KIT | KIT-Bibliothek | Impressum | Datenschutz

Existence of traveling breather solutions to cubic nonlinear Maxwell equations in waveguide geometries

Ohrem, Sebastian 1; Reichel, Wolfgang 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider the full set of Maxwell equations in a slab or cylindrical waveguide with a cubically nonlinear material law for the polarization of the electric field. The nonlinear polarization may be instantaneous or retarded, and we assume it to be confined inside the core of the waveguide. We prove existence of infinitely many spatially localized, real-valued and time-periodic solutions (breathers) propagating inside the waveguide by applying a variational minimization method to the resulting scalar quasilinear elliptic-hyperbolic equation for the profile of the breathers. The temporal period of the breathers has to be carefully chosen depending on the linear properties of the waveguide. As an example, our results apply if a two-layered linear axisymmetric waveguide is enhanced by a third core region with low refractive index where also the nonlinearity is located. In this case we can also connect our existence result with a bifurcation result. We illustrate our results with numerical simulations. Our solutions are polychromatic functions in general, but for some special models of retarded nonlinear material laws, also monochromatic solutions can exist. ... mehr


Volltext §
DOI: 10.5445/IR/1000172960
Veröffentlicht am 29.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 07.2024
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000172960
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 53 S.
Serie CRC 1173 Preprint ; 2024/15
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Forschungsdaten/Software
Schlagwörter Maxwell equations, nonlinear material law, polychromatic breather solutions, variational method
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page