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Abstract
Neural network models have demonstrated exceptional perfor-
mance in wearable human activity recognition (HAR) tasks. How-
ever, the increasing size or complexity of HAR models significantly
impacts their deployment on wearable devices with limited compu-
tational power. In this study, we introduce a novel HAR model ar-
chitecture named Multi-Layer Perceptron-HAR (MLP-HAR), which
contains solely fully connected layers. This model is specifically
designed to address the unique characteristics of HAR tasks, such
as multi-modality interaction and global temporal information. The
MLP-HAR model employs fully connected layers that alternately
operate along the modality and temporal dimensions, enabling
multiple fusions of information across these dimensions. Our pro-
posed model demonstrates comparable performance with other
state-of-the-art HAR models on six open-source datasets, while uti-
lizing significantly fewer learnable parameters and exhibiting lower
model complexity. Specifically, the complexity of our model is at
least ten times smaller than that of the TinyHAR model and several
hundred times smaller than the benchmark model DeepConvLSTM.
Additionally, due to its purely fully connected layer-based archi-
tecture, MLP-HAR offers the advantage of ease of deployment. To
substantiate these claims, we report the inference time performance
of MLP-HAR on the Samsung GalaxyWatch 5 PRO and the Arduino
Portenta H7 LITE, comparing it against other state-of-the-art HAR
models.

CCS Concepts
• Human-centered computing→ HCI theory, concepts and
models.
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1 Introduction
Wearable human activity recognition (HAR) has gained increasing
attention due to its effectiveness in health monitoring, fitness track-
ing, and human-computer interaction [8]. Advances in model archi-
tectures have significantly improved performance on various HAR
tasks [1]. However, many state-of-the-art (SOTA) models neglect
the need for deployment on wearable devices with limited compu-
tational and energy resources, such as smartwatches [40]. Given
the multi-modal nature of HAR data and the need to capture global
temporal information, SOTA HAR models [1, 16, 19, 22, 25, 35, 39]
often employ complex hybrid architectures, including convolutional
layers (CNNs)[34], self-attention mechanisms[31], and recurrent
neural networks (RNNs)[25]. Figure 2 displays the inference times
of several SOTA models when deployed on a Samsung Galaxy
Watch 5 PRO, showing their sub-optimal inference speeds.

The reasons for their long inference times are threefold: (1). Many
models employ CNNs as feature extractors. However, due to the
limited receptive field of CNN layers, multiple layers are stacked
to capture global information, significantly increasing computa-
tional complexity [40]. (2). Variants of RNNs, such as Gated Recur-
rent Units (GRU) [29], Long Short-Term Memory (LSTM) [25], and
bidirectional-LSTM [38], are commonly used. Their recurrent para-
digm inherently hinders parallel computing, introducing slower la-
tency. (3) Many studies incorporate self-attention mechanisms [31],
which involve multi-branch designs and require storing attention
matrices. These structures compromise memory utilization effi-
ciency as they necessitate storing the outputs of each branch until
combined through addition or concatenation [12], substantially
increasing memory access costs and reducing inference speed.

Lightweight models are characterized by fewer trainable pa-
rameters, reduced computational demands, and a lower memory
footprint. Consequently, lightweight models run faster and provide
real-time feedback on edge devices. In this work, we introduce a
lightweight HAR model with a plain topology, termed Multi-Layer
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Perceptrons for HAR (MLP-HAR). It relies solely on fully connected
(FC) layers, without other operators or complex multi-branch struc-
tures. FC layers exhibit the highest computational efficiency be-
cause they leverage highly optimized matrix multiplication oper-
ations. The proposed model is designed with the characteristics
of HAR tasks in mind. It employs FC layers to alternately operate
along the modality and temporal dimensions, enabling effective
multi-dimensional information fusion. In summary, the primary
contributions of this work are:

• We propose the MLP-HAR model utilizing purely FC layers
with a plain topology, making it deployment-friendly and
memory-efficient.

• Extensive evaluation on six datasets shows that MLP-HAR’s
performance is comparable to SOTA models, but has signifi-
cantly fewer learnable parameters and less model complexity.

• TheMLP-HARmodel’s efficiency is further validated through
performance assessments on the Samsung Galaxy Watch 5
PRO and the more resource-constrained Arduino Portenta
H7 LITE. Results indicate that MLP-HAR offers improved
inference times compared to other SOTA models.

2 Related Work
CNNs [21, 34] are fundamental in HAR tasks due to their ability to
extract local context information from time series data. However,
the limited receptive fields of CNNs restrict their ability to effec-
tively process long temporal information. This leads to the adoption
of RNN-based models [10, 29, 38], which excel in capturing global
temporal dependencies. To capitalize on the strengths of both CNNs
and RNNs, hybrid architectures [23, 25, 39] were developed. For
example, DeepConvLSTM [25] combines four convolutional layers
with two LSTM layers, the former is used for local feature extrac-
tion and multi-modal fusion, while the latter extracts of global
temporal dependencies. To further improve information extrac-
tion across sensor channels and time steps, self-attention mecha-
nisms [31] have been integrated into HAR models. SOTA models
like DeepConvLSTM-Attn [22], Attend [1], and ALAE-TAE [2] aug-
ment CNN-RNN frameworks with various attention designs to
refine feature extraction. Additionally, some HAR models trans-
form data inputs into frequency representations to enhance feature
extraction. For instance, DeepSense [35] and GlobalFusion [16] use
spectrogram inputs obtained through FFT Transform. Both models
employ CNN-RNN-attention-based hybrid architectures. However,
these models focus on maximizing accuracy often overlooks their
deployment efficiency and real-time processing capabilities.

There are efforts have been made so far to encourage more light-
weight HAR models. For instance, TinyHAR [41] introduces design
principles tailored to HAR tasks, selecting appropriate modules
for robust feature extraction while keeping the model size small
and complexity low. Nonetheless, it still incorporates a combina-
tion of CNN, RNN, and self-attention modules, which are memory
consuming and lack parallelization capabilities. Coelho et al.[11] fo-
cused on optimizing architectural parameters in purely CNN-based
models. Ma et al.[18] trained multiple weak CNN-based models,
with a model selector flexibly choosing the best classifier based on
the input sample during deployment. However, the inherent limita-
tions of purely CNN-based architectures have been demonstrated
to hinder their performance on more complex tasks.

From a hardware perspective,Multiply-Accumulate (MAC)-based
operations such as FC layers and CNN layers can be highly acceler-
ated and parallelized through, e.g., crossbar-based AI acceleration
architecture [37]. Motivated by this insight, we aim to develop a
model with a plain topology consisted entirely of FC layers. This
model is intended to deliver SOTA performance while simultane-
ously reducing model size and complexity, and achieving faster
inference times. Purely FC network architectures have proven effec-
tive in other domains, such as vision [30] and time series forecast-
ing [9]. However, they typically neither address the specific charac-
teristics of HAR tasks nor focus on minimizing model complexity
and optimizing inference time for deployment. While MLP [24], a
model composed purely of FC layers, had already been proposed to
tackle HAR tasks, it naively treats the input time series as an image
and completely ignores the multi-modality characteristic of HAR
data and the differences between the temporal and sensor channel
dimensions, which are significantly different from the relationship
between "height" and "width" of images.

3 Methodology
In this section, we elucidate the proposed model architecture, il-
lustrated in Figure 1, which comprises three main modules: the
Data Embedding Module, the Information Mixing Module, and the
Prediction Module. The Data Embedding Module extracts local
temporal features from raw data. The Information Mixing Module
employs a repeated alternating structure to facilitate information
exchange and integration across temporal and sensor channel di-
mensions. Finally, the Prediction Module condenses the extracted
features to make the final prediction. All modules consist solely of
FC layers.

3.1 Data Embedding Module
In this module, the raw input segment data X ∈ R𝐿×𝐶 (where 𝐿 is
the sliding window size and𝐶 is the number of sensor channels), is
split into intervals of length 𝜏 , resulting in 𝑇 intervals, represented
as X𝑡 ∈ R𝜏×𝑇×𝐶 . Each interval undergoes an FFT transformation
to extract frequency representations, producing X𝑓 ∈ R2𝑓 ×𝑇×𝐶 ,
with 𝑓 representing the frequency magnitudes and phase pairs.
The benefits of this process are twofold: (1) Interval segmentation
reduces the raw data’s temporal length, lowering computational
demands in subsequent steps. (2) Frequency features are crucial
for differentiating human activities, as signals acquired through
wearable sensors often exhibit multi-frequency characteristics [17].
Extracting frequency information directly via FFT simplifies the
model’s task of frequency feature extraction [33]. Both the time
and frequency representations are then processed through separate
FC layers, each followed by layer normalization [3] and a ReLU
activation. The output size of the FC layers is 𝑑 . The feature maps
extracted from both representations are concatenated to form a
combined feature with dimensions 2𝑑 ×𝑇 ×𝐶 , which is then further
fused by an additional FC layer to maintain consistent dimensions.

3.2 Mixer Module
After embedding the local information from each sensor channel,
the Mixing Module fuses this information across both temporal and
sensor channel dimensions. As shown in Figure 1(c), this module
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Figure 1: The upper left part of this figure (a) shows an overview of the proposed structure. The upper right part of the figure
(b) shows the specific structure of the data embedding module. The lower part of the figure (c) shows the specific structure of
the mixer module. Different colors in the figure represent readings of different sensor channels, and different shades of the
same color represent different intervals. Mixed color shows fused information from FC layer.

consists of two components: the temporal mixing block and the
modality mixing block.

3.3 Temporal Mixing Block
The temporal mixing block fuses information within each sensor
channel along the temporal dimension. It begins by flattening the
feature map from 2𝑑 ×𝑇 ×𝐶 to 2𝑑𝑇 ×𝐶 , followed by layer normal-
ization to standardize features within each channel. The feature
map then passes through two FC layers. To reduce the parameter
count, the first FC layer decreases the feature size using a shrink
ratio 𝜎 , while the second FC layer restores it to 2𝑑 . A ReLU function
is applied after the first FC layer as activation. These two FC layers
enable efficient feature exchange across different temporal inter-
vals. A skip connection reintegrates the fused features back into
the original feature space, allowing each interval to incorporate
information from others. The process concludes with another layer
normalization before reshaping the data back to 2𝑑 ×𝑇 ×𝐶 .

3.3.1 Modality Mixing Block. The Modality Mixing Block enables
the exchange and fusion of information between intervals at the
same time step but in different modalities. It omits layer normaliza-
tion since it was applied in the temporal mixing block. Initially, the
features are flattened based on the modality dimensions, transform-
ing the feature map from 2𝑑×𝑇 ×𝐶 to 2𝑑𝐶×𝑇 . Subsequently, two FC
layers facilitate interactions among features of different modalities.
Finally, the fused features across modalities are reintegrated into
the original feature set via a skip connection.

3.3.2 Discussion. This design enables rapid information propaga-
tion across different time steps and modalities. Unlike traditional
HAR models, which follow a fixed sequence of feature extrac-
tion—first channel interaction, then temporal information—our
model adopts a more flexible approach. By stacking this mixer
model 𝑁 times, the iterative process allows multiple integrations

of information across both dimensions for each interval, enhancing
the model’s ability to extract powerful features.

3.4 Prediction Module
This module includes two FC layers. The first FC layer fuses the
features from each sensor channel into a single vector. The second
FC layer then uses these fused vectors from all sensor channels to
predict the final activity.

4 Experiments And Discussions
4.1 Experiment Setup
4.1.1 Datasets. To validate ourmodel’s performance, we conducted
experiments using six open-source datasets. A detailed summary
of each dataset, along with data preparation and transformation pa-
rameters, is provided in Table 1. Sensor signals are first z-normalized
and then segmented by sliding window. For some models, including
ours, the segmented raw data undergoes an FFT transformation to
generate the spectrogram. The parameters for this transformation,
such as the number of intervals (𝑇 ), interval length (𝜏), and the
quantity of amplitude and phase spectral pairs (𝑓 ), are also listed
in Table 1. The FFT transformation is implemented directly within
the model using the torch.fft function, and the model only accepts
raw time series data. In subsequent evaluations, the time and com-
plexity of the FFT transformation are included in the measurement
of inference time and model complexity.

4.1.2 Compared Models. In this experiment, we evaluated our
approach against ten comparative models. Below is a brief intro-
duction to these models:

DCNN [34]: A purely CNN-based HAR model. DeepConvL-
STM [25] (DCL): A benchmark model with CNN and LSTM lay-
ers. We implemented the version from [7] with larger CNN ker-
nel sizes (5 to 11) and reduced LSTM layers (from two to one).
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Dataset #𝐶𝑙𝑎𝑠𝑠 𝑆𝑒𝑛𝑠𝑜𝑟 𝐶 #𝑆𝑊 # 𝑇 # 𝜏 # 𝑓

PAMAP2 [27] 18 Acc,Gyro 18 1.28 s 8 16 16
HAPT [28] 12 Acc,Gyro 6 2.56 s 8 16 16
DSADS [6] 19 Acc,Gyro 30 5 s 5 25 25
Daphnet [4] 2 Acc 9 1 s 4 16 16
MotionSense [20] 6 Acc,Gyro 12 2.56 s 8 16 16
Mhealth [5] 6 Acc,Gyro 12 2.56 s 8 16 16

Table 1: Within the table, the column labeled #𝐶𝑙𝑎𝑠𝑠 denotes
the number of activity types, while 𝑆𝑒𝑛𝑠𝑜𝑟 specifies the sensor
type used, with𝐴𝑐𝑐 for accelerometer and𝐺𝑦𝑟𝑜 for gyroscope.
The column 𝐶 indicates the number of the sensor channels.
The column #𝑆𝑊 denotes the size of the sliding window.

DeepConvLSTM-Attention [22] (DCL-Attn): Enhances the DCL
model by adding a self-attention module after the LSTM layer.
Attend-Discriminate (Attend) [1]: Advances the CNN-GRU archi-
tecture by using a self-attention mechanism to learn interactions
between channels at each time step. IF-ConvTransformer [36] (IF-
ConvT): Extends the Attend model by introducing a CNN block at
the beginning to serve as a complementary filter and replacing the
GRU layer with a self-attention module. ALAE-TAE [2]: Evolves
from the DCLmodel by incorporating an attention encoder between
the CNN and LSTM layers, using the squeeze and excitation tech-
nique [14] to enhance feature interrelationships. DeepSense [35]:
Applies FFT transformation to input data, then processes it with a
hybrid multi-branch CNN-GRU architecture. GlobalFusion [16]:
Builds on DeepSense by adding two global self-attention modules
to efficiently fuse features from various locations and sensor modal-
ities. TinyHAR [41]: A lightweight HAR model. MLP [24]: Treats
input time series as an image and applies the MLP architecture
for vision [30] directly to the HAR task. It is important to note
that, except for the MLP model [24], the configurations of all the
aforementioned models strictly adhere to their descriptions and
source code as presented in the referenced literature. The MLP
model’s configuration in the original work [24] is much larger than
the other comparison models and cannot run on the watch due
to exceeding the watch’s memory. The specifications used for the
MLP model in this experiment are: 5 layers, a patch-embedding size
of 256, a patch dimension of 64, and a channel dimension of 256.
For our proposed MLP-HAR model, we fix the number of mixer
modules 𝑁 at 2 and the filter number 𝑑 at 6.

4.1.3 Training & Evaluation Protocol. To train the model weights,
we employ the Adam optimizer [15] with default settings, starting
with an initial learning rate of 10−4. The learning rate decays by a
factor of 0.9 after every 7 epochs without improvement. Training
is capped at a maximum of 200 epochs, with early stopping if the
validation loss does not improve for 15 consecutive epochs. The
batch size is fixed at 256. All models are implemented using the
PyTorch framework [26] and trained on an NVIDIA A100 GPU.

During the evaluation phase, we assess the performance of all
models using the Leave-One-Subject-Out (LOSO) Cross-Validation
(CV) strategy. In each CV iteration, data from one subject serve
as the test set, while data from other subjects form the training
and validation sets, maintaining a training-to-validation ratio of
9:1. The classification performance is quantified using the macro
F1-score. This LOSO-CV process is repeated five times with ran-
dom seeds from 1 to 5, and we report the mean and variance of
the F1-scores obtained. Additionally, we report the model size in

IF-ConvT ALAE-TAE Attend MLP-HAR TinyHAR GlobalFusion
1.83 3.17 3.33 3.33 5.67 6.00
MLP DeepSense DCL-Attn DCL DCNN
6.17 7.33 8.83 9.33 11.00

Table 2: Average ranking of all models across six datasets.
The smaller the rank, the better the performance.

terms of the number of trainable parameters (in thousands) and the
computational complexity in Million MACs (MMACs). The models
are also deployed on a Samsung Galaxy Watch 5 PRO1. We report
the average inference time for each model to process 10,000 input
samples on the watch.

4.2 Comparison to State-of-the-art
Figure 2 presents the performance of all models across six datasets,
visualizing the averaged macro F1 score, model complexity, model
size, and inference time for each dataset in column blocks. Since
our model and TinyHAR exhibit significantly lower computational
complexity and fewer learnable parameters compared to the other
models, the y-axes formodel complexity and size are logarithmically
scaled with a base of 10.

Our proposed MLP-HAR model achieves superior performance
on theDSADS dataset and comparable performance on the PAMAP2,
Mhealth, and Motionsense datasets. Notably, to achieve such perfor-
mance, our model requires only significantly fewer learnable param-
eters and lower complexity. For a comprehensive comparison, we
conducted a pairwise average rank comparison using the Wilcoxon
signed-rank test with Holm’s alpha correction at 5% [13, 32]. The
average ranking across all datasets, listed in Table 2, shows the
IF-ConvT model achieving the best performance, followed by the
Attend, ALAE-TAE, and proposed MLP-HAR models, which form a
closely ranked cluster with no significant performance differences.

Compared to the best-performing model IF-ConvT, our MLP-
HAR can provide 10× speed up in inference time while lose only
0.74% lower F1 score on average across six datasets. This slight accu-
racy drop can be further mitigated by the post-process in practical
application, see Section 4.3.

Compared to the model TinyHAR, our MLP-HAR, despite hav-
ing a similar number of learnable parameters, demonstrates signifi-
cantly (10×) lower computational complexity. This reduced com-
plexity also reflects in the inference time on the device, with our
model running about 6× faster on average compared to TinyHAR.

Compared to the benchmark model DCL, MLP-HAR significantly
outperforms it. The DCL model has much greater complexity and
substantially slower inference times. For instance, when processing
the DSADS dataset, DCL requires 298.61ms, whereas our model op-
erates in just 10.61ms. Enhancements to the DCL framework, such
as DCL-Attn, Attend, and ALAE-TAE models, have shown effective-
ness in our experiments. However, these models are even slower
than DCL. Interestingly, on most datasets, these three models ex-
hibit generally lower complexity than DCL. Theoretically, the DCL
model, which incorporates only one LSTM layer, should exhibit
lower complexity than these three models, which use two LSTM
layers. However, as detailed in section 4.1.2, the large kernel size

1For deployment, we used post-training int8 quantization from TensorFlow and the
inference framework is TensorFlow Lite Micro.

https://www.tensorflow.org/lite/performance/post_training_quantization
https://github.com/tensorflow/tflite-micro
https://github.com/tensorflow/tflite-micro
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Figure 2: Classification performance on six datasets.

of 11 in DCL’s convolutional layers significantly increases its com-
plexity. This observation highlights two key points: convolutional
layers processing raw data contribute substantially to the model’s
overall complexity, and inference time is influenced not only by
computational complexity but also by architectural design. The
excessive use of LSTM layers and self-attention in the DCL-Attn,
Attend, and ALAE-TAE models, due to the sequential calculations
inherent in LSTM layers which lack efficient parallelism, further
slows down their inference times.

This observation that structural complexity can slow down infer-
ence is underscored by comparing the DeepSense and GlobalFusion
models. Despite having lower model complexity per dataset, Global-
Fusion exhibits significantly slower inference times. This slowdown
is due to its complex multi-branch structure, which incorporates
self-attention layers for global information fusion. This example
highlights the importance of our proposed model’s design phi-
losophy: its plain topology is deployment-friendly, emphasizing
efficiency and simpler architectural choices that facilitate faster
processing speeds.

Among all models examined, the DCNN model is the least ef-
fective. Despite its higher computational complexity and greater
number of learnable parameters, it achieves the second-fastest in-
ference time on the device. For example, when processing the DG
dataset on a smartwatch, its inference time is comparable to that
of the proposed MLP-HAR, even with a higher parameter count
and complexity. This underscores that a plain topology, combined
with the use of CNN and FC layers, significantly aids in the efficient
deployment of models. This observation is further supported by
the performance of the MLP model, which is fast despite having
many parameters and high computational complexity due to its
configuration. However, since the MLP model completely ignores
the characteristics of the HAR task, its performance is much worse
than that of the proposed MLP-HAR model.

4.3 Post-Processing
In the deployment of HAR models, transitions between different
activities are typically gradual. To enhance the robustness and accu-
racy of predictions, a post-processing technique known as majority
voting is frequently utilized. To assess the performance of IF-ConvT
and our proposed MLP-HAR model during deployment, we ap-
plied post-processing to all their predictions. The device operates
with a double buffering mechanism, where one thread collects and
buffers data, and another thread manages model inference. The
window size for majority voting was set to 10. Table 3 illustrates
the results of both models before and after post-processing. The
results indicate that post-processing generally improves model per-
formance, especially when the models already demonstrate good
initial performance. For example, on the MotionSense and MHealth
datasets, both models showed significant improvements. On the
HAPT dataset, the performance gap between IF-ConvT and MLP-
HAR narrowed from 2.28% to 0.35%. Notably, models with faster
inference times hold a distinct advantage in actual deployment.
A model with shorter inference times can update its predictions
more frequently, allowing it to process more data windows within
the same amount of time when using a majority voting strategy,
thereby solidifying the results. Conversely, if a model’s inference
time is long, a large voting window can lead to response delays.

4.4 Ablation Study and Parameter Analysis
To validate the impact of different representations in the data em-
bedding module and the effect of skip connections in the mixer
module, we conducted an extensive ablation study. We evaluated
the model using only frequency representation, only temporal repre-
sentation, and both representations in the data embedding module.
Additionally, we examined the impact of including (True) or exclud-
ing (False) skip connections in the mixer module. This resulted in
six different model configurations. We also investigated the effect
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HAPT PAMAP2 DSADS MHealth MotionSense DG
IF-ConvT 84.56 85.86 89.53 92.23 94.47 62.45

IF-ConvT+P 87.28 87.42 92.49 97.45 98.96 63.04
MLP-HAR 82.28 84.17 89.90 92.03 93.64 62.63

MLP-HAR+P 86.93 87.50 92.81 97.29 98.73 62.11

Table 3: Comparison of performance before and after post-
processing. The model name + P stands for post-processing.
of the number of blocks 𝑁 on performance, training and evaluating
the six model configurations with 𝑁 set to 1, 2, 3, and 4. The results
are presented in Figure 3(a). The results show that using skip con-
nections generally improves model performance. The performance
of using only frequency or temporal representation varies across
datasets. For example, on the DG and MHealth datasets, models
using frequency representation outperform those using temporal
representation, whereas on the DSADS and HAPT datasets, the op-
posite is true. Using both representations leverages the strengths of
each, leading to improved performance. The model’s performance
is also influenced by changes in 𝑁 , varying by dataset. For instance,
on the HAPT dataset, more blocks lead to better performance, while
on the DSADS dataset, 𝑁 = 2 achieves the best results. Increasing
𝑁 raises model complexity and the number of parameters, introduc-
ing different over-fitting risks depending on the dataset. However,
models with 𝑁 ≥ 2 consistently outperform those with 𝑁 = 1.
We speculate this is because 𝑁 ≥ 2 allows the model to perform
multiple fusions across temporal and sensor channel dimensions.
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Figure 3: (a) Ablation study for validating the contributions
of different representations and skip connections, as well as
the impact analysis of parameter 𝑁 . (b) Impact analysis of
parameter 𝑓 and 𝑁 .

After confirming the benefits of using both representations and
skip connections, we examined the impact of parameter variations

in the FFT transformation. Specifically, we varied the size of 𝑓 and
the number of blocks 𝑁 while employing both representations and
skip connections. Figure 3(b) shows the range of 𝑓 and 𝑁 values
and their corresponding model performance. The results indicate
that there is no universal combination of 𝑓 and 𝑁 that consistently
improves performance across all datasets. However, optimizing
these parameters for individual datasets does enhance performance.
For instance, on the DSADS and HAPT datasets, adjusting 𝑓 and 𝑁
values resulted in significant performance improvements.
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Figure 4: Comparison ofmodel inference time on two devices.
Y-axis is logarithmically scaled (base 10).

4.5 Deployment on Hardware
In this section, we explore the deployment of our model on the
Arduino Portenta H7 LITE, a board with more limited computing
capabilities. As previously shown, because the TinyHAR model
demonstrates the lowest inference time and computational com-
plexity aside from our proposed MLP-HAR model, we report only
the inference times for TinyHAR and MLP-HAR on the Arduino
Portenta H7 LITE. The results are illustrated in Figure 4. From the
figure, it is evident that due to the reduced computational power
of the device, the inference times of both models are longer com-
pared to those on the smartwatch. However, it is noteworthy that
the increase in inference time for TinyHAR is substantial, slowing
down by at least 10×. In contrast, the increase in inference time for
the proposed MLP-HAR model is approximately 2× to 3× between
the two devices. This outcome underscores the superiority of our
proposed model when deployed on devices with more restricted
computing capabilities, which can be attributed to MLP-HAR’s
plain topology composed solely of FC layers.

.

5 Conclusion
In this work, we introduced a purely FCmodel architecture, thought-
fully designed not only to leverage the different saliencies of multi-
modalities and temporal information extraction, but also to facilitate
efficient deployment on edge devices. Experimental results demon-
strate that compared to current SOTA HAR models, our model de-
livers comparable performance while boasting the smallest model
size, minimal computational complexity, and the fastest inference
time. When deployed on edge devices with limited computational
capacity, the proposed model’s superior capabilities were further
showcased, highlighting its potential for practical real-world appli-
cations where computational resources are at a premium.
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