
Vol.:(0123456789)

Computing and Software for Big Science (2024) 8:13
https://doi.org/10.1007/s41781-024-00122-3

REVIEW

A Case Study of Sending Graph Neural Networks Back to the Test
Bench for Applications in High‑Energy Particle Physics

Emanuel Pfeffer1  · Michael Waßmer1  · Yee‑Ying Cung1 · Roger Wolf1  · Ulrich Husemann1 

Received: 26 February 2024 / Accepted: 27 June 2024
© The Author(s) 2024

Abstract
In high-energy particle collisions, the primary collision products usually decay further resulting in tree-like, hierarchical
structures with a priori unknown multiplicity. At the stable-particle level all decay products of a collision form permutation
invariant sets of final state objects. The analogy to mathematical graphs gives rise to the idea that graph neural networks
(GNNs), which naturally resemble these properties, should be best-suited to address many tasks related to high-energy par-
ticle physics. In this paper we describe a benchmark test of a typical GNN against neural networks of the well-established
deep fully connected feed-forward architecture. We aim at performing this comparison maximally unbiased in terms of
nodes, hidden layers, or trainable parameters of the neural networks under study. As physics case we use the classification
of the final state X produced in association with top quark–antiquark pairs in proton–proton collisions at the Large Hadron
Collider at CERN, where X stands for a bottom quark–antiquark pair produced either non-resonantly or through the decay
of an intermediately produced Z or Higgs boson.

Keywords  Graph neural networks · Deep neural networks · High-energy particle physics · LHC

Introduction

The continuous rise and flourish of deep learning has signifi-
cantly impacted also the community of high-energy particle
physics, where modern algorithms of deep learning—mostly
in the form of various neural network (NN) architectures—
find applications as automation tools, for (multiclass)
classification, parameter regression, or universal function
approximation. The Large Hadron Collider (LHC) at CERN
offers a unique test environment for such algorithms provid-
ing a large amount of independent identically distributed

(i.i.d.) data from proton–proton ( pp ) collisions under well
controlled laboratory conditions. These data feature a rich
hierarchical structure, optimally suited for the application
of all kinds of general methods of statistical data analysis.
Moreover, the underlying physics laws and statistical mod-
els, which have emerged over many decades of research, are
scrutinized to a level that allows the reliable estimation of
particle properties with a relative accuracy ranging far below
the per-mille level, in rare cases even below 10−10 [1]. This
circumstance offers a toolbox for generating a large amount
of perfectly known, complex, synthetic data, with a high
relation to experimental observations, through the applica-
tion of Monte Carlo (MC) methods [2, 3]. These data are
usually obtained as samples from an intractable though well-
known likelihood function L . This setup provides a unique
opportunity to thoroughly benchmark any kind of machine
learning (ML) algorithms under complex, real-life labora-
tory conditions.

At the LHC, data analysts strive for the application of
more and more sophisticated ML-models with more and
more not further processed—and in this sense “raw”—input
data. This strategy is fed, among others, by the belief that
automated algorithms might find ways of extracting informa-
tion of interest to the analyst, which are superior to selection

 *	 Emanuel Pfeffer
	 emanuel.pfeffer@kit.edu

	 Michael Waßmer
	 michael.wassmer@kit.edu

	 Yee‑Ying Cung
	 yeeying.cung@web.de

	 Roger Wolf
	 roger.wolf@kit.edu

	 Ulrich Husemann
	 ulrich.husemann@kit.edu

1	 Karlsruhe Institute of Technology, Institute of Experimental
Particle Physics, Karlsruhe, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-024-00122-3&domain=pdf
https://orcid.org/0009-0009-1748-974X
https://orcid.org/0000-0002-0408-2811
https://orcid.org/0000-0001-9456-383X
https://orcid.org/0000-0002-6198-8388

	 Computing and Software for Big Science (2024) 8:13 13   Page 2 of 15

strategies that are vulnerable to the bias of human preju-
dice, and at the same time are capable of taking correla-
tions of observables in a high-dimensional feature space into
account. On the other hand, ML-algorithms should not be
forced to learn already known and well-established physics
principles, like symmetries inherent to the presented task.
While such information can only be insufficiently passed
through the necessarily finite training samples, it can be
intrinsically incorporated either into the loss functions used
for training, or in the NN architectures.

At the large multi-purpose LHC experiments, ATLAS [4]
and CMS [5], pp collisions at a center-of-mass energy of,
e.g., 13 TeV result in the creation of thousands of collision
products to be recorded by the experiments. Primary colli-
sion products might decay further resulting in tree-like, hier-
archical structures with a priori unknown multiplicity. The
collision process can be described in a factorized approach:

During the hard scattering process, the fundamental con-
stituents of the protons, i.e., the quarks and gluons which
are also collectively referred to as partons, interact via the
fundamental interactions under investigation. We refer to
the result of these interactions as the partonic final state. It
cannot be observed directly in an experiment. Rather, each
parton undergoes a series of theoretically well-known pro-
cesses, setting in at lower energy scales, resulting in sta-
ble particles. The inverse problem usually subject of high-
energy particle physics is to infer the presence and properties
of the stable particles and eventually the partonic final state
from their observable energy deposits in the detectors.

At the stable particle level all decay products of a colli-
sion form permutation invariant sets of final state objects,
which may emerge from the collision in the form of col-
limated particle jets [6], forming well-suited proxies for
strongly interacting final state partons, or individual, spa-
tially isolated particles, like leptons. From the preparation
of the collision’s initial state and energy and momentum
conservation, physicists may infer the presence of non- or
weakly interacting particles, like neutrinos, in the colli-
sion’s final state, through the principle of missing transverse
energy (MET) [7]. A natural representation of this richly
structured data is in the form of mathematical graphs G ,
which are indeed also the basis of theoretical amplitude cal-
culations of the quantum-mechanical wave function in the
form of Feynman graphs [8].

Within the high-energy particle physics community, this
observation has led to an increased interest in NNs based on
mathematical graphs (GNNs) [9–13], where nodes are usu-
ally identified by particles and edges potentially by relations
across particles. A comprehensive review can be found in
Ref. [14]. In this paper, we describe a comparison of typi-
cal GNN architectures with NN models based on the deep
fully connected feed-forward architecture (DNN), which has
been studied intensely, in the past. The presented studies

are performed in a complex environment representative for
typical high-energy physics tasks. The goal of the studies is
to reveal the underlying work mechanisms that might give
advantage to GNNs over DNNs, if any, based on compari-
sons that are to best effort unbiased in terms of expressive-
ness and information provided to the NN models to solve a
given task.

In the “Neural Network Task” section, we give an intro-
duction to the task that serves as benchmark for this com-
parison. In the “Neural Networks Under Study” section, the
architectures and training setups of the NNs under study are
described. In the “Results” section, we present the results of
the comparison. We conclude the paper with a summary in
the “Summary” section.

Neural Network Task

Physics Processes

As benchmark for the comparison we use the classifica-
tion of the final state X produced in association with top
( t ) quark–antiquark pairs ( tt̄ ) in pp collisions at the LHC,
where X stands for a bottom ( b ) quark–antiquark pair ( bb̄ )
produced either through non-resonant gluon exchange or
through the decay of a massive Z or Higgs ( H ) boson as
intermediate particle, as discussed, e.g., in Ref. [15]. Under
realistic conditions, the collision of interest might be over-
laid by several tens of additional collisions, referred to as
pileup. The complete detectable final state of a collision of
interest, including pileup, is referred to as an event, whose
feature vector x would be presented to the NN. An arbitrary
number of such events may be generated synthetically by
evaluating L of the full process via the MC method. In this
study, we focus on the classification of the underlying hard
process neglecting the effects of pileup.

The interest in the chosen classification task arose from
studies of H production in association with tt̄ in the sub-
sequent H → bb̄ decay ( ttH(bb) ), for which tt̄ associated
Z boson production ( ttZ ) in the Z → bb̄ decay channel
( ttZ(bb) ) and non-resonant bb̄ production in association
with tt̄ ( ttbb ) are important background processes. Exem-
plary Feynman diagrams of these processes in leading-order
(LO) of perturbation theory are shown in Fig. 1. The decay
products, resembled by the outgoing lines in the diagrams,
shown in Fig. 1, represent the partonic final state of interest
to this study, which is the same for all processes. Therefore,
the processes can only be distinguished by the kinematic
properties of the particles, in particular b quarks. This situ-
ation is complicated by the fact that the t quark also decays
into b quarks radiating a quasi-real W boson with a branch-
ing fraction of nearly 100% [16]. The W boson subsequently
decays either into quarks, which further on form jets in the

Computing and Software for Big Science (2024) 8:13 	 Page 3 of 15  13

detector, or leptons. For the presented study the semi-lep-
tonic tt̄ final state has been chosen, in which the W boson of
one t decays into an electron or muon, further on referred to
as � , and a corresponding neutrino �

�
 . The other W boson

decays into quarks. Due to the radiation of additional gluons
and the splitting of gluons into quark–antiquark pairs addi-
tional colored particles and consequently jets might emerge
from the process. This constellation implies a richly struc-
tured final state of an event with at least four b quark- and
two predominantly light-quark-induced jets; an � , which is
spatially isolated from any other activity originating from
the hard scattering process in the detector; and MET, due
to the emitted �

�
 . The b quark-induced jets, referred to as b

jets in the following, may be identified experimentally with
a finite purity and efficiency, as, e.g., described in Ref. [17];
the methods of how to achieve this are not subject of this
paper.

Sample Preparation

Samples for all processes in question have been generated
synthetically from a corresponding likelihood L using the
MC technique. The tools used for event generation are the
matrix-element generator MadGraph5_aMC@NLO [18, 19]
in version 2.9.9 interfaced with the Pythia event generator
[20] in version 8.306 to map the partonic final state to the
stable-particle level. All processes in consideration have
been generated at LO in perturbative quantum chromody-
namics (QCD), in the four-flavor scheme. The same setup
has been used for the generation of all samples to avoid spu-
rious differences due to the use of different generation tools.

All generated events have been passed through a simpli-
fied simulation of the CMS detector as configured during
the LHC Run-2 data-taking period in the years 2016–2018,
using the DELPHES simulation package [21]. For this study
only reconstructed leptons, jets, and MET are considered.
All detected and reconstructed final-state objects have been
selected to fulfill a set of selection criteria typically used for
the analysis of data collected by the CMS experiment, as
summarized in Table 1. These selection criteria comprise
the following observables:

•	 The transverse momentum pT and pseudorapidity � of the
reconstructed � and jets.

•	 A variable I�R
rel

 that corresponds to the scalar sum
of energy deposits Ei detected within the radius
�R =

√
��2 + ��2 around � , divided by the pT of � ,

where �� refers to the difference between Ei and � in
� and �� to the corresponding difference in azimuthal
angle � , based on the coordinate system deployed by
CMS [5]. For � originating from W → ��

�
 low values

of I�R
rel

 are expected.
•	 The output of a specific b jet identification algorithm

represented by the discrete observable � ∈ {0,1,2,3}
indicating whether an object has been identified as a b
jet under a specific working point � ( � ≥ � ). The value
of � represents ( � = 1 ) loose, ( � = 2 ) medium, and
( � = 3 ) tight selection criteria, corresponding to a rate
of light quark or gluon jets (excluding c jets) wrongly
identified as a b jet (false-positive rate), of approxi-
mately 10%, 1%, and 0.1% for b jet tagging efficiencies
of 80–90%, 60–75%, and 40–60%, respectively.

All events have been selected to exhibit at least six and
not more than eight jets, at least four of which are assumed
to be correctly identified as b jets according to � ≥ 2 , and
exactly one � , matching all selection criteria. The selection
of one � and six jets, of which at least four are identified as
b jets, is motivated by the partonic final state under study,
as depicted in Fig. 1. The selection of up to two additional

Fig. 1   Exemplary Feynman
diagrams for the processes of
interest to this study: (left) ttbb ,
(middle) ttH(bb) , and (right)
ttZ(bb)

Table 1   Selection requirements on the reconstructed final-state
objects

The quantity I�R
rel

 corresponds to the scalar sum of energy deposits
detected within the radius �R around � in �-� divided by the pT of � ,
as defined in the text. A lower value of I�R

rel
 implies less activity in the

spacial vicinity of � , indicating that � originates from W → ��
�
 . The

variable � refers to the working points of a specific b jet identification
algorithm, as described in the text

Object pT (GeV) |�| I�R
rel

�

Electron ≥ 25 < 2.5 < 0.12 ( �R = 0.3) −
Muon ≥ 25 < 2.4 < 0.25 ( �R = 0.4) −
Jet (anti-kT ,
R0 = 0.4 [22])

≥ 20 < 2.4 − −

b jet ≥ 20 < 2.4 − � ≥ 2

	 Computing and Software for Big Science (2024) 8:13 13   Page 4 of 15

jets, increases the chance that the complete partonic final
state can be matched to the selected jets.

For each reconstructed jet the attempt is made to assign
the initiating particle of the partonic final state, based on the
distance �R between the jet and the corresponding parton.
Only partonic final state objects with transverse momen-
tum of pT > 20GeV and |𝜂| < 2.4 are considered for this
assignment. From the assignment five mutually exclusive
jet classes are build, referring to the (ADDB) b quarks not
originating from any t decay; the b quark originating from
the (HTB) hadronic and (LTB) leptonic t decays, (HTQ)
quarks originating from the hadronic W decay; and (NA)
jets not assigned to the partonic final state.

The assignment of the partonic final state to the recon-
structed jets may be incomplete, for a given event. Events
for which no or only one jet is assigned to the ADDB class
are discarded from the training and test samples. In all other
cases, if the assignment by �R did not result in one jet of
class LTB, one jet of class HTB, and two jets of class HTQ,
the remaining not associated jets of class NA are ordered by
decreasing pT and the leading jets in pT are re-assigned to
these classes in the order of LTB, HTB, HTQ. A summary
of all jet classes is given in Table 2

Task Definition

The NN models are supposed to perform a classification
task, in which a given event should be assigned either to
ttbb , ttH(bb) , or ttZ(bb) . The physics process from which the
event was generated constitutes the ground truth information
for this task.

To simplify the task, the reconstructed jets are assumed
to perfectly match the initiating partons, whenever possi-
ble, through the parton association algorithm, as described

in the “Sample Preparation” section. We follow this path
to give the NNs optimal conditions, in this respect, to ful-
fill the task. We note that this information has a significant
impact on the success of each algorithm to fulfill the task,
and anticipate that in a realistic physics-driven applica-
tion this ideal parton association would be replaced,
e.g., by another, potentially also ML-estimated, output
of a dedicated parton association algorithm with lower
than ideal accuracy. The ADDB class contains jets which
stem directly from the intermediate particle to distinguish
the processes under study. The features of these jets are
assumed to provide the most decisive contribution to the
classification.

Training Setup

All NN models are subject to a supervised training. The
generated samples used for this are split into a training,
validation, and test sample, containing 60, 20, and 20% of
the generated events, respectively. Event numbers, split by
process and sample, are given in Table 3.

Each training is performed for an ensemble of ten statis-
tically independent repetitions to obtain a rough estimate
of the statistical spread of the trained models, due to ran-
dom choices in the training setup. Performance measures
of each model are reported as sample means � , of which
the corresponding uncertainty �� is estimated from the
square root of the sample variance. All repetitions are
based on the same training, validation, and test samples.
Due to the large number of events in these samples, rand-
omization through data shuffling is assumed not to change
the conclusions of the studies significantly.

Each training is performed on CPUs through a dis-
tributed computing infrastructure, where each training is
performed on a dedicated CPU. We ensure that each step
affected by random choices is based on a different ran-
dom seed. The library used to build the GNNs is PyTorch
Geometric v2.0.3 [23] based on the PyTorch library [24].
The same library is used, to construct the corresponding
DNNs under study. Further parameter choices of the train-
ing setups are given in the upper part of Table 4. They are
the same for both NN architectures.

Table 2   Requirements for the jet-class definition, according to the
matching to the partonic final state, where badd corresponds to a b
quark not originating from a t decay, bthad ( btlep ) to a b quark originat-
ing from t → bW(qq�) ( t → bW(��

�
) ), and qWhad

 to a quark originat-
ing from W → qq′

We note that the classes ADDB and HTQ comprise two jets. Jets not
assigned to any other class are assigned to the NA class and sorted by
decreasing pT . If no jet is found to fulfill the corresponding �R cri-
terion, the leading jet from the NA class is re-assigned to the classes
HTB, HTL, HTQ, in that order
a  If no assignment by �R is found, the leading jet from NA is assigned

Class label Assignment Description

ADDB 𝛥R(jet, badd) < 0.4 b jets not from t decays
HTB 𝛥R(jet, bthad) < 0.4a b jet from thad
LTB 𝛥R(jet, btlep) < 0.4a b jet from tlep
HTQ 𝛥R(jet, qWhad

) < 0.4a q jet from W
NA No match Additional jet

Table 3   Numbers of events for each process, in the training, valida-
tion, and test samples

Process Training Validation Test Sum

ttbb 41,650 13,883 13,803 69,336
ttH(bb) 99,695 33,329 33,229 166,253
ttZ(bb) 88,107 29,272 29,453 146,832

Computing and Software for Big Science (2024) 8:13 	 Page 5 of 15  13

Neural Networks Under Study

Architectures

For the GNN models, a graph representation of the final
state is obtained from the reconstructed jets, � , and MET
in an event. Each of these objects is represented by a node
i in G . This set of nodes may be complemented by nodes
for up to two more jets in the selection. Accordingly, G
has 8–10 nodes. For each i, a vector ai of attributes with
dim(ai) = n, ∀i is defined, forming the embedding space. At
initialization time, the ai are initialized by the feature vectors
xi with dim(xi) = nfeat, ∀i . The following studies also com-
prise configurations with n > nfeat . In these cases, attributes
in the ai without correspondence in xi are set to zero (zero
padding), at initialization time.

All nodes are connected with edges, resulting in a fully
connected non-directed graph without self-loops. Relational
information between nodes i and j may be assigned, in
the form of edge weights �ij . For this purpose three physics
motivated choices are made: (i) the invariant mass m ; (ii) the
distance �R ; and (iii) the reciprocal distance �R−1 of the con-
nected final-state objects. In addition, the cases of a (one)
constant, (rnd) random, and (zero) no edge connection at
all are studied, resulting in a total of six variants of edge
connections. An illustration of a resulting graph for an event
with eight nodes and no additional jets is given in Fig. 2.

The GNN algorithm to process the graph data is based
on the layered GraphConv operation, as introduced and
described in Ref. [26], using the sum over all i as aggrega-
tion function. After initialization, k GraphConv operations
are applied, after which the resulting ai are transformed into
a single vector of length n , averaging over all i. A linear
combination of the components of this vector, which is
scaled to values between 1 (indicating ttbb as signal) and
0, for binary classification, eventually forms the output ŷ of
the GNN. A graphical illustration of this model is given in
the lower part of Fig. 2.

In a first study, the GNN are compared with corre-
sponding DNN models with k hidden layers, containing
n hidden nodes, each. The values of k , n , and the choice
of weights, steering the exploitation of relational infor-
mation by the GNN models are varied, resulting in 36
variants of parameter choices, as summarized in Table 5.
We note that here, as in the following, n represents a tuple
of length k . For a GNN this tuple indicates the dimension
of the embedding space per GraphConv operation; for a
DNN it represents the number of nodes per hidden layer.
Other parameter choices related to the NN architectures
under study or the setup of the NN training are made com-
mon and summarized in Table 4. Special care is taken to

Table 4   Common parameter choices for the NN architectures under
study and their training setup

Parameter Setting(s)

Loss function Binary cross-entropy
Optimizer Adam [25] ( � = 0.01)
Mini-batch size 200
Maximum number of epochs 200
Early-stopping �epochs = 15 , �loss = 0.001

Use of weights and biases Yes
Number of outputs 1 (binary)
Activation function (for hidden layers) ReLu
Activation function (for output layer) Sigmoid

Fig. 2   Translation of an (upper part) selected event (without jets in
the NA jet-class in this case) into a (middle part) graph G and finally
into the (lower part) GNN model. For the indication of the partonic
final state we do not distinguish particles from anti-particles. The
individual object-classes are indicated by different colors. The nodes
of G are labeled by i = 1… 8 and colored the same way as the object-
classes. The boxes next to the nodes indicate the embedding space of
the GNN model. The GNN output is indicated by ŷ

	 Computing and Software for Big Science (2024) 8:13 13   Page 6 of 15

compare the GNN with the corresponding DNN models
on the same footing, especially in terms of information
about the feature space presented to them, as discussed in
the following section.

Presentation of the Feature Space

Primary features passed to the NNs are the invariant mass
(m), energy (E), � , and � of each reconstructed final state
object. The reconstructed final state objects comprise � ,
MET, at least four b jets, two additional jets, all of which
are associated with the partonic final state, and potentially
two more non-associated jets from the event selection. The
primary features are complemented by � . The selection
requires values of � ≥ 2 for identified b jets. For � and MET
� is set to zero. For MET pT corresponds to the absolute
value of MET and � ranges from −� to � depending on the
MET direction in the r-� plane; the features E and m are set
to zero.

We note that both NN architectures may profit from addi-
tional information, which is not passed explicitly through xi ,
but implicitly through the way the features are presented to
the NNs. An obvious difference between the NN architec-
tures arises from the fact that the GNN naturally supports
processing of events with arbitrary object multiplicities.
The xi are transferred to the GNN through the ai , during
initialization. During the GNN processing the information
per i is aggregated over all nodes. In the DNN case such an
aggregation step is absent. Instead, the xi are concatenated
into an enlarged feature vector xDNN of length 10 × nfeat ,
comprising the xi of the eight reconstructed objects, of
which all jets have been associated to the partonic final

state, plus potentially two additional selected jets. The order
in which these objects are concatenated has been chosen
to follow the association to the partonic final state. It is
given by ADDB(1), ADDB(2), HTB, HTQ(1), HTQ(2),
LTB, LEP, MET, NA(1), NA(2). In cases with more than
one jet of a given class, e.g., like the ADDB class, the jets
are sorted by their pT . For events that contain fewer than
two jets in addition to those that have been matched to the
partonic final state, the corresponding entries in xDNN are
filled with zeros. We point out two subtleties, which are
related to these choices:

One subtlety, in favor of the GNN, arises from incorpo-
rating relational information through �ij . This advantage
is compensated for by appending equivalent informa-
tion to xDNN . For up to ten selected objects in an event
this results in up to 45 additional features. The choices
of one, rnd, and zero for the use of edge information
in GNN models are compared to DNN models without
relational information between individual objects. These
DNN models are indicated by the label none, in corre-
sponding figures.

Another subtlety, related to the same fundamental differ-
ence, but this time in favor of the DNN, arises from the fact
that through the concatenation of the xi into xDNN , accord-
ing to the association to the partonic final state, the DNN
receives extra information through the positions of the xi in
x
DNN which is not accessible to the GNN. This advantage is

compensated for by adding information about the associa-
tion of the i to the partonic final state via one-hot encoding.
For the five jet-classes defined in Table 2 plus one label
(LEP) for � and one label (MET) for MET this extension
increases nfeat by seven, leading to the dimension of xi, ∀i
of nfeat = 13.

For xDNN the xi are concatenated for all i assuming two
more jets in the NA class. For events with fewer than two
jets in the NA class the foreseen features are initialized with
zero. Together with the relational information between all
potential objects in an event, this results in a dimension of
x
DNN of 175 features, of which up to 47 features might poten-

tially be filled with zeros.
In this configuration, the information about the associa-

tion to the partonic final state is presented in the form of one-
hot encoding to both NN architectures. To confirm to what
extent the DNN may infer this information already from the
position of the xi within xDNN we also investigate configura-
tions of the DNNs without this information in the form of
on-hot encoding, resulting in a reduced input vector xDNN

red

with dimension 105. All input features in use are listed in
Table 6. All non-integer features are standardized to a mean
of zero and a standard deviation of one.

Table 5   Parameters varied for the comparison of GNN with corre-
sponding DNN models, where n corresponds to the dimension of the
embedding space during a GraphConv operation (number of nodes in
a hidden layer) and k to the number of GraphConv operations (hidden
layers) in the GNN (DNN) case

The choices of n are motivated by the size of the input vector nfeat to
the GNN, as described in the “Presentation of the Feature Space” sec-
tion. The choices of one, rnd, and zero for the use of edge informa-
tion in GNN models are compared to DNN models without relational
information between individual objects. These DNN models are indi-
cated by the label none, in corresponding figures

Parameter Setting(s)

k 1, 2
n 13, 26, 39
Edge weights ( �ij) m , �R , �R−1 ,

one, rnd,
zero

Computing and Software for Big Science (2024) 8:13 	 Page 7 of 15  13

Results

To be able to draw fair conclusions from a comparison of
different NN architectures (of potentially different com-
plexity) special care has to be taken for this comparison
to be based on the same ground. For this study we have
focused on a common choice of non-tunable (hyper-)
parameters, which are not subject to the NN training,
as well as on an equal level of information primarily
passed to the NNs, through training conditions and input
features.

An inevitable difference remains in the organization
and layering of hidden nodes, which when kept similar,
may well lead to a different number of TPs and therefore
a priori different expressiveness of the NN models. Vice
versa, keeping the number of TPs similar, implies differ-
ences in the layering and organization of hidden nodes.
Since differences of one or the other kind may not be
overcome, both configurations, (i) similar layering of
hidden nodes; and (ii) similar number of TPs, are stud-
ied. In any case, the enlarged size of xDNN ( xDNN

red
 ) with

respect to x will give higher emphasis to the first DNN
layer compared to the corresponding GNN architecture.
In addition, the DNN architecture features the less com-
plex pre-processing of the inputs, since it does not imply
the creation of graphs. On the other hand, the potentially
more constrained GNN may have advantages over the
DNN architecture in terms of convergence properties of
the training.

Comparison of Neural Networks with Similar
Layering of Hidden Nodes

Neural Networks with One Layer of Hidden Nodes

A first comparison of GNN with corresponding DNN mod-
els, based on a similar layering of hidden nodes, is shown
in Fig. 3.

The metric by which to judge the success of an NN to ful-
fill the task is chosen to be the mean of the ROC-AUC �AUC
based on the training setup, as described in the “Training
Setup” section. The results are presented for the variation of
parameters as summarized in Table 5. For the presentation
in Fig. 3, a simple architecture with one hidden layer for the
DNN models and one GraphConv operation of the GNN
models ( k = 1 ) has been chosen. For the GNN architecture
this implies that there is only one exchange of information
across adjacent nodes of G , i.e., each node receives informa-
tion only of its nearest and not the next to nearest neighbor in
G . Since G has been chosen to be fully connected, there is no
strict suppression of information that way, in the sense that
each node i receives information from any other node j ≠ i
in G . The input features presented to each corresponding NN
architecture are chosen, as described in the “Presentation
of the Feature Space” section and summarized in Table 6.

The results for the GNN models are represented by cir-
cles, the results for the DNN models with xDNN ( xDNN

red
 ) as

input vector by upward (downward) pointing triangles. The
bars associated with the points indicate the uncertainty

Table 6   Input features used for the studies described in the text

Columns 2–4 indicate whether a given feature is continuous, discrete, or presented via one-hot encoding. The given features form the feature
vectors xi per object i. For the DNNs the xi for potentially ten selected objects are concatenated into an extended feature vector xDNN , according
to their association to the partonic final state; for events with fewer than ten objects the xi of the missing objects are filled with zeros. In addi-
tion, relational information between all potential objects is added to xDNN . In a reduced configuration, the one-hot encoded information about the
association of the objects to the partonic final state is omitted to form a reduced input vector xDNN

red
 to the DNNs

	 Computing and Software for Big Science (2024) 8:13 13   Page 8 of 15

��AUC in �AUC due to random choices in the training, as
described in the “Training Setup” section. Open markers
indicate that at least one training repetition in an ensemble
has been removed as an outlier from the calculations of �AUC
and ��AUC . Candidates for outliers have been identified by
their �AUC values exceeding 1.5��AUC , as obtained from
the full ensemble. An outlier candidate has been definitely
removed and the ensemble size reduced accordingly, if doing
so changed ��AUC by a value of at least 0.0025. Following
this procedure, 54 outliers have been removed from a total
of 1840, which corresponds to a rate of 2.9%. Split by NN
architectures, it corresponds to 17 (37) removed outliers for

GNN (DNN) models from a total of 800 (1040). In no case
more than two outliers have been removed from the original
ten training repetitions of any individual model.

On the x-axis of the figure the corresponding values of
�AUC , ranging from 0.67 to 0.83, are shown. On the y-axis
the individual NN models are labeled, such that brackets
indicate, what relational information between final state
objects has been used, and the values in parentheses indi-
cate the choices of n.

We conclude that all training setups have succeeded
in the sense that all NN models result in values of
𝜇AUC > 0.5 . The worst separation of signal from back-
ground we observe for the GNN models for which no rela-
tional information is exploited, indicated by three groups
of NN architectures shown in pink, purple and red colors
in the lower part of the figure. It is noted that the feature
set zero refers to the case where the node convolution
in the GraphConv operation is forcefully suppressed, and
deliberately no information across nodes is exchanged at
all. We anticipate that this approach counteracts the whole
GNN idea. We still keep this configuration as part of the
study, to gauge the effect and importance of the Graph-
Conv operation itself. Compared to the feature set zero,
the feature sets one and rnd single out cases in which
information exchange across nodes takes place, but no real
relational information is associated with it. Instead, the
embedding spaces of the individual nodes are just mixed
without particular prevalence. We note that even when
allowing node convolution the GNN architecture falls sig-
nificantly behind the comparable DNN architecture, even
with a reduced input vector xDNN

red
 , as long as no mind-

ful relational information across adjacent nodes i and j is
provided according to �ij . This is true for assigning (one)
the same or (rnd) random weights to each edge, irrespec-
tive of the expressiveness of the NNs, indicated by n . The
superiority of the DNN architecture in this case cannot
be attributed to the additional information about the jet
parton association, since this information is available to
all NN architectures under study. In particular it is passed
on to the GNNs, in the explicit form of one-hot encoding,
which is not even the case for the DNNs with xDNN

red
 as input

vector. At this occasion, we note that the additional (and in
fact in this case redundant) information of the parton asso-
ciation in the form of one-hot encoding to the DNN does
not lead to a significant increase of �AUC , compared to
the implicit knowledge already provided by the positional
information in xDNN

red
 . Hence, if the way this information is

presented to the DNN were of influence, this influence is
not significant in the scope of our study. We also observe
that ��AUC is considerably larger for the DNNs.

In conclusion, if the advantage of the GNN over the
DNN architecture were that potentially excessive degrees

Fig. 3   Mean ROC-AUC �AUC as obtained for 18 different configura-
tions of GNN and 24 corresponding configurations of DNN models
with k = 1 . The labels in brackets on the vertical axis indicate the
use of relational information, as discussed in the “Presentation of the
Feature Space” section, the numbers in parentheses correspond to the
choices of n . The circles refer to GNN and the upward (downward)
pointing triangles to DNN models with a default (reduced) set of
input features xDNN ( xDNN

red
 ), as discussed in the “Presentation of the

Feature Space” section. For better readability, markers of the same
configuration are shifted vertically along the y-axis. The bars are
obtained from the sample variance of an ensemble, as described in
the “Training Setup” section. Those NN architectures which belong
to the same choices of varying parameters are spatially grouped and
shown in the same color. Open markers indicate that significant outli-
ers of the corresponding distribution of ROC-AUC values have been
removed from the calculation of �AUC and its variance, as described
in the text

Computing and Software for Big Science (2024) 8:13 	 Page 9 of 15  13

of freedom in the DNN architecture are replaced by built-
in constraints, the GNN architecture appears too confined,
until these constraints are introduced mindfully. In turn the
additional degrees of freedom of the DNN architecture result
in a larger spread ��AUC due to random choices in the train-
ing setup.

The upper part of Fig. 3 reveals that, as soon as a domain-
knowledge motivated ranking of information exchange
across neighboring nodes is introduced, the GNN archi-
tecture significantly gains in separation power. Also here,
this gain comes with an increase in ��AUC . The choices of
(green) �R−1 , (orange) �R , and (blue) m as weights leads to
an increase in separation power in the given order, where for
each choice the values of �AUC can be grouped with a cor-
responding internal spread. On the other hand, a significant
gain in �AUC , when increasing the expressiveness of an NN
within a certain configuration group in terms of n , for the
utilized NN models, is not observed.

We note that, as in the case of the positional encoding of
parton association in xDNN

red
 , all choices of relational infor-

mation are intrinsic to the training sample and implicitly
accessible to all NNs through their feature vectors. For �R
this is, e.g., the case through � and � in the primary features
of each reconstructed object. However, the information of
�� and �� between pairs of reconstructed objects appears
too subtle in the high-dimensional feature space, so that
none of the chosen architectures could grasp it without the
assistance of an accordingly conditioned representation of
x and xDNN , even from a training sample with more than
200,000 events.

We further note that when turning the edge-weights of the
GNN structure into TPs we did not obtain a separation of
signal from background better than the domain-knowledge
supported use of m . At the same time we observed a sig-
nificantly increased spread in the achieved separation power
based on random choices of the training setup.

Our physics prior assigns more physical meaning to the
choice of �R over �R−1 , since due to causality we expect
a closer relation between objects with smaller than larger
spatial distance in �R . The observation that both choices of
relational information lead to nearly similar results in �AUC
we explain by a special characteristic of NN-based classifi-
cation tasks in the given setup. For the NN decision, down-
grading information from further-away objects is equivalent
to upgrading close-by objects. The fact that corresponding
DNN architectures follow the trends of the GNN archi-
tectures, as long as equipped with the same information,
supports the assumption that it is this additional relational
information between objects, rather than the GNN-specific
operation of mixing features across nodes that leads to the
increase of �AUC.

We note that, consistently for all architectures, the high-
est values of �AUC are obtained with an energy-weighted

distance measure like m , which again follows our prior
physics intuition. It is noteworthy that in this case the DNN
architecture with xDNN

red
 seems to significantly lose in sepa-

ration power, compared to the other architectures. In fact
�AUC even decreases for increasing values of n . Also ��AUC
appears consistently higher for all DNN compared to the
GNN architectures. These observations may be interpreted
as indications of the advantage of careful guidance of the
NN training- and model-setup over just confronting a highly
expressive NN architecture, represented by a large number
of TPs, with an even excessively large training sample. This
guidance may be provided through the choice and represen-
tation of input features, as well as through the choice of a
more constrained NN architecture. We note that the high-
est value of �AUC with the smallest spread ��AUC is indeed
obtained from the GNN architecture with highest expres-
siveness, given for n = 39.

Neural Networks with Two Layers of Hidden Nodes

Moving on to an NN architecture with k = 2 introduces the
ambiguity of how to choose n for each individual layer. To
prevent any kind of potential selection biases, all ways of
allocating the tested values of n = 13, 26, 39 to the indi-
vidual layers/embedding spaces are shown in Fig. 4.

For the case of completely suppressed relational informa-
tion for the GNN architectures (zero) �AUC remains lowest
and unaffected by the choice of k , as expected for a setup in
which any information transfer through a GaphConv opera-
tion is deliberately suppressed. At the same time we gener-
ally observe that no superior choice of allocating n across
layers can be pointed to, throughout all tested architecture
configurations. Especially the gain of using a configuration
with n = (39, 39) for both hidden layers/GraphConv opera-
tions over a configuration with n = (13, 13) within a given
architecture appears marginal.

However, the increase in k consistently mitigates the pre-
viously observed, clearly inferior separation of signal from
background, of the GNN compared to the corresponding
DNN architectures, for randomly (rnd) and unweighted
(one) relational information. The �AUC values of these
groups of GNN models start to clearly supersede the �AUC
values of the one-layered DNN models with unweighted
relational information, labeled by none in Fig. 3, even
slightly taking the lead over the two-layered DNNs of the
same kind, in terms of �AUC.

We note that all two-layered NN architectures without use
of relational information still result in lower values of �AUC
than all tested one-layered NN models that profit from the
use of relational information, as presented in Fig. 3. At the
same time, they are subject to an increased spread ��AUC
compared to their one-layered counterparts, in most cases.

	 Computing and Software for Big Science (2024) 8:13 13   Page 10 of 15

In this sense, the wise choice of relational information out-
weighs the presumable advantage in expressiveness provided
by k = 2 , irrespective of the allocated values of n.

For the NN architectures including relational information,
we observe no further, dramatic gains, with respect to their
one-layered counterparts in �AUC , apart from a slight advan-
tage of the GNN over the corresponding DNN architectures
that seems to become more manifest. While this advantage is
below the 1%-level it is still significant compared to ��AUC .
A summary of the achieved values of �AUC for the one- and
two-layered GNN models is shown in Fig. 5. An equivalent

summary for the corresponding DNN models is shown in
Fig. 6.

From the study we conclude that the external information
of the �ij seems to give slight advantages to the GNNs with
k = 2 . We note that two subsequent GraphConv operations
indeed convey more information than a DNN model with
two hidden layers. Viewing �R−1 , �R , and m as distance
measures, the first GraphConv operation conveys informa-
tion about the nearest neighborhood of each i. The second
GraphConv operation conveys information about the near-
est neighborhood of the nearest neighbors, which is not the

Fig. 4   Mean ROC-AUC �AUC as obtained for 54 different GNN and
72 corresponding DNN models with k = 2 . The labels in brackets
on the vertical axis indicate the use of relational information, as dis-
cussed in the “Presentation of the Feature Space” section, the num-
bers in parentheses correspond to n . The circles refer to GNN and the
upward (downward) pointing triangles to DNN models with a default
(reduced) set of input features xDNN ( xDNN

red
 ), as discussed in the “Pres-

entation of the Feature Space” section. For better readability, mark-

ers of the same configuration are shifted vertically along the y-axis.
The bars are obtained from the sample variance of an ensemble, as
described in the “Training Setup” section. NN architectures which
belong to the same choices of varying parameters are spatially
grouped and shown in the same color. Open markers indicate that sig-
nificant outliers of the corresponding distribution of ROC-AUC val-
ues have been removed from the calculation of �AUC and its variance,
as described in the text

Computing and Software for Big Science (2024) 8:13 	 Page 11 of 15  13

same as in the case of the first operation. This information
is indeed not primarily accessible to the DNN architectures,
but it emerges from the definition of the GraphConv opera-
tion. Along this line, once again, we conclude that not the
mixing of features across neighboring nodes i during the
GraphConv operation, but the additional (implicit) infor-
mation accessible to the GNN through this operation is the
source for the slight gain in �AUC . This interpretation is sup-
ported by the observation that an increase in n does not lead

to any significant improvements in �AUC despite the increase
in expressiveness of the models. This also explains why the
GNN models with constant (one) or randomly associated
(rnd) weights suffer in their performance: Through both
ways of assigning weights across the nodes i the information
about any kind of distance measure across nodes, in what
ever space, is omitted.

A summary of the GNN and DNN configurations with
the highest values of �AUC is given in Table 7.

Fig. 5   Summary of the achieved
values of �AUC for the GNN
models with (upper half) one
and (lower half) two GraphConv
operations, with different use of
relational information. For this
summary, the associations of n
with the highest values of �AUC
in each group of GNN models
have been used. The value of
�AUC is displayed on the x-axis.
Improvements relative to the
least separating GNN with no
relational information at all
(zero) is given in numbers to
the right of the bars. The use
of relational information, as
defined in Table 5, is indicated
in brackets, on the y-axis

Fig. 6   Summary of the achieved
values of �AUC for the DNN
models with (upper half) one
and (lower half) two hidden
layers, with different use of
relational information. For this
summary, the associations of n
with the highest values of �AUC
in each group of DNN models
have been used. The DNN
configurations with xDNN and
x
DNN
red

 are shown separately. The
values of �AUC are displayed on
the x-axis. Improvements rela-
tive to the least separating DNN
with no relational information
(none) is given in numbers to
the right of the bars. The use
of relational information, as
defined in Table 5, is indicated
in brackets, on the y-axis

	 Computing and Software for Big Science (2024) 8:13 13   Page 12 of 15

Neural Networks with Comparable Numbers
of Trainable Parameters

As stated before, two principally different NN architec-
tures lack comparability in the sense that it might be more
natural to pick up certain information from the training
sample through one or the other architecture. As long as it
addresses an intrinsic property of one or the other archi-
tecture, such a difference is part of the benchmark com-
parison. If, on the other hand, such an inequality results
from withholding primary information from one or the
other architecture, or potentially inappropriate advantages
in terms of expressiveness, an effort should be made to
study and estimate the effect of it.

We have identified and noted such an inequality, in the
beginning of the “Results” section, in terms of the number
of TPs ( NTP ), which turns out to be naturally higher for the
DNN compared to the GNN architecture, due to the usually
much larger input layer. We therefore complete our study by
three additional setups, for which we drop the restrictions
on the layered structure of the trained NN models in favor
of comparable numbers of TPs.

As shown in Table 7, the GNN model with the high-
est value of �AUC (labeled as GNNk=2 ) is based on k = 2
and n = (26, 39) , with NTP(GNNk=2) = 2809 and a value of
�AUC = 0.8484 ± 0.0008 . The DNN with the highest result
of �AUC (labeled as DNNk=2 ) is based on the same configu-
ration in terms of k and n , with NTP(DNNk=2) = 6839 and a
value of �AUC = 0.8388 ± 0.0007 . One may argue that for
the DNN model, not the full set of TPs is really actively
contributing to the solution of the task, since part of the
input space is regularly filled with zeros, e.g., if fewer than
eight jets are selected in an event. Therefore, we estimate,
in addition to NTP , a number of effective TPs ( Neff

TP
 ) from

the product of NTP with the average number of nonzero

input nodes in xDNN , evaluated on the training dataset. This
results in a value of Neff

TP
(DNNk=2) = 5819.

In a first approach we survey varying DNN structures
with NTP ( Neff

TP
 ) comparable to NTP(GNNk=2) . We do this

based on the following algorithm: We allow k ≤ 4 and any
number of nodes per hidden layer ( n ). Of all DNN configu-
rations for which NTP(GNNk=2) is matched by NTP ( Neff

TP
 )

within a margin of 1%, the model with the smallest spread
of n across layers is selected. If no DNN configuration
with NTP ( Neff

TP
 ) within a 1% margin of the target value can

be found the closest possible model is chosen. This situa-
tion occurs only in models with one hidden layer.

This procedure ensures a homogeneous structure of hid-
den layers. As a result, e.g., a DNN configuration with
k = 4 and n = (11, 10, 11, 11) , with NTP = 2816 , further on
referred to as DNN↓ , is preferred over a model with k = 4
and n = (10, 8, 14, 24) , even though the latter results in an
exact match with NTP(GNNk=2) . The DNN↓ model achieves
a value of �AUC = 0.8386 ± 0.0007 . A second DNN con-
figuration with k = 3 and n = (13, 14, 14) , with Neff

TP
= 2784

within the 1% margin of NTP(GNNk=2) is also considered
and further on referred to as DNN↓

eff
 . This model achieves

a value of �AUC = 0.8400 ± 0.0006 . We observe that,
although the DNN↓ ( DNN↓

eff
 ) model uses only 41% (48%)

of NTP ( Neff
TP

 ) of DNNk=2 , this does not result in any signifi-
cant loss in separation power, after training.

In a second approach we survey varying GNN structures
with NTP comparable to Neff

TP
(DNNk=2) . For this purpose

we exploit the same algorithm as described above, result-
ing in a GNN with k = 4 and n = (29, 28, 29, 29) with
NTP = 5829 , further on referred to as GNN↑ . This model
achieves a value of �AUC = 0.8546 ± 0.0006 . It reveals the
highest value of �AUC across all tested models. The dif-
ference in �AUC with respect to other NN configurations

Table 7   Summary of n , number of TPs ( NTP ), and �AUC of the (upper part) GNN and (lower part) DNN models with the highest results in �AUC

For the DNN models a number of effective TPs Neff
TP

 , as defined in the text, is also given in parentheses. Corresponding summaries are given for
the cases of k = 1 and 2. In all cases m has been used as relational information between nodes/physics objects. Also shown are the configurations
of three additional NN models discussed in the “Neural Networks with Comparable Numbers of Trainable Parameters” section: the GNN↑ model
with NTP comparable within 1% with NTP(DNNk=2) and the DNN↓ ( DNN↓

eff
 ) model with NTP ( Neff

TP
 ) comparable within 1% with NTP(GNNk=2)

Computing and Software for Big Science (2024) 8:13 	 Page 13 of 15  13

is only at the 1%-level, but it is still significant in terms
of ��AUC.

From this finding, we conclude that the GNN model with
the same expressiveness as a maximally comparable DNN
must have intrinsic advantages over the DNN model in
extracting additional information from the given, large train-
ing sample. For the benchmark setup in use, this advantage
is small but significant in the scope of the study. It emerges
after external augmentation with an energy-weighted dis-
tance measure like m between the input objects/nodes, and
more clearly manifests itself in the study for k > 1 . We antic-
ipate that this gain originates from the hierarchically struc-
tured information about nearest neighbors and the nearest
neighborhood of nearest neighbors of node i, when viewing
the edge weights �ij as a distance measure. This information
is an intrinsic property of the GNN model and not easily
accessible through the more simplistic DNN structure. An
increase of TPs of the simpler DNN structure does not com-
pensate for this informational advantage. In this interpreta-
tion the gain of GNN↑ over all other configurations should
mostly be attributed to the increase in k over the association
of n per GraphConv operation. The parameter choices of
the DNN↓ , DNN↓

eff
 , and GNN↑ models and correspondingly

achieved values of �AUC are also given in Table 7.

Convergence Behavior

In this study we have investigated the capacities of GNN and
DNN models to fulfill their primary target, i.e., to provide
the best possible solutions to the classification task defined
in the “Task Definition” section. We anticipate that, in par-
ticular in practical life, the properties of an NN architecture

may be evaluated in other terms, viz. the mean of the train-
ing speed �Train , which we evaluate as the inverse of the
epoch with the highest value of the ROC-AUC on the vali-
dation dataset and the mean of the empirical risk obtained
from the test dataset �R , which we take as a measure of the
generalization property of the given NN model under study.
To conclude our studies we provide a visualization of these
properties and all other properties of the NN models that
have been discussed throughout the paper so far, in Fig. 7.
In Fig. 7 (left) �Train , �R , �AUC , NTP , and Neff

TP
 for the DNNk=1 ,

DNNk=2 , DNN
↓ , and DNN↓

eff
 models are shown, on five inde-

pendent axes. The axes are defined such that values closer
to the common origin of the figure are disfavored. This is
in particular true for NTP , Neff

TP
 , and �R , where the values are

given in descending order when moving away from the ori-
gin. In this sense a larger size of the correspondingly colored
area indicates the larger capability of a given NN model to
adequately solve the presented task. In Fig. 7 (right), the
same quantities are shown for the GNNk=1 , GNNk=2 , and
GNN↑ models. The axes ranges are kept the same to ease
comparison between both architectures.

In terms of �Train the DNN models usually fall behind their
corresponding GNN counterparts. This finding, as well as the
observation that the GNN models usually achieve a compa-
rable or slightly larger value of �AUC , after training, indicates
the assumed effect of guiding the convergence by constraints,
which are built-in to the GNN architecture. This property
allows the GNN architecture not only to converge to a solution
that is equally good or slightly better than the solution found by
corresponding DNN architectures, but also to converge faster
and typically with a smaller number of TPs. We note though
that a clear correlation between �Train and NTP ( Neff

TP
 ) cannot

Fig. 7   Visualization of GNN and DNN models with the highest
values in �AUC and k = 1 ( GNNk=1 , DNNk=1 ) and k = 2 ( GNNk=2 ,
DNNk=2 ). Also shown are the DNN models DNN↓ and DNN↓

eff
 with

a comparable number of (effective) TPs as the GNNk=2 model, and
the GNN model GNN↑ with a comparable number of effective TPs as

the DNNk=2 model. Five different metrics to evaluate the properties
of an NN model are shown: NTP ( Neff

TP
 ), the mean convergence rate

�Train , the mean empirical risk evaluated on the test sample �R , and
�AUC . The spanned area in the figures indicates the capability of an
NN model to fulfill the task

	 Computing and Software for Big Science (2024) 8:13 13   Page 14 of 15

be deduced from our study. We understand this situation such
that a less expressive NN model, with fewer degrees of free-
dom for the minimization process, may well lead to a more
pronounced landscape of the expected risk and thus reduced
�Train . In addition we note that also �R for the DNN models
falls behind, compared to their GNN counterparts. Here we
observe the benefit of a regularizing effect of the built-in con-
straints, which correlates with reduced numbers of (effective)
TPs. It is obvious that an NN model with more TPs reveals
a higher vulnerability to specific properties of the training
sample. A summary of all NN configurations that have been
discussed in this section is shown in Fig. 8.

Summary

With this paper we have made an effort to put the compari-
son of graph neural network (GNN) and equivalent fully con-
nected feed-forward neural network (DNN) architectures on a
maximally fair ground. Under the laboratory conditions of a
high-energy physics process of interest, at the CERN LHC, we
have controlled the definition of the task, choice of non-tunable
(hyper-)parameters of the models, which are not subject to the
training, and amount of information primarily presented to the
neural network models, through their input feature vectors.

Within the scope of the study we have demonstrated clear
evidence that the presumable advantage of the more complex
GNN over an equivalent DNN structure does not originate

from an uncontrolled mixture of features in the embedding
space of the graph nodes, but from the extra relational infor-
mation between nodes, that we have added based on domain-
knowledge. Without this extra knowledge the GNN models
fall behind equivalent DNN models in terms of their capa-
bility to separate signal from background. Neither are the
GNN models superior in terms of their separation power to
equivalent DNN models, as long as these are equipped with
the same information in the input space.

Both, the built-in permutation invariance and the circum-
stance that the GNN architecture a priori is not bound to
a fixed number of nodes might be viewed as advantages.
They might also have positive influence on the convergence
behavior of the training. On the other hand it cannot be
deduced that either of these properties significantly con-
tributes to an increase, e.g., in the power to separate a given
signal from background. Any advantage of the GNN over the
DNN architecture that we observed in our studies could be
traced back to the access to more information, which, when
given to the other architecture lead to the same performance
also for the other architecture.

The real advantage of the GNN over the DNN structure
emerges as soon as more than one GraphConv operations
are applied, during which the GNN structure naturally
accesses more relational information between nodes than
a DNN has access to. In the configurations investigated in
our study this gain is tied to the use of relational informa-
tion that can be interpreted as a distance measure to define

Fig. 8   Overview of the GNN and DNN models with k = 1 and 2, and
the highest achieved values of �AUC , as well as a GNN model with an
increased number of TPs ( GNN↑ ) and a DNN model DNN↓ ( DNN↓

eff
 )

with a restricted (effective) number of TPs. The GNN models are indi-
cated by circles and the DNN models by triangles. The models are

shown in a three-dimensional space built from �AUC , NTP and �Train . The
bars in �AUC are obtained from the sample variance of a training ensem-
ble, as described in the “Training Setup” section. The quantity �Train ,
indicated by the color code of the points corresponds to the inverse of
the epoch with the highest value of the ROC-AUC on the validation
dataset

Computing and Software for Big Science (2024) 8:13 	 Page 15 of 15  13

proximity between two nodes. Apart from that we observe
significant advantages of the GNN over the DNN architec-
ture in terms of convergence and generalizability that we
attribute to a level of built-in implicit constraints to the GNN
model resulting in a better ratio of accessible information
over trainable parameters of the model. We anticipate that
these advantages might be more pronounced the more hier-
archical the training data are. We assume that this property
is the basis for the success of GNN structures when applied
to particle physics jets, which are highly hierarchical objects.
In conclusion, we expect the highest gain of a GNN over a
DNN structure for tasks based on hierarchically structured
data, ideally based on a known distance measure.

Acknowledgements  This research was supported by the German
Federal Ministry of Education and Research (BMBF) under grant
05H21VKCCB.

Author Contributions  E.P., M.W. and R.W wrote the main manuscript
text. E.P. created Figs. 1, 3, 4, 5, 6, 7, and 8. R.W. created Fig. 2. Y.C.
wrote a back-end script for Figs. 3, 4 and 7. All authors contributed to
the manuscript and reviewed it.

Funding  Open Access funding enabled and organized by Projekt
DEAL. This study was funded by German Federal Ministry of Educa-
tion and Research (BMBF) (Grant number 05H21VKCCB).

Data Availability  No datasets were generated or analyzed during the
current study.

Declarations 

Competing Interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Aguillard D, Albahri T et al (2023) Measurement of the positive
muon anomalous magnetic moment to 0.20 ppm. Phys Rev Lett
131(16):161802

	 2.	 Metropolis N, Rosenbluth A et al (2004) Equation of state calcula-
tions by fast computing machines. J Chem Phys 21(6):1087

	 3.	 Rosenbluth M (2003) Genesis of the Monte Carlo algorithm for
statistical mechanics. AIP Conf Proc 690(1):22

	 4.	 Aad G, Abat E et al (2008) The ATLAS experiment at the CERN
large Hadron Collider. JINST 3:S08003

	 5.	 Chatrchyan S, Hmayakyan G et al (2008) The CMS experiment
at the CERN LHC. JINST 3:S08004

	 6.	 Salam G (2010) Towards jetography. Eur Phys J C67:637–686
	 7.	 Sirunyan A, Tumasyan A et al (2019) Performance of missing

transverse momentum reconstruction in proton-proton collisions
at √s = 13 TeV using the CMS detector. JINST 14(07):P07004

	 8.	 Feynman R (1949) The theory of positrons. Phys Rev 76:749–759
	 9.	 Scarselli F, Gori M et al (2009) The graph neural network model.

IEEE Trans Neural Netw 20(1):61–80
	10.	 Micheli A (2009) Neural network for graphs: a contextual con-

structive approach. IEEE Trans Neural Netw 20(3):498–511
	11.	 Kipf T, Welling M (2016) Semi-supervised classification with

graph convolutional networks. arXiv e-prints, page arXiv:​1609.​
02907

	12.	 Hamilton W, Ying R et al (2017) Inductive representation learning
on large graphs. In: Proceedings of the 31st international confer-
ence on neural information processing systems, NIPS’17, Red
Hook, NY, USA. Curran Associates Inc, pp 1025–1035

	13.	 Veličković P, Cucurull G et al (2018) Graph attention networks.
International conference on learning representations.

	14.	 Shlomi J, Battaglia P, Vlimant JR (2020) Graph neural networks
in particle physics. Mach Learn Sci Technol 2(2):021001

	15.	 Sirunyan A, Tumasyan A et al (2019) Search for tth production in
the H→bb decay channel with leptonic tt decays in proton-proton
collisions at √s = 13 TeV. JHEP 03:026

	16.	 Workman R, Burkert V et al (2022) Review of particle physics.
PTEP 2022:083C01

	17.	 Sirunyan A, Tumasyan A et al (2018) Identification of heavy-
flavour jets with the CMS detector in pp collisions at 13 TeV.
JINST 13(05):P05011

	18.	 Alwall J, Frederix R et al (2014) The automated computation of
tree-level and next-to-leading order differential cross sections, and
their matching to parton shower simulations. JHEP 07:079

	19.	 Alwall J, Herquet M et al (2011) MadGraph 5: going beyond.
JHEP 06:128

	20.	 Sjöstrand T, Ask S et al (2015) An introduction to PYTHIA 8.2.
Comput Phys Commun 191:159–177

	21.	 de Favereau J, Delaere C et al (2014) DELPHES 3, a modular
framework for fast simulation of a generic collider experiment.
JHEP 02:057

	22.	 Cacciari M, Salam G et al (2008) The anti-kt jet clustering algo-
rithm. JHEP 04:063

	23.	 Fey M, Lenssen J (2019) Fast graph representation learning with
pytorch geometric. arXiv e-prints, arXiv:​1903.​02428

	24.	 Paszke A, Gross S et al (2019) Pytorch: an imperative style, high-
performance deep learning library. arXiv e-prints, arXiv:​1912.​
01703

	25.	 Kingma D, Ba J (2017) Adam: a Method for Stochastic Optimiza-
tion. arXiv e-prints, arXiv:​1412.​6980

	26.	 Morris C, Ritzert M et al (2019) Weisfeiler and leman go neural:
higher-order graph neural networks. Proc AAAI Conf Artif Intell
33(01):4602–4609

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1412.6980

	A Case Study of Sending Graph Neural Networks Back to the Test Bench for Applications in High-Energy Particle Physics
	Abstract
	Introduction
	Neural Network Task
	Physics Processes
	Sample Preparation
	Task Definition
	Training Setup

	Neural Networks Under Study
	Architectures
	Presentation of the Feature Space

	Results
	Comparison of Neural Networks with Similar Layering of Hidden Nodes
	Neural Networks with One Layer of Hidden Nodes
	Neural Networks with Two Layers of Hidden Nodes

	Neural Networks with Comparable Numbers of Trainable Parameters
	Convergence Behavior

	Summary
	Acknowledgements
	References

