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Abstract Experimental High Energy Physics has entered
an era of precision measurements. However, measurements
of many of the accessible processes assume that the final
states’ underlying kinematic distribution is the same as the
Standard Model prediction. This assumption introduces an
implicit model-dependency into the measurement, rendering
the reinterpretation of the experimental analysis complicated
without reanalysing the underlying data. We present a novel
reweighting method in order to perform reinterpretation of
particle physics measurements. It makes use of reweighting
the Standard Model templates according to kinematic signal
distributions of alternative theoretical models, prior to per-
forming the statistical analysis. The generality of this method
allows us to perform statistical inference in the space of the-
oretical parameters, assuming different kinematic distribu-
tions, according to a beyond Standard Model prediction. We
implement our method as an extension to the pyhf software
and interface it with theEOS software, which allows us to per-
form flavor physics phenomenology studies. Furthermore,
we argue that, beyond the pyhf or HistFactory like-
lihood specification, only minimal information is necessary
to make a likelihood model-agnostic and hence easily rein-
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terpretable. We showcase that publishing such likelihoods is
crucial for a full exploitation of experimental results.

1 Introduction

The results published using the data produced at high energy
physics (HEP) experiments have large scientific potential
beyond initial publication. To maximize the scientific impact
of the data and corresponding results, facilitating reuse for
combination and reinterpretation, should be made standard
practice [1].

The importance of this is evident: Most analyses require
underlying assumptions. These are, for example, theoretical
distributions dictating signatures in the Monte Carlo (MC)
data, which acts as a framework for constructing the analysis
and provides a basis for comparison with the measured col-
lider data. This also means, that a prior theoretical description
has to be chosen, which typically corresponds to a Standard
Model (SM) prediction. Therefore, the results obtained in
the given analysis will be subject to a model dependency,
which does not allow for simple reinterpretation in terms of
alternative theories.

The goal of reinterpretation efforts in HEP is to maximize
the insight gained from existing collider data, which requires
overcoming this model dependency. One can classify these
reinterpretation efforts as follows [2]:

• Kinematic reinterpretation or recasting, which includes
testing an alternative physics process with different kine-
matic distributions. Here, changes of efficiencies and
acceptance regions need to be considered.
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• Model updating, which refines either theoretical predic-
tions or experimental calibrations. This achieves an over-
all reduction of the uncertainties. Technically, this can be
viewed as a subclass of kinematic reinterpretation.

• Combinations of datasets and measurements across
experiments. This is useful for reducing parameter uncer-
tainties or for deriving global parameter constraints,
where different decay channels have possibly different
sensitivity to some parameters. For such combinations, it
is necessary that the underlying model assumptions are
mutually consistent.

Reinterpretation efforts have become a critical compo-
nent of the research landscape [1,2]. The main challenge
remains the lack of public information on the analyses, that
is, details available outside of the respective experimental
collaborations. At the same time, the reinterpretation efforts
are usually associated with a high computational cost due
to the large number of theoretical models. A comprehensive
study of all theoretical models, ranging from MC production
through analysis to statistical inference, is not feasible.

A review of common reinterpretation methods and tools
can be found in Refs. [1–4]. Popular approaches can be clas-
sified as [4]:

• Simulation based reinterpretation (e.g.CheckMate [5],
MadAnalysis5 [6], RECAST [7]), where a full sta-
tistical analysis is performed on new MC samples pro-
duced according to an alternative theoretical model. This
requires access to details of the full analysis strategy,
as well as the underlying collider data and potentially
also individual MC samples. This information is usu-
ally not available outside experimental collaborations. In
addition, this approach is very computationally resource-
heavy as new MC samples must be produced and anal-
ysed for each alternative theory.

• Simplified model reinterpretation (e.g. SModelS [8]),
where one assumes that acceptances are not significantly
affected by kinematic shape differences. Less informa-
tion and computational resources are required, at the cost
of approximations, which potentially lead to biases in the
results (see Sect. 4.3).

In this paper, we propose an alternative reinterpretation
method based on the reweighting of simulated MC tem-
plates, as opposed to a reweighting of individual MC samples.
The proposed method strikes a balance between the required
information on analysis details and computational cost of
bias-free reinterpretation. Our work is an extension of the
“brief idea” proposed in reference [9] and provides access to
a reinterpretable likelihood function, directly parametrized
in terms of any choice of theory parameters.

Reweighting is a standard practice in HEP commonly
used for unfolding strategies, see e.g. reference [10]. The
HAMMER software provides an application of reweighting
for the purpose of reinterpretation of experimental measure-
ments [11,12]; see also the interface to RooFit [13]. At
present, HAMMER allows for the reinterpretation of specifi-
cally implemented decays (mostly charged-current semilep-
tonic B-meson decays) in terms of theoretical models of
an effective field theory type by performing event-based
reweighing. Our proposed reinterpretation method is more
generally applicable, and it is not limited to any specific decay
type or theoretical model. Furthermore, the proposed method
makes use of reweighting on the distribution level, rather than
on the event level; it does not require the full set of MC sam-
ples to perform the reinterpretation of the measurement; and
it is more efficient in terms of computational costs.

One prerequisite for making HEP measurements suitable
for reinterpretation and/or combination is the distributabil-
ity of statistical models. As discussed in Ref. [1], a gen-
eral recommendation is to make sensibly parametrized like-
lihood functions publicly available. A standard for likelihood
parametrization and preservation has been developed around
the pyhf software [14,15] for statistical inference. The
pyhf software is an implementation of the HistFactory
model [16], which provides a general functional form for
binned likelihoods. This fully parametrized binned likeli-
hood is easily distributable in JSON format. In addition to
the reinterpretation method proposed here, we also show that
only a minimal amount of additional information allows for
distributability of the reinterpretable likelihood.

The paper is structured as follows. In Sect. 2 we describe
our novel reinterpretation method. We discuss the mathemat-
ical description and its applicability to unbinned and binned
likelihoods, along with benefits and limitations. In Sect. 3 we
describe the implementation of this method within the frame-
work of common analysis tools. Finally, in Sect. 4 we apply
the reinterpretation method to two toy examples, which uses
the model-agnostic framework of the Weak Effective The-
ory (WET). This effective theory covers all possible beyond
Standard Model (BSM) theories that exclusively involve new
particles or interactions at or above the scale of electroweak
symmetry breaking. We also compare our newly developed
method to a more simple approach, commonly used to rein-
terpret HEP results.

2 Reweighting method

The reinterpretation method described here is based on
updating the distributions of the observable variables, given
changes in the underlying kinematic distribution.

The probability density function (PDF) of reconstructed
events p(x) results from folding the PDF of a theoretical
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kinematic prediction p(z) with the conditional distribution
p(x |z) and the indicator function 1ε(x),

p(x) = 1

ε

∫
dz 1ε(x) p(x |z) p(z). (1)

Here, the reconstruction variable x represents one or multi-
ple observable variables and the kinematic variable z repre-
sents one or multiple kinematic degrees of freedom (d.o.f.).
The function 1ε(x) models the selection criteria for a recon-
structed event and p(x |z) is the conditional probability of
measuring a reconstructed configuration x, given an under-
lying particle configuration z. The overall reconstruction effi-
ciency ε acts as a normalization factor for the PDF p(x). The
PDF p(z) corresponds to the normalized kinematic distribu-
tion of a theoretical prediction σ(z),

p(z) = σ(z)

σ
. (2)

The number density of expected events, given a total inte-
grated luminosity L is n(x) = L σ ε p(x) and further reads

n(x) = L
∫

dz ε(x |z) σ (z) =
∫

dz n(x, z), (3)

where we combine both reconstruction and selection into
ε(x |z) = 1ε(x) p(x |z), and where n(x, z) = L ε(x |z) σ (z)
can be thought of as a joint number density, similar to the
joint PDF p(x, z) = p(x |z) p(z).

The reinterpretation task involves determining the number
density n1(x) of an alternative theoretical prediction σ1(z).
This can be obtained by reweighting the joint number density
n0(x, z) according to the kinematic null distribution σ0(z),
via

n1(x) = L
∫

dz ε(x |z) σ1(z)

= L
∫

dz ε(x |z) σ0(z)
σ1(z)

σ0(z)

=
∫

dz n0(x, z) w(z). (4)

The weight factor w(z) is simply the ratio of the theoret-
ically predicted alternative kinematic distribution to the null
distribution.

This reweighting process solely requires the knowledge
of the joint null number density n0(x, z). Together with the
weight factor, this is enough to predict the number density
according to an alternative theory.

2.1 Discrete reweighting

In practical applications,the continuous joint number den-
sity is typically not analytically obtainable and requires esti-
mation through MC simulations. To address this, one can
discretize the reweighting method by representing the joint
number density as a multidimensional matrix nxz in bins of

x × z. This is done alongside the binning of the theoreti-
cally predicted distribution σz and weight factor wz in the
kinematic d.o.f. z. Consequently, the discrete joint number
density has dimension dim(x) × dim(z).

The discrete joint number density can be obtained by inte-
grating the continuous joint number density over each x × z
bin,

nxz =
∫

bin x

∫
bin z

dx ′ dz′ n(x ′, z′), (5)

where the integral boundaries are the bin boundaries of each
x and z bin, respectively. The binned weights are given by

wz = σ1,z

σ0,z
=

∫
bin z dz

′ σ1(z′)∫
bin z dz

′ σ0(z′)
. (6)

The reweighting step of Eq. (4) becomes

n1,x =
∑
z

n0,xz wz . (7)

We see an advantage in using this discrete approach
because of lower computations costs. The price for this sim-
plification is a loss of accuracy due to the binning in the kine-
matic d.o.f. z. However, this loss is controllable by increas-
ing the number of bins. The binning should be chosen such
that the joint number density and weight function factorize
approximately in each bin. In principle, an arbitrarily fine bin-
ning can be chosen such that the uncertainty due to this loss
is negligible compared to other sources of uncertainty (pro-
vided enough MC samples are available; see Appendix C.1).

Crucially, only a fixed set of samples from the joint PDF
p0(x, z), based on the null prediction, is required, and no
new samples need to be produced for the reinterpretation.
Therefore, publishing the (binned) joint null number density
and knowledge about the underlying kinematic null distri-
bution is sufficient to perform the reinterpretation of a given
measurement.

2.2 Limitation

The proposed reweighting approach is a light-weight and
accurate way of obtaining new signal templates, given a joint
number density and the kinematic null distribution. Still,
it does have one main limitation: if the phase space con-
tains regions with w(z) � 1, the effective MC sample size
decreases. Put differently, we assign large weights to regions
that are sparsely populated with MC samples obtained from
the null distribution. Further, if the null distribution lacks sup-
port in a region of phase space, σ0(z) → 0, it can happen that
w(z) → ∞ when reweighting to an alternative distribution.
In this case, we have no MC samples in the given region.
The only solution that we see is reanalysing new samples,
produced according to the alternative distribution.
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3 Implementation and likelihood construction

Using the reweighting method, we can construct likelihood
functions for particle physics analyses, directly parametrized
in terms of theory parameters. Even though the reweight-
ing method is independent of any likelihood formalism, we
showcase our method in terms of the HistFactory for-
malism [16] as a baseline statistical model.

To build a global likelihood or posterior for a given mea-
surement, including theoretical constraints or priors, we split
the likelihood into three parts. The total likelihood is a combi-
nation of a data likelihood, Ldata, the experimental constraint,
Cex, and the theory constraint, Cth,

L = Ldata · Cex · Cth. (8)

The data likelihood is constructed as a product of the Poisson
probabilities of experimentally obtaining n events, when ν

are expected from MC simulation,

Ldata(n|η,χ) =
∏

c∈channels

∏
b∈bins

Pois (ncb|νcb(η,χ)) . (9)

Channels represent disjoint binned distributions, for exam-
ple signal and control channels. Bins correspond to the his-
togram bins. The expected bin counts ν are a function of
unconstrained, η, and constrained, χ , parameters.

The experimental constraint consists of constraint terms
or priors for experimental nuisance parameters χex ⊂ χ ,

including all experimental systematic uncertainties,

Cex(a|χex) =
∏

χ∈χex

cχ

(
aχ |χ)

. (10)

In the frequentist language, constraints, cχ (aχ |χ), are
obtained from auxiliary measurements with corresponding
auxiliary data a. This is the frequentist parallel of a prior
distribution.

The theory constraint consists of constraint terms or priors
for theoretical parameters, χ th ⊂ χ ,

Cth(a|χ th) =
∏

χ∈χ th

cχ

(
aχ |χ)

. (11)

3.1 Implementation of the reweighting method

To obtain the data likelihood Ldata for any theoretical model,
one needs to calculate the event rates of the corresponding
signal template. This requires an implementation of Eq. (7).

To achieve this, we work with pyhf [14,15], which is
an implementation of the HistFactory model [16]. Here,
a likelihood is constructed by specifying the bin content of
all contributing signal and background processes, as usually
obtained from MC simulation, and the data measured in an
experiment.

Furthermore, to implement uncertainties, one needs to
specify the properties of a set of modifiers. The modifier set-
tings include the event rate modifications according to each
type of uncertainty at the 1σ level and the corresponding
constraint type for the modifier parameter. The event rates
for each channel and bin are calculated as

νcb(η,χ) =
∑

s∈samples

∏
κ∈κ

κscb(η,χ)

×
(

ν0
scb(η,χ) +

∑
�∈�

�scb(η,χ)

)
, (12)

where samples are used to separate physics processes, ν0

are the nominal event rates (determined from MC), κ and
� are the full set of multiplicative and additive modifiers,
respectively.

The implementation of the reweighting method (Sect. 2)
requires extending the pyhf codebase.1 The method is a
prescription on the change of event rates. Therefore, an mul-
tiplicative modifier can be used to apply these changes. We
extend pyhf by a custom modifier, which calculates the
modifications to the nominal event rates according to the
procedure described in Eq. (7). This custom modifier is a
function of the underlying theory parameters of the alterna-
tive kinematic distribution.

The theory constraint Cth contains all constraint terms
of these underlying theory parameters, which can be corre-
lated in general. Per definition, modifier parameters in pyhf
are treated as uncorrelated. To correctly include correlated
parameter constraints in our statistical model, we decorre-
late the theory parameters using principal component anal-
ysis (see Appendix B). We then assign one normally con-
strained pyhf modifier parameter to each of these decorre-
lated parameters.

4 Example application

A central aim of this work is to motivate the experimental
HEP community to make use of the proposed method. This
will, in turn, enable subsequent model-agnostic phenomeno-
logical analyses of the experimental results. Here, we detail
the full reinterpretation of an analysis result of two toy exam-
ples from low-energy flavour physics.

In general, one distinguishes between two datasets for a
given analysis: the real data, measured by a collider experi-
ment and a set of simulated signal and background MC data,
produced as a means of comparing against the measured col-
lider data.

In this toy example, we do not use any experimental data,
but two datasets of simulated samples, where one dataset acts

1 We plan to contribute our modifications to the pyhf codebase.
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as real data. The MC data is produced according to the SM
prediction. The real data is produced by assuming that BSM
physics affects the example process. To simulate detector and
other analysis selection effects, observables in both datasets
are smeared according to estimated detector resolutions, and
event yields are scaled by an efficiency map.

By comparing the produced datasets, using either Bayesian
or frequentist methods, we aim to recover the chosen BSM
parameters, starting from the SM. This is possible only,
because we made the likelihood a function of the theory
parameters and a shape change in the kinematic distribution
due to BSM physics can be directly taken into account.

As a general result, we want to compute the posterior
distribution in the space of theory parameters, given the
two simulated datasets and prior parameter constraints. To
obtain a posterior from the likelihoods of the form shown
in Eq. (8), we use the bayesian pyhf [17], an extension
to pyhf. The posterior is obtained by Markov chain Monte
Carlo (MCMC) sampling from the total likelihood, following
Bayes’ theorem for auxiliary data a and observations n,

p (η,χ |n, a) ∝ Ldata (n|η,χ) p (χ |a) p (η) . (13)

The experimental and theoretical constraints are represented
by the constraint priors p (χ |a) , and p (η) contains the priors
for the unconstrained parameters η as detailed in Ref. [17].

4.1 B → Kνν̄

The recent measurements of the total rate of B → Kνν̄

decays by the Belle II collaboration [18,19] hint at an excess
of signal events compared to the SM expectation. This has
triggered a substantial interest in the HEP phenomenology
community to interpret this excess as a sign of BSM physics
and to extract the corresponding model parameters [20–22].
In this subsection, we study the performance of our proposed
approach at the hand of simulated B → Kνν̄ data.

4.1.1 Weak effective theory parametrization

While we cannot achieve a general model-independent theo-
retical description of the B → Kνν̄ decay, it is nevertheless
possible to capture the effects of a large number of BSM
theories under mild assumptions, as mentioned previously.
Here, we assume that potential new BSM particles and force
carriers have masses at or above the scale of electroweak sym-
metry breaking. In this scenario, it is useful to work within
an effective quantum field theory that describes both the SM
and the potential BSM effects using a common set of param-
eters; this effective field theory is commonly known as the
Weak Effective Theory (WET) [23–25].

For the description of b → sνν̄ transitions, it suffices
to discuss the sbνν sector of the WET. It is spanned by a
subset of local operators of mass-dimension six, which is

closed under the renormalization group [26]. Since the mass
of the initial on-shell B meson limits the maximum momen-
tum transfer in this process, the matrix elements of operators
with mass dimension eight or above are suppressed by at
least a factor of M2

B/M2
W 	 0.004, which are hence com-

monly neglected in these types of analyses. The correspond-
ing Lagrangian density for the sbνν sector reads [27]

LWET = −4GF√
2

α

2π
V ∗
tsVtb

∑
i

Ci (μb)Oi + h.c., (14)

withGF the Fermi constant, α the fine structure constant, and
V the Cabibbo–Kobayashi–Maskawa quark mixing matrix,
respectively. The separation scale is chosen to be μb =
4.2 GeV. Matrix elements of the operators Oi describe the
dynamics of the process at energies below μb, while the
dynamics at energies above μb are encoded in the (generally
complex-valued) Wilson coefficients Ci (μb) in the modified
minimal subtraction (MS) scheme. This enables a simul-
taneous description of SM-like and BSM-like dynamics in
b → sνν̄ processes, as long as all BSM effects occur at
scales larger than μb; the different dynamics result simply
in different values of the Wilson coefficients.

Assuming massless neutrinos, the full set of dimension-
six operators is given by [27],

OVL = (
νLγμνL

) (
sLγ μbL

)
OVR = (

νLγμνL
) (
sRγ μbR

)
OSL =

(
νcLνL

)
(sRbL)

OSR =
(
νcLνL

)
(sLbR)

OTL =
(
νcLσμννL

) (
sRσμνbL

)
, (15)

with

νL ≡ ν
†
Lγ 0, νcL ≡ CνL

T , (16)

and where C = iγ 2γ 0 is the charge conjugation operator. In
the above, the subscripts V, S, T represent vectorial, scalar,
and tensorial operators, respectively; νL/R represent left- or
right-handed neutrino fields; andqL/R represent left- or right-
handed quark fields. The spin structure of the operators is
expressed in terms of the Dirac matrices γ μ and their com-
mutator σμν ≡ i

2 [γ μ, γ ν]. The operators are defined as sums
over the neutrino flavors, since this is a property that we can-
not determine experimentally. If one assumes the existence
of only left-handed massless neutrinos, all operators except
VL and VR vanish. The SM point in the parameter space of
the WET Wilson coefficients reads

CVL 	 6.6, Ci = 0 ∀ i �= VL. (17)

Presently, the only measured observable is the differen-
tial decay rate for B → Kνν̄, which we simulate in this
example. Since the B meson is a pseudoscalar, the decay is
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Fig. 1 Illustration of the variety of shapes of the B → Kνν̄ decay
rate due to purely vectorial, scalar, or tensorial interactions. Each curve
corresponds to setting a single non-zero Wilson Coefficient in Eq. (18)
to unity while keeping all other coefficients at zero

isotropic in the rest frame of the B meson and hence the only
kinematically free variable is the squared dineutrino invari-
ant mass, q2 = (pB − pK )2 = (pν + pν̄ )

2. The differential
decay rate is given by [27,28]

d�

dq2 = 3

(
4GF√

2

α

2π

)2 ∣∣V ∗
tsVtb

∣∣2
√

λBK q2

(4π)3M3
B

×
[

λBK

24q2

∣∣∣ f+(q2)

∣∣∣2 |CVL + CVR|2

+
(
M2

B − M2
K

)2

8 (mb − ms)
2

∣∣∣ f0(q2)

∣∣∣2 |CSL + CSR|2

+ 2λBK

3 (MB + MK )2

∣∣∣ fT (q2)

∣∣∣2 |CTL|2
]

, (18)

where MB, MK are the masses of the B meson and the kaon,
respectively, mb,ms are the masses of the b and s quarks in
the MS scheme, respectively, and λBK ≡ λ(M2

B, M2
K , q2) is

the Källén function.
In order to highlight the individual contributions of vecto-
rial, scalar and tensorial terms from Eq. (18) to the differen-
tial decay rate, an illustration where individual left-handed
Wilson coefficients are set to unity, is shown in Fig. 1.

As can be inferred from Eq. (18), the decay is only sensi-
tive to the magnitude of three linear combinations of Wilson
coefficients

|CV L + CV R |, |CSL + CSR |, |CT L |. (19)

The hadronic matrix elements of their operators are described
by three independent hadronic form factors commonly
known as f+(q2), f0(q2) and fT (q2), which are functions
of q2. In this work, the form factors are parametrized fol-
lowing the BCL parametrization [29], which is truncated at
order K = 2. The values for the corresponding 8 hadronic
parameters are extracted from a joint theoretical prior PDF

comprised of the 2021 lattice world average based on results
by the Fermilab/MILC and HPQCD collaborations [30],
and recent results by the HPQCD collaboration [31]. Cor-
relations between the hadronic parameters are taken into
account through their respective covariance matrices and
implemented as discussed in Sect. 3.1.

The Belle II experiment, which found the first evidence
for this decay, observes more events than expected in the
SM. The ratio of observed to expected events is 4.6 ± 1.3
[19]. For latter use, we define a benchmark point in the space
of Wilson coefficients that roughly reproduce the measured
branching fraction, after correcting for the efficiency. Assum-
ing all Wilson coefficients to be real, it reads

|CV L |=10, |CV R |=4, |CSL |=3, |CSR |=1, |CT L |=1.

(20)

As shown in Eq. (18), the decay rate of B → Kνν̄ is only
sensitive to three linear combinations of Wilson coefficients
shown in Eq. (19). The projection of our benchmark point
onto this subspace reads

|CV L + CV R | = 14, |CSL + CSR | = 4, |CT L | = 1. (21)

4.1.2 Datasets

To make this example as realistic as possible, we design
our setup similar to what has been done in the Belle II anal-
ysis.

The MC data is produced according to the SM predic-
tion (null hypothesis) of the differential branching ratio
dB(B → Kνν̄)/dq2, where the Wilson coefficient are set
to the values in Eq. (17). The number of samples produced
is equivalent to the number of signal events seen or expected
for a given integrated luminosity. We produce samples for
362 fb−1 integrated luminosity, which corresponds to the
total collider data used in Ref. [19], and for 50 ab−1 inte-
grated luminosity, corresponding to the total target luminos-
ity of the Belle II experiment [32], respectively. We multiply
the estimated number of BB events with the SM branching
fraction, BR(B → Kνν̄) ≈ 4.81 × 10−6 [33,34] to get a
rough estimate for the number of MC samples to produce,
prior to the efficiency correction (see below).

The real data is produced according to a BSM predic-
tion (alternative hypothesis). Following the observations of
more events than predicted in the SM [19], we use the pre-
viously defined benchmark point in Eq. (20). We multiply
the estimated number of BB events with the BSM branching
fraction, BR(B → Kνν̄) ≈ 2.71 × 10−5 [33,34] to get a
rough estimate for the number of data samples to produce,
prior to the efficiency correction (see below).

We list the number of produced samples in Table 1. Unless
stated otherwise, all numerical values, figures, and tables pro-
vided in the following are obtained from studies that assume
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Table 1 The number of B → Kνν̄ samples produced for this study, corresponding to an equivalent of 362 fb−1 and 50 ab−1 integrated luminosity
at the SuperKEKB collider. Generated and reconstructed samples correspond to the numbers prior and post efficiency correction

Luminosity BB events MC generated \ reconstructed Data generated \ reconstructed

362 fb−1 ∼ 3.87 × 108 1.86 × 103 1.05 × 104

241 1.14 × 103

50 ab−1 ∼ 5.35 × 109 2.57 × 105 1.45 × 106

3.21 × 104 1.58 × 105

the 50 ab−1 sample size. We produce samples of the decay’s
probability distribution for both the null and the alternative
hypothesis using the EOS software in version 1.0.11 [34].

To simulate the detector resolution, we shift the q2 value
of each sample by a value drawn from a normal distribution
of width 1 GeV2. This roughly corresponds to the Belle II
detector resolution.

Furthermore, we apply an efficiency map to the samples
according to the function

ε(q2) = 0.4 exp
(
−5 q2/M2

B

)
, (22)

which mimics the efficiency obtained in reference [19].
The reconstruction variable is chosen to be the recon-

structed momentum transfer q2
rec, obtained from the kine-

matic variable q2, by applying detector and efficiency cor-
rection. The binnings of our kinematic and our reconstruction
variables differ:

• For the reconstruction variable, we need to strike a bal-
ance between the number of events in each bin (to ensure
sufficient statistical power) and the number of bins to
ensure sensitivity toward differences in the shape of the
q2 distribution. We choose 8 equally spaced bins for the
reconstruction variable.

• For the kinematic variable, we determine the number of
bins as follows. We study the convergence of the expected
yields from the reweighted model, as we increase the
number of kinematic bins. For this study, we remove the
detector resolution smearing. This is done for 100 ran-
domly chosen theoretical models (see Appendix C.1 for
further details). These models correspond to normally-
distributed variations ∼ N (0, 10) of the WET parame-
ters with respect to the SM parameter point. We aim to
ensure convergence at the level of 1% accuracy. We find
that using 24 equally spaced bins for the kinematic vari-
able ensures this aim. Figure 2 illustrates this procedure
for the benchmark point in Eq. (20).

Both datasets, according to the null (SM) and alternative
(BSM) hypothesis, and their corresponding changes after
detector resolution smearing and efficiency correction are
shown in Fig. 3.

Fig. 2 The null histogram yields, reweighted to the benchmark point
in Eq. (20), as a function of kinematic bins (red). The histogram yields
of the true model, sampled from the probability density function at the
benchmark point (black). The bottom plot shows the relative difference
� of the reweighed models to the true model. The statistical uncertainty
of the true model is shown as the hatched region

Fig. 3 Both the null/SM (blue) and alternative/BSM (red) B → Kνν̄

datasets, according to the pure theoretical prediction, after detector res-
olution smearing and efficiency correction
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Fig. 4 The bin-integrated null/SM (blue) and alternative/BSM (red)
predictions for the differential branching ratio dB(B → Kνν̄)/dq2

Fig. 5 The null joint number density, where we see the 8 bins of the
reconstruction variable on the vertical axis and the 24 bins of the kine-
matic variable on the horizontal axis

The null (SM) and alternative (BSM) predictions have
also been calculated using the EOS software [33,34] and are
shown in Fig. 4.

The null joint number density is obtained by binning the
MC data in a 2-dimensional histogram of the reconstruction
variable q2

rec against the kinematic variable q2. This is shown
in Fig. 5.

4.1.3 Full statistical model

To build the posterior according to the statistical model
described in Sect. 3, we collect all parameters of our like-
lihood and their corresponding priors.

The theoretical parameters include the WET parameters
and the hadronic parameters. The WET parameters cor-
respond to the three independent linear combinations of
Wilson coefficients that enter the theoretical description of
B → Kνν̄ decays; see Eq. (18). These are |CV L + CV R |,

|CSL + CSR |, and |CT L |. While the Wilson coefficients are
– in general – complex-valued parameters, we note that the
overall phase of the WET Lagrangian Equation (14) is not
observable. Moreover, an inspection of the differential decay
rate in Eq. (18) shows only sensitivity to the absolute val-
ues of the three linear combinations of Wilson coefficients.
Hence, we represent each linear combination as a positive
real-valued number. Their prior is chosen as the uncorrelated
product of uniform distributions with support

5 < |CV L + CV R | < 20,

0 < |CSL + CSR | < 15,

0 < |CT L | < 15. (23)

The correlated hadronic parameters describe the B → K
form factors as discussed in Sect. 4.1.1. Their prior is a
multivariate normal distribution, which is implemented as
a sequence of independent univariate normal distributions,
as discussed at the end of Sect. 3.1.

The experimental constraint includes one parameter per
bin of the reconstruction variable, representing the statistical
uncertainty of the MC yields. The prior for these parameters
are normal distributions N (1, 1/

√
Nb), where Nb is the total

yield in reconstruction bin b. For the purpose of this proof-
of-concept study, we do not account for further (systematic)
sources of uncertainty.

4.1.4 Reinterpretation results

Having built a model-agnostic likelihood function from our
toy data, we investigate the potential of our approach to con-
strain the Wilson coefficients. Using MCMC sampling, we
obtain the 3-dimensional marginal posterior distribution of
the Wilson coefficients. The values at the mode of the full
posterior agree with those of the benchmark point outlined
in Eq. (20). We show the full set of 2-dimensional marginal-
izations of this posterior and the resulting intervals at 68%
and 95% probability in Fig. 6.

We find that the marginal posterior peaks at the expected
point, Eq. (21). The anti-correlation of the scalar and ten-
sorial Wilson coefficients can be seen in their marginalized
2-dimensional distribution. This behaviour is not surprising,
as the tensorial and scalar terms in Eq. (18) peak at larger val-
ues of q2, where the efficiency (Eq. (22)) is low. Moreover,
the observed behaviour weakens as the statistical power of
the data increases.

Overall, we see a good agreement with the expected Wil-
son coefficients, which acts as a closure test for our method.

4.2 Combination of B → Kνν̄ and B → K ∗νν̄

A limitation of studying solely the B → Kνν̄ process is
that its sensitivity to the WET Wilson coefficients is lim-
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Fig. 6 The marginalized posterior distributions, obtained by MCMC
sampling from the B → Kνν̄ likelihood. On the diagonal, we see
the 1-dimensional marginal distributions of the Wilson coefficients in
Eq. (19). The contours on the 2-dimensional plots correspond to 68%
(inner) and 95% (outer) probability. The dashed lines indicate the true
underlying model (Eq. (21))

ited to the three linear combinations shown in Eq. (19). In
this example, we showcase the power of combining data on
B → Kνν̄ and B → K ∗νν̄ decays. These decays exhibit
complementary sensitivity to the Wilson coefficients, due to
their different hadronic spin and orbital angular momentum
configurations. For the sake of simplicity of this example, we
neglect effects of additional kinematic variables in the decay
chain B → K ∗(→ Kπ)νν̄, such as the helicity angle θK of
the kaon and the Kπ invariant mass. For the application of
our proposed method to a real-world example, all kinematic
variables should be included in the joint number density for
full reinterpretability.

Moreover, this example shows from a technical perspec-
tive that our method and its implementation work also for
combined pyhf models, providing full access to the com-
plementarity in the sensitivity.

4.2.1 B → K ∗νν̄ WET parametrization

The decay B → K ∗νν̄ is governed by the same WET
Lagrangian as described by Eqs. (14) and (15). Its differ-
ential decay rate reads [27,28]

d�

dq2 = 3

(
4GF√

2

α

2π

)2 ∣∣V ∗
tsVtb

∣∣2
√

λBK ∗q2

(4π)3M3
B

×
[
|AV |2 |CVL + CVR|2 + |AA|2 |CVL − CVR|2

Fig. 7 Illustration of the variety of shapes of the B → K ∗νν̄ decay
rate due to purely vectorial, scalar, or tensorial interactions. Each curve
corresponds to setting a single (left-handed) non-zero Wilson coefficient
in Eq. (24) to unity while keeping all other coefficients at zero

+|AP |2 |CSR − CSL|2 + |AT |2 |CTL|2
]
, (24)

where the reduced amplitudes multiplying the Wilson coef-
ficients read

|AV |2 = λBK ∗ |V (q2)|2
12 (MB + MK ∗)2 ,

|AA|2 = 8M2
BM

2
K ∗

3q2

∣∣∣A12(q
2)

∣∣∣2

+ (MB + MK ∗)2
∣∣A1(q2)

∣∣2

12
,

|AP |2 = λBK ∗

8 (mb + ms)
2

∣∣∣A0(q
2)

∣∣∣2
,

|AT |2 = 32M2
BM

2
K ∗

∣∣T23(q2)
∣∣2

3 (MB + MK ∗)2 + 4λBK ∗
∣∣T1(q2)

∣∣2

3q2

+4
(
M2

B − M2
K ∗

)2 ∣∣T2(q2)
∣∣2

3q2 . (25)

The description below Eq. (18) applies here as well.
In order to understand the individual contributions to the

differential decay rate in Eq. (18) by vectorial, scalar, and
tensorial operators, we provide an illustration of their relative
sizes and their shapes in Fig. 7. This is achieved by setting
their respective Wilson coefficients to unity.

One readily finds that the dependence of the observables
on the Wilson coefficients is very different in Eqs. (18) and
(24), respectively. Compared to B → Kνν̄ decays, the differ-
ential B → K ∗νν̄ decay rate exhibits additional sensitivity
to the quantities

|CV L − CV R |, |CSL − CSR |. (26)

As a consequence, a simultaneous analysis of both decays
allows constraining a total of five real-valued (out of ten
total real-valued) parameters in the sbνν sector. Assuming all
WET Wilson coefficients to be real-valued, this corresponds
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Table 2 The number of B → K ∗νν̄ samples produced for this study, corresponding to an equivalent of 50 ab−1 integrated luminosity at the
SuperKEKB collider. Generated and reconstructed samples correspond to the numbers prior and post efficiency correction

Luminosity BB events MC generated \ reconstructed Data generated \ reconstructed

362 fb−1 ∼ 3.87 × 108 3.61 × 103 1.05 × 104

846 2.49 × 103

50 ab−1 ∼ 5.35 × 109 4.99 × 105 1.45 × 106

1.16 × 105 3.43 × 105

to constraining the magnitudes of all Wilson coefficients. For
an illustrative example, we apply this assumption here.

The hadronic matrix elements of the WET operators in
this decay are expressed in terms of seven independent form
factorsV (q2), A0(q2), A1(q2), A12(q2),T1(q2),T2(q2) and
T23(q2),which are functions of the momentum transferq2. In
this work, these form factors are parametrized following the
BSZ parametrization [35], which is truncated at order K = 2.

The values for the corresponding 19 hadronic parameters
arise from the Gaussian likelihood provided in Ref. [36].
Correlations between the hadronic parameters are taken into
account through their covariance matrix and implemented as
discussed in Sect. 3.1.

4.2.2 Datasets

To produce the B → K ∗νν̄ datasets, we adapt the same
procedure as in Sect. 4.1.2.

The MC data is produced according to the SM prediction
(null hypothesis). The number of samples is calculated by
multiplying the estimated number of BB events in a 50 ab−1

Belle II dataset with the predicted SM branching fraction,
BR(B → Kνν̄) ≈ 9.34 × 10−6 [33,34].

The real data is produced according to the BSM predic-
tion of the benchmark point in Eq. (20) (alternative hypoth-
esis). The number of data samples is calculated by mul-
tiplying the estimated number of BB events in a 50 ab−1

Belle II dataset with the predicted BSM branching fraction,
BR(B → K ∗νν̄) ≈ 2.72 × 10−5 [33,34].

We list the number of samples in Table 2. We produce MC
samples of the decay’s probability distribution for both the
null and the alternative hypothesis using the EOS software in
version 1.0.11 [34].

The efficiency map in this case is chosen to be

ε(q2) = 0.3
(

1 − 0.08 exp
(
−2.5 q2/M2

B

))
, (27)

which is an approximate expectation for an inclusive B →
K ∗νν̄ analysis. For the sake of simplicity, we assume that
the efficiency is independent of the helicity angle θK and the
Kπ invariant mass.

We choose 10 bins in the reconstruction variable (q2
rec)

and find that 25 bins in the kinematic variable (q2) pro-

Fig. 8 Both the null/SM (blue lines) and alternative/BSM (red lines)
B → K ∗νν̄ datasets, according to the pure theoretical prediction, after
detector resolution smearing and efficiency correction

vide a sufficient accuracy, using the procedure described in
Appendix C.1 and Sect. 4.1.2.

Both datasets, according to the null (SM) and alternative
(BSM) hypothesis, and their corresponding changes after
detector resolution smearing and efficiency correction are
shown in Fig. 8.

4.2.3 Full statistical model

In order to derive the statistical model encompassing B →
Kνν̄ and B → K ∗νν̄, we construct individual posteri-
ors for each channel following the methodology outlined in
Sect. 4.1.3. The combined posterior arises from their product.
The WET theory parameters are the only parameters shared
by the individual posteriors.

These parameters correspond to the five magnitudes of
Wilson coefficients that enter the theoretical description of
B → Kνν̄ and B → K ∗νν̄ decays; see Eq. (18), (24). They
are CV L , CV R, CSL , CSR, and CT L . Their prior is chosen
as the uncorrelated product of uniform priors with support

5 < |CV L | < 15,

0 < |CV R | < 10,
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0 < |CSL | < 10, 0 < |CSR | < 10, 0 < |CT L | < 10. (28)

The hadronic parameters, describing the B → K and
B → K ∗ form factors are discussed in Sects. 4.1.1 and 4.2.1.
Their prior is a multivariate normal distribution, which is
implemented as a sequence of independent univariate normal
distributions, as discussed at the end of Sect. 3.1.

In the context of HistFactory models, the combined
likelihood of B → Kνν̄ and B → K ∗νν̄ is a combination
on the channel level, as discussed in Sect. 3. One custom
modifier is added to each channel, which are functions of the
same WET parameters, but different hadronic parameters.

4.2.4 Reinterpretation results

From the constructed model-agnostic likelihood function,
we investigate the power of constraining the full set of Wil-
son coefficients appearing in Eqs. (18) and (24), under the
assumption that they are real-valued. The decay rates in
Eqs. (18) and (24) exhibit two discrete symmetries; one under
the exchange CV L ↔ CV R and another under the exchange
CSL ↔ CSR . The combination of both symmetries leads to
a four-fold ambiguity for the extraction of the Wilson coeffi-
cients from data and therefore a multimodal posterior density.
To avoid computational issues in sampling from the poste-
rior, we select one of the four fully equivalent modes for
sampling. We do so by imposing the additional constraints
CV L > CV R and CSL > CSR . We use MCMC sampling
and initialize the chains with the mode of the full posterior.
The values at the mode of the full posterior align with those
of the benchmark point outlined in Eq. (20). To obtain the
full multimodal posterior, we restore the original symme-
try manually. From the symmetrized samples, we obtain the
5-dimensional marginal posterior distribution of the Wilson
coefficients. We illustrate it in Fig. 9 by showing the full set
of 1- and 2-dimensional marginalizations and the resulting
regions at 68% and 95% probability.

Most significantly, we see that it is now possible to probe
the magnitudes of all 5 Wilson coefficients by combining
results for B → Kνν̄ and B → K ∗νν̄. In terms of accuracy,
the benefits of this combination are especially visible for
|CT L |, compared to the B → Kνν̄ result in Fig. 6. The
improvement in precision of the 50 ab−1 over the 362 fb−1

datasets is also clearly visible. This is especially prominent
in the scalar sector. For the smaller dataset, the peaks overlap
such that the modes are not clearly separated. In addition,
the fact that we are sampling the magnitudes of the Wilson
coefficients causes an asymmetry in the scalar distributions.
A tail of |CT L | towards lower values is present, as in the
previous example in Fig. 6.

As in the previous example, this study serves as a fur-
ther successful closure-test for our reinterpretation method.

Fig. 9 The marginal posterior distributions, obtained by MCMC sam-
pling from the combined B → Kνν̄ and B → K ∗νν̄ likelihood. On the
diagonal, we see the 1-dimensional marginal distributions of the Wil-
son coefficients appearing in Eqs. (18) and (24). The contours on the
2-dimensional plots correspond to 68% (inner) and 95% (outer) proba-
bility. The dashed lines indicate the true underlying model. The dotted
lines indicate the symmetry axes of the global likelihood

Furthermore, it shows how efficiently combinations of mea-
surements can be performed with this method.

4.3 The necessity for reinterpretation

The availability of open-datasets for most particle physics
results is currently very limited, although improving, thanks
to the popularity of novel statistical approaches such as
HistFactory and tools such as pyhf. These current lim-
itations regularly hinder theorists to fully interpret exist-
ing experimental results in their BSM analyses. In partic-
ular, BSM changes to the distribution of the reconstruction
variable are routinely neglected. In fact, the most common
approach in a BSM analysis is to constrain the ratio of BSM
prediction over SM prediction from branching ratio mea-
surements or upper limits. This approach is only valid if the
BSM changes to the shape of the distribution of the kinematic
variable can be accounted for by a systematic experimental
uncertainty in the reconstruction space. As we show in the
following, this does not hold for measurements of the branch-
ing ratio of B → Kνν̄.

To illustrate the issue, we compare our results in Sect. 4.1
based on simulated data with those obtained from a naive
rescaling of the branching fraction. In the language of the
presented reinterpretation method, the latter corresponds to
using only a single bin in the kinematic d.o.f., covering the
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Fig. 10 The comparison of the posterior distribution resulting from a
model with only one bin in the kinematic d.o.f. to the proposed reinter-
pretation method, respecting shape changes in the kinematic distribution
(see Fig. 6)

full kinematic range. This further translates to a single weight
applied to all bins of the reconstruction variable, correspond-
ing to the ratio of the alternative to the null prediction inte-
grated over the full kinematic range. We therefore construct a
further “naive” B → Kνν̄ posterior, which deviates from the
setup in Sect. 4.1 only by using a single bin in the kinematic
range.

After sampling from this “naive” posterior, we compare
the marginal distributions for the Wilson coefficients to those
presented in Fig. 6. This comparison is shown in Fig. 10.

We find a striking difference in the overall shape of the dis-
tributions and the central intervals at 68% (95%) probability.
Clearly, the “naive” procedure fails to validate, yielding large
deviations from the benchmark point in Eq. (21) in all three
sectors. Our results illustrate that our approach is essential
for a faithful reinterpretation of the experimental results of
B → Kνν̄.

We want to emphasize that our method provides a means
to ensure an accurate interpretation of the existing likelihood
beyond the assumptions of the underlying signal model. This
does not imply, however, that our interpretation is more pre-
cise than a naive BSM interpretation. Put differently, our
approach eliminates a bias introduced by using an incorrect
template for the decay’s kinematic distribution, however, at
the expense of potentially larger uncertainties on the theory
parameters.

5 Discussion and significance of the method

We present a novel reinterpretation method for particle
physics results, which is simple in its application and requires
only minimal information in addition to published likeli-
hoods.

Our proposed method avoids biases that are introduced in
the naive reinterpretation of the data at a negligible increase
of compute time. As such, it provides most of the benefits of
reinterpretation using full analysis preservation. Therefore,
this method provides good trade-off between accuracy and
speed, which also has the potential to be used for improv-
ing the accuracy of global effective field theory fits to many
analysis results.

To showcase the method, we apply it to a simulated dataset
of the B → Kνν̄ decay, inspired by the recent Belle II anal-
ysis [19] but without resorting to using any public or private
Belle II data.

Using the two examples discussed in Sect. 4, we vali-
date our method by successfully recovering the benchmark
theory point from the underlying synthetic data. This out-
come underscores the accuracy and self-consistency of our
approach. We further investigate the bias introduced by naive
rescaling of the B → Kνν̄ branching ratio. For our bench-
mark point, we find a sizable bias when determining the WET
Wilson coefficient without the application of our method.

In conclusion, this paper illustrates the ease of applicabil-
ity of and the urgent necessity for shape-respecting reinter-
pretation over the traditional approach. We hope that this
work will motivate experimental collaborations and ana-
lysts to consider future reinterpretability of their results and
to publish the necessary material (for further details, see
Appendix C). This will, in turn, enable the whole community
to use the analysis results with accuracy.
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Appendix A: Code repository and examples

The code is available at this repository [37]. In theexamples
folder, one can find the examples described in this work.

Statistical inference is performed using pyhf [14,15].
Theoretical predictions are obtained from EOS [33,34].

Appendix B: Singular value decomposition

Singular value decomposition is a useful method for decor-
relating a set of parameters by a unitary transformation.

In our case, we start with a covariance matrix C, which is
symmetric. Hence, we can always decompose it as

C = USUH

whereUUH = 1. The columns of the transformation matrix
U are the eigenvectors of C. The eigenvalues, si = Sii , are
the variances in the rotated space. The standard deviations
are σi = √

si .
If we want to incorporate the variances, we can define a

new transformation matrix Z = U
√
S. Z is column-wise

composed of the eigenvectors of C, each of which is now
scaled by the corresponding standard deviation.

The pyhf modifier parameters, p, describe the contribu-
tion of each of these scaled eigenvectors. Hence, to rotate
from these parameters to the standard deviation vector for
the correlated parameters, α, we can use

σα = Z p.

That way, the modifier parameters are all interpretable in
the same way as the usual pyhf modifier parameters, i.e.
that a pi = ±1 corresponds to a shift of ±σi along the i th

eigenvector direction.

Appendix C: A recipe for application of this reinterpre-
tation method

To assist with an easy application of this reinterpretation
method to any analysis, we provide a simple 4-step guide
on what needs to be done to reinterpret a result from high

energy physics. We focus here on the discrete approach of
Sect. 2.1.

1. Samples. Gather your post-reconstruction samples and
ensure that they contain information of all kinematic d.o.f.
as well as the reconstruction variable.

2. Null joint number density. From these samples, build the
null joint number density by simply binning samples in
bins of the reconstruction variable times the kinematic
d.o.f. (see Appendix C.1 on how to optimize the kinematic
binning).

3. Weights. Identify your null prediction used for producing
the original MC samples. Chose your alternative theoret-
ical prediction(s) and ensure that the support of the null
distribution covers the full range of the alternative distri-
bution (this can also be done by setting an upper bound
on the weights). Compute the weights as the ratio of the
bin-integrated alternative to the bin-integrated null distri-
bution (as in Eq. (6)).

4. Inference. Either making use of the code in [37] or by
implementing Eq. (7), compute the expected yields, given
the alternative prediction, making use of the joint number
density and the computed weights. Using either pyhf
[14,15] or alternative tools, statistical inference can be
used to compute results for the alternative theory.

C.1. Kinematic binning

To obtain suggestions on the number of bins to use for the
kinematic variable(s), one can follow a similar procedure, as
already mentioned in Sect. 4.1.2.

For a large set of models, covering your parameter space
as thoroughly as possible, compute the expected yields for
a finer and finer binning in the kinematic d.o.f. (a new joint
number density and new weights need to be computed every
time). At each step, compute the difference to the results
of the previous step and stop when reaching a pre-defined
convergence condition. The maximum number of bins over
all the looped models should give a good estimate on the
number of kinematic bins to use.
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