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Abstract

We describe a software package, TomOpt, developed to optimise the geometrical layout and
specifications of detectors designed for tomography by scattering of cosmic-ray muons. The
software exploits differentiable programming for the modeling of muon interactions with detectors
and scanned volumes, the inference of volume properties, and the optimisation cycle performing
the loss minimisation. In doing so, we provide the first demonstration of end-to-end-differentiable
and inference-aware optimisation of particle physics instruments. We study the performance of the
software on a relevant benchmark scenario and discuss its potential applications. Our code is
available on Github (Strong et al 2024 available at: https://github.com/GilesStrong/tomopt).

1. Introduction

1.1. Differentiable programming for detector design optimisation
Opver the past two decades, the availability of high-performance computing and the development of neural
networks of larger capacity have conspired to fuel a revolution in the way we think at the optimisation of
complex systems. When the dimensionality of the space of relevant design parameters exceeds a few units,
and brute-force scans cease to be a viable option for its exploration. We nowadays, have the option of letting
automated systems find their way to configurations that correspond to advantageous extrema of carefully
specified objective functions. The engine under the hood of these optimisation searches is automatic
differentiation, which allows computer programs to keep track of the gradient of the objective function,
through the chain rule of differential calculus, as computer code performs arbitrarily complex successions of
operations to model the behaviour of the system.

Crucial to a successful optimisation of the system is the inclusion in the model of all relevant effects that
have an impact on the precision of the inference that the data generated by the system may produce. An

© 2024 The Author(s). Published by IOP Publishing Ltd
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incomplete description of the inference itself, or a mock up of the reconstruction techniques performing the
dimensionality reduction step which translates raw data into high-level features informing the objective
function, are likely to prevent the identification of designs that maximise the true objective, as they introduce
a misalignment. Instead, it is possible to introduce a substantial margin of flexibility for the components of
the model responsible for explaining factors that influence the absolute magnitude of the objective function
but do not affect its gradient direction within the design space. The model, in other words, can be
approximate as long as it correctly captures the interdependence of the various components, as the latter is
what matters in determining the gradients of the objective function.

Particle detectors are among the most complex interconnected systems humans have ever designed and
built: the large experiments at the CERN LHC, for example, include tens of millions of detection elements
reading out highly interdependent physical phenomena produced when protons collide in the core of the
detectors, at rates of 40 million times a second. For most of present-day experimental situations, we do not
yet possess the capability of producing a fully differentiable, high-fidelity end-to-end model of the whole
procedure that translates raw detector readouts into final measurements of physical quantities; this prevents
the application of gradient descent methods to optimise the detector design. Because of the high complexity
of that goal, we approach the problem by turning, for the time being, to easier modelling tasks that
nonetheless share the same basic ingredients and structure with it. The successful optimisation of particle
detectors of low complexity may allow us to teach ourselves how to tackle progressively harder problems,
while accumulating working solutions to sub-tasks which are liable to be reassembled into larger modeling
problems as needed.

Particle detectors used in muon tomography applications (see next subsection) appear especially fit to an
end-to-end modelling. They involve physical phenomena of low complexity as the data-generating process
usually involves the reconstruction of only one particle at a time, and they are liable to a successful
parametric modeling of all the relevant effects. They thus constitute an ideal entry point in a long-term study
of the end-to-end optimisation of full-fledged experiments. In this document we describe the studies we
undertook to develop a software package for the optimisation of muon tomography apparatuses. In its
present implementation, the code only considers a subset of the possible three-dimensional geometries of
tomography systems, and is meant to provide only a proof of principle of the accessibility of a full, end-to-end
optimisation of the problems these instruments are tasked to solve—most notably, imaging of inaccessible
volumes, and hypothesis testing on their composition. It is our intention to develop a future version of the
software which will provide a more complete solution of the concrete problems in tomography applications.

1.2. Muon scattering tomography

Muons, elementary particles related to the electrons but about 200 times heavier, are constantly and naturally
produced by cosmic-ray interactions in the atmosphere. Their flux at sea level is of the order of 100 Hz m ™2,
and their energy spectrum is very broad, peaking at a few GeV and extending up to the TeV scale. Muons are
not subject to the strong nuclear interaction, and in the energy range 1 GeV-100 GeV their electromagnetic
interactions with matter are relatively mild: they mostly loose energy by ionisation, at a rate of about

200 MeV per meter of water. This makes them the most penetrating charged elementary particles.

The first known use of these cosmogenic muons for a practical application was the measurement of the
overburden of a tunnel in an Australian mine, reported in 1955 [1]. A decade later, muons were famously
used for searching for hidden chambers in Chephren’s pyramid in Egypt [2]. While that pioneering attempt
did not find any new chambers, it convincingly established their absence from the bulk of the volume of that
pyramid. Half a century later, the ScanPyramids collaboration was more lucky and was able to report the
actual identification of unexpected features in Khufu’s Great Pyramid [3, 4]. These results have been based
on the absorption of muons, i.e. on measuring the reduction of the muon flux due to their passage through
matter. The same method has been applied successfully to several other use cases in archaeology and
geophysics (see [5] for reports on several recent examples). However, since 2003 another process of
muon-matter interaction has been used for a variety of applications: multiple scattering, where the muon
undergoes several elastic electromagnetic interactions with the nuclei of the traversed material. As the
strength of each collision depends on the charge of the nucleus, the deflection of a muon trajectory has a
known dependence on the atomic number, Z [6, 7].

The first proposal to use muon scattering for elemental classification [8] focused on the search for high-Z
materials hidden in containers. Searches of illicit materials at border controls are still one of the main drivers
for research in muon tomography, see [9] for a recent review. However, in the last two decades this method
has been explored for a large variety of other applications, including material identification in nuclear waste
drums [10], detection of nuclear warheads [11], and various industrial applications to process monitoring
and preventive maintenance [12]. While most applications of the method are focusing on the identification
of high-Z elements, some teams are attacking the much more challenging task of identifying relatively light
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materials [13-16], which demands excellent angular resolution given the aforementioned dependence on Z
of the scattering angle.

Muon imaging, considering both absorption- and scattering-based methods, is a booming research
direction with tens of new publications per year at a steadily growing rate [17]. The interested reader can find
more information in some recent reviews [12, 18].

Inferring the atomic number of a passive volume irradiated by a flux of muons from cosmic rays requires
modelling the muon flux at the Earth surface, and the multiple scattering muons undergo in matter due to
multiple interactions with the Coulomb field of medium nuclei and electrons.

A formula for the flux of cosmic muons at sea level was first given by Gaisser in 1990 [19], neglecting
Earth’s curvature and assuming muons do not decay while they traverse the atmosphere; the formula is
therefore approximately valid only for muons arriving at sea level with a zenith angle § < 70° and with an
energy E,, > 100/ cosf GeV. An improved formula was given by Guan et al [20], accounting for the curvature
of the Earth and providing a modified term that improves the agreement of the formula with experimental
data at lower muon energies. Other alternative formulas have been proposed in the literature, e.g. the model
by Shukla and Sankrith [21] provides a closed form for the zenith angle distribution which gives an improved
description of the data at all angles, including at § > 70°. ToMOPT, the software package we developed and
describe in section 2, enables the user to choose between the model by Guan et al and that of Shukla et al.

For what concerns the scattering of muons in a material, a simple model is recommended by the Particle
Data Group (PDG) [22] and used in TomOpt as the default scattering model (which we refer to as the PDG
scattering model). It assumes a small-angle Gaussian scattering, and does not take into account non-Gaussian
tails from rare large-angle scatterings. The model consists of picking two random scattering angles
independently in orthogonal directions, as well as correlated transverse displacements. The initial model was
proposed to predict a homogeneous material propagation, but then used by several groups in a step-by-step
algorithm to model propagation in a volume discretised in voxels (voxelised) according to the radiation
length X of the voxels the muons traverse.

The PDG scattering model begins by computing the width of the angular distribution 6. For high energy
muons with momentum p travelling a distance d the PDG model assumes:

_0.0136GeV
p

where nx, = d/Xy, d is the distance traversed by the muon in the material in meters and X is the material
radiation length in meters. The logarithmic term is added in the model to account for possible low Z
materials and to be able to reproduce Moliere’s theory [23, 24]. The angular scattering is sampled from a
zero-centred Gaussian distribution of this width with random numbers z; and z, taken from a normal
distribution of mean 0 and variance 1:

0o Vhx, X (140.038Inny,) , (1)

00 = 90 X 2. (2)
The lateral displacement due to scattering is computed as:

d d
6X:90 (Z]\/E +222>. (3)

1.3. Overview of this document

The present document is organised as follows: in section 2 we describe the software package we developed,
which was used to obtain all results we discuss in the following sections; section 3 describes our benchmark
of choice, involving the estimation of the fill level at a metal refinery; Finally, in section 4 we summarise the
results and discuss the future perspectives of this work.

2. TomOpt

The simulation and optimisation routines used for this study are structured into a software package referred
to as ToMOPT. The code for ToMOPT is available open-source on Github [25]. In this section we will attempt
to provide the reader with a sufficient understanding of the program.

ToMOPT is a highly modular Python-based package that provides the full suite of tools and resources
required for the investigation of the general problem of optimization of a scattering tomography detector. Its
modular design allows each stage of the process to be performed by inheriting classes written to be most
suitable for the particular task being studied. The key feature of ToMOPT is the fully differentiable nature of
the detector modelling and inference pipeline, implemented using the automatic differentiation framework
PYTORCH [26]. In this section we describe the capabilities and workflow of ToMOPT.

3
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Figure 1. Representation of the generation surface in ToMOPT (left), muon zenith angle (middle) and energy (right) distribution
sampled from the Guan et al [20] parameterisation.

The ToMmOPT project began back in April 2021 with the aim of providing a practical demonstration of the
differentiable pipeline proposed by the MODE Collaboration in [27] (and later published in [28]). Initially
worked at by two of us, the project quickly gained contributors, helped by a proof-of-concept demonstration
at the 1st MODE workshop on differentiable programming [29] in September that year. Over 2022, progress
focussed on improving the capabilities, stability, and physical accuracy of ToMOPT, as well as explorations
into advanced inference using maximum likelihood methods, and deep-learning approaches. The primary
contributors met twice for extended in-person development and knowledge sharing (both times kindly
hosted by CP3, Belgium). Additionally, ToMOPT was used as the basis for a data-challenge preceding the 2nd
MODE workshop on differentiable programming [30], where further progress on the project was
presented [31]. Progress in 2023 concerned the development of benchmarks for this publication. It was
slowed slightly by one of the primary contributors leaving academia for industry and only able to offer
evenings and weekends; but anyway, here we are at last!

2.1. Cosmic muon generation

In the context of detector optimisation, it is essential to have a realistic and flexible cosmic muon source that
can adapt to the various muon scattering tomography applications and geographical locations. With that in
mind, ToMOPT samples muons from a horizontal generation surface S, with customisable energy and
angular distributions. Users are free to provide their own parameterisation of the differential cosmic muon
flux, expressed as:

dN

O,(E0) = —
(E.9) = S5 d0-dp a5 ™

“2.sr . GevTl, (4)

where dN is number of muon crossing a horizontal surface element dS,, with energy between E and E + dE,
zenith angle between 6 and 6 4 df, and azimuthal angle between ¢ and ¢ + d¢. Most of cosmic muon flux
parametrisation are given as:

B dN
)= dFas,aa ™
where dN is number of muon crossing a surface element dS,, perpendicular to the muon direction, with
energy between E and E + dE, and solid angle between 2 and 2 + d2. Because df2 = sinf df d¢ and
dS, = dS,, cost, ®, can be obtained from P as:

®(E,0 “2.sr . GeVTl (5)

O, =& -sinf - cosh . (6)

The present version of ToMOPT embeds two default differential muon flux parameterisations: Guan
et al [20] and Sankrith [21]. After providing the desired generation surface span dx, dy, energy range Erange,
zenith angle range 6 ap4e, and number of muons Noyuon, their position is uniformly distributed on Sge,.
Figure 1 shows the various variables associated to a generated muon as well as the energy and zenith angle
distributions of a muon batch.

For computing efficiency purposes, it might be relevant to choose 8454 upper bound < 70° since
horizontal muons are unlikely to reach both the passive volume and the detector layers. Once muons are
generated, they will be propagated along negative z direction. The simulation of their propagation through
passive and active materials is described in sections 2.2 and 2.3 respectively.
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Figure 2. Example of voxelised volume of interest.

2.2. Passive volumes and multiple scattering

Once muons are generated, TOMOPT models their passage through the volume of interest (passive volume)
and their interaction with matter. The passive volumes of interest are modelled in 3D using layers of voxels,
and one can assign to each voxel a material (specified by its radiation length Xj), as shown in figure 2.
TomOFPT has it own database of X, values for various pure elements computed assuming nominal material
density at 20 °C. Alternatively, users can easily provide their custom materials radiation lengths and densities,
which are then plugged into equation (1). They may also manually specify the layout of materials inside the
volumes of interest, or instead provide a customised generator class to provide randomly generated volumes
that are representative of the current task.

For computational efficiency via vectorisation, batches of many muons traverse the volume
simultaneously. Each muon is defined using its momentum, (x, y,z) position, and (6, ¢) trajectory, where
0 < 0 < m/2'% is the deviation from the z axis, and 0 < ¢ < 2 is the azimuthal angle in the xy plane.

The PDG scattering model described in equation (1) is the default scattering model implemented in
ToMOPT. We show in section 2.8 that, although embedding such model in a step-by-step algorithm affects
the precision of the Coulomb scattering simulation compared to, for instance, highly accurate but slow
models such as those provided in GEANT 4 [32-34], the optimisation-focussed nature of the procedure we
present in this paper requires prioritising computational speed over precision.

As described in section 1.2, we sample the angular scattering according to equation (2) and subsequently
compute the displacement due to the scattering according to equation (3): this procedure is performed twice
per scattering call, to compute scatterings in perpendicular directions (x, and y,,) in the muon reference
frame. The muon-frame scatterings must then be converted into the volume frame using 3D rotations
matrices. As mentioned earlier in this section, muons are propagated by steps of distance dr along their flight
path. The default value of dr is set to 1 cm, but can be changed to accommodate for the voxel size, the volume
of interest size, and the remaining distance to the bottom of the voxel. The optimal choice of dr is discussed
in section 2.8. The algorithm 1 summarises TOMOPT muon propagation implementation.

18 Muons travelling upwards are removed, since all muons in the batch must share the same z position.
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Algorithm 1. Muon propagation in TomMOPT.

for each voxel layer do
for each muon do
while muon inside layer do
Compute 0 (dr, Xo) equation (1), 6, equation (2), (dx,,,0y,) equation (3) > p denotes variables
computed in the muon reference frame

Compute dbyo1, ddyol> 6Xvol> O¥vol> 02vol B> vol denotes variables computed in the volume reference frame
X 4= X+ 0%yol > Update muon position

¥ < ¥+ Mol

Z 4 Z+ 02y

0 < x+ 90, > Update muon direction

¢ «— y + 5¢vol

if Zu < Zbottom then
Zy = Zphotom D> Muons that get propagated outside of the layer are moved (up) to the bottom of the layer, x,
y and z positions are updated according to 6 and ¢
end if
end while
end for
end for

2.3. Detector modelling and hit recording

The detectors modelled in ToMOPT must have a flexible enough parameterisation to adapt to the use case,
whilst not being constrained by a priori assumptions about the optimal configuration. The basic detector
unit used is referred to as a panel. In xy-space, each panel has a spatial resolution o, and detection
efficiency emay, along with a fixed cost per unit area. In this way, the user may simulate detectors that are
either constructable in-house, or otherwise commercially available. Panels are free to be positioned in xyz
space within pre-specified regions, referred to as detector layers. In optimisation, the aim is to learn the
optimal position in xyz and width in xy (xy-span) per panel; five learnable parameters per panel. Currently,
the number of panels per detector layer is fixed throughout the optimisation process, due the difficulties in
computing gradients for integer variables.

Muon positions (referred to as hits) are recorded in xyz by the panels. The effect of spatial resolution on
the hits will depend on the detector technology used. For simplicity, the panels implemented in ToMOPT
assume that the recorded position of a hit can be sampled from a Gaussian distribution
g (,u = XVtrue, 0 = Ux%eff) centered over the true position of the muon Xy, the scale of which depends on
the effective spatial resolution oy, .f, as dictated by o'mqx of the detection panel, and the position of the muon
relative to the panel centre.

In reality, a muon passing through a panel would either record a hit, or not, depending on the efficiency
of the panel. For differentiability reasons, ToMOPT instead takes a probabilistic interpretation: hits are always
recorded, but with an efficiency factor ep;;. The total efficiency of the muon ¢, is then computed given its
individual hits as the probability of at least two hits before and after the passive volume'. Both the hit and
overall efficiency enter various parts of the inference and optimisation process, and will be discussed in later
sections.

Optimisation of the panel parameters requires that the muon trajectories be differentiable with respect to
them. Trajectory reconstruction (discussed next) will naturally be differentiable with respect to the z position
of the hits, however derivatives for the xy-position and xy-span are non-trivial: these affect only whether a
muon hits a panel or not, and hits are then recorded with a constant resolution and efficiency, i.e. the
optimisation process would be insensitive to muons which could have been recorded but were not due to the
position and size of the panel.

Instead, during optimisation mode, TOMOPT takes an unphysical approach in which ‘panels’ will always
record a hit for every muon at its current z position, even if these hits are located outside the panel. The
effective resolutions oy, ¢ and efficiencies e of hits, however decreases the further away the hits are from
the centre of the panel, at a rate that scales with the span of the panel. They are computed by scaling the
maximum panel resolution o max and efficiency emay, according to where the muon passes the panel’s
z-position:

19 Atleast two hits are required to reconstruct a trajectory, but more hits will better constrain the uncertainty on the trajectory parameters.
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Figure 3. Example of detector panel modeling with sigmoid function used during optimisation (blue) and with rectangle function
used during validation (red).

Osy,eft = Omax/ W (Xtrue) ; €cft = €max = W (Xirue) » (7)

where w(xyire) is the panel model evaluated at the true muon-position, as presented in figure 3. This scales
between zero and one, reaching a maximum when the muon hits at the centre of the panel. The current
model used in TOMOPT is a pair of double-sigmoid functions in x and y. The values of this pair are used to
provide resolutions in xy, and their product provides the hit efficiency. These are then scaled such that a hit
at the centre receives the full resolution and efficiency of the panel. Effectively, this can provide detection
performance close to the actual detector for hits within the panel, and a smooth transition to zero efficiency
and resolution outside the panel. In this way, each hit and muon trajectory will be differentiable with respect
to all parameters of the panel. When derivatives are not required, e.g. for validating the detector, the panels
can of course be reverted to a more physical interpretation. The algorithm 2 presented below summarises
ToMOFT hit recording implementation.

The smoothness of the sigmoid model (how slowly the hit performance transitions at the panel edge) can
be adjusted, and even evolved during optimisation. Inference with smoother panels will be more sensitive to
muons that are far from the panel, and so are more suitable for optimising the xy position and span of the
panels: since the inference will account for the efficiency on the muons, muons far from the panel are able to
affect the inference. Panels with a sharper transition have close to full hit performance within the majority of
the area of the panel, and so inference is more sensitive to the z position of the panels: muons far from the
panel receive diminished weights, and muons inside the panel receive a more uniform efficiency and
resolution therefore the only remaining parameter to have non-negligible gradient is the z-position. Again,
the user is free to implemented their own panel model w to reach the desired detector configuration.
Examples could be different scalings in x and y, or a periodic function to represent detection wires with a
given density.

Algorithm 2. Hit recording in ToMOPT.

for each muon do
for each detector panel do
Propagate muon to the next detector panel at z;
Record true hit: (Xtrue, Virue, 2j)
Compute effective hit resolutions: o eff = Tmax/W(Xtrue ), Oy,eff = Tmax/W(Virue)
Compute reconstructed hit: (Xirue + Ox, Ytrue + 0y,2j))  >0x,y sampled from G (0, O'x’y’eff)
Compute hit efficiency €eff = €max - W(Xtrue) - W(Virue)
end for
end for
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X reconstructed hits

> POCA points x

----- reconstructed tracks

Figure 4. Example of PoCA point finding. When the scattering angle is large, the PoCA point is well defined and is inside the
passive volume (left). For almost parallel incoming and outgoing tracks, PoOCA point might be reconstructed outside of the
volume of interest.

2.4. Trajectory fitting and Point-of-Closest-Approach finding

The aim of trajectory fitting is to determine the paths of each muon as they enter and exit the passive volume
using the hits recorded by the two sets of detector panels. Each trajectory is computed via analytic
minimisation of a likelihood function that takes the xyz hits as an input. When computing the fit, a weight is
associated to each of the hit positions, that depends on the effective xy resolution of the hits o, .fr, and their
efficiencies €., i.e. low-resolution, or low efficiency, hits have less of an impact on the trajectory fit than
higher resolution, or more probable hits. No uncertainty in z is considered. From an optimisation
perspective, the true trajectory of the muon is most likely to be recovered when the detector panels are
positioned such that all hits for the muon are recorded with high efficiency and resolution. Potentially this
would come at the cost of a poor reconstruction of other muon tracks, and so a global compromise must be
found, as determined by the loss function of the muon tomography task being performed.

Once the incoming and outgoing trajectories of the muons are computed, scattering variables such as the
incoming and outgoing # and ¢ angles, and the total amount of angular scattering may be differentiably
computed. By exploiting the differentiable computation of these variables, their associated uncertainties can
also be easily computed using the product of their partial derivatives with respect to the recorded hits and the
xy uncertainties on the hits.

Once muon tracking is performed, TOMOPT proceeds to a first inference phase in order to associate a
region of space with the measured muon deflection. It is done using an extended version of the
Point-of-Closest-Approach algorithm, which is a standard in muon scattering tomography. In this approach,
the entirety of the muon scattering is assumed to have occurred at a single point in the passive volume,
located by extrapolating the inferred trajectories, as shown in figure 4. Because the PoCA points are
computed from the incoming and outgoing reconstructed tracks, they also bear an uncertainty in x, y and z.
The PoCA points may then be used for a variety of purposes, such as: directly producing a 3D image for
human interpretation; or computing hit densities in voxels, perhaps scaling their weights by their associated
angular scattering. Exactly which variables are required, and the way in which they are used depends on the
task-specific inference approach used. We will show an example of this in section 3.3.1.

Algorithm 3. Track fitting and PoCA finding in TomOPT.

for each muon do
for incoming and outgoing tracks do
Fit track vector
end for
Compute PoCA point from the track vectors
Compute PoCA point uncertainty via automatic differentiation
end for
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2.5. Volume inference
The purpose of ‘volume inference’ is to convert the muon-trajectory variables into a (set of) prediction(s) for
the volume. The form of these predictions and the inference method used will depend on the muon
tomography task being performed. A variety of methods may be used here, provided they allow the
predictions to be differentiable with respect to the muon-trajectory variables, and a range of these will be
explored in a second publication.

Our implementation of PoCA in ToMOPT aims to compute estimates of the voxel X0 values by inverting
the PDG scattering model. The basic approach for a given batch of muons with their PoCA located in a given
voxel of height 6z is:

e O
0 - \/i ) (8)
0.0136 X
(I;ms — Wprms\/armsv
ms L
X Xo cos (9”“5) ’
grms — 6::15 —; g(r)rLllqts , (9)
2
0.0136 ) 0z 2
Xo= Prmb Orms) grms2 (10)
GeV cos (frms) grm:

where 87 is the root-mean-square (RMS) of the measured scattering angles. In equation (9), 6 and 6
respectively refer to the incoming and outgoing muon zenith angle. An example of volume inference is
summarized in algorithm 4. Note that the natural log term present in equation (1) has been ignored to
simplify the inversion. The effects of efficiency and resolution may be further included in equation (10) by
instead aggregating over the muons with a weighted RMS, where muon-wise weights are computed as the
efficiency divided by the variance of the squared value of the variable being aggregated.

In the above inference, we only considered muons whose PoCA was located inside the voxel in question,
however we have an uncertainty on the PoCA position, and some muons may have a PoCA located outside
the passive volume due to mis-reconstruction. An extension is then to consider that muons can contribute to
inference in multiple voxels by considering that the PoCA could have occurred in voxels surrounding its
nominal location. The PoCA uncertainty PoCA,; in x, y and z is computed via automatic differentiation.
Then the probability density function (PDF) for a PoCA to be located within a voxel is modelled using 3
independent Gaussian distributions centered over the nominal PoCA location and scaled in the three
directions according to POCAyy.. A ‘scattering probability’ is then computed per voxel for each muon, by
integrating the PoCA PDFs over ever voxel in the passive volume. An illustration of this procedure is
presented on figure 5. This probability then enters into the weighted RMS as a multiplicative coefficient.

Algorithm 4. Volume inference in ToMOPT.

for each PoCA point do
Compute scattering probability per voxel
Compute muon weights per voxel as muon efficiency times scattering probability in each voxel
end for
for each voxel do
Compute weighted 65™ from equation (8)
Compute X from equation (10)
end for

This method of using PoCA points, however, is biased to underestimate X, since the entirety of the
scattering is assumed to happen in one scattering event. The muons of course undergo many scattering
events as they traverse through the volume. Additionally, it converts muon-wise data into voxel-wise
predictions, however the muon tomography task may not require voxel-wise predictions, but instead perhaps
predictions concerning the volume as a whole. Nonetheless, it can serve as a useful and generic first-stage of
inference to serve as input to a second, more task-specific, stage of inference; indeed both of the benchmarks



10P Publishing

Mach. Learn.: Sci. Technol. 5 (2024) 035002 G C Strong et al

g (ﬁ' = POCAmu‘.u) /
y \1
i 7/ N
2 /'77 L\
Extended ols
@ xtended voxels a)l (;r)2 w3

@ POCA voxel

® POCA point 4

2z z Z
=
X

Figure 5. Illustration of PoCA point being extended to other neighbouring voxels with a Gaussian model. For the sake of
readability, only the extension along the y dimension is shown.

presented in this paper take this approach. ToMOPT implements more advanced methods such as an
Expectation-Maximisation algorithm, where the strong (and often unrealistic) assumption of a single
scattering centre is dropped and all most likely paths of the muon are taken into account with a proper
weight [35].

Alternatively, deep-learning based methods can be applied to muon-level data. Here, latent-space
representations of the relevant muons in each voxel can be learnt using graph-neural-networks that are able
to learn their own graphs in a latent-coordinate-space, such as those proposed in [36]. These representations
can then be refined per voxel, based on the surround voxels through a learnable higher-level graph. An initial
investigation of this is presented in [37]: the representation in each voxel is then refined based on the
surrounding voxels. More simply, deep-learning methods can be used as a second stage to X, inference, to
conveniently convert the dimensionality of voxel-level data to volume-wise predictions. Convolutional
neural networks are appropriate for this task, as demonstrated during the Second MODE Workshop
data-challenge [30].

2.6. Loss functions and optimisation

Similar to the volume inference, the most suitable loss function for the optimisation will depend on the
muon tomography task being performed, e.g. cross-entropy for classification tasks. The total loss function,
however, should not only consider the performance of the detector, but also its budget, for example the cost
in currency units that the detector would take to build given the surface area of its detectors. The cost could
enter directly into the loss via a scaling coefficient, however it is more likely that the user already has in mind
a particular target budget, and wants to design the best detector that gets close to this budget.

TomOPT implements two approaches: fixed-budget, where the user specifies the maximum
budget allowed and the optimisation is constrained to not surpassing that value; and budget-penalisation,
where the user specifies a loose target budget.

In the budget-penalisation case, a cost component of the loss added according to a function that is low up
to the target budget, and then begins to rapidly increase if the detector exceeds the target budget. In this
approach, the detector design can go over budget, but only if the increase in performance vastly surpasses the
budget excess, as exemplified in figure 6. This mode introduces hyper-parameters for the weight of the new
component in the total loss, and the functional form of the penalisation given the cost and budget.

Alternatively, in ‘fixed-budget optimisation mode’, the user still specifies a total and fixed cost for the
detector, and a fractional assignment of this cost to each panel is learnt, starting from a uniform assignment.
The panels still learn a separate xy span, however the the area of the panel is then rescaled such that the cost of
the panel is equal to its assigned fraction of the cost of the detector. This mode of optimisation has two main
advantages: the user is able to ensure that they meet their budget exactly; there is no balancing coefficients
required in the loss function between performance and cost, the loss is purely based on performance.

Once the value of the loss function has been computed, the analytic effects of each detector parameter
can be computed through back-propagation [38—40] of the the derivative of the loss through the inference
and hit-recording steps. The parameters may then be updated via stepping in the direction of steepest
descent of the loss surface. For this process, TOMOPT leverages the standard optimisers built into PYTOrCH
(SGD [41], Adam [42], etc).
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Figure 6. Example of the cost component of the loss as a function of detector cost, for a target budget of 10 A.U.. A sigmoid
component below the budget provides a slowly increasing gradient as the cost approaches the target budget, beyond which the
loss increases linearly. The function is fully differentiable.

Training is supported by a callback system, which allows aspects of the modules and the training
procedure to be adjusted without requiring new modules to be written.

2.7. Update cycle
When computing a value for the loss function, it is important to ensure that it is computed under conditions
that are generally representative of those that can be encountered during actual operation, in terms of
e.g. number of muons and passive volumes. In effect, this means that optimisation should be performed
using a range of passive volumes (whether generated on demand, or supplied by the user as a dataset), and
that these should each be scanned using a number of muons that would be reasonable to expect given the
position and exposure time of the proposed detector. Additionally, rather than computing the loss using just
a single passive volume, it should instead be averaged over many passive volumes in order to provide a more
generalising update to the detector parameters.

The update cycle in TOMOPT is performed thus in the following way:

1. Figure 7(c): scanning of a given passive volume involves passing a batch of muons through the volume
and inferring their tracks. For computational reasons, the total number of muons may be split into
smaller batches. Once all muons have been processed, the volume predictions can be made and the loss
computed;

2. Figure 7(b): this process is repeated for a batch of volumes, and the sum (or average) of their losses can be
used to update the detector parameters. This is referred to as an epoch, in keeping with Machine Learning
terminology~’;

3. Figure 7(a): the fit runs for a specified number of epochs before finishing. It is also possible to run epochs
in validation mode, where the detector is not updated: the detector panels can be therefore be considered,
more realistically, as discrete detector panels rather than with an associated distributed resolution and
efficiency, as discussed in section 2.3.

The figures 21 to 23 in appendix show an overview of each of the steps presented
above. The main variables and learnable parameters are presented in table 2.

2.8. Current limitations

2.8.1. Muon propagation through matter

As described in section 2.2, the implementation of multiple Coulomb scattering is rather straight-forward
since the computation efficiency is prioritised over precision. Scattering angle and displacement distributions
are assumed to be a 100% Gaussian, where in reality only 98% of the bulk is Gaussian and the tails follow a
1/6* law corresponding to large scattering events. In addition, The PDG model used is not designed for a

20 This assumes that volumes are being generated. When working with a dataset of volumes, instead, this process can be repeated several
times using a volume batch size that is less than the total number of volumes in the dataset.
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Figure 7. Breakdown of the fitting procedure of detectors in ToMOPT.

step-by-step algorithm: when it is applied to such an algorithm, it results in underestimating the scattering
and displacement amplitudes more and more with each step, as shown in figure 8.

It becomes clear that the choice of step length dr affects the precision of the multiple coulomb scattering,
and thus has to be chosen carefully. In this context, it is advised to choose a step length dr which represent
about 1% of the passive volume size.

In addition to multiple Coulomb scattering, muons lose energy through ionisation thus sub-GeV muons
might decay in the passive volume. Energy loss has not been implemented in ToMOPT yet, which results in a
overestimation of the detected muon flux. Both of these limitations could be overcome by building a
parametric model of GEANT 4. Creating a data-base of muon energy loss, scattering and displacement for
various material and at several energy scales from GEANT 4 simulations, TOMOPT could simulate muon
transport more accurately and effortlessly.

2.8.2. Detector and cost modeling
ToMOPT’s ambition is to guide the user through the choice of detector technology and not to provide
accurately simulation of particle detection, signal generation or light transport. Thus, the difference between
various detector technologies will be implemented at the level of cost modelling, meaning how the cost scales
with the active detection surface and number of readout channel. Such features have not been implemented
yet, but are planned to be included in future updates.

Regarding detector modelling, ToMOPT is still limited to horizontal panels with continuous spatial
resolution and uniform granularity. This limits the phase space of possible detector geometry.

2.8.3. Volume inference
For now, ToMOPT only provides a basic implementation of radiation length inference based on the inversion
of the PDG scattering model utilising the Point of Closest Approach. The inversion of the scattering model
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Figure 8. Comparison of standard deviations of projected scattering angles and displacement distributions between ToMOPT and
GEANT 4 and for various number of propagation steps.

equation (10) assumes muon momentum to be known with a 100% precision, which is quite unrealistic in
the context of a muon scattering tomography experiment. If a momentum estimation is available, the user
can still modify the inversion model and replace the nominal muon momentum by a the estimated
momentum. If not, it can be replaced by the RMS computed over the whole cosmic muon momentum
spectrum.

3. Benchmark: fill-level estimation at metal refinery

The following section describes a benchmark involving the estimation of the fill level at a metal refinery, and
aims at demonstrating a typical inference and optimisation chain using ToMOPT. After evaluating the
performance of an initial sub-optimal detector configuration, the latter will be optimised, and its
performance will be compared to two human baseline detector configurations.

3.1. Description

Furnace ladles are structures used to transport melted metal produced in an industrial plant, as shown in
figure 9. A description of a generic industrial furnace ladle model used to simulate muography
measurements can be found in [43]. A typical example of the part of the manufacturing process which
involves the use of the ladle could be described in a general way as follows: firstly the metal is melted in a
furnace, then it is transported with a furnace ladle, and finally it is poured into moulds to create metal parts
with a defined shape. This parts can later be post-processed, in order to get the final product.

In this process, the amount of melted metal inside the furnace is a key parameter. The lack of metal in the
ladle can result in moulds that are not completely filled. Therefore, they may not be used to produce the final
product correctly. On the other hand, an excessive charge of metal in the ladle leaves remnants and scraps,
causing problems and losses in the manufacturing process. It has to be mentioned that usually, in the top of
the melted metal inside the ladle, there is a lighter layer of slag produced in the melting process itself. This
layer, prevents the use of optical methods to determine the liquid metal level. The resolution needed by the
industry to optimise the manufacturing process is of the order of a few centimetres, although it depends on
the distinctive features of each case.
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Figure 9. Example of a furnace ladle used in foundry industry. Image by Boris Bukovsky, via Pixabay.
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Figure 10. Top view (left), and front view (right) of the rectangular furnace ladle simulated. It is composed of walls (grey), liquid
steel (yellow), slag (orange) and the air volume (blue) over the liquid steel and slag.

Table 1. Density, radiation length and composition of the simulated furnace ladle materials.

Material ~ Density, d (g cm™2) Radiation length, Xo (cm) Composition

Solid steel  7.818 1.782 Fe (99%), C (1%)

Liquid steel 7.000 1.991 Fe (99%), C (1%)

Slag 2.700 8.211 CaO (53.5%), Al,O3 (33.5%)
Air 0.001 205 30390 N, (78%), O3 (20%)

3.2. Detector and volume

Active layers, i.e. the detector panels, are located above and below the measurement target, in an usual
scattering muography configuration. At least two panels at different z locations providing x — y positions of
muons are required per tracking detector (upper, and lower detectors). As specified in section 2.3, they are
modelled considering several parameters, such as position resolution oy, detection efficiency €n,x, and cost
per unit area.

Within the volume of interest between the detectors, a rectangular furnace ladle filled with liquid steel
has been simulated (passive volume). In the figure 10(a) sketch of the furnace ladle is shown. The grey parts
correspond to ladle walls, made of solid steel, the molten steel is represented in yellow, the slag layer on top of
it in orange, and the remaining void volume over them in blue. The definition of materials is detailed in
table 1.
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Figure 11. Muography of a simulation ladle furnace filled with steel up to 0.4 m. The bottom wall of the furnace goes from 0.2 m
to 0.3 m in z axis. On the left, the front view of PoCA reconstruction. On the right, PoCA distribution in vertical axis (z) and
filling level inference example: true steel level (blue), z, (red), and hypq (green) for the particular case of a bias correction on zpred,
with a=2and b = —0.2 (see section 3.3.2 for details).

3.3. Inference method and loss function

The aim of this task is to design a detector that can provide an accurate measurement for the fill-heights of
furnaces. This is essentially a single-variable regression task, and a natural choice for the loss function could
be the mean squared-error (MSE) between the predicted and true fill-heights. However, as will be discussed
below, MSE is not necessarily the most suitable loss for optimisation of this task.

3.3.1. Inference

In the spirit of an end-to-end optimisation pipeline, the inference must output the fill-height prediction and
receive optimisation loss gradients based on this. In developing a suitable inference method, we noticed that
the mean value of the z-positions of PoCAs (z,) was monotonic with the fill-height, due to hard scatterings
occurring inside the liquid-metal part of the furnace volume, rather than the air and slag regions. This meant
that it could serve as an indicator of the mass density distribution centre in the vertical Z axis (see figure 11).
As a benefit, this inference approach does not require computing X, predictions for the voxels, and thus is
more computationally efficient.

This can be adapted to an inference method suitable for detector optimisation by computing a weighted
average of the PoCA z-positions, according to the muon-trajectory properties. The basis for this weight is the
muon-trajectory efficiency (¢,), divided by the squared uncertainty of its POCA z-position ((Az,)?).

However, we also observed that PoCAs located in the furnace walls could bias the prediction, and reduce
precision. Additionally, we know we have uncertainties on the xy positions of the PoCAs. In a similar manner
to the Xj inference described in section 2.5, we define Gaussian distributions in xy centred on the PoCAs and
scaling with their xy uncertainties, and integrate them over each voxel in the transverse area of the furnace.
We then use a pair of double-sigmoid-based functions in xy to ascribe a weight to each voxel, that smoothly
decreases to zero at the furnace walls, and maximises to one at the centre. This is used to multiply the integral
in each voxel per PoCA. The xy weight of each PoCA (wy,,,) is defined as sum of its weighted voxel integrals,
and this enters as a multiplicative factor of the overall PoCA weight:

€
wy=—L— Wy p- (11)

(Azp)

This weight has the effect of emphasising the z positions of PoCAs that are well measured in z, located near
the centre of the furnace, and have a high trajectory efficiency.
The predicted height is then taken as the weighted average of PoCA z positions:

Zp WpZp

== . 12
Zpred. EP, w, ( )

Whilst the mean of PoCA z positions is actually more likely to correspond to the centre of the fill-material,
this redefinition to the fill-height can be accomplished by the linear transformation described in the next
section.
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3.3.2. Bias correction

The method described above, does not perfectly predict the fill-height: as mentioned, the mean of PoCA z
positions is likely to correspond to the centre of the fill material, but with some finite precision; the PoCA
method is inherently biased through its ascription of the entire muon scattering to a single point;
additionally, the bias on the prediction is detector-configuration-dependent.

Provided that the biased prediction increases with the true fill-height, bias correction can be performed
for a given detector configuration using many volumes of different fill-heights and adjusting the predictions
(e.g via a continuous function, or bin-based corrections) such that on average, the predictions match the
targets. Knowing this, what we really want the inference and detectors to produce is a prediction that has low
in standard deviation when repeated multiple times for the same volume, whilst still increasing in mean
value with the true fill-height.

Eventually, though, we will need the detector to be used for actual measurements of fill-heights. At this
point, the predictions from the inference must be de-biased as well as possible, in order to correspond to the
true targets. The de-biasing can take the form of a parametric function of the predictions, and for simplicity
we opt for a linear correction of the form:

hpred. =a X Zpred. + b, (13)

where parameters a and b are computed based on the predictions and targets from a large set of known
example volumes at various fill-heights. The effect of this de-biassing can be seen in figure 14.

In order to improve monitoring capabilities during the optimisation, we refine the values of a and b after
each update to the detector and display the resulting MSE of de-biased predictions. In order to avoid having
to re-scan a large number of volumes, this refinement is performed using predictions and targets collected
during the current batch of volumes.

3.3.3. Loss function

Even with the de-biasing, the detectors can still produce predicted heights that contain a residual bias, and
optimisation under MSE risks being sensitive to these residual biases, resulting in unstable optimisation. As
mentioned, the aim of the detector optimisation is to eventually allow the inference to produce precise
predictions that increase with the true fill-height. A loss function that is suitable for this is one that captures
the distribution of predictions for each target fill-height, i.e.:

L=< o), (14)

Nll

where o(p;) is the standard deviation of predictions for fill-height index I If the spread of predictions
becomes smaller, the loss will decrease, and vice versa, thus the loss encourages precise measurements of the
fill-heights.

However, there is nothing to ensure that the predictions increase in value with the fill-height: given
sufficient flexibility in the detector (and potentially inference), it may be possible that the system outputs the
same value for all predictions, thus proving zero spread, and so a perfect loss value. In order to penalise such
a collapse, we need to include a factor that encourages a large distribution in predictions for different
fill-heights, thus the final loss function becomes:

130
E_Nl 0’([_)1) ’

where o(p;) is the standard deviation of the mean prediction for each fill-height.

If the system were to output the same value for every volume (thus minimising the spread of predictions
within each fill-height), the spread of mean predictions for each fill-height would also collapse to zero and
act to increase the loss value. The loss function is therefore minimised when the distributions of predictions
in each fill-height is small, and when the mean predictions between fill-heights is as large as possible. Thus
the predictions become easier to de-bias: if the predicted height for a given volume is within a certain range,
we can be more sure it corresponds to a particular true fill-height. We refer to equation (15) as the ‘spread
over range’ loss function.

In the figure 12, the evolution of the proposed loss function with relation to the span of detection panels
is shown. The centre of the panels in the horizontal axes X and Y, is the same that the one of the furnace ladle.
A sharp loss decrease is noticed when detection panel surface is increased within the limits of the furnace
ladle interior, where the liquid steel is located, i.e. the muography target. However, if the panel span exceeds
the width of the ladle interior, the loss reduction starts to be less noticeable. We found that this effect is due

(15)
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Figure 12. ‘Spread over range’ loss function tested for different detection surfaces, and using the hyp,q inference method with
unweighted z,r.q and a linear de-biasing of a =2 and b = —0.2.

to the smaller proportion of muons that cross the target when detectors are larger than the furnace interior
width, and also because of the contribution of furnace walls to muon deflection. Their presence modifies the
density distribution in z axis, distorting our predictions, although this effect is smoothed by the weighted
PoCA inference (see section 2.5). Either way, the ‘spread over range’ loss is continuously and endlessly
reduced when increasing the detector surface, the expected behaviour regarding the performance of a
muography, since a larger surface allows to collect a higher number of meaningful muons, even if they
traverse the target in a transversal direction. This generally improves the precision of inference algorithms.

Note that in the ‘spread over range’ part of the loss function is not included the loss component of detection
surface cost (see section 2.6).

3.4. Optimisation process and results
3.4.1. Passive-volume data

Using 10 cm voxels, we generate volumes at eight different fill-heights to simulate from ladles that are almost
empty to ones that are almost full. In every case, we add a 10 cm layer of slag on top. When optimising the
detector, each of these volumes will be evaluated five times (40 volumes per volume batch) — whilst the
volumes will always be the same, stochasticity in prediction will still be present due to the muon generation.

When evaluating the performance of the detectors, each volume is evaluated 12 times. 1000 muons will be
used per evaluation.

3.4.2. Initial configuration

In order to test the optimisation capabilities of ToMOPT, we initially set the detector in a knowingly
sub-optimal configuration: one in which the detector panels are off-set from the passive volume in x — y,
thus lowering the flux muons that are well detected, and interact with the passive volume; and closely space
in z, thus increasing the uncertainty in PoCA reconstruction.

The detector itself (illustrated in figure 13) consists of four equally sized square panel above the passive
volume, and another four panels below. These panels begin centred in x — y over the corner of the passive
volume, and with an (unrealistic) separation in z of 1 cm between each panel. There is a 5 cm separation
between the passive volume to the nearest panels. The total cost of the detector is fixed at six arbitrary units,
and panels cost one arbitrary unit per m~2. The available budget is initially distributed equally to all panels,
thus each panel measures 86.6 cm in both x and y length. Panels are defined to have nominal efficiencies of
90 %, and x — y resolutions of 0.1 mm.

The initial performance for the detector is shown in figure 14. The ‘raw’ predictions are the result of the
inference with no de-biasing. We can observe a slight slope to their values w.r.t. the fill-height, however the
large spread in predictions for the same target, means that it is difficult to distinguish different fills. The
de-biasing process via a linear correction is able slightly reduce the MSE, but cannot do much more that shift
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Figure 14. Performance of the initial detector before and after the de-biasing process.

the predictions. Averaging across the range of fill-heights considered the initial detector has a mean MSE of
0.037 m?, and an average absolute error on fill-level prediction of 16 cm.

Our intuitive expectation is that from this position, the panels should move to cover the centre of the
passive volume, and increase in z-separation. There is, however, a trade-off in increasing the z-separation:
whilst it generally increases the PoCA resolution, it also decreases the hit-reconstruction for muons entering
or leaving the passive volume at large angles. We therefore expect the optimisation to find a natural point at
which the improved resolution is balanced by the decreased high-angle-muon flux. Additionally, we have no
confident intuition over how the panels should be resized to best improve performance given a constant

budget.
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3.4.3. Optimisation callbacks

As mentioned in section 2.6, TOMOPT has a callback system that allows the user to augment the basic
optimisation loop to include different functionality, and to help stabilise the optimisation process. For this
task, the following callbacks are used:

e MUONRESAMPLER—When muons are generated, they may not ever interact with the passive volume, and so

form a source of background, which would ideally be removed by some filtering process. In the interests
of simplicity, we are not considering background processes here’!. The MUONRESAMPLER callback acts to
regenerate muons until all muons in the batch will interact with the passive volume at some point. This
therefore improves the generation efficiency.

LINeARCORRECTION—The de-biasing process mentioned in section 3.3.2 is implemented as a callback that
can modify in-place the outputs of the inference module, collect raw predictions and targets during the
volume batch, and then re-fit its correction after each detector update.

SPREADRANGELOSs—By default, ToMOPT computes the loss per volume and tracks a running sum of losses
over the volume batch. However the ‘spread over range’ loss can only be computed for a population of
volume predictions. This callback collects the predictions over the course of the volume batch and then sets
the value of the loss prior to back-propagation.

NoMOoRENANs—Optimisations can take several hours, and whilst TOMOFPT is fairly resilient, given the num-
ber of muons being propagated and the complexity of the reconstruction and inference process, it is inev-
itable that invalid (NaN) gradients are occasionally produced. These would otherwise kill the optimisation
process, however after back-propagation but before the parameter updates, this callback goes through the
parameters and sets any NaN gradients to be zero.

OpTCONEIG—The learning rate of optimisers in gradient descent is one of their most important parameters,
however it can be difficult to set suitably with limited a priori knowledge. Whilst techniques such as the
‘learning rate range finder test’ from [44] have been developed, they are designed for DNNs, where the
learnable parameters lack a physical meaning. Here, our parameters do have physical meaning (e.g. the
detector position is a learnable parameter measured in metres). We are thus able to do something better:
we can specify the desired change per update of parameters in their physical units, and over the course of a
warm-up phase (in which all parameters are fixed) compute the average gradient received by each parameter.
From these averages, we can then compute the learning rate that is likely to produce the desired update rate.
As an example we can say that we want the panel xy positions to update at a rate of 1 cm per iteration. We
can then monitor the median gradients for a few iterations and then set an appropriate learning rate that
results in a change of about 1 cm per iteration according to y = Lcm/Vyy—pos. L.

PANELCENTREING—TIn order to help stabilise the optimisation in TOMOPT, we use this callback: after panel xy
positions have been updated, it goes through and for panels above and below the passive volume separately,
it computes the mean position in x — y of panels and then sets panels to that position. Panels below the
passive volume can still have different positions to those above, but all panels above and below each have
a common x — y position. Whilst this does limit the originality of detector configuration that TOMOPT can
explore, it is currently necessary to avoid instabilities and divergences in the optimisation.
PANELMETRICLOGGER—This provides real-time feedback to the user, and displays the current layout of the
detector, the history of the loss values, and other diagnostic information.

EpocHSAVE—This automatically saves the state of the detector after every update, allowing the user to manu-
ally pick the best performing detector in case of performance divergence, or to recover in case of errors
ONECycLE—This is a learning rate scheduler that adapts the learning rate (and optionally momentum/;
coefficients) or the optimisers according to the 1-cycle schedule described in [45, 46]. This is mainly used
to allow the learning rate to gradually decrease over the course of the optimisation, allowing the detector
configuration to better converge, whilst allowing larger updates near the beginning to training to move
quickly from sub-optimal to near-optimal positions.

SIGMOIDPANELSMOOTHNESSSCHEDULE—as mentioned in section 2.3.1, the physical panels are approximated
differentiably during the training epochs using a sigmoid-based model. It was also suggested that different
values of the smoothness of the model allows different parameters of the detector panels mode or less of
an effect on the loss. This callback allows the smoothness to be decreased across the optimisation process,
meaning that close to the end of the training, the panels better approximate physical detectors, and the loss
is more sensitive to the exact z position of the panels.

21 Given the small number of muons used, relative to the incoming flux and acquisition time, a highly pure sample of muons is expected
to be acquirable by even a low-efficiency trigger/filter.
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(a) Initial detector configuration. (b) Detector configuration after stage one optimi-
sation process.
Figure 15. Comparison of detector configurations before and after stage one of the optimisation process. The coloured

lines/squares indicate the positions and sizes of the panels, and the hatched area indicates the position and size of the passive
volume. The top rows indicate panels above the passive volumes, and the bottom rows indicate panels below the passive volume.

3.4.4. Optimisation process

Five parameter families are considered: xy positions of the detector panels and the z positions of the panels
are considered separately for panels above and below the volume (four parameter families); and the budget
assignment per panel (one parameter family). Over the course of five epochs, we monitor the gradients
received by the trainable parameters in these families and compute nominal learning rates that correspond to
position updates at a rate of 1 cm per epoch, and budget weights at a rate of 0.1 (dimensionless).

3.4.4.1. Stage one

Over the course of 10 epochs, the detector is updated, using 1-cycle learning rate annealing to scale the
nominal learning rates over the course of the optimisation: initially they increase to allow large updates of the
detector, and towards the end the decrease to much smaller values, allowing the panels to converge and
stabilise. Additionally, the sigmoid detector model is annealed from an initially smooth configuration to a
sharper, more physical distribution of efficiency and resolution. On a 2018 Macbook Pro with an Intel i7, this
takes about 30 min to run (no GPU is used).

Figure 15 illustrates the detector configuration before and after this stage of the optimisation process.
From this we can see that the panels have indeed moved to be more central in x — y, and have expanded in z.
Figure 16 compares the performance of the optimised detector to the initial detector, and indicates a
significant improvement in both the precision and bias: now predictions are clearly distinguishable by true
fill-height. The optimised detector has a mean MSE of 0.0014 m?, and an average absolute error on fill-level

prediction of 2.8 cm.

3.4.4.2. Stage two

The previous optimisation process showed that ToMOPT can take a poorly designed detector and quickly
shift it into a configuration that provides much better performance. In this second stage we will demonstrate
that TOMOPT can be used to refine detectors that are already thought to be well performing, by altering only
subsets of the total available parameters. To do so, we will use our detector from stage one.

During stage one, we saw that the panels moved to become central in x — y. We will take this
experimental evidence, along with our domain knowledge of the problem, to assume that the ideal position
for the detectors is directly above and below the passive volume. We will manually shift the panel to the
centre and fix them there, allowing only the z and budget assignments to slowly change.

Once again, we compute suitable nominal learning rates for our three remaining parameter families by
monitoring the gradients they receive for five epochs. Over another 10 epochs we allow the detector to
further be refined, this time with smaller update steps. Figure 17 illustrates the detector after this refinement
stage, and figure 18 its performance. Mainly we can see that the panels below the passive volume have moved
to cover a larger z range. While this could come at the expense of missing some high-angle muons leaving the
passive volume, the panels have slightly increased in size by decreasing the intermediate panels above the
passive volume. The refined detector has a mean MSE of 0.0011 m?, and an average absolute error on
fill-level prediction of 2.5 cm.
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3.5. Comparison to human baselines

Having demonstrated that TOMOPT can successfully optimise detectors, we now want to see whether the
resulting detector is good compared to a human-designed detector. For this we will take two baseline

configurations:

o Baseline 1: detector panels are placed in pairs with a 5 cm separation between panels, and a 25 cm separate
between pairs above and below the passive volume. This configuration aims to maximise the precision of
the muon trajectory reconstruction by allowing precise measurements of the muon positions over a long

baseline.

e Baseline 2: detector panels are placed with an even 10 cm spacing. Baseline 1 potentially misses some high-
angle muons due to the large distance to the second pair panels. This baseline attempt to strike a balance

between precision and exposure.

These are illustrated in figure 19.
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Figure 19. Configurations for the human-designed baseline detectors. The coloured lines/squares indicate the positions and sizes
of the panels, and the hatched area indicates the position and size of the passive volume. The top rows indicate panels above the
passive volumes, and the bottom rows indicate panels below the passive volume.

Figure 20 compares the performances of the stage-two optimised detector against the two baseline
detectors. Whilst all three detectors offer similar levels of performance, our optimised detector is able to not
only match human performance, but slightly and consistently outperforms it.

4. Conclusions

In this document, we have described ToMOPT; a system that allows muon-tomography detector designers to
specify their end goal numerically as a task-specific loss function, and through the use of automatic
differentiation optimise their designs to provide the best possible performance. Since the updates to the
detector are made in the presence of both the inference algorithm and end-goal, the designers can be sure
that changes made have a genuine impact on the final performance, rather than focussing on optimising
task-agnostic proxy metrics (such as track resolution), and hoping that these eventually translate to better
actual performance for the task at hand.

We demonstrated the capabilities of ToMOPT in a simulation of one of the typical industrial
use-cases—that of estimating the fill-level of furnace ladles at a metal refinery. Using task-specific inference
and losses, we were able to optimise an initial, poorly designed detector into one that was able to not-only
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Figure 20. Performance of the optimised detector after stage 2 compared to human-designed baseline detectors (both shown after
the de-biasing process). Heights shown include the space below the passive volume.

match, but slightly outperform two human-designed baseline detectors in terms of fill-height prediction
precision. In this example we performed the optimisation such that the detector always conformed to a fixed
cost, however alternatively the optimisation could be performed to minimise the detector cost and not
exceed a specified budget.

We believe that ToMOPT provides the first demonstration of end-to-end-differentiable and
inference-aware optimisation of particle physics instruments, and represents an important step in changing
the way we design experimental apparatus. Given the number of free parameters considered here, it is worth
mentioning that non-differentiable, black-box optimisers such as Bayesian optimisation (BO) could be well
applicable. However given the parameter spaces of larger detectors, such as those at the CERN LHC, where
perhaps more than 1000 parameters might be available for control, we believe that differentiable
optimisation will be required. With that in mind, our primary of this paper was to demonstrate the viability
of measurement-aware detector design in a differentiable pipeline.

In practical application on larger detectors, BO could potentially be used on a reduced parameter set to
act as an initial global search to find a decent initialisation, after which full differentiable optimisation can be
used on the larger parameter space to refine the detector. Given BO’s capability to more easily optimise
categorical parameters, this initial search may be additionally beneficial in fixing such parameters prior to
differentiable optimisation.

Looking to the immediate future of this work, there are many possible extensions. So far, we have relied
on ‘classical’ inference algorithms, but inference via deep-neural networks are naturally compatible with
ToMOPT’s requirement on differentiable processes. We will be exploring their use in future publications, as
these can help to ease the burden of designing task-specific differentiable inference algorithms. Additionally,
as a quick simulator of the physics, ToMOPT can be exploited for developing and testing advanced
(non-differentiable) inference algorithms for muon-tomography in general. The available degrees of freedom
of detectors, in terms of placement, technology, and modelling needs to be expanded, to allow for
e.g. detectors to be placed on the side of the passive volume, or otherwise rotated. Finally, we will be looking
to expand the repertoire of benchmark scenarios used for demonstration and testing.
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Appendix
Table 2. Description of variables and learnable parameters from figures 21-23.
Symbol Definition Unit
0 Muon zenith angle rad, °
[5) Muon azimuthal angle rad, °©
Xo Radiation length m
Sgen Muon generation surface
dx, dy Generation surface span in x, y m
Erange Muon generation energy range GeV
Orange Muon generation zenith angle range GeV
Nmuons Number of generated muons
€max Panel maximum efficiency
O max Panel maximum spatial resolution in x and y m
Xopan,j» Vspan,j Panel j span in x and y as a learnable parameter m
Xp» Vi Zj Panel j position in x, y, z as a learnable parameter m
Eeff Reconstructed hit effective uncertainty
Xrec» Yrec Reconstructed muon hit m
€ Per-muon efficiency
€batch Muon batch efficiency, sum of the per-muon efficiencies
L Total loss function
Lcost Detector cost loss function
Lerror Error loss function
B8 Loss function cost weight
Lvolume Volume loss function
x* Set of all learnable parameters
{- -+, (%, i, 2j, Xspan,j» Yspan,j)» - - - } at iteration k
Vx Loss function gradients w.r.t learnable parameters X
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