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Abstract
As an anode material for lithium-ion batteries, amorphous silicon offers a significantly higher energy density than the graphite
anodes currently used. Alloying reactions of lithium and silicon, however, induce large deformation and lead to volume
changes up to 300%. We formulate a thermodynamically consistent continuum model for the chemo-elasto-plastic diffusion-
deformation behavior of amorphous silicon and it’s alloywith lithium based on finite deformations. In this paper, two plasticity
theories, i.e. a rate-independent theory with linear isotropic hardening and a rate-dependent one, are formulated to allow the
evolution of plastic deformations and reduce occurring stresses. Using modern numerical techniques, such as higher order
finite element methods as well as efficient space and time adaptive solution algorithms, the diffusion-deformation behavior
resulting from both theories is compared. In order to further increase the computational efficiency, an automatic differentiation
scheme is used, allowing for a significant speed up in assembling time as compared to an algorithmic linearization for the
global finite element Newton scheme. Both plastic approaches lead to a more heterogeneous concentration distribution and
to a change to tensile tangential Cauchy stresses at the particle surface at the end of one charging cycle. Different parameter
studies show how an amplification of the plastic deformation is affected. Interestingly, an elliptical particle shows only plastic
deformation at the smaller half axis. With the demonstrated efficiency of the applied methods, results after five charging
cycles are also discussed and can provide indications for the performance of lithium-ion batteries in long term use.
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Abbreviations
AD Automatic differentiation
aSi Amorphous silicon
BDF Backward differentiation formula
C-rate Charging rate
DAE Differential algebraic equation
DOF Degree of freedom
GSV Green–St-Venant
KKT Karush–Kuhn–Tucker
MPI Message passing interface
NDF Numerical differentiation formula
OCV Open-circuit voltage
pmv Partial molar volume
SOC State of charge

Latin symbols
c Concentration
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Cel Right Cauchy–Green tensor
C Fourth-order stiffness tensor
Dpl Plastic strain rate
E Young’s modulus
Eel Elastic strain tensor
FY Yield function
F = ∇0� Deformation gradient
F = FchFelFpl Multiplicative decomposition of F
Fch Chemical part of the deformation gradient
Fel Elastic part of the deformation gradient
Fpl Plastic part of the deformation gradient
Fa Faraday constant
G Shear modulus / second Lamé constant
I Identity tensor
I� Approximation for the linearization of P�

J = Jch Jel Jpl Multiplicative decomposition of volume
change

K Bulk modulus
m Scalar valued mobility
M Mandel stress tensor
n, n0 Normal vector on �, �0

N Number of nodes of Vh
N Lithium flux
Next External lithium flux
P First Piola–Kirchhoff stress tensor
P� Projector on admissible stresses
Rel Rotational part of polar decomposition ofFel

Sel Deformation part of polar decomposition of
Fel

t Time
tn Time step
tcycle Cycle time
UOCV OCV curve
u = x − X0 Time dependent displacement vector
uh Discrete displacement vector or algebraic

representation
vpmv Partial molar volume of lithium
V Scalar valued function space
V Vector valued function space
V ∗ Subset of V
x = � (t, X0) Position in Eulerian domain
X0 Initial placement

Greek symbols
αkn > 0 Coefficient for adaptive time discretization
ε
eq
pl Equivalent plastic strain

γ iso Isotropic hardening parameter
λ First Lamé constant
λch Factor of concentration induced deformation

gradient
μ Chemical potential
ν Poisson’s ratio

� Eulerian domain
�0 Lagrangian domain
ϕ Scalar valued test function
ψ = ψch + ψel Total free energy
ψch Chemical part of free energy
ψel Elastic part of free energy
ρ0 Density
σF Yield stress function
σY(c) Concentration dependent yield stress
σ Cauchy stress tensor
τn Time step size at time tn
ξ j Vector valued test function of node j
ξ j Scalar basis function: nonzero entry of ξ j of

node j

Mathematical symbols
∂�0 Boundary of �0

∇0 Gradient vector in Lagrangian domain
� :�̃ Reduction of two dimensions of two tensors

� and �̃
A [B] Reduction of the last two dimensions of the

fourth order tensor A and the second order
tensor B

∂� Partial derivative with respect to �
�n� Difference of next and current time step:

�n+1 − �n or �n+1 − �n

||�|| Frobenius norm for tensors

Indices
�dev Deviatoric part of �
�tri Trial part of �
�0 Considering variable in Lagrangian domain

or initial condition
�ch Chemical part of �
�el Elastic part of �
�h Finite dimensional function of� or algebraic

representation of � with respect to basis
function

�max Maximal part of �
�min Minimal part of �
�pl Plastic part of �

1 Introduction

Lithium (Li)-ion batteries gained an enormous amount of
research interest in the past two decades [1], as a mean of
storing electric energy and propelling electro-mobility [2, 3].
However, due to the complex electro-chemo-mechanically
coupled processes occurring during charging anddischarging
of Li-ion batteries, ongoing research still aims at improving
battery lifetime, reducing costs and increasing capacity by,
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e.g., varying the materials composing the battery [1, 3]. State
of the art is the usage of graphite as anode material [1]. A
promising candidate to be used as anode material in Li-ion
batteries is amorphous silicon (aSi), due to its large capacity
and capability to form an amorphous LixSi alloy [4] with the
diffusing Li-ions, increasing battery capacity [2]. A disad-
vantage is the large volume increase aSi particles undergo
during alloying, which can reach up to 300% [5]. Numerous
simulative studies have shown that these large deformations
are accompanied by plastic deformations of aSi which are
inherently linked to battery lifetime and capacity, see e.g. [3,
6–9]. With the goal of using aSi as anode material, it is there-
fore imperative to study plastic deformation mechanisms at
the particle level of aSi anodes and their interplaywith battery
performance during charging and discharging using physical
models and computational investigations.

To this end, geometrically and physically nonlinear
chemo-mechanically coupled continuum theories haveproven
to be a valuable tool, see e.g. [7, 10–12]. For the mechani-
cal part of the model, most works rely on a multiplicative
split of the deformation gradient into a chemical, an elas-
tic and a plastic part using finite deformation, see e.g. [13,
Section 10.4], [14, Section 8.2.2] and [7, 15]. Discrepancies
in modeling strategies occur in the nonlinear strain mea-
sure used, ranging from the Green–Lagrange strain tensor
[11, 12] to the Hencky strain tensor [7]. In addition, several
models consider plastic deformation to be rate-dependent [7,
8], while others rely on a rate-independent plasticity theory
[10, 16]. Unfortunately, neither the atomic-level structural
evolution, nor the mechanical behavior of the aSi during
lithiation and delithiation cycles is well understood [17].
This also holds for the detailed mechanism of plastic defor-
mation. However, several studies concluded that plasticity
does occur during charging and discharging. In experimen-
tal studies, c.f. [18], a rate-dependent plastic behavior is
considered to explain the observed behavior. In contrast, a
numerical study conducted on amolecular level in [19] seems
to indicate rate-independent plasticity. The chemical part of
the models, describing diffusion of Li-ions during charging
and discharging, is based on a diffusion equation relating
changes in concentration to the gradient of the species’ chem-
ical potential and the species’ mobility [7]. Models differ
in their approach to define the chemical contribution to the
Helmholtz free energy,where approaches either rely on open-
circuit voltage (OCV) curves [12] or assumptions for the
entropy of mixing [7]. In addition, the mobility is defined to
be either derived as the change of the chemical part of the
chemical potential with respect to the concentration [7] or the
entire chemical potential [15]. The coupling of deformations
and diffusion arises due to the strains induced by Li-ions as
well as the influence of mechanical stresses on the chemical
potential.

Both finite difference [6, 15] and finite element [7, 11]
schemes have been proposed to discretize the resulting equa-
tions, where the latter have been predominantly used lately,
due to their superior applicability to complex geometries.
Solving discretized non-linear coupled systems of equations
is time consuming and expensive in terms of computational
resources, due to small mesh sizes and small time step sizes
required to resolve all mechanisms. In contrast to a finite dif-
ference discretization [15] or constant spatial discretization
with uniform temporal discretization [20] space and time
adaptive solution algorithms, such as the one proposed in
[11], allow drastic reduction in computational resources. In
addition, parallelization schemes [21] and automatic differ-
entiation (AD) can reduce simulation times considerably.
The AD concept is presented for the first time in combina-
tion with the variable-step, variable-order time integration
scheme and the inelastic constitutive theory for a battery
active particle. Introducing plastic deformation is another
challenge, as the additional variables are either considered
as degrees of freedom [15] or static condensation is used
[22–25] to arrive at a primal formulation [7, 26], where the
variables are only computed at integration point level. A final
remark concerns the choice of the chemical degree of free-
dom in chemo-mechanically coupled models. In non-phase
separating models, commonly, only a single chemical degree
of freedom is introduced, which is either the concentration or
the chemical potential of the diffusing Li [7, 27]. However,
when phase separation occurs, often modeled by a Cahn–
Hilliard type theory, splitting methods [11] or micromorphic
approaches [28] introduce a second chemical degree of free-
dom in order to circumvent the discretization of a partial
differential equation of order four and stabilize the numeri-
cal scheme.

The goal of this work is to investigate predictions of a
chemo-mechanically coupled model for large chemo-elasto-
plastic deformation processes in aSi anode particles using
modern numerical techniques including space and time adap-
tivity, parallelization schemes and AD. Regarding themodel,
we take into account plastic deformation of the aSi particles,
where we consider the initial yield stress to be a function
of lithium concentration [19]. As no consensus exists in the
experimental literature regarding the mechanisms of plastic
deformation in aSi, we formulate both a rate-dependent vis-
coplasticity, as well as a rate-independent plasticity theory
and discuss the different implications on particle behavior
[17–19]. We use static condensation to arrive at a primal
formulation for the mechanical equations and consider plas-
tic deformation at integration point level within each finite
element [26].We explicitly derive a projector onto the admis-
sible stresses, relying on the classical returnmappingmethod
[29, Chapter 3] and [26, 30, 31], which is rather straightfor-
ward for the Hencky strains used in our theory [32, 33]. The
diffusion of Li into and out of the aSi anode particle fol-
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lows classical diffusion theory. However, instead of relying
on a standard mixing entropy ansatz for the chemical part
of the free energy density, e.g., [7], we rely on a measured
experimental OCV curve to model the chemical part [12,
15, 21], which has not received a lot of attention in litera-
ture. To the best of the authors’ knowledge, a combination of
a measured experimental OCV curve with a (visco-)plastic
battery active particle has not been used before. In this work,
we limit our model to show numerical results with a single-
phase mechanism after the initial two-phase transformation
of aSi in the first half cycle as described in [34]. This find-
ing of [34] is in contrast to [4], where a phase-separation is
also measured after the first half cycle. As a boundary con-
dition, various charging rates (C-rates) are applied for the
lithium flux. For solving the coupled system of equations we
extend the solution scheme proposed in [11, 21, 35], relying
on a spatial and temporal adaptive algorithm. We consider a
one-dimensional computational domain with radial symme-
try and a two-dimensional elliptical computational domain
and compare stress and plastic strain development as well
as concentration distributions after a various number of half
cycles for both rate-dependent and rate-independent plas-
ticity models. In addition, we investigate the computational
performance and numerical efficiency of our implementation
scheme.

The remainder of this article is organized as follows: in
Sect. 2 we introduce the theoretical basis for our work and
derive the equations describing chemo-mechanically coupled
diffusion processes in aSi anodes. Section3 summarizes the
numerical approach taken in this work to solve the derived
system of equations. Subsequently, in Sect. 4, we present
results for various investigated cases. We close with a con-
clusion and an outlook in Sect. 5.

2 Theory

In a first step we review and summarize our used constitutive
theory adapted from [7, 11, 12, 15] to couple chemical, elastic
and plastic material behavior. We base our model on a ther-
modynamically consistent theory for the chemo-mechanical
coupling during lithiation and delithiation.

2.1 Finite deformation

We start by considering a mapping � : R≥0 × �0 →
�, � (t, X0) :=x = X0 + u(t, X0) from the Lagrangian
domain �0 to the Eulerian domain �, see for more informa-
tion [36, Section 2], [14, Section 8.1], [37,ChapterVI] and [7,
11, 12, 15, 28]. The deformation gradient F = ∂�/∂X0 =
I + ∇0u with the identity tensor I and displacement u is
multiplicatively decomposed into chemical, elastic and plas-

tic parts [13, Section 10.4], [14, Section 8.2.2] and [7, 15].

F(∇0u) = FchFelFpl = FrevFpl (1)

with various expressions for the volume changes defined as

J = det(F) = Jel Jch Jpl = V�/V�0 > 0,

Jch = det(Fch) > 0, (2)

Jel = det(Fel) > 0,

Jpl = det(Fpl)
!= 1, (3)

respectively. The chemical and elastic deformations are
reversible and summarized in Frev. The polar decomposition
of the elastic part Fel of the deformation gradient is given by
its rotational and stretch part [36, Section 2.6]:

Fel = RelUel, RT
elRel = I, (4)

with the right stretch tensor Uel being unique, positive
definite and symmetric. With the symmetric elastic right
Cauchy–Green tensor

Cel = FT
elFel = U2

el, (5)

the (Lagrangian) logarithmic Hencky strain can be defined
as strain measure with a spectral decomposition

Eel = ln (Uel) = ln
(√

FT
elFel

)

= ln
(√

Cel

)
=

3∑
α=1

ln
(√

ηel,α
)
rel,α ⊗ rel,α, (6)

where
√

ηel,α and rel,α are the eigenvalues and eigenvectors
of Uel, respectively. In literature, typically the Green–St-
Venant (GSV) strain tensor, often called theLagrangian strain
tensor [14, Section 8.1], is used

Eel,GSV = 1

2

(
FT
elFel − I

)
. (7)

We will later compare results obtained for both strain mea-
sures.

We consider an isotropic, volumetric swelling due to the
Li concentration with Fch being defined as

Fch(c(t, X0)) = λch(c)I = 3
√
Jch(c)I, (8)

where λch = 3
√
1 + vpmvcmaxc, vpmv is the constant partial

molar volume (pmv) of lithium inside the host material [11]
and c ∈ [0, 1] is the normalized concentration in the refer-
ence configuration regarding the maximal concentration of
the host material cmax of the reference domain in mol m−1.
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Thus, the total concentration in reference configuration is
c = cmaxc in mol m−1. With the chemical part Fch of the
total deformation gradient and the plastic part Fpl(t, X0),
introduced as an internal variable [38] in more detail in Sect.
2.5, the elastic part Fel of the deformation gradient is given
by Fel(c,∇0u,Fpl) = F−1

ch FF
−1
pl = λ−1

ch FF
−1
pl .

2.2 Free energy

To obtain a thermodynamically consistent material model,
which guarantees a strictly positive entropy production, we
introduce a Helmholtz free energy ψ , being in general a
function of the lithium concentration c and the displace-
ment gradient ∇0u [12, 15, 39–41] as well as the internal
variable Fpl [38], while we assume the temperature T to be
constant. Therefore, we use an additive decomposition into a
chemical part ψch, being unaltered by elastic deformations,
and a mechanical partψel, depending solely on elastic defor-
mations, according to [15, 39–41]

ψ(c,∇0u,Fpl) = ψch(c) + ψel(c,∇0u,Fpl) (9)

in the Lagrangian frame.
Following [12, 15, 21], we define the chemical part by

incorporating an experimentally obtained open-circuit volt-
age (OCV) curve UOCV(c) in V

ρ0ψch(c) = −cmax

∫ c

0
FaUOCV(z) dz, (10)

with the Faraday constant Fa and the mass density ρ0 of
aSi in the reference configuration. This measurement based
model for the contribution to the chemical part of the free
energy density is in contrast with most existing works, as
often the chemical contribution is based on mixture entropy
approaches for ideal gases, see, e.g., [6, 7]. The assump-
tion of Li behaving like an ideal gas could be considered
questionable, motivating the approach to base the chemical
contribution part on a measurement. This leads to a chemical
potential being non-symmetric to c = 0.5, c.f. Fig. 11, which
is not the case for the mixture entropy model. The mechani-
cal part is given by a linear elastic approach being quadratic
in the elastic Hencky strain [20, 28, 32]:

ρ0ψel(c,∇0u,Fpl) = ρ0ψel(Fel) = 1

2
Eel :C [Eel] . (11)

Here, C is the constant, isotropic stiffness tensor of aSi,
C [Eel] = λ tr

(
Eel
)
I+ 2GEel and the first and second Lamé

constants are λ = 2Gν/ (1 − 2ν) and G = E/
(
2 (1 + ν)

)
,

depending on the Young’s modulus E and Poisson’s ratio ν

of the host material.

2.3 Chemistry

Inside the host material, we use a continuity equation to
describe the change in lithium concentration in the reference
configuration via

∂t c = −∇0 ·N in (0, tend) × �0, (12)

where N(c,∇0μ,∇0u,Fpl):= −m(c,∇0u,Fpl)∇0μ is the
lithium flux,

m = D
(
∂cμ

)−1 (13)

is the scalar mobility, where m > 0, of Li in aSi for the
considered isotropic case and D the diffusion coefficient for
lithium atoms inside the active material [12, 15]. The chem-
ical potential μ(t, X0) is given as partial derivative of the
free energy density with respect to the total concentration c
using Eqs. (9–11)

μ = ∂c(ρ0ψ) = ∂c(ρ0ψch) + ∂c(ρ0ψel) (14)

= −FaUOCV − vpmv

3
λ−3
ch I :C [Eel]

= −FaUOCV − vpmv

3
λ−3
ch tr

(
C [Eel]

)
. (15)

Following [7, 11], we apply a uniform and constant external
flux Next as constant current with either positive or negative
sign for cycling the host particle in terms of the charging
rate (C-rate). The C-rate characterizes the hours of complete
lithiation of the particle: C-rate = 1/tcycle. So a charging rate
of 1 C means that the battery is fully lithiated in 1 h, of 0.5 C
in 2 h and so on [42]. Next is given in the dimension 1/h
after scaling with cmax/AV for the specific surface AV =
surface/volume of �0 in m2m−3 [11]. The simulation time t
and the state of charge (SOC) can be connected via

SOC = 1

V�0

∫

�0

c

cmax
dX0 = c0

cmax
+ Nextt, (16)

with the volume V�0 of �0 and a constant initial condi-
tion c0 ∈ (0, cmax).

2.4 Mechanics

The deformation in the Lagrangian domain is considered by
static balance of linear momentum [11, 12, 15]

0 = ∇0 ·P in (0, tend) × �0, (17)

with the first Piola–Kirchhoff stress tensor P(c,
∇0u,Fpl) = ∂F(ρ0ψel) = 2F∂C(ρ0ψel) = F

(
FT
revFrev

)−1

(
F−1
pl

)TF−1
pl C [Eel], compare “Appendix” A. The Cauchy

stress σ in the Eulerian frame is linked to P via σ =
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PFT/ det (F) [36, Section 3.1]. Furthermore, we intro-
duce the Mandel stress M(c,∇0u,Fpl) = CrevSrev =
JrevFT

revσF
−T
rev = Jel JchFT

elσF
−T
el with the second Piola–

Kirchhoff stress tensor Srev = JrevF−1
revσF

−T
rev, see for further

information [15]. Based on the derivations presented in [7,
20, 28], for Cel and Ċel being coaxial and isotropic material
behavior, a hyperelastic law relating the free energy density
in the stress-free configuration and the Mandel stress M is
retrieved. In the case considered in this work M is linear
in Eel and given by

M = ∂(ρ0ψ)

∂Eel
= C [Eel] = λ tr

(
Eel
)
I + 2GEel. (18)

2.5 Inelastic constitutive theory

Following [36, Section 2.7] and [7], the evolution equation
for the plastic part Fpl of the deformation gradient takes for
elastically and plastically isotropic materials (where a plastic
spin is negligible) the form

Ḟpl = DplFpl. (19)

As mentioned in the introduction, we consider two inelastic
models and compare their influence on battery performance.
We start with a rate-independent von Mises plasticity with
isotropic hardening, which is formulated for the Mandel
stress, see [29, Section 2.3] and [7, 15, 26, 31, 43]. The yield
function reads

FY(c,∇0u,Fpl, ε
eq
pl ) = ||Mdev|| − σF(c, ε

eq
pl ) ≤ 0, (20)

with the deviatoric stress tensorMdev = M−1/3 tr
(
M
)
I, the

Frobenius norm ||· || and the yield stress σF(c, ε
eq
pl ):=σY(c)+

γ isoε
eq
pl . The yield stress consists of two parts: a concentration

dependent part σY(c), which will describe a softening behav-
ior, and a linear isotropic hardening partwith a scalar parame-
ter γ iso > 0. εeqpl (t, X0) is the accumulated equivalent inelas-
tic strain andwill be introduced subsequently. Ideal plasticity
is present for γ iso = 0. The softening behavior modeled
by σY(c) is inspired by [7, 19] and is incorporated via

σY(c):=σY,minc + (1 − c)σY,max. (21)

Plastic flow is only allowed if FY = 0. To describe the plastic
flow when this yield point is reached, we base on the max-
imum plastic dissipation principle [15, 29, 44]. With this
postulate from plasticity theory we can define the associated
flow rule constraining the plastic flow to the normal direction

of the yield surface ∂MFY:

Dpl
(
c,∇0u,Fpl, ε

eq
pl

) = ε̇
eq
plNpl = ε̇

eq
pl

∂FY
∂M

= ε̇
eq
pl

Mdev

||Mdev|| .
(22)

Here, Dpl is the plastic strain rate measure [7, 45]. Now, we
can define the scalar equivalent plastic strain

ε
eq
pl (t, ·) =

∫ t

0
||Dpl|| dz =

∫ t

0
ε̇
eq
pl dz, (23)

which is used to describe an increase in yield stressσF(c, ε
eq
pl ).

Note that we always start with ε
eq
pl (0, ·) = 0. To be consistent

with a one-dimensional tensile test, we scale our concen-
tration dependent yield stress σY(c) with the factor

√
2/3,

compare [29, Section 2.3.1].
The secondmodel studied is a viscoplastic material model

which was proposed byDi Leo et al. [7], where a viscoplastic
material behavior is considered without isotropic hardening,
i.e. γ iso = 0. This results in a formulation for the equivalent
plastic strain

ε̇
eq
pl =

⎧
⎪⎪⎨
⎪⎪⎩

0,
∣∣∣∣Mdev

∣∣∣∣ ≤ σY(c),

ε̇0

(∣∣∣∣Mdev
∣∣∣∣ − σY(c)

σY∗

)β

,
∣∣∣∣Mdev

∣∣∣∣ > σY(c),

(24a)

(24b)

whereσY∗ , ε̇0 andβ are a positive-valued stress-dimensioned
constant, a reference tensile plastic strain rate and a measure
of the strain rate sensitivity of the material, respectively.

The classical loading and unloading conditions for rate-
independent plasticity can be conveniently expressed via the
Karush–Kuhn–Tucker (KKT) conditions [29, Section 1.2.1],
[14, Section 3.2] and [15]

FY ≤ 0, ε̇
eq
pl ≥ 0, FYε̇

eq
pl = 0. (25)

Compared to classical notation of loading and unloading,
the process is elastic if FY < 0 requiring ε̇

eq
pl ≡ 0 and no

plastic deformation occurs. The consistency condition for the
evolution of inelastic strains in the case of rate-independent
plasticity reads

when FY = 0 : ε̇
eq
pl ≥ 0, ḞY ≤ 0, ε̇

eq
pl ḞY = 0, (26)

so the plastic strain can increase during loading but not dur-
ing unloading. In the viscoplastic case, the KKT conditions
and the consistency condition are replaced by the evolution
equation of the equivalent plastic strains as given by Eq. (24),
compare [29, Section 1.7].
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3 Numerical approach

In the following section we present the numerical treatment
of our set of coupled partial differential equations of Sect. 2,
i.e. the problem formulation, the normalization of the model

parameters and the numerical solution procedure including
the weak formulation, space and time discretization and our
applied adaptive solution algorithm.

3.1 Problem formulation

Before we state our problem formulation we introduce a
nondimensionalization of the model to improve numerical
stability. Our cycle time tcycle = 1/C-rate depends on the
C-rate, i.e. the hours for charging or discharging of the
particle. Further, the particle radius L0 and the maximal
concentration cmax in the Lagrangian frame are used as refer-
ence parameters. For the yield stress σY(c) we use the same
nondimensionalization as for the Young’s modulus E . The
resulting dimensionless numbers Ẽ and the Fourier num-
ber Fo relate the mechanical energy scale to the chemical
energy scale and the diffusion time scale to the process time
scale, respectively. All dimensionless variables are listed
in Table 1 and will be used for model equations from now
on, neglecting the accentuation for better readability.

We state our general mathematical problem formulation
[11, 12] by solving our set of equations for the concentra-
tion c, the chemical potential μ and the displacements u,
whereas the quantities F, Fel, Eel and P are calculated in
dependency of the solution variables. The Cauchy stresses σ

are computed in a postprocessing step. The handling of the
internal variable Fpl [38] is explained in more detail in Sect.
3.2.

The dimensionless initial boundary value problem with
inequality boundary conditions is given as follows: let tend >

0 be the final simulation time and �0 ⊂ R
d a repre-

sentative bounded electrode particle in reference configu-
ration with dimension d = 1, 2, 3. Find the normalized
concentration c : [0, tend] × �0 → [0, 1], the chemi-
cal potential μ : [0, tend] × �0 → R and the displace-
ment u : [0, tend] × �0 → R

d satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t c = −∇0 ·N(c,∇0μ,∇0u,Fpl) in (0, tend) × �0,

μ = ∂c
(
ρ0ψ(c,∇0u,Fpl)

)
in (0, tend) × �0,

0 = ∇0 ·P(c,∇0u,Fpl) in (0, tend) × �0,

FY(c,∇0u,Fpl, ε
eq
pl ) ≤ 0, ε̇

eq
pl ≥ 0, FYε̇

eq
pl = 0 in (0, tend) × �0,

N · n0 = Next on (0, tend) × ∂�0,

P · n0 = 0 on (0, tend) × ∂�0,

c(0, ·) = c0 in �0,

Fpl(0, ·) = I in �0,

ε
eq
pl (0, ·) = 0 in �0,

(27a)

(27b)

(27c)

(27d)

(27e)

(27f)

(27g)

(27h)

(27i)

with a boundary-consistent initial concentration c0 and
boundary conditions for the displacement excluding rigid
body motions. Note that the original definition of the chem-
ical part Fch of the deformation gradient is done in three
dimensions, but all variables and equations are also math-
ematically valid in dimensions d = 1, 2. In this case, the
deviatoric part is computed with the factor 1/d in contrast to
the factor 1/3 after Eq. (20). In case ofd = 2, for example,we
have no displacement and no stresses in the third direction, so
it is purely a two-dimensional computational consideration.
A final remark: Eqs. (27a) and (27b) could be condensed to
one equation. The second equation would be treated on inte-
gration point level. However, we choose the splittingmethod,
detailed in [11], to easily extend the physical behavior to
phase-separating materials with a Cahn–Hilliard approach
and stabilize the numerical solution procedure. Using only
the chemical potential as solution variable would lead to an
additional calculation of the concentrationwith a scalarNew-
ton method.

3.2 Numerical solution procedure

This subsection describes the way to obtain a numerical
solution and especially the handling of the KKT condition
in Eq. (27d): formulating a primal mixed variational inequal-
ity, using static condensation to obtain a primal formulation
as well as space and time discretization, finally completed
with an adaptive solution algorithm.
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Table 1 Dimensionless
variables of the used model
equations

t̃ = t/tcycle c̃ = c/cmax Ẽ = E/RgasT cmax ρ̃0ψ = ρ0ψ/RgasT cmax

X̃0 = X0/L0 ṽpmv = vpmvcmax Fo = Dtcycle/L2
0 ŨOCV = FaUOCV/RgasT

ũ = u/L0 μ̃ = μ/RgasT Ñext = Nexttcycle/L0cmax

3.2.1 Weak formulation

In afirst step towards the numerical solutionwe state theweak
formulationofEq. (27) as primalmixedvariational inequality
like in [26]. However, it can also be derived from a mini-
mization problem [29, Section 1.4.2] and [46, Section 7.3].
We introduce the L2-inner product for two functions f ,
g ∈ L2 (�0) as ( f , g) = ∫

�0
f g dX0, for two vector fields v,

w ∈ L2
(
�0; R

d
)
as (v,w) = ∫

�0
v · w dX0, and for two

tensor fields S,T ∈ L2
(
�0; R

d,d
)
as (S,T) = ∫

�0
S :T dX0

and boundary integrals with the respective boundary as

subscript.Now,wedefine the function spacesV :=Hk (�0, R),
V ∗:=Hk∗

(
�0, R

d
)
and V̂ :=Hk

(
�0, R

d,d
sym
)
with k ∈ N,

k > 1, being sufficiently large in order to allow a mathe-
maticallywell-posed formulation [38].V ∗ includes displace-
ment boundary constraints for the precise applications case
from Sect. 4. Next, we multiply with test functions, integrate
over �0 and integrate by parts. Following [11, 26, 44, 45],
we finally have the weak primal mixed variational inequality
formulation: find solutions {c, μ, u} and internal variables
Fpl and ε

eq
pl with c, μ ∈ V , ∂t c ∈ L2(�0, R), u ∈ V ∗,

Fpl ∈ V̂ and
(
P, ε

eq
pl

) ∈
{
L2
(
�0, R

d,d
)
, L2

(
�0, R≥0

) :
FY ≤ 0

}
=:Y such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ϕ, ∂t c

) = −
(
∇0ϕ,m(c,∇0u,Fpl)∇0μ

)
− (ϕ, Next)∂�0

,

0 = −(ϕ, μ) +
(
ϕ, ∂c

(
ρ0ψch(c)

)+ ∂c
(
ρ0ψel(c,∇0u,Fpl)

))
,

0 = −
(
∇0ξ ,P(c,∇0u,Fpl)

)
,

0 ≤
(
Dpl,P(c,∇0u,Fpl) − P∗)+ γ iso

(
ε̇
eq
pl , ε

eq∗
pl − ε

eq
pl

)

(28a)

(28b)

(28c)

(28d)

for all test functions ϕ ∈ V , ξ ∈ V ∗ and
(
P∗, εeq∗pl

) ∈ Y.
Equation (28) becomes a saddle point problem requiring

special techniques for solving the related linear system [26,
37, 47]. However, we prefer a version of Eq. (28) without Eq.
(28d) for easier handling of the numerical studies. Therefore,
we eliminate Eq. (28d) by using a primal formulation with
a projector onto the set of admissible stresses [26, 48], also
known as static condensation [22–25]. Following [26], we
introduce the continuous projector onto the admissible Man-
del stress for both considered inelastic constitutive theories.
For the rate-independent model, it reads

M(c,∇0u,Fpl, ε
eq
pl ) = P�(c,∇0u,Fpl, ε

eq
pl ):=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mtri,
∣∣∣∣Mtri,dev

∣∣∣∣ ≤ σY(c) + γ isoε
eq
pl ,[

γ iso

2G+γ iso +
(
1 − γ iso

2G+γ iso �(c, εeqpl )
)

σY(c)
||Mtri,dev||

]
Mtri,dev

+ 1

3
tr
(
Mtri

)
I,

∣∣∣∣Mtri,dev
∣∣∣∣ > σY(c) + γ isoε

eq
pl ,

(29a)

(29b)

with �(c, εeqpl ) = 1 − 2G
σY(c) ε

eq
pl and Mtri follows from a

purely elastic deformation, denoted as the trial part of M.
The projector for ideal plasticity followswith γ iso = 0,while
the projector for the rate-dependent viscoplastic approach is
given in Sect. 3.2.3.

Finally, we can reformulate Eq. (28) using the projec-
tor formulation for the specific plastic behavior and arrive
at the primal formulation: for given Fpl and ε

eq
pl find solu-

tions {c, μ, u} with c, μ ∈ V , ∂t c ∈ L2(�0, R) and u ∈ V ∗,
such that
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ϕ, ∂t c) = −
(
m(c,∇0u,Fpl)∇0μ,∇0ϕ

)
− (ϕ, Next)∂�0

,

0= − (ϕ, μ)+
(
ϕ, ∂c

(
ρ0ψch(c)

)+∂c
(
ρ0ψel(c,∇0u,Fpl)

))
,

0 = −
(
∇0ξ ,P

(
c,∇0u,Fpl,P�(c,∇0u,Fpl, ε

eq
pl )
))

(30a)

(30b)

(30c)

holds for all test functions ϕ ∈ V , ξ ∈ V ∗ and P
(
c,∇0u,

Fpl,P�(c,∇0u,Fpl, ε
eq
pl )
) = F

(
FT
revFrev

)−1(F−1
pl

)TF−1
pl

P�

(
c,∇0u,Fpl, ε

eq
pl

)
. This means that inequality Eq. (27d) is

condensed into Eq. (30c) with Eqs. (29) or (39), respectively.
Note that by using the projector P� we have transformed the
plasticity inequality into a (non-smooth, actually Lipschitz
continuous) nonlinear equation.

3.2.2 Space discretization

Next, we introduce the spatial discretization and there-
fore choose a polytop approximation �h as computational
domain for particle geometry �0. For the approximation of
curved boundaries, an isoparametric Lagrangian finite ele-
ment method is chosen [37, Chapter III §2] on an admissible
mesh Tn . For the spatial discrete solution we define the finite
dimensional subspaces for the basis functions with bases

Vh = span{ϕi : i = 1, . . . , N } ⊂ V , (31a)

V ∗
h = span{ξ j : j = 1, . . . , dN } ⊂ V ∗. (31b)

On these finite dimensional subspaces we solve for the vari-
ables ch : [0, tend] → {Vh : ch ∈ [0, 1]}, μh : [0, tend] → Vh
and uh : [0, tend] → V ∗

h the spatial discrete version of Eq.
(30). Relating the discrete solution variables with the finite
basis functions

ch(t, X0) =
N∑
i=1

ci (t)ϕi (X0),

μh(t, X0) =
N∑
j=1

μ j (t)ϕ j (X0), (32a)

uh(t, X0) =
dN∑
k=1

uk(t)ξ k(X0), (32b)

we gather all time-dependent coefficients in the vector valued
function

y : [0, tend] → R
(2+d)N , t �→ y(t) =

⎛
⎝
ch(t)
μh(t)
uh(t)

⎞
⎠ . (33)

The internal variables Fpl and ε
eq
pl are discretized in the

same way as the solution variables and are denoted by Fpl,h

and ε
eq
pl,h . Note that both internal variables Fpl and ε

eq
pl are

not part of the solution vector y. However, they are handled
separately as introduced in Sect. 3.2.3. Both projector for-
mulas of Eqs. (29) and (39) are also valid in the discrete
case. This leads to our spatial discrete problem formulated
as general nonlinear differential algebraic equation (DAE):
for given Fpl,h , ε

eq
pl,h find y : [0, tend] → R

(2+d)N satisfying

M̂h∂t y − f (t, y,Fpl,h, ε
eq
pl,h) = 0 for t ∈ (0, tend],

y(0) = y0. (34)

The system matrix M̂h is singular since it has only one
nonzero-block entry given byMh = [

(ϕi , ϕ j )
]
i, j represent-

ing the mass matrix of the finite element space Vh . The vec-
tor f consists of matrices and tensors, given as f : [0, tend]×
R

(2+d)N × R
d,d
sym × R≥0 → R

(2+d)N ,

(t, y) �→ f (t, y,Fpl,h, ε
eq
pl,h)

:=
⎛
⎝

−Km(ch,∇0uh,Fpl,h)μh − Next

−Mhμh + �ch(ch) + �el(ch,∇0uh,Fpl,h)

−Ph
(
ch,∇0uh,Fpl,h,P�(ch,∇0uh,Fpl,h, ε

eq
pl,h)

)

⎞
⎠

(35)

with the same indices as above: themassmatrixMh , the stiff-
ness matrix Km(ch,∇0uh,Fpl,h) = [(

m(ch,∇0uh,Fpl,h)

∇0ϕi ,∇0ϕ j
)]

i, j , the vectors for the nonlinearities�ch(ch) =[(
ϕi , ∂c

(
ρ0ψch(ch)

))]
i and �el(ch,∇0uh,Fpl,h) =[(

ϕi , ∂c
(
ρ0ψel(ch,∇0uh,Fpl,h)

))]
i , Ph

(
ch,∇0uh,Fpl,h,

P�(ch,∇0uh,Fpl,h, ε
eq
pl,h)

) = [(∇0ξ k,P
(
ch,∇0uh,Fpl,h,

P�(ch,∇0uh,Fpl,h, ε
eq
pl,h)

))]
k
as well as the boundary con-

dition Next = [
(ϕi , Next)�ext

]
i , respectively.

3.2.3 Time discretization

Before we formulate the space and time discrete problem
for y, we have to consider the time evolution of the internal
variables Fpl and ε

eq
pl and derive a time integration scheme

for them. Therefore, we update the time integration sepa-
rately from the time advancing of our Eq. (34). Applying
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an implicit exponential map to Eq. (19) to the continuous
internal variable Fpl leads to [38]

Fn+1
pl (cn+1,∇0un+1,Fn

pl) = exp
(
τnD

n+1
pl

)
Fn
pl (36)

from one time step tn to the next tn+1 = tn+τn with time step
size τn > 0. For the rate-independent plasticity we use the
well known return mapping algorithm [32, 33] in an explicit
form:

||Mn+1,dev|| − σF(c
n+1, ε

eq,n+1
pl )

= ||Mtri,dev|| − 2G�nε
eq
pl −

(
σY(cn+1) + γ isoε

eq,n+1
pl

)

!= 0 (37)

⇐⇒ ε
eq,n+1
pl = ||Mtri,dev|| + 2Gε

eq,n
pl − σY(cn+1)

2G + γ iso ,

(38)

where the trial Mandel stress is Mtri,dev = C[Etri,dev
el

(cn+1,∇0un+1,Fn
pl)] and the difference of the new time step

and current time step of ε
eq
pl is �nε

eq
pl = ε

eq,n+1
pl − ε

eq,n
pl .

This is straightforward for isotropic linear hardening. With
the solution for ε

eq,n+1
pl from Eq. (38) and the initial condi-

tions Fpl(0, ·) = I and ε
eq
pl (0, ·) = 0, all necessary quantities

can be updated and Fn+1
pl can be computed. For more details

regarding the time integration scheme for Fpl in the rate-
independent case, see [20, Appendix C.5].

Following [7, 28] for the rate-dependent viscoplastic
approach, the projector is

M
(
cn+1,∇0un+1,Fn

pl,�nε
eq
pl

) = P�

(
cn+1,∇0un+1,Fn

pl,�nε
eq
pl

):=
⎧⎪⎪⎨
⎪⎪⎩

Mtri,
∣∣∣∣Mtri,dev

∣∣∣∣ ≤ σY(cn+1),

||Mtri,dev|| − 2G�nε
eq
pl

||Mtri,dev|| Mtri,dev + 1

3
tr
(
Mtri

)
I,

∣∣∣∣Mtri,dev
∣∣∣∣ > σY(cn+1).

(39a)

(39b)

For this case, however, no explicit form can be retrieved for
the accumulated plastic strain, due to the nonlinearity in Eq.
(24b). Therefore, we have to use a scalar Newton–Raphson
method for the current time increment τn for �nε

eq
pl of the

implicit Eulerian scheme: solve Eq. (24b) for
∣∣∣∣Mtri,dev

∣∣∣∣ >

σY(cn+1) using the relation ||Mn+1,dev|| = ||Mtri,dev|| −
2G�nε

eq
pl from Eq. (37) with the residual of Eq. (24b)

rε = ε̇0

( ||Mtri,dev|| − 2G�nε
eq
pl − σF(cn+1)

σY∗

)β

− �nε
eq
pl

τn
.

(40)

All computations from Eq. (36) to Eq. (40) are also valid
for the spatial discrete variables but are written for the con-
tinuous case for sake of readability.

For the time evolution of the DAE (34), we apply the
family of numerical differentiation formulas (NDFs) in a
variable-step, variable-order algorithm, based on the Mat-
lab’s ode15s [49–52], since our DAE has similar properties
as stiff ordinary differential equations [11]. An error control
handles the switch in time step sizes τn and order. We have
chosen the same time scale for this temporal discretization
and the temporal discretization of the internal variables Fpl

and ε
eq
pl . We arrive at the space and time discrete problem to

go on from one time step tn to the next tn+1: for given Fn
pl,h

and ε
eq,n
pl,h find the discrete solution yn+1 ≈ y(tn+1) satisfying

αknM̂h

(
yn+1 − χn

)
− τn f

(
tn+1, yn+1,Fn

pl,h, ε
eq,n
pl,h

)
= 0

(41)

with χn composed of solutions on former time steps yn, . . . ,
yn−k and a constant αkn > 0 dependent on the chosen
order kn at time tn [50, Section 2.3]. The vector f depends
explicitly on the time t due to the time-dependent Neumann
boundary condition Next due to the change of the sign for
charging and discharging, respectively. After computing the
new discrete solution yn+1 we can update Fn

pl,h and ε
eq,n
pl,h to

the new time steps Fn+1
pl,h and ε

eq,n+1
pl,h as already introduced.

3.2.4 Adaptive solution algorithm

Since our DAE (34) is nonlinear, we apply the Newton–
Raphson method and thus need to compute the Newton
update of the Jacobian in each time step. For this, we have to
linearize our equations, especially the projectors of Eqs. (29)
and (39). However, both projectors are not formally differen-
tiable. Nevertheless, they fulfill the conditions to be slantly
differentiable [26, 53] and we can work with the formal lin-
earization as an approximation. For the projector defined
in Eq. (29), we follow [20, Appendix C.6] and propose
the consistent algorithmic modulus of P�(c,∇0u,Fpl, ε

eq
pl )

around Etri
el [26, 30] as
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I�

(
cn+1,∇0un+1,Fn

pl, ε
eq,n
pl

):=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CK + CG ,
∣∣∣
∣∣∣C
[
Etri,dev
el

] ∣∣∣
∣∣∣ ≤ σY(cn+1) + γ isoε

eq,n
pl ,

(
1 − γ iso

2G+γ iso �(cn+1, ε
eq,n
pl )

)
σY(cn+1)

||Mtri,dev||(
CG − 2GMtri,dev⊗Mtri,dev

||Mtri,dev||2
)

+ γ iso

2G+γ isoCG + CK ,
∣∣∣
∣∣∣C
[
Etri,dev
el

] ∣∣∣
∣∣∣ > σY(cn+1) + γ isoε

eq,n
pl

(42a)

(42b)

with CG = 2G
(
I − 1

3 I ⊗ I
)
, CK = K I ⊗ I, the bulk

modulus K and � as in Sect. 3.2.1. The derivation for
the approximation of the linearization of Eq. (42) is given
in Appendix B as well as the formulation of the linearization
for the projector of Eq. (39). Again, both linearizations are
written for continuous functions but are also valid for the
discrete variables.

Another possibility is the automatic differentiation (AD)
framework, provided by [54], which offers the possibil-
ity to use an AD framework via Sacado (a component of
Trilinos) [55]. This allows us to compute the partial deriva-
tive, required for the Newton scheme, automatically instead
assembling the Newton matrix by hand. We use the tapeless
dynamic forward-mode Sacado number type (one time dif-
ferentiable). To compute the Newton update, we use a direct
LU-decomposition. The iteration number can be decreased if
an appropriate initialization is chosen. Therefore, the starting
condition for the first time step is stated in Sect. 4.1 while a
predictor scheme is used during the further time integration
[50].

Finally, we follow Algorithm 1 in [11] for the space and
time adaptive solution algorithm. Both a temporal error esti-
mator [49–52] and a spatial error estimator are considered
for the respective adaptivity. To measure spatial regularity, a
gradient recovery estimator is applied for the solution vari-
ables c, μ and u [56, Chapter 4]. For marking the cells of
the discrete triangulation for coarsening and refinement, two
parameters θc and θr are applied with a maximum strategy
[57].Altogether,weuse amixed error controlwith the param-
eters RelTolt , AbsTolt , RelTolx and AbsTolx . For further
details we refer to [11].

4 Numerical studies

This section deals with the investigation of the presented
model from Sect. 2 with the numerical tools of Sect. 3. For
this purpose we introduce the simulation setup in Sect. 4.1
and discuss the numerical results in Sect. 4.2 with 1D and

2D simulations, which are a 3D spherical symmetric particle
reduced to the 1D unit interval and in addition a 2D quarter
ellipse reduced from a 3D elliptical nanowire, respectively.
The latter one is chosen to reveal the influence of asymmetric
half-axis length on plastic deformation.

4.1 Simulation setup

Asmentioned in the introduction, amorphous silicon is worth
investigating due to its larger energy density and is therefore
chosen as hostmaterial. The usedmodel parameters are listed
in Table 2.Most parameters are taken from [15, 21], however,
for the plastic deformation we pick and adapt the parameters
from [7] such that the yield stress is in the range of [58]. In
particular, the ratio between σY,max and σY,min is maintained.
If not otherwise stated,we chargewith 1C and dischargewith
−1 C. Following [15], we charge betweenUmax = 0.5 V and
Umin = 0.05 V, corresponding to an initial concentration
of c0 = 0.02 and a duration of 0.9 h for one half cycle which
is one lithiation of the host particle. TheOCV curveUOCV(c)
for silicon is taken from [59] and defined asUOCV : (0, 1) →
R>0 with

UOCV(c)

:=−0.2453 c3 − 0.005270 c2 + 0.2477 c + 0.006457

c + 0.002493
.

(43)

The curve is depicted in “Appendix F” in Fig. 11.

4.1.1 Geometrical setup

We proceed by presenting two computational domains
and present the boundary conditions due to new artificial
boundaries. We choose a representative 3D spherical par-
ticle and reduce the computational domain to the 1D unit
interval�0 = (0, 1), with a new artificial boundary�0, com-
pare Fig. 1a, in the particle center with a no flux condition
and zero displacement:
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Table 2 Model parameters for
numerical experiments [7, 15,
21]

Description Symbol Value Unit Dimensionless

Universal gas constant Rgas 8.314 Jmol−1 K−1 1

Faraday constant Fa 96, 485 JV−1 mol−1 1

Operation temperature T 298.15 K 1

Silicon

Particle length scale L0 50 × 10−9 m 1

Cycle time tcycle 3600 s 1

Diffusion coefficient D 1 × 10−17 m2 s−1 14.4

OCV curve UOCV Eq. (43) V Fa/RgasT · (43)
Young’s modulus E 90.13 × 109 Pa 116.74

Maximal yield stress σY,max 8 × 108 Pa 0.85

Minimal yield stress σY,min 2 × 108 Pa 0.21

Stress constant σY∗ 2 × 108 Pa 0.21

Isotropic hardening parameter γ iso 1.0 × 109 Pa 0.77

Tensile plastic strain rate ε̇0 2.3 × 10−3 s 8.28

Partial molar volume vpmv 10.96 × 10−6 m3 mol−1 3.41

Maximal concentration cmax 311.47 × 103 mol m−3 1

Initial concentration c0 6.23 × 103 mol m−3 2 × 10−2

Poisson’s ratio ν 0.22 - 0.22

Strain measurement β 2.94 - 2.94

Rate constant current density k0 0.4207 Am−2 1.0079

Fig. 1 Computational domains in 1D in (a) and 2D in (b) used for the numerical simulations

N · n0 = 0, u = 0 on (0, tend) × �0. (44)

To ensure the radial symmetry, we adapt the quadrature
weight to dX0 = 4πr2 dr in the discrete finite element for-
mulation. In the 1D domain it is consistent to assume that the
fields vary solely along the radius r . For the calculation of
the displacement gradient, we refer to [35, Appendix B.2.1].
As stated above, the initial concentration is c0 = 0.02,
which leads to a one-dimensional stress-free radial displace-
mentu0 = r (λch(c0) − 1). It follows that the initial chemical
potential is μ0 = ∂c

(
ρ0ψch(c0)

)
.

In Fig. 1b, the 2D simulation case is shown in terms of
a quarter ellipse. We choose a factor of 0.6 for the short
half-axis compared to the longer half-axis. We create this

geometry by considering a 3D nanowire with no stresses and
no changes in z-direction as well as symmetry around the
x- and y-axes. Here, further artificial boundaries on �0,x and
on�0,y with no flux conditions and only radial displacement:

N · n0 = 0, uy = 0, on (0, tend) × �0,x ,

(45a)

N · n0 = 0, ux = 0, on (0, tend) × �0,y,

(45b)

have to be introduced.Wemake use of an isoparametricmap-
ping for the representation of the curved boundary on �ext.
Again, we choose a constant initial concentration c0 = 0.02
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and a chemical potential μ0 = ∂c
(
ρ0ψch(c0)

)
. However, we

use for the displacement the condition u0 = 0.

4.1.2 Implementation details

All numerical simulations are executed with an isoparamet-
ric fourth-order Lagrangian finite element method and all
integrals are evaluated through a Gauß–Legendre quadra-
ture formula with six quadrature points in space direction.
Our code implementation is based on the finite element
library deal.II [54] implemented in C++. Further, we
use the interface to the Trilinos library [55, Version 12.8.1]
and the UMFPACK package [60, Version 5.7.8] for the LU-
decomposition for solving the linear equation systems. A
desktop computer with 64GB RAM, Intel i5-9500 CPU,
GCC compiler version 10.5 and the operating systemUbuntu
20.04.6 LTS is used as working machine. Furthermore,
OpenMP Version 4.5 is applied for shared memory paral-
lelization for assembling the Newton matrix, residuals and
spatial estimates and message passing interface (MPI) par-
allelization with four MPI-jobs for the 2D simulations with
Open MPI 4.0.3. Unless otherwise stated, we choose for the
space and time adaptive algorithm tolerances of RelTolt =
RelTolx = 1 × 10−5, AbsTolt = AbsTolx = 1 × 10−8, an
initial refinement of seven and of four for the 1D case and the
2D case, respectively, an initial time step size τ0 = 1 × 10−6

and a maximal time step size τmax = 1 × 10−2. For the
markingparameters of localmesh coarsening and refinement,
θc = 0.05 and θr = 0.5 are set. A minimal refinement level
of five is applied for the 1D simulations, in order to achieve
a parameterization as general as possible for all different 1D
simulation. Due to limited regularity of the nonlinearity of
the plastic deformation, we limit the maximal order of the
adaptive temporal adaptivity by two.

4.2 Numerical results

In this section we consider the numerical results of the 1D
spherical symmetric particle and the 2D quarter ellipse com-
putational domain. We analyze the computed fields such
as stresses and concentrations as well as the computational
performance of our presented model and implementation
scheme. Further, we compare the computational times for
using the derived linearization of the projector formulation
and an automatic differentiation (AD) technique.

4.2.1 1D spherical symmetry

In a first step, we analyze the effect of plastic deformation
on the chemo-physical behavior of the 1D domain depicted
in Fig. 1a. Detailed studies for purely elastic behavior can
be found in, e.g., [12, 21] and are included in this study for
comparison.

Physical results after one half cycle In Fig. 2, we com-
pare the numerical results for the concentration, the plastic
strains as well as the tangential Cauchy stresses between the
elastic, plastic and viscoplastic model after one lithiation of
the host particle, that means one half cycle at SOC = 0.92
over the particle radius r . The changes of the concentration
profiles due to plastic deformation are displayed in Fig. 2a.
It is clearly visible that the concentration gradient increases
in both the plastic and viscoplastic case in the vicinity of the
particle surface, whereas lower concentration values occur in
the particle center compared to the elastic case. This is due to
the limited maximal stress in the plastic models. The lower
stresses inside the particle lead to a lower mobility in the
particle interior, c.f. Eq. (13). This gradient in the Li mobil-
ity leads to the observed pile up of Li atoms at the particle
surface.

Comparing the plastic and viscoplastic case, a smoother
transition fromelastic to plastic is visible and therefore a little
shift of the concentration values to the particle surface, see the
lower magnifying glass in Fig. 2a. This is commonly referred
to as viscoplastic regularization [29, Section 1.7.1.4.]. The
second magnifier shows an area, where the slope of the
concentration profile changes close to the particle surface,
revealing a second plastic deformation process during lithi-
ation, which is also observable at the change in slope of
the equivalent plastic strain, c.f. Fig. 2b. This becomes more
apparent, when the tangential Cauchy stresses are investi-
gated as a function of the SOC, c.f. Figs. 2d and 3b.

Figure2b shows the equivalent plastic strain ε
eq
pl , revealing

plastic deformations near the particle surface. During lithia-
tion, the particle deforms plastically twice. The first plastic
deformation process occurs in the initial stages of charging
at low SOC ≤ 0.13, c.f. Fig. 2d, and leads to equivalent
plastic strains of 3.4%. Upon further lithiation, this process
repeats at SOC ≈ 0.8, c.f. Fig. 2d and the magnitude of the
equivalent plastic strain increases to 4%. For the tangen-
tial Cauchy stress σφ , c.f. Figure2c, d, there is a change of
the stress direction from compressive stress to tensile stress
at the particle surface for the plastic cases compared to the
elastic case. This change in sign for the tangential stresses
occurs in the area, where the particle undergoes plastic defor-
mation beforehand. The heterogeneous plastic deformation
thus leads to an eigenstrain, that results in tensile stresses
near the particle surface, which cannot be observed in the
elastic case. This means that for an almost fully lithiated par-
ticle, there is a significant shift in the stress development and
the plastic deformation leads to tensile stresses close to the
particle surface. This crucial change in the stress profile at
a small spatial area of the particle is important to recognize
for the battery life time. Figure2d displays the tangential
Cauchy stress at the particle surface versus the SOC over
the complete half cycle. Directly after the start compressive
Cauchy stresses occur where the elastic approach increases
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Fig. 2 Numerical results for the elastic (Ela.), plastic (Pla.) and vis-
coplastic (Vis.) approaches of the 1D radial symmetric case at SOC =
0.92 over the particle radius r : concentration c in (a), equivalent plastic

strain ε
eq
pl in (b) and tangential Cauchy stress σφ in (c) as well as tan-

gential Cauchy stress σφ at the particle surface r = 1.0 over SOC in (d)

to larger values compared to the plastic approaches, which
are limited due to the onset of plastic deformations. The vis-
coplastic model shows larger negative tangential stresses, i.e.
an overstress above the yield stress, when compared to the
rate-independent models, also allowing larger elastic strains,
c.f. Fig. 3a. After reaching the maximal values the stresses
reduce in all cases. However, the plastic approaches pre-
dict tensile stresses around SOC = 0.6. At SOC ≈ 0.8,
the particle deforms plastically a second time, reducing
the maximal tensile stresses in tangential direction. Strik-
ing is the difference between the elastic case revealing only
compressive tangential Cauchy stresses compared to the
plastic approaches featuring also tensile tangential Cauchy
stresses. The radial Cauchy stress is not plotted sincewe have
stress-free boundary condition at the particle surface. These
findings are qualitatively comparable to numerical results
from [61], Fig. 4c, and [6], Fig. 5d, compare also the numer-
ical results at SOC = 0.1 in Fig. 8 of “Appendix” C. We
want to point out that both the plastic and the viscoplastic
model lead to almost equivalent numerical results at the end

of the first half cycle. This is, however, not the case for results
after multiple half cycles, which is outlined below. Before
we proceed by investigating the influence of several mate-
rial parameters and multiple half cycles, we also compare
the Green–St-Venant strain tensor or Lagrangian strain with
our used logarithmic strain tensor. Both approaches predict
almost identical results, see Appendix D, as also observed in
the numerical results in [62].

Parameter studies In a next stepwe take a closer look at the
stress–strain curves of the different mechanical approaches
and analyze the influence of the maximal yield stress σY,max

on the tangential Cauchy stress σφ at the particle surface r =
1.0 inFig. 3. Furthermore,we compare the dependencyon the
C-rate and the particle size in Fig. 4. The AD concept is used
for all parameter studies, see the next subsection numerical
efficiency for more details. The comparison in Fig. 3a shows
the effects of the different mechanical approaches: elastic,
plastic and viscoplastic deformation as well as ideal plas-
tic deformation with γ iso = 0. For the ideal plastic case,
we choose a uniform grid with ten refinements and a back-
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Fig. 3 Influence of the different plasticity approaches in (a) and of the maximal yield stress of the viscoplasticity approach in (b) for the tangential
Cauchy stress σφ at the particle surface r = 1.0

ward differentiation formula (BDF) time stepping of order
two to increase numerical performance. Comparing the elas-
tic and all plastic cases, the maximal compressive Cauchy
stress of the elastic solution is not reached in the plastic
cases, however, the stresses decrease rapidly after reaching
the yield stress. Again, the viscoplastic overstress becomes
apparent, c.f. Fig. 2d. Further, the influence of the concen-
tration dependent yield stress is clearly visible, since with
a constant yield stress, the curve would just move straight
upwards (red dotted reference line) instead featuring a shift
to the right. The tangential stress decreases rapidly after an
initial plastic deformation, see also Fig. 3b, so that no fur-
ther plastic deformation occurs. In contrast to the elastic
model, tangential tensile stresses occur for large SOC val-
ues in all plasticity models, which lead to another onset of
plastic deformation. For larger SOC values, only the plastic-
ity approaches show tensile tangential Cauchy stresses with
a second plastic deformation at the end of the first lithiation.
As stated below, the viscoplastic model including the vis-
coplastic regularization leads to better numerical properties.
In addition, the experiments of Pharr et al. [18] indeed indi-
cate some sort of rate-dependent inelastic behavior, which, in
the opinion of the authors, makes the usage of a viscoplastic
model more plausible. Therefore, we continue our investiga-
tion with the viscoplastic model unless otherwise stated.

Figure3b compares the influence of a varying maximal
yield stress σY,max on the tangential stress at the particle
surface over the SOC. For smaller values of σY,max, the par-
ticle starts yielding at smaller tangential stresses, leading
to an overall decrease in the observed minimal tangential
stresses σφ at small SOC. In contrast, the earlier the plastic
deformation occurs, the larger the tangential tensile stresses
at higher SOC. In addition, the decrease in yield stress with
increasing concentrations can be observed, as the tangential

tensile stresses lead to further plastic deformation at lower
stress levels, indicated with the cyan arrow in Fig. 3b. How-
ever, no plastic deformation is visible for a maximal yield
stress of 1.0 GPa, which shows a purely elastic response.

Next, we analyze the dependency of the plastic deforma-
tion on different C-rates and particle sizes in Fig. 4a, b.Again,
the tangential Cauchy stress σφ is plotted over the SOC.
For fast charging batteries, high C-rates are desirable for a
comfortable user experience. However, Fig. 4a shows that for
higher C-rates higher tangential Cauchy stresses arise which
lead especially for higher SOCvalues to a large area of plastic
deformation. The smaller the C-rate, the lower the occurring
stresses and the smaller the plastically deformed regions in
the anode particle. For the parameter set considered in this
study, decreasing the C-rate by 50% leads to purely elastic
deformations. Similar results are observed, when an increas-
ing particle diameter is considered, as in Fig. 4b: the larger the
particles, the greater the stresses and the area of plastic defor-
mation. This results from larger concentration gradients for
larger particles since the lithium needs longer to diffuse to the
particle center. The simulation for particle size L0 = 200 nm
terminates at SOC ≈ 0.55, since at this simulation time a
concentration of one is reached at the particle surface. For
the largest particle radius, the heterogeneity in the concen-
tration profile is even more pronounced. This also explains
the apparent lower yield stress when the L0 = 200 nm and
L0 = 100 nm curves are compared. In the larger particle,
the concentration at the boundary is larger at smaller SOCs,
due to the heterogeneity in the mobility, as outlined above. In
conclusion, Fig. 4 shows that small particles and low C-rates
are preferred in order to avoid high stresses and irreversible
plastic deformations.

Numerical efficiency To show the capabilities of the adap-
tive solution algorithm of Sect. 3.2.4, we consider in Fig. 5a
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Fig. 4 Tangential Cauchy stress σφ over SOC at the particle surface r = 1.0 for varying C-rate in (a) and particle size in (b)

Fig. 5 Advantages of the adaptive solution algorithm: time step size τn over simulation time t for two half cycles (one lithiation and one delithiation)
in (a) and concentration c as well as refinement level of the spatial discretization over the particle radius r at SOC = 0.92 in (b)

the time step size τn and the used order of the NDF multi-
step procedure over two half cycles, i.e., one lithiation and
one delithiation step with tend = 1.8 h in total, and in Fig. 5b
the refinement level for the spatial refinement after one lithi-
ation at SOC = 0.92, comparing the lithium concentration
distribution over the particle radius r . Here, we use a max-
imal order for the time adaptivity of three for Fig. 5a and
a minimal refinement level of three in Fig. 5b, respectively.
During the first lithiation, there are three changes in the time
step size and used time order: after starting with order one
and switching to order two and three, the first plastic defor-
mation arises at around t = 0.04 h at the first vertical gray
reference line. Here, the time step sizes decrease and the
used order goes down to two. After recovering to larger step
sizes and orders again, the plastic deformation has ended at
the second gray line at t = 0.12 h and the particle deforms
elastically again. Then, a large time range with the maximal
time step size τmax and maximal order is passed through.
Shortly before the end of the first half cycle, the step sizes
and order decrease again (third gray line). In this instant, plas-

tic deformation occurs again, due to the tensile stresses at the
particle surface. Changing the external lithium flux direction
from charging to discharging is not trivial for the adaptive
algorithm: the order decreases to one and the time step sizes
drops over five orders of magnitude at the red reference line.
After recovering from this event, one further plastification
occurs shortly after the red reference line before the maxi-
mal time step size and the maximal order are reached again.
At the time of t = 1.7 h, indicated with the fourth gray
reference line, the next plastic deformation happens accom-
panied with a reduction of time step sizes and lower order. In
total, there are two further plastifications during delithiation.
In Fig. 5b, the focus is on the spatial adaptivity. We see the
concentration distribution c over the particle radius r and the
refinement level of the cells of our triangulation. It is clearly
visible, that areas with larger concentration gradients have
a higher refinement level due to the used gradient recovery
error estimator.

In Table 3 we consider the average number of Newton
iterations per time step, the assembling time for the Newton
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Table 3 Comparison of number of time steps, average number of New-
ton iterations per time step (Av. Newton), assembling time for the
Newton matrix and the right hand side of the linear system, between the

derived linearization and AD techniques for the 1D and the 2D simula-
tion case as well as other modern numerical techniques for the 2D case

Method Time steps Av. Newton Assembling time

Linearization 1D 227 1.29 3.96 × 100 sec

AD 1D 229 1.27 1.80 × 100 sec

Linearization 2D 314 1.18 4.03 × 103 sec

AD 2D 338 1.26 3.93 × 102 sec

AD 2D without MPI 338 1.26 1.50 × 103 sec

AD 2D without MPI, uniform in space 302 1.17 3.53 × 103 sec

AD 2D without MPI, uniform in space and time (extrapolated time) 4.50 × 106 1.05 4.50 × 107 sec

matrix and the right hand side of the linear equation system
for one half cycle. We compare the results for the derived
linearization and the AD technique in the 1D and the 2D
simulation setup. More numerical results for the latter case
are given in Sect. 4.2.2. Additionally, we compare for the AD
2D simulation case also these simulations:

• without MPI parallelization, but with space and time
adaptivity

• without MPI parallelization and constant spatial dis-
cretization, but with time adaptivity

• withoutMPI parallelization and constant spatial and tem-
poral discretization

For the second case, we choose the spatial discretization for
the whole duration of the simulation to be just below the
largest number of degrees of freedom (DOFs) in the adaptive
simulation case. For the last situation with uniform temporal
discretization, we choose 2 × 10−7 h and BDF with order
one for the time integration scheme. 2 × 10−7 h is close,
but just above the lowest time step size of the space and time
adaptive simulation case after the initial time step size. These
values are necessary to correctly record all relevant physical
phenomena. Note that we count all Newton steps, also the
Newton steps when the rate for reduction of the new Newton
update is not fast enough or the tolerances of the adaptive
algorithm are not fulfilled. Considering Fig. 5a, the majority
of time steps in one lithiation cycle (from t = 0 to t = 0.9)
are purely elastic and result in larger time step sizes. Due
to the variable-step, variable-order time integration scheme,
the maximal number of Newton iterations is limited. If the
maximal number of Newton iterations is reached, the rate
for the Newton update is too small or the tolerances of the
adaptive algorithm are not achieved, the time step size is
reduced. A smaller time step size leads to a lower number
of Newton iterations. These points explain the low average
number of Newton steps for our particular simulation setting.

The number of time steps and the average number of New-
ton iterations per time step are similar for the 1D and 2D
simulations, respectively. However, there are significant dif-
ferences in the assembling times: the linearization is twice as
slow as AD for the 1D simulation and even ten times slower
for the 2D simulation. This is a remarkable acceleration in
the assembling times when solving for the Newton update.
Not using the MPI parallelization leads to assembling time
roughly four times slower, as expected. Considering the con-
stant grid, we see a deceleration of over a factor of two, but
also a slight reduction of the number of time steps. For the
last case, we computed 100 time steps and extrapolated the
total assembling times. The average number of Newton steps
for these 100 steps is lower than in the other cases, also due
to the fact that within these first 100 time steps no plastic
deformation occurs. Considering a simulation without MPI
parallelization, but with constant spatial and temporal dis-
cretization, would lead to a around 105 higher assembling
time. In addition, there would be another factor of ten with-
out using the AD technique, so in total, we have an speed
up by a factor of roughly estimated 106. All in all, Table 3
shows the huge acceleration for the assembling during the
simulation with modern numerical techniques.

Physical results after nine half cycles. Before proceeding
to investigate the 2D computational domain, we use the capa-
bilities of the spatially and temporally adaptive algorithm
together with the AD technique, to study multiple charging
and discharging cycles. To be more precise, we consider five
charging and four discharging cycles. Figure6 shows that the
viscoplastic case with the derived linearization or use of AD
deliver identical results. The differences between the plastic
and viscoplastic deformation are remarkable after nine half
cycles, especially for the concentration in Fig. 6a. The plastic
approach is almost identical to the elastic results, whereas the
viscoplastic results are more similar to Fig. 2. The similarity
between the elastic and plastic results can be explained by
the isotropic hardening, which leads to a large increase in the
yield stress. Thus, after nine half cycles, occurring stresses

123



Computational Mechanics

Fig. 6 Numerical results for the elastic (Ela.), plastic (Pla.), viscoplas-
tic (Vis.) and viscoplastic with AD (AD) approaches of the 1D radial
symmetric case at t = 8.12 h over the particle radius r : concentration c

in (a), equivalent plastic strain ε
eq
pl in (b) and tangential Cauchy stress σφ

in (c) as well as tangential Cauchy stress σφ over SOC in (d)

inside the particle do not reach the yield stress, preventing the
particle to deform plastically any further. This in turn leads
to a more homogeneous distribution of stresses and thus no
pile up of Li atoms close to the particle surface. The lower
magnifier reveals also for the viscoplastic approach some
difference for higher cycling numbers: a small wave occurs
due to the change in the sign of the lithium flux for charg-
ing or discharging the active particle. This is important to
notice because the small wave is already more pronounced
for the tangential Cauchy stress in Fig. 6c and is a candi-
date for possible further inhomogeneities. It should also be
noted the higher magnitude in Fig. 6b compared to Fig. 2b,
indicating large extent of plastic deformation which could
eventually lead to damage of the particle. Figure6d shows
the development of the tangential Cauchy stress at the par-
ticle surface over the SOC. For the elastic case there is no
difference recognizable after the first half cycle and all fur-
ther half cycles are identical. Also for the viscoplastic case,

here computed with AD, only a small difference is visible at
the lower left corner, see the magnifier in the bottom center.
The second and all further lithiation cycles feature a higher
compressive stress, even slightly higher than the elastic case,
than in the first half cycle. This can be explained by the con-
stant initial data. The magnifying glass at the right top shows
the effect of the change from lithiation to delithiation with
a short increase and followed decrease indicating an addi-
tional plastic deformation. A larger difference between the
elastic and viscoplastic approach at lower SOC is observ-
able at the end of the discharging cycle at the left top corner
with the magnifier at the left center. The plastic ansatz with
isotropic hardening, however, shows the biggest difference
in each cycling. As already discussed, the tangential Cauchy
stresses tend from cycle to cycle to the values of the elastic
case indicated with the cyan arrows. It should be noted that
the small wave of Fig. 6a, c is not visible in this representa-
tion.
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Fig. 7 2D quarter ellipse after one lithiation at SOC = 0.92 for con-
centration c in (a), equivalent plastic strain ε

eq
pl in (b) and von Mises

stress σvM in (c) using AD techniques

4.2.2 2D quarter ellipse

We now evaluate numerical results for the 2D quarter ellipse
simulation setup. Here, we adapt the initial time step size
to τ0 = 1 × 10−8 and a minimal refinement level to three.
Further, we set θc = 0.005 and τmax = 5 × 10−3. With the
capabilities of the adaptive space and time solution algorithm
as well as the presented AD technique, we consider now the
effects of half-axes of different lengths onplastic deformation
and concentration distribution.

Physical results after one half cycle. Figure7 shows the
numerical results at the end of one half cyclewith tend = 0.9 h
and SOC = 0.92. The number of DOFs are in a range
of [320, 121472] and the total computation time is less than
15min. In all subfigures, the adaptive mesh is visible in
the background, indicating higher refinement levels at the
external surface near the smaller half-axis. In Fig. 7a, the con-
centration profile is displayed in a range of [0.91, 0.94]. It is
noticeable that the gradient in the concentration is stronger
at the particle surface on the short half-axis. Here, a larger
area with lower concentration values in blue can be located

with a small but steeply growing area near the particle sur-
face. This property is comparable to the 1D simulation results
with a higher increase near the particle surface in Fig. 2a or
in Fig. 6a.

Having a look on the scalar equivalent plastic strain ε
eq
pl

in Fig. 7b the area of plastic deformation can be confirmed:
plastic deformation occurs at the particle surface of the
smaller half-axis. Large equivalent plastic strains of up to
22% occur. Figure7c shows the von Mises stress in the gen-
eral plane state

σvM =
√

σ 2
11 + σ 2

22 − σ11σ22 + 3σ 2
12. (46)

A significant inhomogeneity of the vonMises stress distribu-
tion in the particle is identifiable. Whereas the stress values
at the larger half-axis are lower than 0.45 GPa, the vonMises
stresses are more than 1.5 times higher at the smaller half-
axis and feature two peaks near the particle surface: one due
to tensile stresses because of the plastic deformation next to
the surface and one due to compressive stresses a little further
inside of the particle, both again like in the 1D case in Fig. 2c
or in Fig. 6c. The strong change of stress gradients near the
surface of the smaller half-axis may appear unusual. How-
ever, as outlined, the change of the gradients results from the
change in sign of the tangential stresses from tensile at the
particle surface to compressive in the particle interior close
to the surface, c.f. Fig. 2c. As the von Mises stress, c.f. Eq.
(46), is the absolute value of the stress deviator, this change
results in the two maxima close together. This inhomogene-
ity of the stress distribution between compressive and tensile
stresses is especially important for further investigations on
particle damage or fracture.

However, the finding of the higher stresses and plastic
deformation at the smaller half-axis are in contrast to the
numerical outputs in Fig. 4b. There, larger particle size results
in larger stresses, so it would be reasonable to feature higher
stresses at the longer half-axis. Though, the longer half-axis
is responsible for lower concentration values in the particle
center. On the smaller half-axis, the diffusion would cre-
ate higher concentrations in the particle center. Thus, the
influence of the lower concentration values at the longer half-
axis is responsible for higher concentration gradients at the
smaller half-axis resulting in higher stress and plastic defor-
mation. In this context it is important to recall that a constant
external lithium flux is used at the particle surface, which
favors this behavior.

5 Conclusion and outlook

We conclude our work with a summary and an outlook.
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5.1 Conclusion

Within this work, a large deformation, chemo-elasto-plastic
model to predict the diffusion-deformation behavior of aSi
anode particles within Li-Ion batteries is presented. The used
plasticity model is in close analogy to the model presented
in [7]. As an extension, we specify our theory for both
rate-dependent and rate-independent plastic deformations,
see Sect. 2.5, and compare numerical results of both theories
after multiple charging and discharging cycles. The chem-
ical model relies on [12], where a measured experimental
OCV curve is used to model the chemical contribution to the
Helmholtz free energy. The derived model is implemented
in an efficient finite element scheme, first presented in [11],
relying on space and time adaptive algorithms and paral-
lelization [21] as well as modern numerical techniques like
AD.

For both plastic models, a return mapping algorithm [31]
is used in the context of static condensation, allowing the
evaluation of the plastic deformations at the finite element
integration point level instead of treating them as additional
degrees of freedom [15]. We present in Sect. 3.2.1 a projec-
tion onto the set of admissible stresses inspired by [26],which
can be given explicitly in the case of the rate-independent
model with linear hardening, whereas in the viscoplastic
case the projector is implicit, due to the non-linearity intro-
duced by the evolution of the equivalent plastic strains. The
linearization of these projectors, necessary for computing
Newton updates in the nonlinear solution scheme, is approx-
imated in Sect. 3.2.4 inspired by [7]. In addition, we apply
AD techniques to circumvent the necessity of tedious ana-
lytic computations and assembling operations and compare
the numeric performance of both approaches. We incorpo-
rate our DAE system into an existing efficient space and time
adaptive solver, presented in Sect. 3.

The numerical results in Sect. 4.2 for a given set of param-
eters show a heterogeneous concentration distribution within
the particle, when plasticmodels are considered.We attribute
this to lower stresses inside the particle, which in turn affect
the mobility of Li atoms and lead to a pile up at the parti-
cle’s surface. In our studies, plastic deformations are limited
to the outer parts of the particle and result in an eigenstrain
that leads to tensile stresses at the particle surface during
charging, which is not observed in the elastic model. Both
the concentration pile up and the plastic deformation can be
mitigated by decreasing the particle size and or decreasing
the charging rate.

Comparing the plastic and viscoplastic model in Fig. 6,
differences become visible after multiple charging and dis-
charging cycles. On the one hand, the plastic model hardens
isotropic and after several cycles the occurring stresses do
not reach the increased yield limit, preventing further plas-
tification. On the other hand, the viscoplastic model does

show an increased amount of plastic deformations, which
results in a different stress and concentration distribution. As
a result of Sect. 4, the differences are more pronounced the
more cycles are considered, which seems not to be investi-
gated before and affects battery performance and lifetime.
This could be achieved by the use of several modern numer-
ical techniques.

Investigating the performance of the approximation of the
projector’s linearization in comparison with the AD scheme
in Table 3, we conclude that the AD scheme is way more
efficient, due to the fact that the assembling of the New-
ton matrix is done simultaneously with the residual. This
leads to decreased computation times. In addition, the use of
AD circumvents the tedious analytical derivation as well as
the fault prone implementation of the linearization. In total,
with the application of efficient tools like parallelization,
adaptive spatial and temporal discretization and AD on our
higher order finite element approach, we have reduced our
computational effort for the assembling significantly. Adding
the plastic part of the deformation gradient as solution vari-
able to the set of equations like in [15] would increase the
computational time evenmore, especially for the purely two-
dimensional computational consideration.

When studying a two-dimensional problem in Sect. 4.2.2,
an asymmetry in the concentration and plastic strain distribu-
tion is observed, which we attribute to the ellipsoidal particle
shape and the resulting asymmetric concentration distribu-
tion.

To conclude, our study indicates that small particle sizes
with a spherical shape result in a smaller build up of stresses
and is therefore desirable.Moreover, semi-axeswith different
lengths should be avoided to obtain homogeneously dis-
tributed mechanical stresses. Regarding material behavior,
the considered isotropic hardening mechanism is favorable,
as less plastic strains build up after multiple charging and
discharging cycles. In addition, this would prevent the sharp
concentration gradients observed in our study and thus less
interference with battery performance is to be expected. A
further combination with the viscoplastic approach could be
a possible extension.

5.2 Outlook

To further extend the theory originating from this work,
numerous paths can be taken.We consider the following ones
to be especially interesting:

• Due to the usage of the chemical potential as solu-
tion variable and the corresponding code structure, first
introduced for the phase-separating material lithium iron
phosphate in [11], we can add a Cahn–Hilliard approach
for the phase-separation phenomena of aSi which is
observed by [4].
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• Previous research pointed towards the usage of nanowires
as electrode geometry. The reason lies in the observation
that lower electrode sizes decrease occurring stresses and
plastic deformations. This is in agreementwith the results
of decreasing stresses for smaller particle radii. Still, a
study of various nanowire shaped electrode geometries
is a reasonable application for the derived model and the
proposed implementation scheme.

• Fracture and SEI formation typically occur in aSi anode
particles [15]. Both have been considered previously, see,
e.g. [15, 28, 63], and should be included in future exten-
sions of this work, to better capture the physical behavior
of the anode particles.

• A paper published recently by several of the authors
[12], introduced an efficient scheme to compute particle
deformation behavior when contact between particles or
walls is introduced. A study of the elasto-plastic material
behavior derived in this work, in combination with the
obstacle, could provide further insight into the mechan-
ics of anode materials during charging and discharging.

• An integration of the Butler–Volmer condition into the
external boundary condition for the lithium flux is of
further interest to consider additional surface boundary
reactions.

• Finally, a more robust and scalable solver can be devel-
oped to provide additional speedup compared to the
currently usedLU-decompositionwhen usingMPI paral-
lelization [21]. Further consideration can also be given to
the matrix-free concept of deal.ii [54, 64] and other
solvers like PARDISO [65].

Appendices

A Derivation of First Piola–Kirchhoff Tensor

The first Piola–Kirchhoff stress tensor is defined as the
derivative of the free energy density by the deformation gra-
dient F, compare [36, Section 6.1], as

P = ∂F(ρ0ψ) = ∂F(ρ0ψel) = ∂FC
[
∂C(ρ0ψel)

]
(47)

= 2F∂C(ρ0ψel) = 2F∂CEel
[
C
[
Eel
]]

. (48)

The chain rule for the second equality in Eq. (47) can be
computed as stated, since ρ0ψel = 1

2Eel :C [Eel], ∂C(ρ0ψel)

is a symmetric tensor. Further computation with a symmetric
tensor S and n,m = 1, . . . , d leads to:

∂

∂Fmn
C
[
S
] = ∂

∂Fmn
(C :S) = ∂

∂Fmn
(FTF :S) (49)

= ∂

∂Fmn
tr((FTF)TS) = ∂

∂Fmn
tr(FTFS) (50)

= ∂

∂Fmn

∑
j

∑
l

(FTF) jl Sl j (51)

= ∂

∂Fmn

∑
j

∑
l

∑
k

Fk j Fkl Sl j (52)

=
∑
j

∑
l

∑
k

(
δkmδ jn Fkl Sl j

)+ (
Fkjδkmδln Sl j

)

(53)

=
∑
l

(
Fml Sln

)+
∑
j

(
Fmj Snj

)
(54)

=
∑
l

(
Fml Sln

)+
∑
j

(
Fmj (ST) jn

)
(55)

= (FS)mn + (FST)mn = 2(FS)mn . (56)

Using the definition of the logarithmic elastic strain, it fol-
lows:

Eel = ln (Uel) = ln
(√

Cel

)

= ln

(√
FT
elFel

)
= ln

(
λ−1
ch

√(
F−1
pl

)T
FTFF−1

pl

)
(57)

= ln

(
λ−1
ch

√(
F−1
pl

)T
CF−1

pl

)
. (58)

Now, we have

∂CEel
[
C
[
Eel
]] =

⎧
⎨
⎩

(
λ−1
ch

√(
F−1
pl

)T
CF−1

pl

)−1

1

2
λ−1
ch

((
F−1
pl

)T
CF−1

pl

)−1/2

(59)

((
F−1
pl

)T
IF−1

pl

)}
C
[
Eel
]

(60)

= 1

2

{((
F−1
pl

)T
CF−1

pl

)−1 ((
F−1
pl

)T
F−1
pl

)}
C
[
Eel
]
. (61)

In total, the first Piola–Kirchhoff tensor P is computed via

P = 2F
1

2

{((
F−1
pl

)T
CF−1

pl

)−1 ((
F−1
pl

)T
F−1
pl

)}
C
[
Eel
]

(62)

= F

{((
F−1
pl

)T
FTplF

T
elF

T
chFchFelFplF

−1
pl

)−1 ((
F−1
pl

)T
F−1
pl

)}
C
[
Eel
]

(63)

= F
(
FTrevFrev

)−1
((

F−1
pl

)T
F−1
pl

)
C
[
Eel
]
. (64)
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B Linearization of projector

We estimate the formulation of the exact Jacobian for the
rate-independent plastic approach as in [20, Appendix C.6]
with the formal linearization of the projector P� of Eq. (29)
around Etri

el [26, 30]

I�

(
cn+1,∇0un+1,Fn

pl, ε
eq,n
pl

) = ∂Mn+1

∂Etri
el

. (65)

Then, the consistent algorithmic modulus is given as

I� =
⎧⎨
⎩
Cel,

∣∣∣
∣∣∣C
[
Etri,dev
el

] ∣∣∣
∣∣∣ ≤ σY(cn+1) + γ isoε

eq,n
pl ,

Cpl,

∣∣∣
∣∣∣C
[
Etri,dev
el

] ∣∣∣
∣∣∣ > σY(cn+1) + γ isoε

eq,n
pl .

(66)

With the expressions for Mn+1 in the projector P� of Eq.
(29) for the elastic and plastic cases, the elastic tangent Cel

and plastic tangent Cpl can be derived, respectively:
Elastic tangent It immediately reads

Cel = ∂Mn+1

∂Etri
el

= ∂Mtri

∂Etri
el

=
∂
(
2GEtri

el + (K − 2
3G) tr

(
Etri
el

)
I
)

∂Etri
el

(67)

= 2GI + (K − 2

3
G)I ⊗ I (68)

= 2G

(
I − 1

3
I ⊗ I

)
+ K I ⊗ I (69)

= CG + CK . (70)

Plastic tangent With the abbreviations a = γ iso

2G+γ iso , b =(
1 − γ iso

2G+γ iso

(
1 − 2G

σY(cn+1)
ε
eq,n
pl

))
it follows

Cpl = ∂Mn+1

∂Etri
el

= ∂
(
Mtri − 2GτnD

n+1
pl

)

∂Etri
el

=
∂
(
Mtri − 2G�nε

eq
pl

Mtri,dev

||Mtri,dev||
)

∂Etri
el

=
∂

(
1
3 tr
(
Mtri) I +

(
a + b σY(cn+1)

||Mtri,dev||
)
Mtri,dev

)

∂Etri
el

=
∂
(
a + b σY(cn+1)

||Mtri,dev||
)

∂Etri
el

Mtri,dev

+
(
a + b

σY(cn+1)

||Mtri,dev||
)

∂Mtri,dev

∂Etri
el

+ 1

3

∂ tr
(
Mtri)

∂Etri
el

I

= bσY(cn+1)
∂
(
Mtri,dev : Mtri,dev)− 1

2

∂Etri
el

Mtri,dev

+
(
a + b

σY(cn+1)

||Mtri,dev||
)

∂Mtri,dev

∂Etri
el

+ 1

3

∂ tr
(
Mtri)

∂Etri,dev
el

I.

(71)

Introducing a modified C̃el gives

C̃el = a
∂Mtri,dev

∂Etri,dev
el

+ 1

3

∂ tr
(
Mtri)

∂Etri
el

I

= a2G(I − 1

3
I ⊗ I) + K I ⊗ I

= aCG + CK . (72)

Further, it states

∂
(
Mtri,dev : Mtri,dev

)− 1
2

∂Etri
el

= −1

2

(
Mtri,dev :Mtri,dev

)− 3
2

(
∂Mtri,dev

∂Etri
el

[
Mtri,dev]+ ∂Mtri,dev

∂Etri
el

[
Mtri,dev]

)

= −
(
Mtri,dev :Mtri,dev

)− 3
2 ∂Mtri,dev

∂Etri
el

[
Mtri,dev]

= −2G
(
Mtri,dev :Mtri,dev

)− 3
2
Mtri,dev.

(73)

Finally, the plastic tangent can be specified by

Cpl = C̃el − bσY(cn+1)2G
(
Mtri,dev :Mtri,dev

)− 3
2

Mtri,dev ⊗ Mtri,dev (74)

+ b
σY(cn+1)

||Mtri,dev||
∂Mtri,dev

∂Etri
el

(75)

= C̃el + bσY(cn+1)

||Mtri,dev||
(
CG − 2G

Mtri,dev ⊗ Mtri,dev

||Mtri,dev||2
)

(76)

= C̃el +
(
1 − γ iso

2G+γ iso

(
1 − 2G

σY(cn+1)
ε
eq,n
pl

))
σY(cn+1)

||Mtri,dev|| (77)

(
CG − 2G

Mtri,dev ⊗ Mtri,dev

||Mtri,dev||2
)

. (78)

With the deviatoric trial Mandel stressMtri,dev = C[Etri,dev
el ],

the linearization of P� around Etri
el can be expressed by Eq.

(42). A similar calculation leads for the rate-dependent case
to
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Fig. 8 Numerical results for the elastic (Ela.), plastic (Pla.) and vis-
coplastic (Vis.) approaches of the 1D radial symmetric case at SOC =
0.1 for the elastic, plastic and viscoplastic approach of the tangential
Cauchy stress σϕ over the particle radius r

I�

(
cn+1,∇0un+1,Fn

pl,�nε
eq
pl

) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CK + CG ,

∣∣∣∣
∣∣∣∣C
[
Etri,dev
el

] ∣∣∣∣
∣∣∣∣ ≤ σY(cn+1),

−2G�nε
eq
pl

||Mtri,dev||
(
CG − 2G

Mtri,dev ⊗ Mtri,dev

||Mtri,dev||2
)

+ CG + CK ,

∣∣∣∣
∣∣∣∣C
[
Etri,dev
el

] ∣∣∣∣
∣∣∣∣ > σY(cn+1).

(79a)

(79b)

C Comparison of the plastic impact on stress
development

Figure8 shows the 1D radial symmetric results of the tan-
gential Cauchy stress σϕ over the particle radius r for the
elastic, plastic and viscoplastic case at SOC = 0.1. The area
at the particle surface is plastically deformed for the non elas-
tic approaches and is qualitatively comparable to numerical
results in Fig. 4c of [61] and Fig. 5d of [6]. With a reduc-
tion of the yield stress σY(c), the plastically deformed range
would be larger.

D Comparison of logarithmic strain versus
green–St-Venant strain

Comparing the logarithmic strain approach and the green–St-
Venant strain approach as discussed in Sects. 2.1 and 4.2.1,

both approaches result in equal outputs, displayed in Fig. 9.
This corresponds to the findings in [62].

E Comparison of radial deformation gradient

In this section, we take a closer look at the different com-
ponents of the three different parts of the deformation
gradient Fpl, Fel and Fch. At the start of the simulation, no
displacement gradient is present and the total deformation
gradient tensor is the identity tensor. In Fig. 10, we con-
sider the radial part of the each deformation gradient tensor,
respectively. It can be clearly seen that the chemical part
makes the largest contribution to the deformation, followed
at a large distance by the plastic and the elastic parts which
stay close to one. This finding justifies the used approach of
a linear elastic theory.

F Comparison of voltage curve

Following [7], we compute the voltage U with a Butler–
Volmer condition at the particle surface to consider also
electrochemical surface influence. Then, the voltage U is
given by

U = U0 − μsurf

Fa
− 2RgasT

Fa
sinh−1

(
Fa Next

2 j0(csurf)

)
, (80)

with some reference potential U0 depending on the counter-
electrode and a concentration-dependent exchange current
density j0(csurf) = k0

√
csurf(1 − csurf). Here, k0 is a rate con-

stant current density and is specific to the material, csurf the
non-dimensional surface concentration and μsurf the surface
chemical potential. For the moment, we setU0 to zero. There
is almost no difference on the resulting voltageU between the
elastic, plastic and viscoplastic approaches, compare Fig. 11.
However, the computedvoltagevalues differs from theunder-
lying voltage curve UOCV due to mechanical effects and
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Fig. 9 Comparison of concentration c in (a) and hydrostatic Cauchy stress σh = 1/3
(
σr + 2σϕ

)
in (b) over particle radius for logarithmic strain

(Log.) versus Green–St-Venant strain / Lagrangian strain (Lag.) at SOC = 0.5

Fig. 10 Comparison of the radial component of the plastic, elastic and
chemical part of the deformation gradient tensor Fpl, Fel and Fch over
the particle radius r at SOC = 0.92

the Butler–Volmer interface condition. In total, the numer-
ical results are qualitatively comparable with the results
in Fig. 7(a) in [7]. We believe that the similarities of the
three model approaches emerges from the applied constant
external lithium flux.
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