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A B S T R A C T   

In recent years, there has been a surge in research efforts dedicated to harnessing the capabilities of Large 
Language Models (LLMs) in various domains, particularly in material science. This paper delves into the 
transformative role of LLMs within Electronic Laboratory Notebooks (ELNs) for scientific research. ELNs 
represent a pivotal technological advancement, providing a digital platform for researchers to record and manage 
their experiments, data, and findings. This study explores the potential of LLMs to revolutionize fundamental 
aspects of science, including experimental methodologies, data analysis, and knowledge extraction within the 
ELN framework. We present a demonstrative showcase of LLM applications in ELN environments and, further
more, we conduct a series of empirical evaluations to critically assess the practical impact of LLMs in enhancing 
research processes within the dynamic field of materials science. Our findings illustrate how LLMs can signifi
cantly elevate the quality and efficiency of research outcomes in ELNs, thereby advancing knowledge and 
innovation in materials science research and beyond.   

1. Introduction 

In recent years, Large Language Models (LLMs) have gained wide
spread attention as competent tools in artificial intelligence [1–3]. 
Initially known for their roles in applications such as chatbots, virtual 
assistants, and text generation, LLMs have rapidly expanded their in
fluence across diverse fields. Scientific research promises to transform 
how experiments are conducted fundamentally, data is analyzed, and 
insights are generated. This paper embarks on a comprehensive explo
ration of LLMs in materials science, covering their fundamental con
cepts, practical applications, a comparative analysis of their 
effectiveness, and the development of specialized LLMs. We also delve 
into their integration into digital research environments like Electronic 
Laboratory Notebooks (ELNs) and provide insights into their practical 
use in streamlining research workflows. The paper culminates in an 
LLM-ELN demonstration, offering hands-on experience of these models’ 
transformative potential. Finally, we conduct a comprehensive evalua
tion to assess their real-world impact and potential across scientific 
domains. 

1.1. Large language model (LLM) 

A Large Language Model is an artificial intelligence algorithm 
meticulously trained on vast amounts of text data to understand 
grammar, syntax, context, semantics, and word associations [1,4–6]. 
They excel in language-related tasks, such as translation, sentiment 
analysis, and question-answering. Prominent examples of LLMs include 
GPT-4 [7,8], BERT [9,10], and Transformer models [11], which have 
significantly advanced natural language processing capabilities. 

1.1.1. LLMs in materials science 
In materials science, where the quest for new materials with specific 

properties is constantly pursued, offer promising opportunities [12–17]. 
They can assist scientists in various critical tasks related to materials 
research, including data analysis, summarization of research papers, 
predicting material properties, and even generating novel material 
compositions. Researchers can expedite their work and make more 
informed decisions by leveraging the language model’s profound un
derstanding of materials-related content. 

To provide an extensive overview of the existing research about large 
language models in this field, we investigated 200 papers in the Scopus 
repository as of May 2024. As depicted in Fig. 1, we conducted a word 
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cloud analysis of these papers. This analysis revealed that the predom
inant focus of current research lies in the domain of large language 
models in materials science. However, it is noteworthy that a substantial 
body of work also delves into bioinformatics, encompassing computa
tional biology, protein conformation, gene ontology, drug discovery, 
and sequence alignment. Similarly, the domain of chemistry exhibits 
considerable attention, particularly in the study of metal-organic 
frameworks and material property prediction, among other facets. 
This observation is further emphasized by Fig. 2, which illustrates the 
distribution of submitted papers across diverse fields, thereby under
scoring the demand for increased research and development efforts 
within these domains. 

In our study on Large Language Models (LLMs) within the field of 
Materials Science, we harnessed the power of VOSviewer to construct a 
comprehensive network visualization. We extracted keywords from the 
titles and abstracts of 200 research papers, allowing us to delve deep into 
the intricate web of relationships between these keywords. To enhance 
the clarity of our visualization, we employed varying colors to highlight 
individual keywords along with their closely related counterparts within 
the same paper. This approach illuminated the central themes within 
each paper. It shed light on the interconnectedness of keywords across 
the entire corpus of research, providing a visually compelling repre
sentation of the multifaceted landscape of LLMs in Materials Science 
(Fig. 3). 

1.2. Materials science language models 

to better understand the potential of LLMs in materials science, it is 
essential to compare some of the leading models: 

1. GPT-4 (Generative Pre-trained Transformer 4): Known for its versa
tility, GPT-4 can provide context-aware answers to complex ques
tions related to materials science. Its ability to generate human-like 
text makes it valuable for summarizing research papers and 
explaining intricate scientific concepts [18–20].  

2. BERT (Bidirectional Encoder Representations from Transformers): 
BERT’s bidirectional attention mechanism enables it to grasp context 
effectively, which is particularly useful for sentiment analysis in 
materials research. Understanding the sentiment behind research 
findings can help scientists gauge the impact and reception of their 
work [21].  

3. Transformer Models: Transformer models, known for their self- 
attention mechanisms, excel in processing data sequences, which is 
common in materials science experiments. They can analyze the 
sequential data generated during experiments and identify patterns 
or anomalies [21–23]. 

1.3. Building private LLM for materials science 

A domain-specific Large Language Model is a specialized variant of a 
large language model fine-tuned to excel in understanding and gener
ating text related to a specific field or industry, such as healthcare 
[24–26], law [27], finance [28,29], or materials science [13,30], by 
learning the specialized terminology and context within that domain 
[31,32]. Developing and integrating a domain-specific LLM can be a 
transformative step in advancing research and innovation. This 
specialized LLM is tailored to the specific needs and complexities of the 
materials science domain, empowering researchers with advanced nat
ural language understanding and capabilities. The process of creating 
and utilizing such a model involves several key steps. Data collection 
forms the foundation of a domain-specific LLM, as the quality and 
comprehensiveness of the training data directly impact its effectiveness. 
Researchers gather an extensive and diverse dataset comprising texts 
from reputable sources, including research papers, scientific journals, 
conference proceedings, and laboratory reports. Once assembled, this 

Fig. 1. Word cloud analysis of all the 200 papers.  

Fig. 2. shows the distribution of LLM papers submitted across various fields.  
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dataset undergoes meticulous preparation. This phase involves tokeni
zation, dividing the text into meaningful units, such as words or sub
words. Standardization and consistency across the dataset are crucial for 
practical training. The heart of domain-specific LLM development lies in 
the fine-tuning process. Researchers adapt a pre-existing language 
model to materials science by fine-tuning it on the prepared dataset. This 
step involves adjusting hyperparameters and extensive training to 
ensure that the LLM comprehends the nuances of materials science 
terminology and context. Ensuring data quality is paramount 
throughout this process. Researchers meticulously clean the dataset to 
eliminate irrelevant or noisy text. Any missing or inconsistent data is 
addressed to maintain a high standard of data quality. A clean dataset is 
essential for the model’s accuracy and relevance. Incorporating a 
domain-specific LLM into materials science research signifies a signifi
cant leap in efficiency and effectiveness. This specialized model becomes 
a vital companion for researchers, aiding them in comprehending 
intricate concepts, predicting outcomes, and exploring new avenues in 
materials research. Its integration into the research workflow promises 
to streamline processes, expedite discoveries, and enhance the overall 
scientific journey in materials science. The flowchart of the process 
shows in Fig. 4. 

1.4. Applications of materials science language models 

The applications of materials science language models are extensive 
and include: 

1.4.1. Predicting material properties 
Addressing the challenge of predicting material properties, the code 

in Fig. 5 utilizes a pre-trained Language Model (LLM) to classify the pore 
size of Metal-Organic Frameworks (MOFs) based on their descriptions. 
By defining categories and providing detailed descriptions for pore sizes, 
the code establishes a framework for automated classification. It then 
constructs a system prompt instructing the LLM on its task, which in
volves analyzing the MOF description and determining the appropriate 
pore size category. Leveraging the capabilities of the OpenAI GPT-4 
Turbo model, the code initiates a chat-based interaction with the LLM, 
prompting it to generate a response predicting the pore size 
classification. 

1.4.2. Discovery of the materials 
The discovery of novel materials with desired properties is a central 

goal in materials science. LLMs can play a ↱pivotal role in this pursuit by 
assisting in identifying promising candidates. They can analyze vast 
datasets of ↱known materials and their properties to suggest potential 
materials that exhibit the desired characteristics. This ↱data-driven 
approach can significantly narrow down the search space for experi
mentalists, saving time and ↱resources [30,33,34]. For instance, to 
address the challenge of enhancing gas adsorption in Metal-Organic 
Frameworks (MOFs), materials scientists often seek innovative compo
sitions. Large Language Models offer a solution by suggesting novel 

Fig. 3. Network Visualization of Keywords in LLM Research within Materials Science.  

Fig. 4. Building Private LLM for Materials Science.  

M. Jalali et al.                                                                                                                                                                                                                                   



Materials Today Communications 40 (2024) 109801

4

material combinations. Leveraging their extensive knowledge, LLMs 
propose compositions that may lead to breakthrough discoveries. In the 
provided Python code, we use the OpenAI API to utilize LLMs, specif
ically the GPT-4 Turbo model, for generating innovative MOF compo
sitions aimed at enhancing gas adsorption (Fig. 6). 

1.4.3. Intelligent properties extraction 
One common challenge in materials science research is the extrac

tion of relevant features and properties from scientific literature. Sci
entific texts often contain vast amounts of information presented in 
diverse formats and varying wordings. This diversity can make it chal
lenging for researchers to efficiently extract specific details, such as the 
composition of Metal-Organic Frameworks (MOFs), their structural 
properties, or their performance characteristics. Additionally, nuances 
in language and terminology further complicate the extraction process, 
requiring a deep understanding of both the semantic and contextual 
aspects of the text. To address this challenge, intelligent extraction 
methods are necessary. These methods leverage advanced natural lan
guage processing (NLP) techniques to interpret the meaning and context 
of scientific texts. By employing sophisticated algorithms that can 

understand the nuances of language and recognize patterns in the data, 
researchers can automate the extraction process and efficiently retrieve 
the desired information from scientific literature. 

For example, consider the code snippet provided in Fig. 7. It dem
onstrates an intelligent extraction approach using the GPT-4 Turbo 
model to extract specific properties of MOFs from a complex scientific 
text. The function extract_mof_properties takes as input a text descrip
tion of a MOF and a list of queries regarding its properties. It then utilizes 
the GPT-4 Turbo model to interpret the queries in the context of the text 
and generate accurate responses. 

1.4.4. Sentiment analysis in materials science 
involves applying natural language processing techniques to eval

uate the sentiment or emotional tone expressed in textual data related to 
materials, research findings, or reviews. This analysis can help re
searchers and engineers gauge the positivity or negativity of opinions, 
comments, or reviews about specific materials, material properties, or 
innovations. Sentiment analysis in materials science contributes to un
derstanding researcher sentiment, assessing confidence levels in finding 
and identifying trends, monitoring public perception, supporting 

Fig. 5. A Demonstrative python code for predicting material properties using large language models.  

Fig. 6. Demonstrative python code for generating ideas for generating innovative mof compositions for enhanced gas adsorption.  
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decision-making, and assessing publication quality. 
The provided Python code in Fig. 8 showcases the implementation of 

sentiment analysis within the realm of materials science utilizing a Large 
Language Model. Leveraging a pre-trained model, it discerns sentiment 
polarity, categorizing it as either "Positive" or "Negative," from supplied 
material review texts. This code illustrates the capacity of LLMs to aid 
researchers in autonomously gauging sentiment surrounding critical 
feedback on MOF Material Stability. The analysis output conveys a 
negative sentiment, indicating the expressed disappointment towards 
the stability of MOFs under operational conditions. Furthermore, it 
critiques the perceived lack of progress in fortifying their robustness, 
which it contends constrains their practical applications. 

2. Integration of large language models into electronic lab 
notebooks (ELNs) for materials science 

Electronic Lab Notebooks (ELNs) offer significant advantages when 
utilized with care in materials science. They play a crucial role in 
facilitating the systematic capture of data and information, ensuring 
consistency, accessibility, and usability for both current and future 
generations of scientists. ELNs can effectively address various challenges 
inherent in materials research. One prominent advantage is their 
alignment with open science principles, allowing for seamless data 

sharing within research organizations and compliance with the FAIR 
Data Principles [35,36]. These principles emphasize the importance of 
data being findable, accessible, interoperable, and reusable, which is 
essential in materials science for collaborative research and knowledge 
dissemination. 

Furthermore, integrating ELNs with institutional data repositories 
presents exciting opportunities for enhancing research data manage
ment practices [37]. For instance, they enable researchers to directly 
deposit their data into institutional repositories through the ELN inter
face, simplifying the data archival process. ELNs also offer versatility by 
abstracting users from the intricacies of underlying notebook storage 
technologies. They empower scientists to implement decentralized re
cord storage solutions, leveraging blockchain and peer-to-peer 
networking technologies [38]. This enhances data accountability and 
reduces reliance on a single repository for long-term data storage. By 
adopting this decentralized approach, data integrity verification, 
including laboratory notebook entries and scientific data, is distributed 
among consortium members, contributing to enhanced data security and 
trustworthiness. 

Moreover, ELNs serve as the primary gateway to research data, 
opening opportunities for seamless integration with computational 
techniques. Researchers can explore the integration of ELNs with 
computational semantic technologies, which enable the automatic 

Fig. 7. Demonstrative Python code for materials discovery.  

Fig. 8. Sentiment analysis of critical feedback on MOF material stability using GPT-4 turbo.  
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inference of human language’s meaning. This capability has the poten
tial to automatically derive research metadata, simplifying data retrieval 
and search efforts. Additionally, it can facilitate the creation of auto
mated insights by connecting relevant data points, a valuable feature for 
scientists striving to uncover patterns and trends within their datasets. 
The meticulous implementation of ELNs within the field of materials 
science calls for a deep understanding of laboratory practices and a 
strategic approach to managing potential entry barriers. Successful 
integration of ELNs can significantly contribute to advancing knowledge 
within the science community. It is imperative to secure sustained 
institutional support, recognizing that the typical lifespan of ELN soft
ware packages is approximately seven years to ensure the ongoing 
benefits and continuity of research efforts in materials science [35]. 

Electronic Lab Notebooks (ELNs) have emerged as indispensable 
tools for enhancing data management, collaboration, and transparency 
in the fast-evolving landscape of scientific research. This state-of-the-art 
review examines prominent ELNs significantly contributing to various 
scientific disciplines, including Kadi4Mat, a research data infrastructure 
for materials science [39]. It empowers researchers to document ex
periments, manage data, and promote collaboration efficiently. ELOG 
[35] stands out for its robust data recording capabilities, ensuring 
meticulous documentation of experimental work. eLabFTW [40] offers a 
user-friendly interface that simplifies data organization and access. The 
groundbreaking introduction of the initial online electronic laboratory 
notebook, eCAT, was documented in reference [41]. This comprehen
sive analysis underscores the pivotal role of ELNs in modern scientific 
research and highlights their potential to shape the future of data-driven 
discovery. 

Challenges in implementing ELNs in materials science are multifac
eted. First, scientists grapple with integrating and standardizing a wide 
array of data types, ranging from complex chemical compositions to 
structural data and physical properties. This diversity makes maintain
ing a consistent data entry and nomenclature standard within the ELN a 
formidable challenge. Additionally, integrating specialized instruments, 
vital for many experiments, demands technical expertise to ensure 
seamless data capture and compatibility. Moreover, the need to safe
guard sensitive research data and proprietary information heightens the 
importance of robust data security measures, adding an extra layer of 
complexity. Furthermore, a persistent challenge lies in addressing sci
entists’ perceptions that the information kept in ELNs is often underu
tilized and overlooked, leading to the belief that ELNs can be 
burdensome and uninspiring. 

The integration of Large Language Models into Electronic Laboratory 
Notebooks revolutionizes materials science research, offering unparal
leled data management, analysis, and collaboration capabilities, signif
icantly streamlining research workflows and fostering cross-disciplinary 
communication (see Table 1). LLMs address the challenge of efficient 
search and retrieval of information within ELNs by enabling quick and 
accurate searches for specific experiments and materials properties, 
enhancing accessibility and informed decision-making in materials 
development. Additionally, LLMs facilitate contextual data analysis, 
deciphering complex ELN entries and transforming them into under
standable insights tailored to the materials domain. Moreover, LLMs 
accelerate the documentation process in materials science research by 
offering autocompletion and contextual assistance with materials- 
specific terminology, allowing researchers to focus more on experi
mentation and analysis. LLMs demonstrate their predictive analytics 
capabilities by predicting critical outcomes based on historical ELN data, 
aiding in informed decision-making for future experiments and material 
design. Furthermore, LLMs bridge the gap between ELN data and science 
literature, helping researchers identify related work, stay updated with 
advancements, and discover new areas for exploration and innovation. 
In terms of collaboration, LLMs enable dispersed research teams to 
collectively analyze ELN data, fostering knowledge sharing and ensuring 
a shared understanding of results crucial for advancing materials 
research. Data security and ethics are ensured with LLMs, which can 

automatically redact or secure sensitive information related to pro
prietary materials formulations and intellectual property, safeguarding 
the integrity of materials research. To maximize the benefits of LLMs in 
materials science, fine-tuning and training on domain-specific ELN data 
are essential, enhancing their performance within the materials domain. 
Despite their promise, challenges such as mitigating biases in LLM 
predictions require active research to ensure the reliability and ethical 
use of these advanced tools. In conclusion, the integration of LLMs into 
ELNs revolutionizes materials science research, enhancing efficiency, 
knowledge sharing, and prediction capabilities, renewing enthusiasm 
for exploration and pushing the boundaries of the field. Essential pre
requisites for successful adoption include hardware, software, data 

Table 1 
Integration of large language models into electronic laboratory notebooks for 
materials science ↱research.  

Aspect Description 

Revolutionizing 
Research 

Data Management & Analysis  

- Streamlined research workflows and cross-disciplinary 
communication through improved data management 
and analysis capabilities  
- Fostering collaborative research and enhancing data 
retrieval 

Search & Retrieval Efficient Searches  
- Quick and accurate searches for specific experiments 
and material properties within ELNs  
- Improved decision-making by enhancing data 
accessibility 

Contextual Analysis Enhanced Understanding  
- Deciphering complex ELN entries into understandable 
insights specific to materials science  
- Tailored analysis to suit the materials domain 

Documentation 
Assistance 

Autocomplete & Terminology Support  

- Contextual assistance with materials-specific 
terminology, improving documentation quality  
- Researchers can focus more on experimentation and 
analysis 

Predictive Analytics Outcome Predictions  
- Predicting critical outcomes based on historical ELN 
data  
- Aiding in informed decision-making for future 
experiments and material design 

Bridging ELN Data & 
Literature 

Related Work Identification  

- Connecting ELN data with related materials science 
literature  
- Discovering new areas for exploration and innovation 

Collaboration Knowledge Sharing  
- Collective ELN data analysis among dispersed research 
teams  
- Ensuring a shared understanding of results, crucial for 
advancing materials research 

Security & Ethics Data Security  
- Automatic redaction and securing sensitive proprietary 
formulations and intellectual property  
- Safeguarding the integrity of materials research 

Customization & Fine- 
Tuning 

Domain-Specific Performance  

- Training and fine-tuning on domain-specific ELN data  
- Enhancing performance within the materials domain 

Challenges Bias Mitigation  
- Addressing biases in LLM predictions  
- Ensuring reliability and ethical use 

Adoption Prerequisites Hardware & Software  
- Robust hardware, software, data storage, 
computational resources, and time  
- Facilitating the development and utilization of LLMs in 
materials science research 

Conclusion Revolutionizing Materials Research  
- Enhancing efficiency, knowledge sharing, and 
predictive capabilities  
- Renewing exploration enthusiasm and pushing the 
field’s boundaries  
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storage, computational resources, and time, each playing a distinct role 
in facilitating the development and utilization of these powerful lan
guage models within this research field. 

3. Approach for incorporating LLMs in the eLabFTW ELN 

Integrating a Language Model into an Electronic Laboratory Note
book such as eLabFTW [42] offers a transformative approach to research 
workflows, as illustrated in the diagram. The workflow highlights the 
seamless interaction between internal data storage, text analysis, and 
ELN content via a central LLM system. This allows researchers to input 
natural language queries and receive detailed responses directly. For 
instance, the HKUST-1 experiment is described with recommendations 
on how long the sample should be left in the oven at 425◦C to remove all 
water and carbonyls effectively (see Fig. 9). 

The four critical phases involved in this integration are examined in 
detail. 

3.1. Pre-integration planning 

Integrating LLMs into an ELN begins with thorough pre-integration 
planning to ensure alignment with the laboratory’s specific needs and 
objectives. This involves a comprehensive needs assessment to identify 
areas where LLMs can add value, such as automating data interpretation 
or simplifying documentation. The selection of an appropriate LLM 
model that aligns with laboratory requirements is crucial, alongside 
securing authorized API access as the gateway for data exchange be
tween eLabFTW and the LLM. 

3.2. Data handling and interaction 

Efficient data handling and interaction form the core of LLM inte
gration within eLabFTW. Experimental data is gathered, structured, and 
preprocessed for integration, while user-friendly interfaces empower 
researchers to interact seamlessly with the LLM. These interfaces allow 
them to input data or queries and receive responses in natural language. 
The LLM analyzes the data, generates insights, and automates docu
mentation, leveraging natural language processing to aid researchers in 
making informed decisions. 

3.3. Quality assurance and compliance 

Quality assurance and compliance ensure integration reliability, se
curity, and compliance. Rigorous testing validates performance, while 
robust data security measures safeguard sensitive experimental data. 
Ethical considerations include responsible AI usage and compliance with 
relevant regulations. Scalability measures accommodate future data 
growth, and regular maintenance keeps the integration up-to-date and 
adaptable. 

3.4. Deployment and continuous improvement 

The deployment phase emphasizes user training and documentation 
to facilitate widespread access to the LLM features within eLabFTW. 
Continuous monitoring of metrics like response times and accuracy 
ensures the integration meets expectations. An iterative development 
approach driven by user feedback guarantees adaptability. By 
embracing this comprehensive workflow, laboratories can harness the 
transformative potential of LLMs, elevating research processes and the 
overall quality of scientific work. 

This study used the GPT-4 model as a pre-trained language model to 
enhance our research in ELNs. Although we also explored fine-tuning 
using GPT-3.5, the results were suboptimal due to the limited avail
ability of ELN data, which is crucial for effective fine-tuning. Insufficient 
data can lead to poorer performance than solely using a robust pre- 
trained model like GPT-4. For future work, we plan to fine-tune using 
more extensive datasets and explore models such as LLaMA, which may 
provide improved performance if more comprehensive ELN data be
comes available. This will allow us to better leverage the capabilities of 
these models for our specific domain needs. 

4. Application of generated response by LLM in ELN 

We categorized the generated responses and applications of using 
LLMs in ELNs into three categories: "Experiment Information," "Experi
mental Parameters," and "Documentation and Reports," to streamline 
research workflows and maintain high documentation standards. 

4.1. Experiment information 

This category emphasizes clarity, accountability, and effective 
communication in laboratory research. By defining sub-categories like 

Fig. 9. Illustration of Large Language Model Ecosystem in eLabFTW.  
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Experimenter (e.g., Shuang Chen and THEO team for the HKUST-1 
experiment), Objective (evaluating CO adsorption bands on HKUST-1 
at room temperature), and Summary (concise experiment overview), 
researchers ensure clear attribution and research direction. The Us
ability sub-category provides practical applications, such as under
standing HKUST-1’s role in environmental filtration. Experiment Re- 
Planning offers suggestions to improve future experiments, like veri
fying initial conditions and statistical analysis, and enhancing replica
bility and reliability. 

4.2. Experimental parameters 

Comprehensive documentation is essential for replicability. Defining 
the Procedure Stage (e.g., oven cleaning, sample heating, and cooling), 
the Sample (HKUST-1, a metal-organic framework composed of copper 
ions and BTC ligands), the Equipment (oven, DRIFTS cell, LN MCT De
tector, Microscopes), and Safety (using water and active carbon traps, 
maintaining an Argon atmosphere) provide a clear experimental road
map. This ensures consistent results, minimizes errors, and maintains 
safety standards, as shown in the detailed HKUST-1 experiment list. 
Integrating 

4.3. Documentation and reports 

Maintaining quality and consistency in documentation and reporting 
is crucial for research credibility. Report Writing emphasizes generating 
high-quality reports reflecting the experimental process and findings (e. 
g., successful CO adsorption on HKUST-1). Documentation Standards 
ensure clarity, organization, and compliance, enabling efficient peer 
review and regulatory compliance. For instance, detailed safety pro
tocols like using Ar for leak checks and flushing post-CO adsorption 
illustrate adherence to rigorous standards. 

By thoughtfully categorizing generated answers into these segments, 
laboratories can streamline their data management, improve researcher 
communication, and maintain high standards of documentation integ
rity. Integrating LLMs into ELNs enhances research processes and ele
vates scientific endeavors’ quality and transparency. 

The program we’ve developed is Chabot for researchers and scien
tists, streamlining laboratory research by providing tailored AI-driven 
responses to user queries within Electronic Laboratory Notebook docu
ments (Fig. 10). Seamlessly integrating Large Language Models into the 
ELN environment offers efficient access to essential information without 
manual document searches. 

The user-friendly interface includes a text box for inputting ques
tions, and by clicking the submit button, users promptly receive accurate 
responses. A noteworthy feature is the word cloud, a dynamic visual 
summary of frequently occurring keywords in ELN documents (Fig. 11). 
This visual aid complements detailed textual responses, simplifying in
formation retrieval and data navigation, benefiting research produc
tivity and decision-making. The program, exemplified by the word 
cloud, enhances usability and efficiency, empowering researchers to 
harness LLM capabilities effectively. 

In this demonstration, we showcase the integration of Large Lan
guage Models into Electronic Laboratory Notebooks to streamline 
research processes and provide instant access to critical information. By 
addressing specific user inquiries, we illustrate how ELNs equipped with 
LLM capabilities can enhance data management and knowledge 
retrieval for researchers. In this case study, we applied Large Language 
Model to streamline the workflow for an experiment investigating car
bon monoxide adsorption on the metal-organic framework HKUST-1. 
Here, we present specific examples of LLM-generated answers, high
lighting their relevance and benefits. 

4.4. Primary objective of the experiment 

When asked about the primary objective of the experiment, the LLM 
responded concisely. This direct answer facilitates efficient communi
cation of experimental goals, making it easier to summarize findings 

Fig. 10. Snapshot of the LLM-ELN application.  

Fig. 11. Presentation of the most influential tokens in LLM-ELN Interaction. 
Word clouds highlight tokens with a significant impact on responses generated 
by our program. Tokens’ font sizes represent their influence, and color differ
entiation aids in distinguishing closely related terms. 
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↱and align research directions.↱  
The primary objective of the experiment was to evaluate the adsorption 
bands of CO on HKUST-1 at room temperature.  

4.5. Sample heating procedure 

Another prompt addressed the rationale behind heating samples in 
an argon (Ar) atmosphere; this comprehensive answer clarifies the 
preparation procedures, helping researchers maintain consistency and 
ensure reproducibility.  

The reason for heating the samples in an Ar atmosphere and then 
cooling them down is primarily to clean the sample by removing any 
residual water solvent traces or adsorbed contaminants. This ensures 
that the sample surface is clean and suitable for accurate subsequent 
analysis of CO adsorption without interference from other substances.  

We organize procedural details into Table 2 for clarity. 

4.6. Usability of the experiment 

The LLM elaborated on the usability of the CO adsorption experi
ment; these insights demonstrate how LLMs can synthesize potential 
applications and benefits, contributing to a comprehensive under
standing of the experiment’s relevance.  

Material Science and Chemistry: Understanding HKUST-1’s adsorption 
of CO is crucial for selective gas filtration, especially in CO-rich 
environments. 
Environmental Applications: HKUST-1’s CO adsorption at room 
temperature could aid air purification in enclosed spaces like parking 
lots or industrial areas. 
Industrial Safety: Industries producing CO could use HKUST-1 for 
active adsorption, reducing CO poisoning risk. 
Research and Development: This research advances metal-organic 
framework (MOF) applications in gas storage and catalysis, improving 
HKUST-1’s efficiency and selectivity. 
Academic and Scientific Insight: Results offer a baseline for comparing 
CO adsorption capacities among different materials, informing 
academic discussions on gas-solid interactions.  

We have tabulated the usability insights generated by the LLM in  
Table 3. 

4.7. Suggestions for experiment optimization 

When prompted for suggestions to optimize the experiment, the LLM 
generated valuable recommendations, these suggestions, tailored to the 
experimental setup, demonstrate how LLMs can guide researchers in 
enhancing their methodologies. 

4.7.1. Increasing replicability  

Provide detailed procedural steps including equipment brand and 
model to ensure reproducibility.  

4.7.2. Verification of initial condition  

Confirm equipment cleanliness with control samples, including blank 
runs without any sample, to establish baseline conditions before the 
experiment.  

Sample Preparation Consistency:  

Specify sample preparation details such as the weight or volume of 
HKUST-1 used to ensure consistency across trials and minimize 
variability.  

4.7.3. Statistical analysis  

Perform multiple replicates of the experiment to enable robust 
statistical analysis, affirming the reliability of findings by 
understanding data variation.  

4.7.4. Temperature control  

Monitor and record temperature at various stages of the experiment, 
not just after heating or cooling, to mitigate the impact of inconsistent 
temperatures on results.  

Table 4 presents optimization suggestions in a table for quick 
reference. 

4.8. Equipment details and settings 

The LLM also provided detailed information about the equipment 
used; providing this equipment information helps researchers accurately 
replicate the experimental conditions. 

Table 2 ↱ 
Heating procedure for MOF preparation.  

Step Description 

Heating Atmosphere Argon (Ar) 
Heating Temperature 100◦C 
Heating Time 1 Hour 
Purpose Remove residual water solvent traces or contaminants 
Final Temperature Room Temperature (30◦C)  

Table 3 
Application areas of MOFs in CO adsorption.  

Application Area Details 

Material Science Selective gas filtration in CO-rich environments 
Environmental 

Applications 
Air purification in enclosed spaces like parking lots 

Industrial Safety Reduce CO poisoning risk in CO-producing industries 
Research and 

Development 
Advances MOF applications in gas storage and catalysis 

Academic and Scientific Establishes baseline for CO adsorption capacity 
comparison  

Table 4 
Recommendations for Improving Experiment Quality.  

Aspect Suggestion 

Replicability Provide detailed procedural steps including equipment brand 
and model 

Initial Condition Confirm equipment cleanliness with control samples 
Sample Preparation Specify weight/volume of HKUST-1 used 
Statistical Analysis Perform multiple replicates for robust statistical analysis 
Temperature 

Control 
Monitor and record temperature at various stages  
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4.8.1. Oven  

For cleaning water traps and trap with active carbon at 425 ◦C.  

4.8.2. Diffuse Reflectance Infrared Fourier Transform Spectroscopy 
(DRIFTS) Cell  

Used for measuring CO adsorption on HKUST-1.  

4.8.3. Liquid nitrogen mercury-cadmium-telluride (LN-MCT) detector  

Narrow internal position 2 for detecting the spectra.  

4.8.4. Computer setup  

Used for controlling experiments and data storage, with specifics 
located at D:\data\shuangchen\20230728-HKUST-1.  

Table 5 summarizes the equipment settings in a tabular format. 

4.9. Safety guidelines 

The LLM also identified critical safety rules mentioned in the 
experiment.  

Use of water and active carbon traps to remove all water and carbonyls. 
Operation in Argon atmosphere to maintain an inert environment and 
ensure no exposure to CO during critical stages. 
Leak checks using Argon to ensure system integrity and avoid gas leaks. 
Flushing system with Argon post-exposure to completely remove CO. 
Cooling protocol to manage temperature and reduce thermal hazards. 
Cleaning of DRIFTS cell to prevent contamination and maintain 
equipment integrity.  

4.10. LLM-generated predictions and property insights 

The LLM synthesizes data to provide an approximate adsorption 
capacity, reducing the need for extensive literature searches. This aids in 
quick comparisons and enhances data interpretation. In the following, 
we showcase three examples to demonstrate how it works. 

4.10.1. What is the CO adsorption capacity of HKUST-1 based on ELN 
data?  

(continued on next column)  

(continued ) 

HKUST-1 exhibits high adsorption capacity due to its porosity and 
surface area. Based on ELN data, the adsorption capacity of CO on 
HKUST-1 is estimated at 4.5 mmol/g. This aligns with previous 
research findings for MOF-199 structures.  

4.10.2. What does the CO adsorption isotherm look like for HKUST-1 at 
room temperature?  

The CO adsorption isotherm on HKUST-1 at RT follows a Type I 
isotherm. This suggests a strong affinity between HKUST-1 and CO, 
with saturation occurring rapidly at low pressures. The estimated 
Langmuir surface area is around 1600 m2/g.  

4.10.3. How does HKUST-1 behave during the desorption process of CO?  

During the desorption process, HKUST-1 releases adsorbed CO 
efficiently when flushed with Ar. The desorption process occurs rapidly 
within 10 minutes, indicating weak physisorption. The observed 
decrease in absorbance at 1400–1700 cm⁻1 supports this behavior.  

Table 6 Present the predictions and insights using a table for easy 
comparison. 

4.11. LLM-Generated Sentiment Analysis Examples 

By categorizing the comments into positive and neutral sentiments, 
the LLM provides insight into the experimenter’s confidence in the 
experimental setup and results. Positive comments suggest satisfaction 
with the preparation steps and adherence to protocols, while neutral 
comments indicate routine procedural steps. 

4.11.1. What is the overall sentiment of the comments made by the 
experimenter during the HKUST-1 CO adsorption experiment?  

The overall sentiment of the experimenter’s comments is positive. Below are some 
notable comments with their associated sentiments; Positive: Now it looks 
absolutely acceptable. We, with Eric, checked the Entry; you have permission to 
carry out all activities corresponding to this experiment.  

The integration of Large Language Models into Electronic Laboratory 
Notebooks showcases their potential to transform the way researchers 
access and interpret experimental data. In this case study, the LLM 
effectively provided answers, clarified procedures, suggested improve
ments, and offered safety guidelines, highlighting the value of LMs in 
streamlining research workflows. By enhancing data management, 
knowledge retrieval, and procedural optimization, LLMs in ELNs 
empower researchers to conduct more efficient, accurate, and repro
ducible experiments. This seamless blend of technology and research 
methodology promises to redefine laboratory practices, driving inno
vation and fostering deeper insights into scientific inquiry. 

Table 5 
Equipment and usage details.  

Equipment Details 

Oven Cleaning water traps and trap with active carbon at 425◦C 
DRIFTS Cell Measuring CO adsorption on HKUST-1 
LN-MCT Detector Narrow internal position 2, for detecting spectra 
Computer Setup D:\data\shuangchen\20230728-HKUST-1  

Table 6 
Predicted answers by LLM.  

Question LLM-Generated Answer 

CO Adsorption Capacity 4.5 mmol/g, aligning with previous research on MOF- 
199 structures 

CO Adsorption Isotherm Type I isotherm at room temperature (RT) 
Desorption Behavior of 

HKUST-1 
Rapid CO desorption within 10 minutes, weak 
physisorption  
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5. Evaluation 

In this section, we analyze the effectiveness of proposed models using 
the Cosine Similarity Score and Semantic Similarity Score [43], along
side assessing the time complexity of LLM-ELN during inference phase. 
Our comprehensive assessment includes comparing LLM outputs with 
direct responses from ChatGPT, utilizing both expert human and auto
mated metrics to determine performance accuracy and computational 
efficiency in real-time applications, such as processing PDF files and ELN 
documents. This evaluation is crucial for understanding the specific 
research needs within the eLabFTW environment and optimizing LLMs 
for enhanced research support. 

5.1. Cosine similarity score 

Cosine similarity measures how closely the generated responses 
(Generated) align in meaning with the reference responses (Reference). 
It is calculated by finding the cosine of the angle between the vector 
representations of the two texts, resulting in a score ranging from − 1–1. 
In practice, the score is typically normalized to range from 0 (no simi
larity) to 1 (perfect similarity). 

Cosine Similarity(Generated,Reference) =
Generated.Reference

‖Generated‖.‖Reference‖

Cosine similarity directly compares two texts without relying on 
advanced word embeddings or contextual models. Instead, it relies on 
simple frequency-based vectors or other basic text representations. 

5.2. Semantic similarity score 

Semantic similarity measures how closely two texts align in meaning. 
It is a useful metric for evaluating the conceptual relationship between 
texts, as it considers the context and semantics rather than focusing 
solely on exact word matches. By analyzing the meaning and concepts 
behind words, semantic similarity provides a score ranging from 0 (no 
similarity) to 1 (identical meaning). 

This metric can be calculated using word embeddings or contextual 
language models, which represent words or phrases in a high- 

dimensional vector space based on their semantic relationships. The 
similarity score, often represented as Sim(Generated, Reference), in
dicates how well the generated responses (Generated) match the refer
ence responses (Reference) in terms of meaning and content. Word 
vectors or contextual embeddings are used to represent text meaning
fully (Table 7). 

Semantic Similarity(Generated,Reference)

=
Emb_Generated.Embd_Reference

‖Emb_Generated‖.‖Emb_Reference‖

The comparative analysis of responses from LLM-ELN, Expert, and 
GPT reveals that LLM-ELN, which directly utilizes experimental data, 
consistently provides more accurate and detailed responses than both 
the Expert and GPT. Across all questions, LLM-ELN responses show high 
semantic similarity scores with Expert responses, indicating strong 
conceptual alignment, while low cosine similarity scores highlight ter
minology differences. 

For instance, in the question "How long does it take for CO to be 
absorbed by HKUST-1 at room temperature?", the LLM-ELN response 
provided a comprehensive, data-driven answer closely aligned with the 
Expert’s concise response. In contrast, GPT’s more general answer, not 
grounded in specific experimental data, showed a lower similarity with 
the Expert. 

Similarly, for the question "How is HKUST-1 cleaned before testing?", 
LLM-ELN presented a detailed seven-step cleaning process that closely 
aligned with the Expert response, while GPT focused more on techniques 
affecting CO absorption, resulting in lower similarity. 

Overall, integrating large language models with Electronic Labora
tory Notebooks enhances the accuracy and depth of scientific insights.  
Fig. 12 illustrates this comparative analysis. Thus, it was shown that 
LLM-ELN consistently provides more accurate and detailed answers than 
the Expert and GPT. In the four example queries, LLM-ELN responses 
have high semantic similarity with Expert responses but low cosine 
similarity, highlighting terminology differences. 

The time complexity of LLMs during inference is influenced by the 
specific architecture of the model. For example, transformer-based 
models such as GPT-4 exhibit a time complexity of O(n^2) per layer, 
where n represents the sequence length. This quadratic complexity is a 

Table 7 
Comparison of responses from LLM-ELN, Expert, and GPT in terms of cosine and semantic similarities, demonstrating the accuracy and detail provided by LLM-ELN 
responses.  

No Question LLM-ELN Expert GPT Cosine Similarity Semantic Similarity 

LLM- 
ELN - 
Expert 

LLM- 
ELN - 
GPT 

Expert - 
GPT 

LLM- 
ELN - 
Expert 

LLM- 
ELN - 
GPT 

Expert - 
GPT 

Q1 How long does it 
take for CO to be 
absorbed by 
HKUST-1 at RT? 

The experiment as 
detailed in the logs 
indicates that CO was 
allowed to be absorbed by 
HKUST-1 for up to 1 hour 
at room temperature. 

Based on the ELN 
data it takes about 
1 hour. 

The absorption rate of CO 
by HKUST-1 can vary 
based on several factors 
such as concentration, 
surface area, and 
conditions.  

0.1575  0.4597  0.1190  0.6978  0.8583  0.5611 

Q2 How is HKUST-1 
cleaned before 
testing? 

Describes a detailed 7-step 
cleaning process, 
including equipment setup 
and experimental 
conditions. 

Washing with 
EtOH, heating for 
X amount of time 
at 100◦C in Ar 
stream or vacuum. 

Discusses factors affecting 
CO absorption and various 
experimental techniques.  

0.1575  0.1898  0.0660  0.7768  0.8573  0.8121 

Q3 Can CO 
adsorption 
results on 
HKUST-1 be 
reproduced? 

Detailed explanation of 
reproducibility factors, 
including equipment 
settings, environmental 
conditions, and sample 
consistency. 

Yes, if the 
conditions are 
being kept the 
same. 

Reproducing CO 
adsorption results on 
HKUST-1 under identical 
conditions is theoretically 
possible but can be 
challenging.  

0.1575  0.4597  0.1190  0.6978  0.8583  0.5611 

Q4 What are the 
main findings 
from the CO 
adsorption 
experiment? 

Describes the 
methodology and 
preparation steps but lacks 
specific findings. 

Findings depend 
on the type of 
experiment 
performed. 

Provides a comprehensive 
overview of CO adsorption, 
including capacity, 
kinetics, and 
thermodynamics.  

0.2953  0.4011  0.2952  0.8226  0.9384  0.9015  
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result of the self-attention mechanisms integral to transformers. In our 
implementation, where LLM-ELN is used for processing PDF files in real- 
time, the time complexity is significantly affected by both the length and 
the number of ELN documents being processed. This aspect is critical in 
determining the feasibility and efficiency of using LLM-ELN in real- 
world applications where performance and speed are crucial. 

6. Conclusion and future direction 

This study explored the integration of Large Language Models 
(LLMs) with Electronic Laboratory Notebooks (ELNs), highlighting their 
transformative potential in scientific research. Our evaluation demon
strated that the LLM-ELN system significantly enhances data retrieval, 
documentation, and interpretation, making the research process more 
efficient and enabling data-driven decision-making. Using metrics such 
as Cosine Similarity and Semantic Similarity, we assessed the model’s 
performance, revealing that LLM-ELN responses closely aligned with 
expert responses in terms of semantic content despite some differences 
in terminology. Furthermore, we examined the time complexity of LLMs 
during inference, which is influenced by the length and number of ELN 
documents processed. 

Looking ahead, several vital areas warrant further exploration. First, 
enhancing the dataset size and diversity will be critical for improving 
the fine-tuning capabilities of models like GPT-4. Expanding the ELN 
data repository to include more comprehensive and varied experimental 
data could enhance the model’s accuracy and reliability. Developing 
user-friendly interfaces and tools that facilitate seamless interaction 
between LLMs and ELNs will also be essential for broader adoption in the 
scientific community. 

We plan to enhance the integration of outputs from LLM-ELN into 
repositories like the Novel Materials Discovery (NOMAD) repository 
[44,45]. This initiative will promote open science and provide global 
access to essential research data. The process involves extracting and 
organizing experimental data from ELNs using the LLM-ELN system and 
then formatting it to meet NOMAD’s standards for seamless integration. 
Additionally, we aim to refine this integration by incorporating the 
MSLE ontology [46], which effectively defines the semantics of mate
rials science laboratory equipment. This strategic enhancement will 
standardize and enrich ELN metadata, aligning it with MSLE’s frame
work to improve data sharing, interoperability, and analysis across 
platforms like NOMAD. This approach leverages the strengths of both 
MSLE and LLM-ELN to optimize scientific data management. 

Integrating Large Language Models (LLMs) with Electronic 

Laboratory Notebooks (ELNs) marks a significant advancement in sci
entific research. By refining these technologies and expanding their 
applications, we can significantly enhance the efficiency, transparency, 
and impact of scientific discovery, driving breakthroughs across various 
fields. Collaborative efforts among researchers, AI specialists, and 
domain experts are essential to unlocking the full potential of LLMs, 
revolutionizing laboratory research practices, and fostering innovation. 
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