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Abstract: Oil spillages on a sea’s or an ocean’s surface are a threat to marine and coastal ecosystems.
They are mainly caused by ship accidents, illegal discharge of oil from ships during cleaning and oil
seepage from natural reservoirs. Synthetic-Aperture Radar (SAR) has proved to be a useful tool for
analyzing oil spills, because it operates in all-day, all-weather conditions. An oil spill can typically be
seen as a dark stretch in SAR images and can often be detected through visual inspection. The major
challenge is to differentiate oil spills from look-alikes, i.e., low-wind areas, algae blooms and grease
ice, etc., that have a dark signature similar to that of an oil spill. It has been noted over time that oil
spill events in Pakistan’s territorial waters often remain undetected until the oil reaches the coastal
regions or it is located by concerned authorities during patrolling. A formal remote sensing-based
operational framework for oil spills detection in Pakistan’s Exclusive Economic Zone (EEZ) in the
Arabian Sea is urgently needed. In this paper, we report the use of an encoder–decoder-based
convolutional neural network trained on an annotated dataset comprising selected oil spill events
verified by the European Maritime Safety Agency (EMSA). The dataset encompasses multiple classes,
viz., sea surface, oil spill, look-alikes, ships and land. We processed Sentinel-1 acquisitions over the
EEZ from January 2017 to December 2023, and we thereby prepared a repository of SAR images for
the aforementioned duration. This repository contained images that had been vetted by SAR experts,
to trace and confirm oil spills. We tested the repository using the trained model, and, to our surprise,
we detected 92 previously unreported oil spill events within those seven years. In 2020, our model
detected 26 oil spills in the EEZ, which corresponds to the highest number of spills detected in a
single year; whereas in 2023, our model detected 10 oil spill events. In terms of the total surface area
covered by the spills, the worst year was 2021, with a cumulative 395 sq. km covered in oil or an
oil-like substance. On the whole, these are alarming figures.

Keywords: oil spills; Sentinel-1; Pakistan’s exclusive economic zone (EEZ); the Arabian sea; convolutional
neural networks (CNNs); semantic segmentation

1. Introduction

Oil spills are a major contributor to marine pollution and continue to pose a significant
threat to marine and coastal ecosystems. They are mainly caused by ship accidents, bilge
dumping and seepage from natural oil reservoirs [1]. In the last few decades, Synthetic-
Aperture Radar (SAR) has been widely used for detection and classification of oil spills
and look-alikes, because of its operational capability in all-day, all-weather conditions. Oil
spills dampen the capillary waves on the waters and reduce electromagnetic backscatter,
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making the oil spill appear as a dark stretch in SAR images [2]. These dark stretches can
also occur as a result of natural phenomena, such as low-wind areas, shallow waters, algae
blooms and grease ice, etc. [1]. These are generally known as look-alikes, and they render
the classification problem even more complex.

Several classification methods have been proposed in the literature, to discriminate
between oil spills and look-alikes in remote sensing data. In most of the cases, a three-step
procedure is followed: (1) detection of dark spots, (2) features extraction and (3) classi-
fication of oil spills and look-alikes regions. Solberg et al. [2] presented an automated
framework based on the three-step procedure to classify oil spills and look-alikes. How-
ever, this approach requires prior probability of the existence of the oil spill. A similar
probability-based approach was followed in [3], where subsequent images were compared,
to define templates and classify them as oil spills or look-alikes. The authors in [4] proposed
a pre-processing step that improves the classifier’s performance by using a level-set method
for image segmentation, as compared to the previous edge detection or threshold-based
approaches. CNNs are an efficient alternative to probabilistic and threshold-based ap-
proaches. They are more robust in handling classification problems. Towards this end,
several studies [5–9] were conducted to address the oil spill classification problem, using
CNNs. The advantage of using CNNs was that they could be trained end-to-end and learn
the input–output mapping from examples [10]. This end-to-end training would simplify the
task of defining critical thresholds and parameters, and would thereby reduce the human
effort in an otherwise solely expert analyst-based approach. To reduce the human effort,
both shallow and deep neural networks were exploited [11,12]. These studies claimed
high accuracy, but the results were based on only two classes, viz., oil spill and look-alikes.
SegNet [13] is a popular Deep Convolutional Neural Network (DCNN) for semantic seg-
mentation. An oil spill detection method based on SegNet was proposed and applied to
SAR images of a pre-confirmed oil spill [14]. The model performed well under high-clutter
conditions. However, the model was again based on and limited to classification of SAR
images into two (binary) classes, i.e., oil spill and look-alikes. Krestenitis et al. [15] proposed
a deep DCNN based on the architecture of DeepLab [8] for semantic segmentation of SAR
images into regions of interest, such as sea surface, oil spills, look-alikes, ships and land.
They showed that among the existing semantic segmentation models, DeepLabV3+ [16–18]
achieved the best performance.

Satellite-based SAR remote sensing makes oil spill detection possible from a regional
to a global scale. This is exemplified by the CleanSeaNet service [19] provided by the
European Maritime Security Agency (EMSA), which offers regular coverage over European
waters and reports oil spills. Similarly, several countries around the world that have
dedicated satellite missions for environmental monitoring are observing their waters for
any oil spills. However, to the best of our knowledge, there has been no systematic study
on the detection and classification of oil spills in Pakistani waters that could serve as a
motivation for this work. Due to the lack of a formal remote sensing-based early warning
system, typically oil spill events in these waters remain undetected. At times, oil spills
have not even been reported until the oil had spread to the beaches and local residents had
lodged complaints. We aimed to find out the spills that remained mostly undetected in
Pakistan’s Exclusive Economic Zone (EEZ)—wherein lie the primary maritime trade routes
of the country—in the Arabian Sea for the last seven years, i.e., January 2017–December
2023. Towards this end, we employed a DCNN-based method for multi-class semantic
segmentation of SAR images.

2. Data and Methods

In this work, we have developed an oil spill detection framework based on deep
learning and spaceborne SAR images, for the study area as shown in Figure 1. Our
framework relies on two datasets. The first dataset comprises selected verified oil spillages,
as observed in Sentinel-1 imagery and confirmed by EMSA authorities. The second dataset
is the one that we have prepared exclusively for Pakistan’s EEZ.
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Figure 1. Our study area in the Arabian sea, showing the extent of Pakistan’s Area of Responsibility
(AOR). It contains 240,000 km2 of Exclusive Economic Zone and 50,000 km2 of extended continental
shelf. Background: Google Maps.

2.1. Benchmark Dataset for Model Training

Krestenitis et al. [20] developed a labeled dataset of several oil spill events; it is publicly
available at URL: (https://mklab.iti.gr/, accessed on 23 September 2020). The dataset
contains spaceborne SAR acquisitions containing oil spill events verified by the EMSA
through the CleanSeaNet service. These SAR images are from the Sentinel-1 constellation
operated by the European Space Agency (ESA). The images cover a ground range of
approximately 250 km in Interferometric Wide (IW) swath mode with a resolution of 10 m.
The images are dual-polarized, i.e., VV and VH, but only VV polarized images were used
in developing the dataset. After a series of pre-processing steps, the authors retained
1112 SAR images, which were split into training and test data subsets comprising 1002 and
110 images [20], respectively. The dataset contains manually annotated ground truth masks
with a distinct RGB color assigned to each of the classes, viz., sea surface, land area, oil
spill, look-alikes and ships.

2.2. Dataset for Oil Spill Monitoring in Pakistan’s EEZ

Sentinel-1 acquires images regularly over the Arabian Sea, and the imagery is available
freely and openly under the Copernicus Program. We downloaded Sentinel-1 Ground
Range Detected High-resolution (GRDH) imagery over Pakistan’s EEZ, available from
the Copernicus Open Access Hub, for the duration January 2017–December 2023. The
data were in the IW mode, with a resolution of 10 m. The data were dual-polarized,
i.e., VV and VH, but we retained only VV polarization (as for the training dataset). We
used the data of specific orbital paths (13, 78 and 151) covering the seaward as well as the
coastal territories of Pakistan. The aim was to detect potential oil spills in the Arabian
sea, with particular emphasis on the regions close to the coastline. In order to prepare
the dataset for testing, a series of pre-processing steps were applied, as shown in Figure 2.
The images were radiometrically calibrated and a 7× 7 median filter was applied, to reduce

https://mklab.iti.gr/
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speckle. Employing visual inspection, areas containing potential oil spills were cropped
from the images, and a patch size of 320 × 320 was used for testing. This test set contained
the relevant five classes akin to the public (training) dataset.

Read
Sentinel-1 GRDH

Apply Orbit File Thermal Noise
Filtration

Calibration
(Polarisation: VV)

Write
(BEAM-DIMAP)

Intensity Scaling
conversion to dB

Terrain
Correction

(SRTM 1 sec Grid)

Speckle
Filtering

(Lee Sigma Filter)

Figure 2. The flowchart illustrates the steps followed for the processing of Ground Range Detected
High-resolution (GRDH) Sentinel-1 acquisitions, including orbit correction, thermal noise removal,
radiometric calibration, conversion to decibels, terrain correction and speckle filtering.

2.3. Model Development and Training

Our methodology for oil spill detection is based on the semantic segmentation of SAR
images. Due to irregularity in oil slick shapes and textures, a single label for the entire image
is not sufficient to detect potential oil spills. Similarly, other approaches, like object-based
detection [21] and assigning multiple labels to a single image [22], do not perform well
in oil spill detection cases. On the contrary, semantic segmentation classifies the multiple
classes of interest in a single image at pixel level, making it suitable for complex problems
like oil spill detection and classification.

UNet stands out as a widely recognized architecture initially designed for segmenting
biomedical images. Its encoder–decoder structure has proven effective in delineating objects
of interest within images, and it has been used in many remote sensing studies ranging from
land cover classification to object detection [5–7,23]. Concurrently, ResNet-101 architecture
has emerged as an efficient feature extractor among the deep convolutional networks.

Motivated by the strengths of both the architectures, this study proposes the use of the
ReU-Net model for oil spill detection in SAR imagery. In ReU-Net, the encoder (contracting)
part of the original UNet architecture is replaced by the ResNet-101 feature extractor. This
integration aims to harness the efficient feature extraction capabilities of ResNet-101 while
retaining the robust segmentation abilities of UNet. The proposed architecture is presented
in Figure 3.

At its core, the ResNet-101 begins with a batch normalization layer, succeeded by
a convolutional layer featuring a filter size of 7 × 7, batch normalization and Rectified
Linear Unit (ReLU) activation. Subsequently, a maxpool layer is applied to downsample
the feature map, followed by 33 residual blocks. Each residual block comprises three stages:
stage 1, stage 2 (bottleneck) and stage 3. Within each stage, convolutional layers of sizes
1 × 1, 3 × 3 and 1 × 1 are sequentially applied. Batch normalization and ReLU activation
are integrated within stage 1 and stage 2, as delineated in the schematic presented at the
bottom-right of Figure 3. The numerical annotations within the boxes, named as Res-x,
denote the number of residual blocks sequentially connected within the respective box.
Further comprehensive insights into the ResNet-101 can be found in [24].

In adherence to the original UNet architecture, the decoder part employs a series
of Up-convolution layers at five different stages. These layers, featuring a 2 × 2 filter
size, serve to reconstruct features by doubling the height and width while keeping the
number of feature maps the same. This process of upsampling is crucial for restoring spatial
information lost during the encoding phase. The upsampled features are then fused (via
skip connections) with their corresponding features (shown as dark-blue) from the encoder
through a copy-and-concatenate operation, facilitating the integration of both high-level
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semantic information and detailed spatial features. A critical component of the decoder is
the Conv-B block, highlighted in green in Figure 3. This block consists of two consecutive
3 × 3 convolutional layers, each followed by batch normalization and ReLU activation.
In the final decoder stage, a 1 × 1 convolutional layer is applied to map the aggregated
features to five channels (corresponding to number of classes in our case), consolidating the
information extracted throughout the network into a compact representation. A softmax
activation function (presented in yellow) is used in the last step to produce a probability
distribution in a range between 0 and 1. Finally, the output is a semantic segmentation
mask of the assigned class labels. A deeper dive into the model development can be found
in our previous work [25].

Figure 3. Schematic representation of ReU-Net architecture for semantic segmentation. The en-
coder features a ResNet-101 backbone with a 7 × 7 convolutional layer, two batch normalization
layers, ReLU activation, max-pooling and 33 residual blocks. In the decoder, adhering to a UNet
framework, multi-scale features are integrated via skip connections (shown in dark-blue color). The
number presented on the Res-x blocks represents the number of residual blocks cascaded within.
The functionalities of the residual block (Res-B) and convolutional block (Conv-B) are expanded at the
bottom-right and bottom-left corners of the figure, respectively. Each layer’s function is color-coded
as per the legend.
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2.4. Experimental Setup

We trained ReU-Net on the benchmark dataset from Krestenitis et al. [20]. The model
was trained using input images of shape 320 × 320 and batch sizes of 12. To improve the
model performance and avoid overfitting, we applied random data augmentation [26]. We
used 1002 labeled images for training and 110 images for validation and testing. The model
was trained with a combination of three loss functions, viz., categorical focal loss, Jaccard
loss and gradient profile loss. The evaluation metric used for assessing the performance
was mean Intersection over Union (mIoU).

Categorical focal loss function is a useful loss function to address the class imbalance
problem. During training, it pays more attention to reducing a large number of false
negatives, which, in turn, improves overall classification performance. Mathematically,
the categorical focal loss is defined by adding a modulating factor (1 − pt)γ to the cross-
entropy loss function [27],

LFL(pt) = −αt(1 − pt)
γ log(pt) (1)

where α and γ are the hyperparameters.
The Jaccard index is a commonly used performance metric for semantic segmentation,

which measures the similarity between ground truth and predicted class labels. Considering
y as the ground truth and ŷ as the predicted class labels, the Jaccard loss function can be
mathematically defined as follows [28]:

Ljac(y, ŷ) = 1 − (y · ŷ) + ϵ

(y + ŷ − y · ŷ) + ϵ
(2)

where ϵ is used to prevent division by zero. The subtrahend corresponds to the Intersection
over Union (IoU) value. Therefore, the use of the Jaccard loss function for the training aims
to directly increase the IoU value.

Gradient profile loss is a new loss function, recently presented in our earlier work [25].
It computes the similarity between ground truths and predicted class labels by considering
rows and columns as spatial profiles. Mathematically, the similarity over each image
channel can be computed as follows:

S(y, ŷ) = ∑
c

( 1
H

tr(yc · ŷτ
c ) +

1
W

tr(yτ
c · ŷc)

)
(3)

where y and ŷ are the ground truth mask and the predicted class labels, respectively; tr(.)
is the trace of a matrix and (.)τ corresponds to the transpose of a matrix; and the subscript c
represents each image channel. The loss function is computed in the image gradients space
and we call it the gradient profile loss:

LGP(y, ŷ) = −S(∇y,∇ŷ). (4)

For further details, readers are referred to [25].

3. Results

The performance of the proposed ReU-Net framework was assessed on the test split
of the annotated benchmark dataset. Then, the trained and validated model was used to
detect potential oil spills in Pakistan’s EEZ, imaged by Sentinel-1 in its orbital paths 13, 78
and 151.

3.1. Performance on the Benchmark Dataset

As stated earlier, the oil spill detection dataset contains 1112 labeled SAR images.
The original train and test split of this dataset was 1002 and 110 SAR images, respectively.
We tested 110 SAR images, using our trained model to obtain a semantic segmentation
mask containing the predicted class labels, viz., oil spill, look-alikes, ship, land and sea
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surface. The qualitative results showing the ground truth masks and predicted class labels
are shown in Figure 4. As shown in row 1 of Figure 4, the model accurately detected the oil
spill as well as all the ships near the spill. Moreover, an additional patch of oil was detected
that corresponded to a missed ground truth label or misclassification of sea-surface pixels as
oil-spill pixels. As shown in row 2, the coastal area was correctly classified, and most of the
look-alike pixels were also correctly classified. As shown in row 3, the model also classified
the look-alikes and land area accurately. Moreover, a large ship near the look-alikes was
also identified. We then computed the Intersection over Union (IoU) value for each class
and also the mIOU value for all the classes. The IoU values for sea surface, oil spill, look-
alikes, ship and land were 96.00%, 63.95%, 60.87%, 74.61% and 96.81%, respectively. The
comparison of the ReU-Net model with other segmentation models is presented in our
earlier work, representing nearly a 13% improvement, compared to the state of the art, for
this dataset, with an mIOU score of 78.45% for all classes [25].

Figure 4. Three SAR images (left) from 110 test SAR images, with ground truth masks (center) and
predicted class labels (right) detected by ReU-Net. In columns 2 and 3, black color shows the sea
surface, green color shows land area, cyan color shows an oil spill area, red color is assigned to
look-alikes and brown color shows ships. The dataset was prepared by Krestenitis et al. [20] from the
MKLab ITI-CERTH, Greece.

3.2. Classification and Detection of Spills in Pakistan EEZ

To detect potential oil spills in Pakistan territorial waters, we tested the unseen data of
Pakistan’s EEZ containing potential oil spills. Our classifier suggested 92 potential cases as
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oil spills from January 2017 to December 2023. Each detection was followed by SAR expert
validation. Four SAR images from the dataset developed for testing and their predicted
class labels are shown in Figure 5. In columns 1, 2 and 3, we can spot a probable bilge-
dumping scenario by visual inspection, where a ship is releasing oil into the sea. The model
also suggested the dark stretch on the ship’s trail as an oil spill. Referring to column 4,
the model detected multiple oil slicks on the surface of the ocean and a nearby ship.

Figure 5. Three SAR images (top row) from the test set prepared by acquiring imagery over the
Arabian sea along with predicted class labels (bottom row) containing potential oil spills in Pak-
istan territorial waters. Black color shows sea surface, cyan color shows oil spill and brown color
shows ships.

3.3. Discussion

Having trained the deep learning model (ReU-Net) on a dataset of verified spills—and
exceeding the performance benchmark by nearly 13%—we were assured that the model
could be reliably used to detect oil spills in unseen data from the same sensor, processed
similarly to the benchmark training data. We therefore proceeded with the application of
the trained classifier on the test imagery over Pakistan’s EEZ. This led to the identification of
92 oil spill incidents in the EEZ over the last seven years (2017–2023). The yearly breakdown
of these incidents is shown in Figure 6. The highest number of spills during this period
was detected in 2020, but in terms of the total surface area covered by the spills the worst
year was 2021, with a cumulative 395 sq. km found to be covered in oil. Figure 7 shows
the spatial distribution and other physical characteristics of the spills (length of the spills,
distance from the shoreline and spill surface area). It can be seen that several spills were
detected in each path of the sensor. The longest spill detected was up to 175 km long, while
most of the spills (up to 75%) were as long as 25 km. The mean distance from the shoreline
was 87 km. Details on individual spill incidents are listed in Appendix A.
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Figure 6. Yearly breakdown of the oil spill incidents in Pakistan’s Exclusive Economic Zone (EEZ)
from January 2017 to December 2023. Overall, 92 incidents were identified. The yearly figure for each
year is stated above each bar.

Figure 7. (Top): Spatial spread of the oil spills detected in Pakistan’s EEZ from January
2017 to December 2023. (Bottom): The size of the spills (in terms of their length) and their dis-
tance from the shoreline.
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4. Outlook

This study aims to bring to light the problem of increasing marine pollution in Pak-
istan’s EEZ. Continued and mostly unattended oil spills are a major contributor. In general,
it is expected that concerned authorities are more vigilant. Understandably, due to the
vastness of the territorial waters, it is practically challenging to locate spill incidents solely
through patrolling activities. A remote sensing-based detection system, as presented in this
work, is indeed productive. We have demonstrated the successful use of a deep learning-
based system that ingests SAR imagery and detects oil spills, while classifying stretches
of oil among other classes, comprising normal sea surface, land, ships and look-alikes.
In the future, we aim to extend our work towards operationally deployable models, to seek
further improvement in classification accuracy and, thereafter, to extend our analysis to
further paths overlapping Pakistan’s EEZ and neighboring waters.
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Appendix A

This appendix provides information on oil spill incidents that occurred within Pak-
istan’s Exclusive Economic Zone (EEZ) in the Arabian Sea from January 2017 to December
2023 and that were detected with the framework proposed in this study. Table A1 lists the
dates of the image acquisitions, the number of incidents or spill patches observed, their
geolocations and the relative paths of the sensor. The dataset revealed 92 distinct oil spill
events occurring on 58 different dates.

Table A1. List of oil spills detected by the proposed deep learning-based model in Pakistan’s Exclusive
Economic Zone (EEZ) in the Arabian Sea. The table includes sequential numbers, corresponding dates,
orbital paths associated with Sentinel-1 images and geolocations in WGS84 coordinates, indicating
the centers of the detected oil spills. This list spans from 2017 to 2023.

S. No. Date Path Coordinates (WGS84) Number of Incidents

2017 (14 Spills)

1 2017-03-05 78 [24.3169, 66.7555] 1

2 2017-05-04 78
[24.2858, 66.2583],
[24.4053, 66.9847],
[24.0394, 66.7847],
[23.8022, 67.0305]

4

3 2017-05-11 13
[24.1792, 62.9417],
[24.1425, 62.4361]

2

4 2017-06-04 13 [24.2325, 62.9889] 1

5 2017-07-20 151 [24.4461, 65.7611] 1

6 2017-12-01 13 [24.6647, 62.9944] 1
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Table A1. Cont.

S. No. Date Path Coordinates (WGS84) Number of Incidents

7 2017-10-19 78
[24.5922, 66.7583],
[24.4469, 66.3347],
[23.9892, 66.6514]

3

8 2017-11-29 151 [24.3205, 66.2861] 1

2018 (10 Spills)

9 2018-02-21 151
[24.2958, 65.2139],
[24.4261, 65.5778],
[24.0186, 64.7555]

3

10 2018-02-23 13 [25.0233, 63.3139] 1

11 2018-03-29 151 [24.2533, 66.0441] 1

12 2018-08-10 13
[24.7872, 62.6139],
[24.5764, 62.8305]

2

13 2018-08-15 78
[24.2008, 66.7055],
[23.9567, 66.8555]

2

14 2018-10-31 151 [24.3519, 65.2444] 1

2019 (8 Spills)

15 2019-04-19 13 [24.0975, 63.4583] 1

16 2019-04-24 78 [23.5711, 67.2555] 1

17 2019-07-22 151 [24.3488, 66.4689] 1

18 2019-09-10 13 [23.8886, 62.8639] 1

19 2019-10-09 78 [24.4777, 66.6381] 1

20 2019-10-26 151 [24.1598, 65.4277] 1

21 2019-11-21 13 [24.1736, 63.6305] 1

22 2019-11-21 13 [24.1822, 63.9514] 1

2020 (26 Spills)

23 2020-01-20 13 [24.8733, 63.5694] 1

24 2020-02-11 151
[24.3139, 66.1694],
[24.0161, 66.0347],
[24.1733, 64.4055]

3

25 2020-02-13 13 [24.6655, 63.2905] 1

26 2020-02-23 151 [24.0033, 65.5408] 1

27 2020-03-18 151
[24.4411, 65.6094],
[24.4867, 64.9242],
[24.4269, 64.6389]

3
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Table A1. Cont.

S. No. Date Path Coordinates (WGS84) Number of Incidents

28 2020-05-07 13 [24.5325, 62.2674] 1

29 2020-07-04 151
[24.3853, 66.1525],
[24.3753, 64.2628]

2

30 2020-07-06 13 [24.6755, 62.5472] 1

31 2020-08-09 151 [24.1944, 66.1111] 1

32 2020-08-11 13
[24.3414, 63.6542],
[23.9822, 62.8253]

2

33 2020-08-16 78 [24.3367, 66.9125] 1

34 2020-08-23 13
[24.0058, 62.3439],
[23.9517, 62.7297],
[24.2905, 62.8128]

3

35 2020-09-28 13 [24.7536, 62.4608] 1

36 2020-10-27 78 [23.9186, 66.2994] 1

37 2020-11-13 151
[24.3208, 65.6036],
[24.1358, 64.9664],
[23.9945, 64.7707],
[24.1219, 64.1414]

4

2021 (17 Spills)

38 2021-03-20 78 [24.0194, 66.2194] 1

39 2021-04-08 13
[24.1764, 62.7389],
[24.0278, 62.4278]

2

40 2021-06-17 151 [24.1528, 65.3222] 1

41 2021-07-13 13 [24.7898, 62.6745] 1

42 2021-08-30 13
[24.3047, 64.0105],
[24.1545, 63.1124]

2

43 2021-09-16 78
[23.4344, 66.9339],
[23.7128, 66.9778],
[23.9253, 66.9417]

3

44 2021-10-05 13 [24.1861, 62.4472] 1

45 2021-11-08 151
[24.2494, 65.9083],
[24.7214, 65.1139]

2

46 2021-12-02 151
[24.1895, 65.1448],
[24.2017, 64.4854]

2

47 2021-10-15 151 [24.6078, 65.1223] 1

48 2021-10-29 13 [24.2594, 64.3555] 1

2022 (8 Spills)

49 2022-01-26 78 [23.8578, 66.2361] 1
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Table A1. Cont.

S. No. Date Path Coordinates (WGS84) Number of Incidents

50 2022-02-12 151
[24.3292, 66.3419],
[24.1939, 66.0361],
[23.8705, 65.8861]

3

51 2022-04-08 78 [24.4353, 66.6417] 1

52 2022-04-25 151 [24.0372, 64.7234] 1

53 2022-09-30 13
[24.3568, 62.7278],
[24.1051, 63.5195]

2

2023 (9 Spills)

54 2023-01-09 78
[24.3839, 66.3492],
[24.2508, 66.2019]

2

55 2023-01-28 13 [24.2831, 64.0927] 1

56 2023-02-07 151
[24.2656, 65.2757],
[24.0235, 64.7783],
[25.0051, 65.2108]

3

57 2023-09-06 78
[24.3249, 66.4118],
[24.1834, 66.2328]

2

58 2023-11-22 151 [24.5032, 66.4192] 1

For the sake of completeness, we would like to state as a disclaimer that (I) the oil
class instances segmented by the proposed framework (or, for that matter, any other SAR-
based classification method) cannot be chemically differentiated between actual petroleum
products or any other oil-like substance that creates similar dark stretches in the imagery
over waters. (II) The map shown in Figure 1 is not a political map, nor is the extent of the
AOR an official representation. It is purely for non-legal, scientific analysis, based on open
source information.
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