of glucose when compared to the well-mixed, homogeneous
application of the substrate. This effect of spatial heterogeneity can in
large part be attributed to nutrient limitation: in the heterogeneous
treatment, the local availability of nutrients in the substrate hotspots
was not sufficient to sustain the high microbial growth rate in the
presence of a large excess of C. On the other hand, mixing alleviated this
limitation by distributing the same amount of glucose more evenly
across the sample, such that sufficient soil-derived nutrients were
available. This is plausible given that the soil used was sampled from an
experimental site with long-term fertilization with farmyard manure
(Holthusen et al., 2012; Seidel et al., 2021, Table S1 soil characteristics)
and because the addition of a full nutrient solution instead of just
glucose did not yield any discernible difference in the dynamics of the
homogenized treatments (Fig. 2). This indicates no general nutrient
limitation in this soil, although such limitations are commonly found in
respiration experiments with many diverse soils (e.g., Sawada et al.,
2017).

However, the fact that the dropwise heterogeneous addition of
glucose was sufficient to induce local nutrient limitation in this soil
highlights the need for careful consideration of both (i) experimental
protocols and (ii) microbial dynamics in natural soils, where substrate
(and nutrient) availability is highly localized in space and time
(Kuzyakov and Blagodatskaya, 2015). Notably, we only used a single
rate of glucose addition (1 mg glucose/g soil, corresponding to ~2.5
MBC) across treatments in this experiment. According to our results, we
would predict that adding larger amounts of C should begin to induce a
similar nutrient limitation even in homogenized samples, as the (equally
distributed) glucose concentration approaches the one experienced
locally by microbes in our heterogeneous incubations. Conversely, lower
rates of C addition should alleviate the nutrient limitation even in het-
erogeneous treatments. The rate of glucose addition is well known to
strongly affect the outcome of respiration experiments (e.g., Schneck-
enberger et al., 2008; Reischke et al., 2014; Rousk et al., 2014), and
varying it would thus be an option to investigate the details of the
induced nutrient limitation and its role in determining the effect of
substrate spatial heterogeneity (see also Ilstedt et al., 2006; Gnankam-
bary et al., 2008). In particular, functional differences in microbial
communities may only affect soil C dynamics under conditions that do
not constrain microbial activity (Nunan et al., 2017).

A similar pattern of reduced maximum heat release rates and pro-
longed heat production after glucose addition in soil microcosms with
varying degrees of substrate spatial heterogeneity has previously been
explained by the possible effects of substrate diffusion and the co-
location of substrate and microorganisms (Shi et al., 2021). The
importance of such effects has long been studied both empirically and
via modelling across scales (e.g., Gaillard et al., 1999; Portell et al.,
2018), yet they cannot explain the strongly reduced effect of substrate
spatial availability in our experiment in the presence of additional nu-
trients (critically, no nutrients were added along with glucose in the
experiment of Shi et al., 2021). Nonetheless, we do still find a small
delay and reduction in the activity of the heterogeneous treatment after
nutrient addition (Fig. 2b–d), which we assume to be caused by such a
consumer-resource dislocation as discussed in Shi et al. (2021). Specif-
ically, even if nutrients are sufficient, the exponential growth of mi-
crobes exposed to substrate in a smaller number of hotspots lagged
behind that of samples in which all microbes had immediate access to
the evenly distributed substrate (Fig. 2b–d).

The dynamics of CO2 and heat release of all treatments were
adequately captured by the simple model of aerobic microbial growth on
glucose and an additional nutrient pool, representing a nutrient proxy
comprising all essential nutrients. Specifically, the elevated rates of CO2
and heat release well beyond the respective peaks in the heterogeneous
treatment in Fig. 2a–c can be explained by the continued consumption of
glucose by microbes in the model, which are unable to make use of all of
the available substrate during the exponential growth phase due to
nutrient limitation. Instead, they continue to grow for a longer period

and reach a similar biomass by the time all available glucose has been
consumed (Fig. S3b), even though they cannot grow as quickly under the
nutrient-limited conditions early in the incubation. This intuition is
supported by very similar overall CUE (and EUE) in the model after 50 h
across treatments (Fig. 4a).

Importantly, the model did not include any spatially explicit struc-
ture, and a minimal representation of nutrient availability via Michaelis-
Menten-type kinetics was sufficient to quantitatively capture the pat-
terns in the observed data (Fig. 2). Effectively, the low nutrient con-
centrations (corresponding to the limited amount available in substrate
hotspots) acted to lower the overall microbial growth rate, an effect that
was studied in detail by Chakrawal et al. (2022). Intriguingly, the model
calibration also accounted for the substrate spatial heterogeneity by
reducing overall microbial activity in heterogeneous treatments,
regardless of nutrient status (Fig. S3c). While the initial MBC in the
model was fixed to the experimentally determined value (155 μg C g− 1,
details in S1 Text), this behavior can be interpreted as lowering the
effective initial model MBC, with a smaller part of the microbial com-
munity reacting to the constant amount of added substrate. This mimics
the smaller co-location of (or larger distance between) substrate and
consumers (e.g., Pinheiro et al., 2015; Babey et al., 2017) without a
spatially explicit structure and accounts for the residual effect of sub-
strate spatial heterogeneity in the absence of nutrient limitation.

While the nutrient limitation changed the temporal dynamics of
microbial growth in the corresponding treatments, neither the model
nor the experimental data indicated a substantial reduction in microbial
growth yield after 50 h (Fig. 4a). Instead, all incubations and simulations
were characterized by very similar values of CUES and EUES broadly in
the range of 0.55–0.65 (Fig. 4a), which is consistent with theoretical
constraints and empirical observations of efficient aerobic growth on
glucose (e.g., Heijnen and Van Dijken, 1992, Trapp et al., 2018);
Remarkably, Inagaki et al. (2023) observed a very similar pattern in a
recent study, but these authors were using plant-derived organic matter
as a more complex carbon source and performed longer incubations.
After substrate addition either in hotspots or homogeneously to topsoil,
they also found a pronounced effect of heterogeneity on the process rates
but not on the efficiency based on cumulative CO2.

Although the estimation of growth based solely on CO2 or heat
release using CUES and EUES is generally problematic (Hagerty et al.,
2018), both estimates were in good agreement in our experiment, and
their underlying assumption of complete substrate consumption was
justified after 50 h (Fig. S3a). Moreover, we found that EUES consistently
exceeded CUES, in line with theory (S1 Text) and contrary to the recent
review by Wang and Kuzyakov (2023). However, both estimates as well
as model simulations indicated a larger biomass growth than did dsDNA,
although dsDNA was only measured in the homogenized treatment
without nutrient addition. In part, these differences may be explained by
variability in the initial biomass in our incubations (S1 Text). Yet, this
observation might also indicate that not all glucose consumed is
immediately used for growth with a corresponding proportional in-
crease in dsDNA, and that the conversion factor between dsDNA and
biomass carbon initially increases after substrate addition (Čapek et al.,
2023, details in S1 Text). In any case, the direct quantification of MBC
and especially the use of isotope-labeled substrates would greatly
strengthen any future investigations.

Overall, our first hypothesis regarding microbial growth was there-
fore only partly confirmed. While we did observe reduced and delayed
microbial activity under spatially heterogeneous conditions in the
treatment without nutrient addition, this impaired activity was only
partly observed when nutrients were added in parallel. Moreover, all
available estimates and the dynamic model indicate that net growth was
comparable among the treatments after 50 h of incubation. Finally,
nutrient limitation (though not O2, see below) was indeed the more
important cause behind this effect of substrate spatial heterogeneity
when compared to the spatial separation of glucose and microbes,
confirming the nutrient aspect of our second hypothesis.
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4.2. Substrate spatial heterogeneity does not induce local O2 limitation

We also hypothesized that local oxygen availability might be another
limiting factor for microbial growth under heterogeneous substrate
conditions and could potentially induce anaerobic metabolism.
Conceptually, microbial O2 demand in the presence of high substrate
concentrations has the potential to locally outpace physical O2 supply
and contribute to the formation of anoxic microsites that form on mi-
crobial hotspots. The importance of this mechanism has been recognized
even in well-drained upland soils (e.g., Keiluweit et al., 2017; Lacroix
et al., 2022). However, we found no evidence of substantial anaerobiosis
in our experiment, with neither the direct O2 measurements nor any of
the cumulative ratios (CR, CRO2, RQ) indicating such an O2 limitation in
our incubations (Figs. 2 and 3, Fig. S2). Furthermore, substantial con-
tributions of anaerobic metabolism would leave a distinct signature in
the CR depending on the specific metabolic pathway (Barros et al., 2016;
Boye et al., 2018; Chakrawal et al., 2020), and any CO2 produced
anaerobically would elevate RQ values. In addition, any demand-driven
O2 limitation should arguably be at least as severe in the treatments with
nutrient addition, yet we did not find substantial differences in the dy-
namics or microbial efficiency of those incubations. Lastly, the model
was also able to accurately capture the observed dynamics assuming a
purely aerobic (growth and maintenance) metabolism.

Importantly, even though the soil in the treatments simulating het-
erogeneous conditions was not mixed after the dropwise application of
glucose, the soil used for all samples had been sieved, dried, rewetted,
and mixed beforehand. Consequently, any comparison or inference to
natural soils with intact structure that may promote the formation of
anoxic conditions is not feasible. Similarly, the soil disturbance will
disrupt the local microbial community and alter its use of the labile
substrate, e.g., regarding rate and efficiency, when compared to undis-
turbed soil (Thomson et al., 2010; Ruamps et al., 2011).

Finally, we note that anaerobic pathways such as fermentations may
also be carried out by microbes under purely aerobic conditions if sub-
strate concentration is high, a phenomenon sometimes termed overflow
metabolism (Basan et al., 2015). While this would affect the assumption
of complete conversion of glucose to biomass and CO2, we suggest that it
likely did not occur to a significant extent in our experiment, since the
measured cumulative ratios (Fig. 3) did not reveal any pattern charac-
teristic of these fermentations (Chakrawal et al., 2020).

4.3. Leveraging coupled carbon and energy fluxes

Our estimates of the cumulative CR were consistent with efficient
aerobic growth of microbes on glucose and indicated no substantial
deviations, e.g., caused by anaerobiosis (Barros et al., 2016; Chakrawal
et al., 2020). In essence, both the carbon and energy balances suggest a
similar, simple interpretation of our experimental findings (Figs. 3 and
4). CR should be understood as the ratio of the corresponding (instan-
taneous) rates of CO2 and heat production, and thus as a dynamic
quantity (Hansen et al., 2004). In fact, the use of total cumulative values
for the CR calculation is equivalent to using the average production rates
over the incubation, thereby muting any temporal pattern. While such a
simplification has been used before (e.g., Herrmann and Bölscher,
2015), it greatly reduces the amount of available information, and we
found pronounced temporal variation of the CR in all treatments (Fig. 5,
Fig. S4). Hence, the full potential of the framework could be leveraged
by including this dynamic information in the analysis.

For example, the consistent shift from higher CR values during the
exponential growth phase to lower values after the onset of the retar-
dation phase when substrate is depleted (Fig. S4) was also recently
observed in a similar experiment using the same soil (Yang et al., 2024)
and may be interpreted as a shift from growth metabolism to a meta-
bolism dominated by maintenance processes. When using cumulative
CR, averaging the rates across the exponential and retardation phases
would mask the individual CR values of these processes and alter the

relationship between observed CUE and (cumulative) CR. This may also
account for some of the observed deviation from theoretical predictions
in Fig. 4B, which are based on pure growth without maintenance (for
details, see also S1 Text).

In contrast, the shift in dynamic CR is mechanistically captured by
the dynamic model via a decrease in the active fraction of biomass
(Fig. S3c) and a transition from exogenous (glucose-consuming) to
endogenous (biomass carbon-consuming) maintenance (Wang and Post,
2012) once the substrate is depleted (Fig. S4). Nonetheless, based on
heat and CO2 alone, the model cannot distinguish between different
equally plausible (biochemical) processes that could result in the spe-
cific lower CR value during the retardation phase, e.g., the use of SOM,
necromass formation, or consumption of storage compounds (details S1
Text). This conceptual limitation of the CR, which integrates the con-
tributions of all heat- and CO2- producing processes, could at least in
part be overcome by additional measurements, in particular by moni-
toring biomass (composition) and by using labeled substrates. Such
measurements would also help to improve parameter identifiability,
which is often low in soil biogeochemical models like the one employed
here (see e.g. Sierra et al., 2015; Marschmann et al., 2019). Specifically,
observations of these additional carbon pools can reduce equifinality,
the phenomenon that multiple (complex) model formulations and pa-
rameterizations yield identical dynamics of the (limited) observed data,
which remains a major challenge (Wieder et al., 2015).

The quantitative interpretation of dynamic CR curves also faces
substantial challenges from an experimental perspective. One source of
error stems from the fact that the (dynamic) CR is highly sensitive to
even minor shifts in the relative timing of CO2 and heat, due to its nature
as a quotient. In particular, the measurement of CO2 and heat in separate
incubations, which frequently also takes place in different types of
vessels, requires matching experimental conditions (e.g., keeping the
same soil-to-head space volume as in our study) to minimize potential
effects on CR dynamics. This problem has been recognized, but the
development of setups allowing the simultaneous measurement of CO2
and heat is still ongoing (Barros et al., 2010; Yang et al., 2024).

Our modified model variant (Fig. 5a), in which CO2 is measured after
an additional transport process mimicking the diffusion of the gas from
its site of production (microbes in the soil) to the site of detection (alkali
solution above the headspace), illustrates this problem. The transport
causes a relative delay of CO2 compared to heat of around 1.2–1.8h,
which is consistent with simple estimates of the diffusion time in our
experimental system (Fig. 5b, details are presented in S1 Text).
Intriguingly, this moderate shift in timing induced an artificial temporal
CR pattern in the model which resembles those observed in our treat-
ments (Fig. 5c) as well as in the literature (e.g., Barros et al., 2010).
Thus, the quantitative evaluation of the dynamic CR requires a careful
disentanglement of features that may be caused by the experimental
setup from those corresponding to actual microbial activity, such as a
slightly faster (0.5–2 h) heat vs CO2 release in response to the input of
labile substrate. While this is beyond the scope and data availability of
this study, future work aiming at simultaneous measurements of carbon
and energy fluxes would benefit from the use of labeled substrates to
quantify potential biases. This will enable the full utilization of this
promising tool to obtain a mechanistic, bioenergetic understanding of
the soil system.

4.4. Conclusion

Based on rates of CO2 and heat production, substrate spatial het-
erogeneity resulted in reduced but prolonged microbial activity in
glucose-amended soil. This effect could be attributed to local nutrient
limitation and was mitigated if nutrients were added along with glucose,
while we found no evidence of substantial oxygen limitation in any of
our incubations. The observed dynamics were well described by a simple
model of aerobic microbial growth. Notably, both simulations and
experimental evidence revealed no significant effect of spatial
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heterogeneity or nutrient addition on the overall CUE and EUE after 50
h. These findings demonstrate that local nutrient availability in soils can
be the major factor limiting microbial growth rates, but not necessarily
efficiency, if C sources have patchy distributions in space and time.
Conversely, microbes in substrate hotspots may be able to compensate
for the smaller overall co-location of consumers and substrate in the soil
if ample nutrients are available in those hotspots.

Furthermore, the joint application experimental and process-based
modeling techniques is a powerful tool for the analysis of microbial
dynamics in soil. In this study, data-model integration provided mech-
anistic insights on the contributions of nutrient limitation and reduced
microbial activity to the observed effect of substrate spatial heteroge-
neity, and quantitatively revealed potential biases arising from the
combination of temporal CO2 and heat measurements. If such artifacts
are accounted for, future analyses may harness the full potential of this
bioenergetic framework to study the dynamics of coupled C- and energy
fluxes in the soil system.

Finally, our observations also illustrate that even relatively minor
differences in the application of labile substrate to soils, like (lack of)
thorough mixing after glucose amendment, do not affect the overall CUE
and EUE values, but they have the potential to significantly alter the
dynamics in a laboratory setting. The possibility of such methodological
details introducing artificial patterns must be carefully evaluated in the
specific context of similar experiments.
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Explicit spatial modeling at the pore scale unravels the interplay of soil organic
carbon storage and structure dynamics. Global Change Biology 28, 4589–4604.
https://doi.org/10.1111/gcb.16230.
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