KIT | KIT-Bibliothek | Impressum | Datenschutz

High-Resolution PM$_{10}$ Estimation Using Satellite Data and Model-Agnostic Meta-Learning

Yang, Yue ; Cermak, Jan ORCID iD icon 1,2; Chen, Xu; Chen, Yunping; Hou, Xi
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF), Karlsruher Institut für Technologie (KIT)

Abstract:

Characterizing the spatial distribution of particles smaller than 10 μm (PM$_{10}$) is of great importance for air quality management yet is very challenging because of the sparseness of air quality monitoring stations. In this study, we use a model-agnostic meta-learning-trained artificial neural network (MAML-ANN) to estimate the concentrations of PM$_{10}$ at 60 m × 60 m spatial resolution by combining satellite-derived aerosol optical depth (AOD) with meteorological data. The network is designed to regress from the predictors at a specific time to the ground-level PM$_{10}$ concentration. We utilize the ANN model to capture the time-specific nonlinearity among aerosols, meteorological conditions, and PM$_{10}$, and apply MAML to enable the model to learn the nonlinearity across time from only a small number of data samples. MAML is also employed to transfer the knowledge learned from coarse spatial resolution to high spatial resolution. The MAML-ANN model is shown to accurately estimate high-resolution PM$_{10}$ in Beijing, with coefficient of determination of 0.75. MAML improves the PM$_{10}$ estimation performance of the ANN model compared with the baseline using pre-trained initial weights. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000172925
Veröffentlicht am 19.08.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF)
Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2072-4292
KITopen-ID: 1000172925
HGF-Programm 12.11.26 (POF IV, LK 01) Aerosol-Cloud-Climate-Interaction
Erschienen in Remote Sensing
Verlag MDPI
Band 16
Heft 13
Seiten Art.-Nr.: 2498
Vorab online veröffentlicht am 08.07.2024
Nachgewiesen in Scopus
Dimensions
Web of Science
OpenAlex
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page