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1. Introduction

While independence of features simplifies statistical methods considerably, it is often not
fulfilled in larger real-world data sets with multiple features. Falsely assuming indepen-
dence can lead to incorrect results, conclusions, and decisions. Statistical dependence mod-
eling comprises methods to model and analyze multiple-featured data and multidimen-
sional random variables beyond the independence assumption. This thesis delves into three
facets of dependence analysis and dependencemodeling application and, thus, broadens the
understanding and utilization of dependence modeling methods. First, a new decomposi-
tion of a specific dependence function type, checkerboard copulas, is presented. The decom-
position simplifies the assessment and interpretation of the incorporated dependence infor-
mation. Various methods and insights are derived from the decomposition, such as decom-
positions of characteristic copula functionals and new graphical representations. Second,
copula dependence models are used to combine point forecasts into a joint density forecast.
Thus, the combined forecast integrates knowledge of the forecast error dependence into the
combination and can increase accuracy and calibration. Third and finally, new measures
and visualization techniques evaluate the joint change direction of predicted and observed
change for nowcasts, forecasts, and measurements. Assessing a method’s ability to predict
the direction of changes provides valuable and easily interpretable information on themodel
performance for decision-makers.
In the following, a detailed outline of the contributions and the structure of the disserta-

tion is provided. Chapter 3 analyzes a decomposition for a particular class of copulas, the
bivariate checkerboard copulas. Copulas are a powerful tool for modeling dependence, as
they separate the dependence model from the marginals. While the fundamental work of
Sklar (1959) paved the way and coined the term copula, copulas are nowadays a widespread
and versatile tool for modeling dependence. Their application improves statistical modeling
in various applications, ranging fromwell-known applications in, for example, financial risk
management (Embrechts, Lindskog, andMcneil, 2003) and economics (Patton, 2012; for in-
troductions, see Nelsen, 2006; Joe, 2014; Durante and Sempi, 2015) to specialized and new
applications, such as emergency call center call bursts (L’Ecuyer, Gustavsson, and Olsson,
2018), drought and flood risk assessment (Yang, Zhang, and Gao, 2023), and earthquake
warning systems (J. Wang et al., 2018). Checkerboard copulas are a particular class of cop-
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Introduction 2

ulas with constant density on an even-spaced unit square grid. Hence, the density has a
checkerboard-like structure, and a doubly stochastic matrix can represent the dependence
structure.
A checkerboard copula can approximate any copula and is, thus, a theoretically important

concept. However, the incorporated information is difficult to assess as the corresponding
matrix is large, even for moderate grid sizes. We propose using singular value decompo-
sition to decompose the matrix, providing an easier-to-assess and interpretable representa-
tion. Based on the decomposition, we derive insights into the structure of various statistical
functionals, such as decompositions of Kendall’s 𝜏 and Spearman’s 𝜌, and formulate copula
similarity measures based on the decomposition. In the spirit of correspondence analysis,
we derive new copula profile plots and remark on their interpretation. Two extensions of
pure singular value decomposition improve the representation of comonotonicity-like cop-
ulas and ensure the truncation’s validity. Consequently, the approximations are valid and
sparse, in particular, compared to the number of matrix elements, that is, the square of the
grid size.
The decompositions are provided for various copulas, symmetric and asymmetric. These

examples illustrate the effect of grid size on decomposition and proposed extensions. Using
data on fuel injector spray characteristics in jet engines, we illustrate the new copula profile
plots on real-world data. We provide the ready-to-use code for the decomposition to facilitate
generating further insights with the decomposition. The chapter is based on the joint work
with Oliver Grothe (Publ. I).
Chapter 4 improves the combination of point forecasts to a joint density forecast by in-

corporating dependence information. Combining point forecasts from different models for
the same quantity usually improves the forecasts. The combination unites the strengths of
different models and reduces the influence of adverse effects, such as the effect of random
initialization in model fitting. Thereby, the errors of the different forecasts are usually mu-
tually dependent. The dependence can stem from factors similarly influencing the forecasts,
such as a commonmodel structure, common input data, or hard-to-account-for external ef-
fects. Existing point forecast combination methods do not respect complex dependence of
forecast errors such as asymmetries, leading to a suboptimal combination.
The proposed new combination scheme accounts for the forecasts’ serial dependence and

the forecast errors’ dependence structure by a copula time seriesmodel and computes a com-
bined density forecast based on the point predictions. By separating margin and copula in
the copula time series model, the combination is more flexible than current approaches; the
components can be fitted independently using a wide range of well-established, specialized
methods. We prove two theoretical properties of the algorithm, that is, the calibration of the
combination and the embedding of the seminal variance-minimizing combination by Bates
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and Granger (1969) in the case of multivariate Gaussian forecast errors. We show the com-
bination’s superior performance compared to other combination algorithms in a simulation
study. In an empirical data example of electricity price spot market forecasts, the combined
forecast is improved considerably concerning its calibration. Ready-to-use published code
facilitates the application of the proposed combination scheme to further data sets. The
chapter is based on joint work with Oliver Grothe (Publ. II).
Chapter 5 continues the work on forecasting and focuses on assessing the ability of mod-

els to track changes. Being similarly applicable to measurements and nowcasts, the ability
to track changes describes a forecasting, nowcasting, or measurement method’s ability to
correctly predict the direction of changes in values. Whether a quantity increases or de-
creases is intuitive and easily interpretable information on a quantity measured over time
and might, thus, be of high relevance for decision-making. However, it is only implicitly
and indistinctly assessed in traditional accuracy measures or probabilistic scoring rules.
We derive and present new measures and visualization techniques based on the joint de-

velopment of predicted and observed changes, including their dependence, to assess the
ability to track changes solely. The measures and visualization techniques are clearly un-
derstandable for decision-makers and amend the current evaluation practice. We reduce
noise and minor deviations’ effect on the evaluation and provide methods to quantify esti-
mation uncertainty using bootstrap confidence intervals. We briefly review rolling estimates
to reveal patterns over time and provide a new visualization technique based onmultivariate
kernel density estimation to inspect local effects in the ability to track changes. Additionally,
we provide advice on evaluating the ability to track changes for probabilistic forecasts and
nowcasts. We apply the methods to three large data applications: COVID-19-nowcasting,
forecasting patient admission to an emergency department, and invasive and non-invasive
blood pressure measurements, illustrating the usage of the proposed evaluation technique
and providing further insights on the methods. Again, the code is published so that further
applications in the medical and healthcare sector and other fields are straightforward. The
chapter is based on joint work with Bolin Liu, Bernd Saugel, and Oliver Grothe (Publ. III).
As a basis for the following work, Chapter 2 reviews literature and concepts that spread

through several chapters, such as copulamodels, relevant for Chapters 3 and 4, and forecast-
ing and its evaluation, for Chapters 4 and 5. Chapters 3, 4, and 5 briefly recapitulate themost
important concepts and notation to keep them largely self-contained. Similarly, the individ-
ual chapters motivate the research question within the respective fields and review relevant
literature. Chapter 6 concludes the thesis. The appendix contains supplementary material
for the different chapters, including longer proofs, further results, and additional topics. It
is organized along the chapters to which the topics are related, and links to the respective
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sections are given within the text. The author’s publications and conference presentations
are listed on page 144 and are referenced within the thesis by “Publ.” and “Conf.”.



2. Copulas and Forecast Evaluation

Copulas, forecasting, and forecast evaluation are fundamental matters of this thesis. While
the following sections provide an introduction, the chapters repeat the basic notation and
concepts where necessary. Section 2.1 introduces copulas, including methods for high-
dimensional modeling and copula properties. Those are the basis for Chapters 3 and 4: A
specific type of copula is decomposed, and copula properties are analyzed in Chapter 3 and
Chapter 4 applies copula dependence modeling to the combination of point forecasts. Sec-
tion 2.2 introduces forecasting and forecast evaluation measures, topics of Chapter 4 and
Chapter 5. The chapter is based on and, in large parts, identical to Publ. II (Section 2);
excerpts are also taken from Publ. III (Section 2).

2.1. Copulas

Copulas are a tool to model multivariate dependencies by modeling the dependence of the
variables separately from the marginals. Through Sklar’s theorem (Sklar, 1959) every mul-
tivariate cumulative distribution function (CDF) 𝐻 of random variables 𝑋1, … , 𝑋𝑛 can be
expressed in terms of the individual marginal distributions 𝐹1, … , 𝐹𝑛 and their dependence
encoded in the copula 𝐶

𝐻(x) = 𝐶 (𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)) , ∀x = (𝑥1, … , 𝑥𝑛) ∈ ℝ̄𝑛, (2.1)

where ℝ̄ = ℝ ∪ {−∞,∞}. For continuous 𝐹1, … , 𝐹𝑛, 𝐶 is unique. If 𝐶 is a copula of di-
mension 𝑛 and 𝐹1, … , 𝐹𝑛 are distribution functions, then the function 𝐻 defined by (2.1)
is a 𝑛-dimensional distribution function with margins 𝐹1, … , 𝐹𝑛 (Nelsen, 2006, p. 46). As
𝑈𝑖 = 𝐹𝑖(𝑋𝑖) ∼ 𝑈(0, 1) for continuous 𝐹𝑖, 𝐶 is the 𝑛-dimensional CDF of 𝑈1, … ,𝑈𝑛 ∼ 𝑈(0, 1)
and any 𝑛-dimensional distribution function with uniformmargins is a copula. The inverse
of Equation (2.1),

𝐶(u) = 𝐻(𝐹−11 (𝑢1), … , 𝐹−1𝑛 (𝑢𝑛)),u = (𝑢1, … , 𝑢𝑛) ∈ (0, 1)𝑛, (2.2)

gives a method of defining copulas, where 𝐹−1𝑖 denotes the inverse of 𝐹𝑖 (𝑖 = 1, … , 𝑛). For
𝐻 being a multivariate normal distribution with correlation matrix Σ and 𝐹1, … , 𝐹𝑛 being

5
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standard normal distributions, Equation (2.2) defines the Gaussian copula and encodes the
dependence structure of a multivariate Gaussian distribution. Analogously, the t-copula
reflects the dependence structure of the multivariate t-distribution and can be defined with
a multivariate t-distribution instead of the normal distribution. Because of their similar
structure and the use of an elliptical distribution in their formulation, Gaussian and t-copula
are called elliptical copulas. The independence copula

Π(𝑢1, … , 𝑢𝑛) =
𝑛
∏
𝑖=1

𝑢𝑖,

models independent variables. It is obtained by various other parametric copulas with spe-
cific parameters, such as Σ = diag(1, … , 1) for the Gaussian copula.
While elliptical copulas are radially symmetric, the class of Archimedean copulas pro-

vides a method of constructing copulas with asymmetries. The generator function 𝜑 and
its pseudo-inverse 𝜑−1 defines the copula. Nelsen (2006, Sections 4.1 and 4.6) formulates
requirements and rigorous definitions of these functions. Well-known examples of Archi-
medean copulas include the Clayton, Gumbel, and Frank copulas. Table 2.1 shows a sum-
mary of their functional forms. Archimedean copulas share essential features through their
functional forms, such as the straightforward ability to generate random numbers and ex-
tendability to higher dimensions.
Elliptical and Archimedean copulas impose strong conditions on the copulas contained;

thus, not all copulas belong to one of those classes. The Farlie-Gumbel-Morgenstern (FGM)
copula and the Cuadras-Augé (CA) copula used later within this work, for example, belong
to neither of them. They have the functional form of

𝐶𝜃,FGM(𝑢, 𝑣) = 𝑢𝑣 + 𝜃𝑢𝑣(1 − 𝑢)(1 − 𝑣) (𝜃 ∈ [−1, 1]) and

𝐶𝜃,CA(𝑢, 𝑣) = {
𝑢𝑣1−𝜃 , 𝑢 ≤ 𝑣
𝑢1−𝜃𝑣 , 𝑢 ≥ 𝑣

(𝜃 ∈ [0, 1])

with a parameter 𝜃 controlling the strength of dependence. Figure 2.1 shows scatter plots
of the above copulas. While Gaussian, Student t, Frank, and FGM copula are symmetric
for 180-degree rotations, the Clayton, Gumbel, and CA copulas are not. Note that copulas
can also be modeled in a semiparametric or nonparametric way [see, among others, Gijbels
and Mielniczuk, 1990; Chen and Huang, 2007; Nagler, Schellhase, and Czado, 2017 and the
checkerboard copula in Chapter 3].
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Family 𝐶𝜃(𝑢1, 𝑢2) 𝜑𝜃(𝑡) 𝜃 ∈

Clayton [max (𝑢−𝜃1 + 𝑢−𝜃2 − 1, 0)]
−1/𝜃 1

𝜃
(𝑡−𝜃 − 1) [−1,∞) ∖ {0}

Frank − 1
𝜃
(1 + (𝑒−𝜃𝑢1−1)(𝑒−𝜃𝑢2−1)

𝑒−𝜃−1
) − ln 𝑒−𝜃𝑡−1

𝑒−𝜃−1
(−∞,∞) ∖ {0}

Gumbel exp (− [(− ln𝑢1)𝜃 + (− ln𝑢2)𝜃]
1
𝜃 ) (− ln 𝑡)𝜃 [1,∞)

Table 2.1.: Summary of exemplary Archimedean copulas in two dimensions (Nelsen, 2006,
p. 116 et seq.).

Family 𝜆𝑙 𝜆ᵆ
Gaussian 𝟙 {𝜌 = 1} 𝟙 {𝜌 = 1}

Clayton (for 𝜃 > 0) 2−
1
𝜃 0

Frank 0 0

Gumbel 0 2 − 2
1
𝜃

FGM 0 0
CA 𝟙 {𝜃 = 1} 𝜃

Table 2.2.:Upper and lower tail dependencies for some important bivariate copulas with pa-
rameters 𝜃 (Nelsen, 2006, p. 215). For the Gaussian copula, 𝜌 refers to the correla-
tion between the two variables, Σ12. The tail dependence for Student’s t copula is
omitted due to its complexity and is computed, for example, in Embrechts, Lind-
skog, and Mcneil (2003, Sec. 5.3).

Well-known dependence measures can be computed based solely on the copula; for ex-
ample, Kendall’s concordance measure

𝜏(𝑋1, 𝑋2) = 4 ∫
1

0
∫

1

0
𝐶(𝑢, 𝑣) d𝐶(𝑢, 𝑣) − 1

and Spearman’s

𝜌(𝑋1, 𝑋2) = 12 ∫
1

0
∫

1

0
𝐶(𝑢, 𝑣) d𝑢 d𝑣 − 3.

In addition to the overall dependence measures, there are measures for specific areas of in-
terest; for example, the dependence for 𝑈1 and 𝑈2 approaching one or zero. This is called
upper or lower tail dependence. The upper tail dependence 𝜆ᵆ of continuous random vari-
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ables 𝑋 and 𝑌 with marginal distribution functions 𝐹1 and 𝐹2 and copula 𝐶 is defined as

𝜆ᵆ = lim
𝑡 ↑ 1

ℙ [𝑋2 > 𝐹(−1)2 (𝑡) | 𝑋1 > 𝐹(−1)1 (𝑡)] = 2 − lim
𝑡 ↑ 1

1 − 𝐶(𝑡, 𝑡)
1 − 𝑡

and for lower tail dependence analogously. Table 2.2 depicts the tail dependencies for the
copulas above. Tail dependencies can be distinguished in the scatter plots of the copulas in
Figure 2.1 by the sharp spikes near (0, 0) or (1, 1).
A typical method for the selection of one of the copulas involves the Akaike information

criterion (AIC; Akaike, 1974). It is defined as

AIC = 2(𝑙𝑛,max − 𝑝), (2.3)

where 𝑙𝑛,max is the maximized likelihood and 𝑝 is the total number of marginal and copula
parameters. Using the AIC is only fully justified when all marginal and copula parameters
are estimated simultaneously. As argued byHofert, Kojadinovic,Machler, et al. (2018, p. 191
et seq.), the use of AIC is theoretically problematic in staged estimation contexts. Still, alter-
natives with much higher computation costs do not perform considerably better. Therefore,
we use AIC to select models in the following. Note that for copulas with the same num-
ber of parameters, for example, Gaussian, Gumbel, Clayton, and Frank, maximizing AIC is
identical to choosing the copula with the highest likelihood 𝑙𝑛,max.
Parametric copulas, such as Gaussian, t, or Archimedean copulas, usually do not pro-

vide enough flexibility for data in high dimensions. They have a closed functional form in
higher dimensions with only a few parameters to fit. Pair copula constructions are a more
flexible approach, with vine copulas being a prominent representative (Joe, 1996; Bedford
and Cooke, 2002; Cooke, Joe, and Aas, 2010). For a brief introduction, we refer to Coblenz
et al. (2020), for a textbook introduction to Czado (2019). Vine copulas model the high-
dimensional copula as a multilayered tree of bivariate, conditional copulas. An optimal
structure of the tree is generally challenging to find, and usually, within the tree, the sim-
plifying assumption is imposed (for definition, discussion, and extensions, see, e.g., Hobæk
Haff, Aas, and Frigessi, 2010; Coblenz, 2018, Section 6.1.2; Czado and Nagler, 2022, Section
6). There are various implementations of vine copulas for different programming languages,
such as MATLAB (Coblenz, 2021) and Python (Nagler and Vatter, 2021).

2.2. Forecast evaluation

Forecasting is intended to predict the future value of a quantity. There has been an ongo-
ing shift from point forecasts to issuing more information on future development in recent
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years. Adding uncertainty measures such as the expected root mean squared error (RMSE)
gives a general remark on a likely spread of the value, whereas more advanced methods
such as prediction interval forecasting or quantile regression give values of prescribed quan-
tiles (Nowotarski andWeron, 2018). To include evenmore information, forecasters can issue
distributional forecasts, that is, the distribution of the unknown quantity given the informa-
tion at hand (Gneiting andRanjan, 2013). The forecast distribution includes the information
mentioned above on the location and uncertainty of the forecast, such as quantiles and mo-
ments. However, assessing distributional forecasts is more challenging than point forecasts,
as a distribution is forecasted, but a value is observed. We give a brief overview of point and
distributional forecast evaluation in the following.
Various measures are available to assess the accuracy of point forecasts, Gneiting (2011)

calls them scoring functions. The RMSE andmean absolute error (MAE) are common scale-
dependent scoring functions for point forecasts. For a series of forecasts 𝑥𝑡 and observations
𝑦𝑡 (𝑡 = 1, … , 𝑇), the RMSE and MAE are defined as

RMSE(𝑥, 𝑦) =
√√√

√

1
𝑇

𝑇
∑
𝑡=1

(𝑥𝑡 − 𝑦𝑡)2 and

MAE(𝑥, 𝑦) = 1
𝑇

𝑇
∑
𝑡=1

|𝑥𝑡 − 𝑦𝑡|.

RMSE and MAE penalize deviations depending on the scale of the forecast (for a concise
analysis, see, Hyndman and Koehler, 2006). There are various extensions and other mea-
sures to make the assessment less scale-dependent, for example, by dividing by the observa-
tion or the error of a benchmarkmodel. However, due to their simplicity and interpretability,
for example, having the same scale as the data, the RMSE and MAE are still widely used.
Gneiting (2011) analyze point forecast evaluation measures for the statistical quantity min-
imizing the function. The mean or median are the scoring-rule-minimizing functionals for
the RMSE and MAE, respectively.
The concepts of calibration and sharpness are essential to compare different distributional

forecasts. Calibration is the statistical consistency between predicted and actual distribu-
tion (Thorarinsdottir, 2013; Gneiting and Ranjan, 2013). Thus, observed realizations are
indistinguishable from random draws of the forecast distribution for a calibrated forecast.
Sharpness refers to the concentration of the predictive distribution in absolute terms (Gnei-
ting, Balabdaoui, and Raftery, 2007). Murphy andWinkler (1987) andGneiting, Balabdaoui,
and Raftery (2007) conclude that statistical forecasting aims at maximizing the sharpness of
the forecast subject to calibration.
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In practice, calibration is not verifiable, as the actual distribution remains unknown.
Therefore, practically applicable calibration concepts focus on specific aspects of statistical
consistency. For real-valued random variables, evaluating the calibration of a forecast typi-
cally involves investigating the probability integral transform (PIT) of the forecast (Dawid,
1984; Gneiting and Ranjan, 2013). In the case of a continuous forecast 𝐹, the PIT reduces to

𝑍𝐹 = 𝐹(𝑋),

that is the value of the forecast CDF at the observation. For a continuous random variable
𝑋 and its CDF 𝐹𝑋, the PIT satisfies 𝑍𝐹𝑋 ∼ 𝑈(0, 1) (Rüschendorf, 2009). Due to this, any
CDF forecast 𝐹 for a random variable 𝑋 is called a probabilistically calibrated forecast for 𝑋
if 𝑍𝐹 ∼ 𝑈(0, 1) (Gneiting and Ranjan, 2013).
Practical tools to assess the uniformity of a sequence of PIT values include empirical mo-

ments, uniformity tests, and graphical analysis of PIT values. A 𝑈(0, 1) random variable
has support on the whole unit interval and variance 1/12. The PIT of a forecast is called reg-
ular and neutrally dispersed if it fits the support and variance, respectively. If the variance
is smaller (larger) than 1/12, the forecast is overdispersed (underdispersed). Often, it can be
beneficial to inspect the values graphically. The kind of deviation from uniformity can lead
to the identification of differences between the predicted and actual distributions. Skewed
PIT histograms correspond to an incorrect location of the forecast distributions. U-shaped
(respectively hump-shaped) histograms suggest a too small (respectively too large) variance
of the PIT values (Gneiting and Ranjan, 2013). Figure 2.2 visualizes sample PIT histograms
for different forecast distributions for the same underlying distribution.
Noceti, Smith, and Hodges (2003) analyze different statistics to assess the uniformity

of the PIT values. They identify the test statistic following Anderson-Darling (AD) and
Kolmogorov-Smirnov (KS) (Anderson and Darling, 1954; Neave and Worthington, 1988)
as powerful and widely used. The AD test statistic, 𝐴2, and the KS test statistic, 𝐷, evaluate
the uniformity of PIT values by

𝐷 = max {max
𝑖∈[𝑇]

{(𝑖/𝑇) − 𝑧(𝑖)},max𝑖∈[𝑇]
{𝑧(𝑖) − (𝑖 − 1)/𝑇}} and

𝐴2 = −𝑇 −
𝑇
∑
𝑖=1
(2𝑖 − 1) [ln 𝑧(𝑖) + ln(1 − 𝑧(𝑇+1−𝑖))] /𝑇

for (sorted) PIT values 𝑧(1), … , 𝑧(𝑇). Note that other notions of calibration exist, for exam-
ple, marginal calibration (Gneiting, Balabdaoui, and Raftery, 2007) and complete calibra-
tion (Dawid, 1984).
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While the above scoring functions are for point forecasts, one can use scoring rules to si-
multaneously evaluate the two potentially contrary objectives of sharpness and calibration
for probabilistic forecasts. They impose penalties based on the issued forecast and the ob-
served realization and are negatively oriented; lower scores indicate better forecasts. A good
scoring rule should encourage issuing the actual distribution, reflected by the notion of pro-
priety. A scoring rule is proper if, in expectation, no forecast yields a lower score than the
true distribution. For a mathematical formulation, see, for example, Gneiting and Katzfuss
(2014, p. 133).
The logarithmic score (LS) for a density forecast 𝑓 and realising observation 𝑦 is defined

as
𝑆𝐿𝑆(𝑓, 𝑦) = − log𝑓(𝑦). (2.4)

It dates back to at least Good (1952). In regression evaluation, the logarithmic score is equiv-
alent to the log-likelihood score. It can be computed for continuous and discrete forecast
distributions. However, it can be infinite if the forecast support does not include the obser-
vation, and the probability distribution function (PDF) has to exist and be computed.
The continuous ranked probability score (CRPS), another proper scoring rule, is a gener-

alized version of the MAE and is, for a forecast CDF 𝐹, computed by

𝑆𝐶𝑅𝑃𝑆(𝐹, 𝑦) = ∫
ℝ
(𝐹(𝑥) − 𝟙 {𝑥 > 𝑦})2𝑑𝑥.

It can also be expressed as an integral over the quantile loss and is approximated by the
scaled average pinball loss over different quantiles (Gneiting and Katzfuss, 2014; Hong et
al., 2016). For a series of forecasts 𝐹𝑡 and observations 𝑦𝑡 (𝑡 = 1, … , 𝑇), the average score 𝑆𝐹𝑇
assesses the overall performance of the forecast, that is, for a proper scoring rule 𝑆,

𝑆𝐹𝑇 =
1
𝑇

𝑇
∑
𝑡=1

𝑆(𝐹𝑡, 𝑦𝑡).

Dichotomous forecasts are an important facet of forecasting, focused on predicting binary
events. There, the notation and methods are more straightforward, as only two outcomes
are possible, 𝑦 = 0 and 𝑦 = 1, and only the probability 𝑝 for 𝑦 = 1 is forecasted. The Brier
score (BS) is a widely used scoring rule for dichotomous probabilistic forecasts (Brier, 1950)
and is defined as

𝑆BS(𝑝, 𝑦) = (𝑝 − 𝑦)2.

Again, lower values indicate a better forecast. Additional graphical calibration assessments
are available for dichotomous forecasts, such as reliability diagrams (see Section 5.2.6).
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(f) FGM, 𝜏 = 2/9
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Figure 2.1.: Scatter plots with 1 000 points of the copulas of Section 2.1 using the R package
copula (Hofert, Kojadinovic, Maechler, et al., 2023, version 1.1-3) and Mai and
Scherer (2012, Example 1.8) for the CA copula. Apart from the FGM copula, the
copulas have parameters such that 𝜏 = 0.5.
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(d) Incorrectly-located

forecast.

Figure 2.2.: PIT histograms visualizing deviations from calibration. The left histogram is
uniformly distributed, indicating a calibrated forecast. The second and third
histograms areU-shaped and hump-shaped, revealing an incorrect forecast vari-
ance. The right histogram is skewed, suggesting a wrong forecast location. The
data is generated using a 𝑁(0, 1) distribution and forecasts 𝑁(0, 1), 𝑁(0, 0.25),
𝑁(0, 4), and 𝑁(0.5, 1), respectively.



3. Checkerboard Copula Decomposition

This chapter analyzes, visualizes, and applies singular value decomposition to doubly
stochastic matrices representing checkerboard copulas and, thus, provides structural in-
sights into the dependence structure of checkerboard copulas. The chapter is based on joint
work with Oliver Grothe (Publ. I) and was presented at the CMStatistics 2022 (Conf. IV).
Dimensionality reduction techniques were also applied to wind speed data to identify clus-
ters of similarity in Publ. IV by the author of this thesis. However, this manuscript is not
part of the thesis.
The chapter is structured as follows. Section 3.1 motivates the decomposition of checker-

board copulas and reviews relevant literature. Section 3.2 describes the approach, including
the extensions for comonotonicity-like copulas, non-copula truncations, and the computa-
tion of statistical functionals. We analyze the difference between decomposed copulas and
draw the connection between discrete (checkerboard) and continuous decompositions. Sec-
tion 3.3 provides the resulting decompositions for well-known copulas of different complex-
ities and symmetric and asymmetric dependencies. We use the graphical tools of correspon-
dence analysis to interpret the two-dimensional graphs of copulas and apply the graphical
tools to an empirical checkerboard from data on the fuel injection spray characteristics of
jet engines in Section 3.4. Section 3.5 concludes the chapter. The code for this chapter is
available at https://github.com/jo-rie/cca.

3.1. Introduction

A copula contains information on the likelihood of joint occurrence of random variables
on their intrinsic quantile scale (for preliminaries on copulas, see Section 2.1). For two-
dimensional vectors, the copula thus encodes a possibly large or infinite two-dimensional
frequency table specifying the joint likelihood of the transformed random vector. If finite,
square, and scaled appropriately, this table can be interpreted as a checkerboard copula (X. Li
et al., 1997; Durante and Sempi, 2015). The tables are generally large andmay contain redun-
dant information, and assessing the incorporated dependence information is not straight-
forward. We apply well-known decomposition and dimensionality reduction techniques of
high-dimensional data analysis to this table, thereby decomposing the copula. The decom-
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position opens a wide range of further analyses, for example, to compute and analyze cop-
ula characteristics, plot meaningful two-dimensional plots of the copula, or build simpler,
reasonable approximations of complicated dependency structures. Through the low-rank
approximation, one can drastically decrease the number of items to be stored compared to
the full checkerboard matrix, that is, the square of the lattice size.
Checkerboard copulas can be obtained fromempirical data or, for example, by discretizing

continuous copulas (see, e.g., Kolesárová et al., 2006; Durrleman, Nikeghbali, and Roncalli,
2000). In either way, the copula frequency table is a doubly stochastic matrix. Taking the
doubly stochastic matrix, we apply correspondence analysis methods that are mainly based
on singular value decomposition (SVD).
Additive decompositions of copulas using variable-specific functions already exist in the

literature, but only for continuous representations. Continuous decompositions are consid-
ered, for example, in Mesiar and Najjari (2014) or Rodríguez-Lallena (2004) for the gener-
ation of new copulas and in C. M. Cuadras (2015) for the decomposition of copulas. The
checkerboard case differs from existing approaches and yields different decompositions, as
discussed in Section 3.3.3. Durrleman, Nikeghbali, and Roncalli (2000) mention SVD of
checkerboard copulas but do not go into detail, and C. M. Cuadras (2002) considers dis-
crete and continuous decompositions of general bivariate distributions. In contrast to these
studies, we concentrate on the decomposition of doubly stochastic matrices that represent
checkerboard copulas, allowing us to focus on the features of copulas. We provide formu-
las for important statistical functionals, including Spearman’s 𝜌, Kendall’s 𝜏, and Pearson’s
𝜙2. Through the Frobenius distance between the matrices, we express the similarity of two
checkerboard copulas in terms of their 𝜙2.
Using the standard kit of correspondence analysis has obstacles for some copulas. Cop-

ulas such as the comonotonicity copula are costly to represent in standard SVD, as the cor-
responding frequency matrix is similar to an identity matrix, having full rank and many
equally large singular vectors. Thus, approximations by truncating the SVD series have
slowly decaying errors. Therefore, we propose to use a monotonicity anchored represen-
tation (adapted from Greenacre, 1984 and Kazmierczak, 1978), taking into account the in-
dependence and comonotonicity-like characteristics. This representation does not change
the singular vectors for symmetric copulas but can considerably reduce the approximation
error. Also, the obtained truncations are not necessarily valid checkerboard copulas, as neg-
ative values can occur. We provide an algorithm that yields the nearest valid copula for the
Frobenius norm by generalizing an algorithm by Zass and Shashua (2007) and thus maps
the obtained truncated (not doubly stochastic) matrix to the nearest doubly stochastic ma-
trix. While this chapter is focused on the Frobenius error norm, we remark on using the
Hellinger distance in Appendix A.2.
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The frequency table decomposition corresponds to a decomposition of the discretized cop-
ula PDF. Section 3.2.6 links our analysis to continuous decompositions, as in the literature
on copula generation and continuous copula decomposition, and to cumulative distribution
function (CDF) decompositions. Through the decomposition, wemotivate a decomposition
of the Gaussian copula into transformed Hermite polynomials.
Thus, this chapter makes several contributions. We define the decomposition of checker-

board copulas and give extensions of the approach for comonotonicity-like copulas and non-
copula truncations. We link the approach to important existing copula concepts such as
dependence measures, similarities of copulas, and continuous decompositions of copulas.
We derive characteristics of the graphs obtained by the approach and thus provide a new
method of graphical copula representations. Lastly, we apply the approach to theoretical
copula families of various complexities and an empirical data example from the engineer-
ing context.

3.2. Checkerboard copula decomposition and its
characteristics

This section examines the singular value decomposition (SVD) and its truncation for
checkerboard copulas, that is, doubly stochastic matrices. We introduce some notation in
Section 3.2.1 and then define the truncated decomposition, including a monotonicity an-
chored representation (MAR) that accounts for dependencies similar to comonotonicity in
Section 3.2.2. To correct negative matrix elements in the truncated representation, Sec-
tion 3.2.3 formulates an algorithm to approximate the truncation by a doubly stochastic
matrix. Sections 3.2.4 and 3.2.5 derive statistical functionals and similarity measures us-
ing the decomposition. Section 3.2.6 links the decompositions of continuous copulas and
their discretized counterparts.

3.2.1. Doubly stochastic matrices from bivariate copulas

Let𝑋 and𝑌 be random variables with CDF 𝐹𝑋,𝑌 andmarginal CDFs 𝐹𝑋 and 𝐹𝑌, respectively.
Through the well-known theorem of Sklar (1959) the multivariate CDF 𝐹𝑋,𝑌(𝑥, 𝑦) can be
decomposed as

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦))

whereby the copula 𝐶 encodes the dependence structure of 𝑋 and 𝑌. The copula 𝐶 can also
be seen as CDF of 𝐹𝑋(𝑋) and 𝐹𝑌(𝑌) and, thus, has the properties of a multivariate CDF
with uniform margins, provided that 𝑋 and 𝑌 are continuous. While the copula is unique
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for continuous random variables, it is only uniquely identified on the image of 𝐹𝑋 and 𝐹𝑌,
respectively, in the discrete case. Further information on copulas is available in Section 2.1.
A checkerboard copula (X. Li et al., 1997) is a special type of copula that assumes auniform

mass within the squares of an evenly spaced lattice 𝐼𝑛 × 𝐼𝑛 (𝐼𝑛 = {0, 1/𝑛, … , 1}). Checker-
board copulas can be computed from empirical data or by the discretization of continuous
copulas. The discretization facilitates the (asymptotic) comparison of discrete and continu-
ous characteristics.
Any continuous copula 𝐶 defines a doubly stochastic matrix 𝐂𝑛 on the grid 𝐼𝑛 × 𝐼𝑛 by

evaluating 𝐶 on 𝐼𝑛 × 𝐼𝑛, that is, 𝒞 ≔ 𝐶(𝑢, 𝑣) (𝑢, 𝑣 ∈ 𝐼𝑛) (Mayor, Suner, and Torrens, 2005;
Kolesárová et al., 2006) and computing

𝐂𝑛
𝑖,𝑗 = 𝑛[𝒞( 𝑖

𝑛
, 𝑗
𝑛
) − 𝒞( 𝑖−1

𝑛
, 𝑗
𝑛
) − 𝒞( 𝑖

𝑛
, 𝑗−1

𝑛
) + 𝒞( 𝑖−1

𝑛
, 𝑗−1

𝑛
)] for 𝑖, 𝑗 = 1, … , 𝑛. (3.1)

The properties of 𝐂𝑛 follow from the copula properties of 𝐶:

1. 𝐂𝑛 has nonnegative entries as the defining Equation (3.1) coincides with a scaled ver-
sion of the 2-volume of the copula, which is nonnegative.

2. From 𝐶(𝑢, 1) = 𝐶(1, 𝑢) = 𝑢 (𝑢 ∈ [0, 1]) and 𝐶(𝑢, 0) = 𝐶(0, 𝑢) = 0 (𝑢 ∈ [0, 1]) follows
for 𝑗 ∈ [𝑛]

𝑛
∑
𝑖=1

𝐂𝑛
𝑖,𝑗 =

𝑛
∑
𝑖=1

𝑛[𝒞( 𝑖
𝑛
, 𝑗
𝑛
) − 𝒞( 𝑖−1

𝑛
, 𝑗
𝑛
) − 𝒞( 𝑖

𝑛
, 𝑗−1

𝑛
) + 𝒞( 𝑖−1

𝑛
, 𝑗−1

𝑛
)] = 1.

An analogous computation shows ∑𝑛
𝑗=1 𝐂

𝑛
𝑖,𝑗 = 1 (𝑖 ∈ [𝑛]) and, thus, the row and

column sums of 𝐂𝑛 are 1.

Thematrix𝐂𝑛 is by construction square, together with 1. and 2., a doubly stochastic matrix.
The element 𝐂𝑛

𝑖,𝑗 (𝑖, 𝑗 ∈ [𝑛], where [𝑛] ≔ {1, 2, … , 𝑛}) corresponds to the density of the
checkerboard copula,

̂𝑐(𝑢, 𝑣) = 𝑛𝐂𝑛
⌈ᵆ⋅𝑛⌉,⌈𝑣⋅𝑛⌉ = 𝑛

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝐂𝑛
𝑖,𝑗𝟙 {𝑢 ∈ [ 𝑖−1

𝑛
, 𝑖
𝑛
)} 𝟙 {𝑣 ∈ [ 𝑗−1

𝑛
, 𝑗
𝑛
)} (𝑢, 𝑣 ∈ ℝ), (3.2)

in the rectangle
𝑅𝑖,𝑗 ≔ [ 𝑖−1

𝑛
, 𝑖
𝑛
] × [ 𝑗−1

𝑛
, 𝑗
𝑛
].

We denote by 𝟙 {⋅} the indicator function. Thus, 𝐂𝑛
𝑖,𝑗 can be interpreted naturally as a table

of the likelihood of occurrence in the copula domain. Integration over Equation (3.2) yields
a checkerboard approximation of the copula CDF ̂𝐶 and the conditional CDF ̂𝐶ᵆ|𝑉=𝑣. The
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discretizations approximate the copula 𝐶 with increasing 𝑛, and every copula 𝐶 is the limit
of its discretizations for 𝑛 → ∞ (see Kolesárová et al., 2006, Theorem 1).

3.2.2. Singular value decomposition and monotonicity anchored
representation

Having the table of likelihood of occurrence, 𝐂𝑛, correspondence analysis can be applied to
the matrix 𝐂𝑛 to analyze the structural properties of the matrix. Correspondence analysis
uses the SVD to compute low-dimensional approximations of the matrix. To this end, the
SVD is truncated, yielding the nearest matrix of the specified rank according to the Frobe-
nius or the spectral norm (Mirsky, 1960). In correspondence analysis, the matrix 𝐂𝑛 is usu-
ally centered, and some scaling is applied to rows and columns to account for the sum dif-
ferences of the rows or columns (Greenacre, 1984). In the case of 𝐂𝑛, the centering step is
implemented by subtracting thematrix𝚷𝑛 ≔ 𝑛−1𝟙𝟙⊤ from𝐂𝑛, where 𝟙 is the vector of ones
of suitable dimension. We denote this by

𝐀𝑛 = 𝐺(𝐂𝑛) ≔ 𝐂𝑛 −𝚷𝑛.

Note that 1
√𝑛
𝟙 is a (left and right) singular vector of 𝐂𝑛 with singular value 1, whereby 1

is the largest singular value for doubly stochastic matrices (Perfect and Mirsky, 1965), and,
thus, the rank of 𝐀𝑛 is at most 𝑛 − 1. We denote the SVD of 𝐀𝑛 by

𝐀𝑛 = 𝐔𝐒𝐕⊤, with𝐔 = (𝐮1, … , 𝐮𝑛), 𝐒 = diag(𝑠1, … , 𝑠𝑛), 𝐕 = (𝐯1, … , 𝐯𝑛), (3.3)

where𝐔 and𝐕 are orthogonalmatrices and the singular values 𝑠𝑘 are in [0, 1] and are sorted
in descending order as usual.
The decomposition in Equation (3.3) may be truncated by using only the 𝑛⋆ ≤ 𝑛 largest

singular values of 𝑠, and the corresponding first 𝑛⋆ columns of 𝐔 and 𝐕 ∶

𝑇𝑛⋆(𝐀𝑛) ≔ 𝐔∶,1∶𝑛⋆𝐒1∶𝑛⋆,1∶𝑛⋆ (𝐕∶,1∶𝑛⋆)
⊤ ,

where we will use 𝑇𝑛⋆(⋅) as a truncation operator of the argument’s SVD in the following.
The truncated 𝑇𝑛⋆(𝐀𝑛) yields an approximation of 𝐂𝑛 by applying the inverse function of 𝐺,
that is,

𝐺−1(𝑇𝑛⋆(𝐀𝑛)) = 𝑇𝑛⋆(𝐀𝑛) + 𝚷𝑛.

The truncated SVD yields low-rank approximations with small errors for matrices with a
few large and many small (or zero) singular values. We will show examples in Section 3.3.
However, in the copula context, many copulas share characteristics with the comonotonic-
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ity copula, an identity matrix with singular value 1 with multiplicity 𝑛, and, thus, high ap-
proximation errors for small-rank representations. To “remove” the comonotonicity copula
characteristics before applying the SVD, we suggest transforming the matrix 𝐂𝑛 so that we
account for high frequencies on the diagonal of the matrix and thus the monotone depen-
dence structures. We denote this transformation by 𝐺MAR(⋅) and call it monotonicity an-
chored representation (MAR). As we argue in Lemma 1, through this representation, the
singular vectors do not change for symmetric copulas, but the series of singular values 𝑠𝑘
decreases faster, leading to better low-rank approximations. The MAR is given by

�̃�𝑛 = 𝐺MAR(𝐂𝑛, 𝜂) ≔ 𝐂𝑛 + 𝜂𝐼𝑛 − (1 + 𝜂) 1𝑛𝟙𝟙
⊤, (3.4)

with 𝜂 ∈ ℝ and 𝐼𝑛 denoting the 𝑛-by-𝑛 identity matrix. The centering step is implemented
by the last summand −(1 + 𝜂) 1

𝑛
𝟙𝟙⊤, that is, for 𝜂 ∈ ℝ

(�̃�𝑛)𝟙 = 𝐂𝑛𝟙 + 𝜂𝐼𝑛𝟙 −
1 + 𝜂
𝑛 𝟙𝟙⊤𝟙

= 𝟙 + 𝜂𝟙 −
1 + 𝜂
𝑛 𝟙 ⋅ 𝑛 = 0 ⋅ 𝟙

and analogously for (�̃�𝑛)⊤𝟙. The approach also suits strong negative dependence by ro-
tating the copula first. A similar transformation to 𝐺MAR can be found in Kazmierczak
(1978), in Greenacre (1984, Section 8.6) formulated in the context of frequency tables. Un-
like Greenacre (1984) who use two parameters and demand them to be chosen such that
(�̃�𝑛)𝑖,𝑗 ≥ 0 ∀(𝑖, 𝑗) for merely illustrative purposes, we do not require this additional restric-
tion here. We scale the last summand by 1/𝑛 to preserve the margins shown above.
Note that 𝐺(𝐂𝑛) is nested within the MAR by setting 𝜂 = 0. Later, the parameter 𝜂 is

calculated such that the Frobenius distance between the inverse transformed version of �̃�𝑛,
denoted by 𝐺−1

MAR(𝑇𝑛⋆(�̃�𝑛), 𝜂), and (the original) 𝐀𝑛 is minimized.
Analogously to the above notation, we denote the SVD of �̃�𝑛 by

�̃�𝑛 = �̃��̃��̃�⊤, with �̃� = (�̃�1, … , �̃�𝑛), �̃� = diag( ̃𝑠1, … , ̃𝑠𝑛), �̃� = (�̃�1, … , �̃�𝑛).

The following lemma shows that singular values and vectors of �̃�𝑛 and 𝐀𝑛 are closely con-
nected, provided that 𝐂𝑛 is symmetric.
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Lemma 1. For the SVDs of �̃�𝑛 = �̃��̃��̃�⊤ and𝐀𝑛 = 𝐔𝐒𝐕⊤ of symmetric𝐂𝑛, that is, for𝐔 = 𝐕,
it holds that

𝐮𝑘 = �̃�𝑘 = 𝐯𝑘 = �̃�𝑘 𝑘 = 1, 2, … and
̃𝑠𝑘 = (𝑠𝑘 + 𝜂) 𝑘 = 1, 2, … , 𝑛.

Proof. From 𝐯1, … , 𝐯𝑛−1 ⟂ 𝟙 follows for 𝑘 = 1,… , 𝑛 − 1

�̃�𝑛 ⋅ 𝐯𝑘 = [𝐂𝑛 + 𝜂𝐼𝑛 +
1 + 𝜂
𝑛 𝟙𝟙⊤] ⋅ 𝐯𝑘

= 𝐂𝑛𝐯𝑘 + 𝜂𝐼𝑛𝐯𝑘 +
1 + 𝜂
𝑛 𝟙𝟙⊤𝐯𝑘⏟

=0

= 𝑠𝑘𝐮𝑘 + 𝜂𝐯𝑘.

For symmetric matrices, thus,

�̃�𝑛 ⋅ 𝐯𝑘 = (𝑠𝑘 + 𝜂)𝐯𝑘.

For asymmetric 𝐂𝑛, the singular values and vectors of 𝐀𝑛 and �̃�𝑛 differ. Lemma 1 yields
the 𝑛⋆-truncated representation of �̃�𝑛,

𝑇𝑛⋆(�̃�𝑛) =
𝑛⋆

∑
𝑘=1

�̃�𝑘 ̃𝑠𝑘�̃�⊤𝑘

(∗)
=

𝑛⋆

∑
𝑘=1

(𝑠𝑘 + 𝜂)𝐮𝑘𝐮⊤𝑘 |(∗) ∶ for symmetric 𝐂𝑛

and thus after back transformation of Equation (3.4)

𝐺−1
MAR(𝑇𝑛⋆(�̃�𝑛), 𝜂) = (

𝑛⋆

∑
𝑘=1

�̃�𝑘 ̃𝑠𝑘�̃�⊤𝑘 − 𝜂𝐼𝑛 + (1 + 𝜂) 1𝑛𝟙𝟙
⊤) (3.5)

(∗)
= (

𝑛⋆

∑
𝑘=1

𝐮𝑘𝐮⊤𝑘(𝑠𝑘 + 𝜂) − 𝜂𝐼𝑛 + (1 + 𝜂) 1𝑛𝟙𝟙
⊤) (3.6)

=
𝑛⋆

∑
𝑘=1

𝐮𝑘𝐮⊤𝑘(𝑠𝑘 + 𝜂) − 𝜂𝐼𝑛 + (1 + 𝜂)𝚷𝑛 (3.7)
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and Equations (3.6) and (3.7) are, again, only valid for symmetric copulas. PDF and CDF
can be computed using 𝐺−1

MAR(𝑇𝑛⋆(�̃�𝑛), 𝜂) analogously to Equation (3.2). The parameter 𝜂 of
Equation (3.4) can be determined by minimizing some error norm of interest. For example,
we calculate the fraction 𝜂 that minimizes the residual inertia (thus, Frobenius error) for a
specified approximation of rank 𝑛⋆ by

𝜂∗(𝐂𝑛, 𝑛⋆) = argmin
𝜂∈ℝ

‖
‖‖‖

𝑛⋆

∑
𝑘=1

�̃�𝑘�̃�⊤𝑘( ̃𝑠𝑘) − 𝜂𝐼𝑛 + (1 + 𝜂)𝚷𝑛 − 𝐂𝑛
‖
‖‖‖

2

𝐹

. (3.8)

For a symmetric matrix 𝐂𝑛 and an approximation of dimension 𝑛⋆, this yields

𝜂∗(𝐂𝑛, 𝑛⋆) = argmin
𝜂∈ℝ

𝑛
∑

𝑘=𝑛⋆+1
(𝑠𝑘 + 𝜂)2 = −

𝑛
∑

𝑘=𝑛⋆+1

𝑠𝑘
𝑛 − 𝑛⋆ . (3.9)

For asymmetric matrices 𝐂𝑛, the problem in Equation (3.8) can be solved numerically. The
simulations in Section 3.3 examine the choices of 𝜂 and the resulting matrices �̃�𝑛.

3.2.3. Ensuring double stochasticity of truncations

As noted above, truncations of the SVD can yield low error approximations with consid-
erably lower rank matrices. In general, truncations of the SVD are not necessarily doubly
stochastic matrices. Truncations keep the property of having row and column sums of one
as the singular vectors 𝐮𝑘 and 𝐯𝑘, or �̃�𝑘 and �̃�𝑘, respectively, are perpendicular to 𝟙 for
𝑘 ∈ [𝑛 − 1], but the truncations do not necessarily have nonnegative elements. One can
approximate the truncation by the nearest, doubly stochastic matrix to ensure nonnegativ-
ity. This step does not increase the complexity of the representation, as it does not include
any information other than the truncated matrix. We give a general idea of the algorithms
for symmetric and asymmetric matrices here; they are more specifically described in Ap-
pendix A.1.
Zass and Shashua (2007) propose an algorithm tofind the nearest doubly stochasticmatrix

for any symmetric matrix 𝐀sym ∈ {𝐀 ∈ ℝ𝑛×𝑛 ∶ 𝐀 = 𝐀⊤} according to the Frobenius norm,
that is, a solution to the problem 𝑃(𝐀), with

𝑃(𝐀) = arg min
𝐁 ∈ ℝ𝑛×𝑛

‖𝐀 − 𝐁‖2𝐹

s.t. 𝐁𝟙 = 𝟙,
𝐁⊤𝟙 = 𝟙,
𝐁𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ [𝑛].
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According to Zass and Shashua (2007), 𝑃(𝐀) can be solved for symmetric 𝐀 iteratively by
solving two problems, that is, 𝑃(𝐀) = 𝑃2𝑃1𝑃2…𝑃1(𝐀), with

𝑃1(𝐀1) = arg min
𝐁 ∈ ℝ𝑛×𝑛

‖𝐀1 − 𝐁‖2𝐹

s.t. 𝐁𝟙 = 𝟙,
𝐁⊤𝟙 = 𝟙

and

𝑃2(𝐀2) = arg min
𝐁 ∈ ℝ𝑛×𝑛

‖𝐀2 − 𝐁‖2𝐹

s.t. 𝐁𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ [𝑛].

𝐀1 and 𝐀2 refer to iterative solutions of 𝑃2 and 𝑃1, respectively. Algorithm 1 formulates the
algorithm explicitly. 𝑃1 and 𝑃2 have closed-form solutions and calculations for the solution of
𝑃1 and 𝑃2 are carried out in A.1. For asymmetric matrices, Algorithm 1maintains its general
form but must be complemented by a deflection component (Dykstra, 1983). The result-
ing Algorithm 2 is shown in A.1. Note that there are algorithms for approximations with
a particular interest in keeping the sparsity structure of 𝐀. Rontsis and Goulart (2020) for-
mulates an algorithm for a slightly modified problem that accounts for the sparsity of the
matrix 𝐀 based on the alternate direction method of multipliers and applies to symmetric
and asymmetric matrices 𝐀. Sparsity thereby refers to zero entries in the matrix 𝐀. In gen-
eral, the SVD approximations typically contain many small, nonzero values, and thus the
approximation does not benefit from exploiting the sparsity structure.

3.2.4. Statistical functionals of decompositions and truncations

Various statistical properties can be computed using the decomposition, including depen-
dencemeasures such as Kendall’s 𝜏, Spearman’s 𝜌𝑆, and Pearson’s 𝜙2. We start by expressing
the well-known dependency measures Kendall’s 𝜏 and Spearman’s 𝜌𝑆 through the decom-
position (for a definition, see Section 2.1). The structure of both measures inherits the SVD
structure of the checkerboard copula, and thus, copulas with many high singular values
tend to have a measure representation with many terms, subject to the direction of the sin-
gular vectors. The empirical computation of dependence measures using the checkerboard
copula itself might be inefficient, and the use of a low-rank approximation might be more
robust. We leave the asymptotics of the decomposed measures for further research.
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Durrleman, Nikeghbali, and Roncalli (2000) show that for checkerboard copulas
Kendall’s 𝜏 and Spearman’s 𝜌𝑆 can be computed by

𝜏(𝐂𝑛) ≔ 1 − 1
𝑛2 trace (𝐄𝐂

𝑛𝐄(𝐂𝑛)⊤), and

𝜌𝑆(𝐂𝑛) ≔ 3
𝑛 trace (𝛀𝐂

𝑛) − 3

with 𝐄 ∈ ℝ𝑛×𝑛 and

𝐄𝑖,𝑗 =
⎧⎪
⎨⎪
⎩

1, if 𝑖 = 𝑗,
2, if 𝑖 > 𝑗,
0, if 𝑖 < 𝑗

and𝛀 ∈ ℝ𝑛×𝑛 where

𝛀 ≔ �̌��̌�⊤, with �̌� = 1
𝑛(2𝑛 − 2 ⋅ 1 + 1, 2𝑛 − 2 ⋅ 2 + 1,… )⊤.

Let, as in Section 3.2.2, the SVD of the centered𝐂𝑛 be denoted by𝐀𝑛 = 𝐔𝐒𝐕⊤, and addition-
ally 𝐮0 = 𝐯0 =

1
√𝑛
𝟙⊤ and 𝑠0 = 1, such that 𝐂𝑛 = ∑𝑛−1

𝑘=0 𝐮𝑘𝑠𝑘𝐯𝑘. Then follows Spearman’s 𝜌𝑆
with 𝝎 ≔ ‖�̌�‖−1�̌� as

𝜌𝑆(𝐂𝑛) = 3
𝑛 trace (𝛀

𝑛−1
∑
𝑘=0

𝐮𝑘𝑠𝑘𝐯⊤𝑘) − 3

= (4 − 1/𝑛2)
𝑛−1
∑
𝑘=1

𝑠𝑘⟨𝝎, 𝐮𝑘⟩⟨𝐯𝑘, 𝝎⟩ − 3

= (4 − 1/𝑛2)
𝑛−1
∑
𝑘=1

𝑠𝑘⟨𝝎, 𝐮𝑘⟩⟨𝐯𝑘, 𝝎⟩ (3.10)

and for Kendall’s 𝜏

𝜏(𝐂𝑛) ≔ 1 − 1
𝑛2 trace (𝐄𝐂

𝑛𝐄(𝐂𝑛)⊤)

= 1 − 1
𝑛2

𝑛−1
∑
𝑘=0

𝑛−1
∑
𝑙=0

𝑠𝑘𝑠𝑙⟨𝐮𝑙, 𝐄𝐮𝑘⟩⟨𝐯𝑘, 𝐄𝐯𝑙⟩. (3.11)
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Details of the calculations are provided in Appendix A.3. Both dependence measures can
also be put in terms of the MAR, for example,

𝜌𝑆(𝐂𝑛) = (4 − 1
𝑛2
) [

𝑛−1
∑
𝑘=1

̃𝑠𝑘⟨�̃�𝑘, 𝝎⟩⟨�̃�𝑘, 𝝎⟩ − (4 − 1
𝑛2
)𝜂 + 3

𝑛
(1 + 𝜂)] − 3 (3.12)

= (4 − 1
𝑛2
) [

𝑛−1
∑
𝑘=1

(𝑠𝑘 + 𝜂)⟨�̃�𝑘, 𝝎⟩2 − (4 − 1
𝑛2
)𝜂 + 3

𝑛
(1 + 𝜂)] − 3 |(for symmetric 𝐂𝑛).

(3.13)

Note that 𝜂 refers to the MAR coefficient of Equation (3.4). The calculations are performed
in Appendix A.3. The decompositions of 𝜌𝑆 and 𝜏 are both based on the singular-value-
weighted sum of scalar products containing the singular vectors. Thus, they account for
the importance and the direction of the component. For 𝜏, the projection vector contains
transformations of the other singular vectors, reflecting the integral’s measure being the
copula CDF. The representations in Equations (3.10) and (3.11) yield approximations for
Spearman’s 𝜌𝑆 and Kendall’s 𝜏 in terms of the truncated representations, that is,

̂𝜌𝑆𝑛⋆(𝐂
𝑛) ≔ (4 − 1/𝑛2)

𝑛⋆

∑
𝑘=1

𝑠𝑘⟨𝝎, 𝐮𝑘⟩⟨𝐯𝑘, 𝝎⟩ and (3.14)

̂𝜏𝑛⋆(𝐂𝑛) ≔ 1 − 1
𝑛2

𝑛⋆

∑
𝑘=0

𝑛⋆

∑
𝑙=0

𝑠𝑘𝑠𝑙⟨𝐮𝑙, 𝐸𝐮𝑘⟩⟨𝐯𝑘, 𝐸𝐯𝑙⟩. (3.15)

In the SVD representation, Pearson’s 𝜙2 boils down to the total inertia of the copula from
independence (Schmid et al., 2010, p. 223)

𝜙2(𝐂𝑛) = ∫
1

0
∫

1

0
̂𝑐2(𝑢, 𝑣) d𝑢 d𝑣 − 1

=
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑛2 (𝐂𝑛
𝑖𝑗)

2 1
𝑛2 − 1

= ‖𝐀𝑛‖2𝐹

=
𝑛
∑
𝑘=1

𝑠2𝑘,

where 𝑠1, 𝑠2, … are the singular values of the centered 𝐀𝑛. Note that this is proportional to
Pearson’s 𝜒2 statistic for testing independence in an empirical contingency table (for Pear-
son’s 𝜒2 statistic in the copula context see, e.g., Savu and Trede, 2008). The truncated rep-
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resentations 𝜙2 is

̂𝜙2𝑛⋆(𝐂
𝑛) =

𝑛⋆

∑
𝑘=1

𝑠2𝑘 = 𝜙2(𝐺−1(𝑇𝑛⋆(𝐀𝑛))).

In correspondence analysis, the ratio of the total inertia of approximation and the original
matrix is a standard measure for the approximation’s goodness of fit, that is,

∑𝑛⋆
𝑘=1 𝑠

2
𝑘

∑𝑛
𝑘=1 𝑠

2
𝑘
=

̂𝜙2𝑛⋆(𝐂
𝑛)

𝜙2(𝐂𝑛) .

Counting the number of nonzero singular values yields an estimate of the dimensionality
of the representation, that is,

𝜙𝑔(𝐂𝑛) = |{𝑠𝑘 ∶ 𝑠𝑘 > 0, 𝑘 ∈ [𝑛]}| = rank(𝐀𝑛).

It counts the dimensions needed to model all information in 𝐂𝑛 and does not consider the
strength of the information, in contrast to, for example, Pearson’s 𝜙2. C. M. Cuadras and
Díaz (2012) calls this the geometric dimension of a copula. For discretizations of a contin-
uous copula, the values of 𝜙2 and 𝜙𝑔 depend on the grid resolution 𝑛 and are, therefore,
the discretized copula’s properties and not of the continuous counterpart. The following
lemma formulates this explicitly, and the example in Section 3.2.6 shows that the geometric
dimension can decrease with increasing grid size when the grid sizes are not nested.

Lemma 2. Let 𝑛1 > 𝑛2, with 𝑛1 = 𝑛2𝑚 (𝑚 ∈ ℕ), be grid resolutions of the discretizations 𝐂𝑛1

and 𝐂𝑛2 of a copula 𝐶. Then,
𝜙𝑔(𝐂𝑛1) ≥ 𝜙𝑔(𝐂𝑛2).

Proof. Let 𝑀1 and 𝑀2 be the discretized copula 𝐶 with grid sizes 𝑛1 and 𝑛2, respectively.
Then,

𝑀2 = 𝐴𝑀1𝐴⊤

with 𝐴 ∈ ℝ𝑛2×𝑛1 and 𝐴𝑖𝑗 =
1

√𝑚
𝟙 {𝑗 ∈ ((𝑖 − 1) ⋅ 𝑚, 𝑖 ⋅ 𝑚]} and

rank(𝑀2) = rank(𝐴𝑀1𝐴⊤) ≤ min(rank(𝐴), rank(𝑀1), rank(𝐴⊤))
= min(rank(𝐴), rank(𝑀1)) ≤ rank(𝑀1).
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3.2.5. Similarity of copulas

Using the decomposition makes it easy to compute the similarity of copulas if they have a
shared grid size. We show that this similarity in terms of the Frobenius distance is mainly
driven by Pearson’s 𝜙2 of the product of the two copulas. The Frobenius distance is highly
dependent on the grid size 𝑛; thus, we propose two normalizations. Let 𝐀𝐴 = 𝐔𝐴𝐒𝐴(𝐕𝐴)⊤

and 𝐀𝐵 = 𝐔𝐵𝐒𝐵 (𝐕𝐵)⊤ be the two matrices after centering the bistochastic matrices 𝐂𝐴

and 𝐂𝐵, respectively. For ease of notation, we omit the common grid size 𝑛. Then,

‖𝐀𝐴 − 𝐀𝐵‖2𝐹 = ‖𝐂𝐴 − 𝐂𝐵‖2𝐹
= trace𝐂𝐴(𝐂𝐴)⊤ − 2 trace𝐂𝐵(𝐂𝐴)⊤ + trace𝐂𝐵(𝐂𝐵)⊤

= 𝜙2(𝐂𝐴) + 𝜙2(𝐂𝐵) − 2𝜙2(𝐂𝑃)

=
𝑛−1
∑
𝑘=1

(𝑠𝐴𝑘 )2 +
𝑛−1
∑
𝑘=1

(𝑠𝐵𝑘 )2 − 2 trace𝐀𝐵(𝐀𝐴)⊤ + 2 (3.16)

with the product copula 𝐂𝑃 = 𝐂𝐵(𝐂𝐴)⊤ (see Kolesárová et al., 2006, p. 700). Whereas the
terms 𝜙2(𝐂𝐴) and 𝜙2(𝐂𝐵) depend on the individual copulas solely, trace𝐀𝐵(𝐀𝐴)⊤ depends
on the relative orientation of the singular vectors, that is,

trace𝐀𝐵(𝐀𝐴)⊤ =
𝑛−1
∑
𝑘=1

𝑛−1
∑
𝑙=1

𝑠𝐵𝑘 𝑠
𝐴
𝑙 ⟨𝐯

𝐵
𝑘 , 𝐯

𝐴
𝑙 ⟩⟨𝐮

𝐴
𝑙 , 𝐮

𝐵
𝑘 ⟩

=
𝑛−1
∑
𝑘=1

𝑛−1
∑
𝑙=1

𝑠𝐵𝑘 𝑠
𝐴
𝑙 cos𝛼(𝐯𝐵𝑘 , 𝐯

𝐴
𝑙 ) cos𝛼(𝐮

𝐴
𝑙 , 𝐮

𝐵
𝑘 ),

where 𝛼(⋅, ⋅) is the angle between the two vectors. Thus, the copula similarity is driven by
the similarity of the singular vectors weighted by the singular values.
Although the distance (squared) in Equation (3.16) is straightforward to compute, it de-

pends on the grid size 𝑛, as the range of values increases with 𝑛. Clearly, ‖𝐀𝐴 − 𝐀𝐵‖2𝐹 ≥ 0
and ‖𝐀𝐴 − 𝐀𝐵‖2𝐹 = 0 for 𝐀𝐴 = 𝐀𝐵. The maximum

‖𝐀𝐴 − 𝐀𝐵‖2𝐹 = 𝜙2(𝐂𝐴) + 𝜙2(𝐂𝐵) − 2𝜙2(𝐶𝑃)
≤ 𝑛 + 𝑛 − 2 ⋅ 0 = 2𝑛 (3.17)
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is attained, for example, for 𝐂𝐴 = 𝐼𝑛 and 𝐂𝐵 any doubly stochastic matrix with ones on
off-diagonal elements, for example,

𝐂𝐵 =
⎛
⎜
⎜
⎜
⎝

0 1 0 0 …
0 0 1 0 …
⋮
1 0 …

⎞
⎟
⎟
⎟
⎠

.

Thus, the use of the Frobenius distance suffers from a high dependence on the grid size
𝑛, and we propose two simple rescalings of the distance that account for the increase in 𝑛.
The first one uses the maximal distance from Equation (3.17), yielding

𝛿1(𝐂𝐴, 𝐂𝐵) =
‖𝐂𝐴 − 𝐂𝐵‖𝐹

√2𝑛
,

so that the values lie within [0, 1]. The examples in Section 3.3.4 indicate that this normal-
ization overcorrects, resulting in decreasing 𝛿1 for checkerboard approximations of the same
copulas with increasing 𝑛.
Another approach is to standardize the distance by the sum of Pearson’s 𝜙2 of the copulas

𝐂𝐴 and 𝐂𝐵, that is,

𝛿2(𝐂𝐴, 𝐂𝐵) =
‖𝐂𝐴 − 𝐂𝐵‖𝐹

√𝜙2(𝐂𝐴) + 𝜙2(𝐂𝐵)
,

As ‖𝐂𝐴−𝐂𝐵‖𝐹 ≥ 0, 𝛿2(⋅, ⋅) ≥ 0 and from ‖𝐂𝐴−𝐂𝐵‖2𝐹
𝜙2(𝐀𝐴)+𝜙2(𝐀𝐵)−2𝜙2(𝐶𝑃)

= 1 follows 𝛿2(⋅, ⋅) ≤ 1. This
standardization yields values that exhibit less variation with 𝑛. The similarity measures are
applied to copulas in Section 3.3.4.

3.2.6. Some considerations on the link to continuous decompositions

C.M. Cuadras andDíaz (2012) andC.M. Cuadras (2015) define continuous PDF decomposi-
tions for continuous copulas. In the following, we briefly expand on the connection between
the continuous decomposition and the decomposition of the corresponding checkerboard
copulas. Let again 𝐶 denote the copula CDF, 𝑐 the copula PDF and

𝑐(𝑢, 𝑣) = 1 + ∑
𝑘≥1

𝜆𝑘𝑎𝑘(𝑢)𝑏𝑘(𝑣), (3.18)

with complete orthonormal sets {𝑎𝑘} and {𝑏𝑘}. C. M. Cuadras and Díaz (2012) calls the car-
dinality of the set {𝜆𝑘 ∶ 𝜆𝑘 ≥ 0} geometric dimensionality, 𝛾, of the copula, provided that
𝛾 is finite, analogously to the discretized case. The decomposition exists if the copula’s 𝜙2,
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that is, 𝜙2(𝐶) = ∑𝑘 𝜆
2
𝑘, is finite and induces a decomposition of the copula CDF

𝒞(𝑢, 𝑣) = ∫
ᵆ

0
∫

𝑣

0
(1 +

𝛾
∑
𝑘=1

𝜆𝑘𝑎𝑘(�̄�)𝑏𝑘( ̄𝑣)) d�̄� d ̄𝑣

= 𝑢𝑣 +
𝛾
∑
𝑘=1

∫
ᵆ

0
∫

𝑣

0
𝜆𝑘𝑎𝑘(�̄�)𝑏𝑘( ̄𝑣) d�̄� d ̄𝑣.

The discretized copula of grid size 𝑛 yields

𝐶𝑛
𝑖𝑗 = 𝐶( 𝑖

𝑛
, 𝑗
𝑛
) − 𝐶 ( 𝑖−1

𝑛
, 𝑗
𝑛
) − 𝐶 ( 𝑖

𝑛
, 𝑗−1

𝑛
) + 𝐶 ( 𝑖−1

𝑛
, 𝑗−1

𝑛
)

=
𝛾
∑
𝑘=1

𝜆𝑘∫
𝑖
𝑛

𝑖−1
𝑛

𝑎𝑘(𝑢) d𝑢∫
𝑗
𝑛

𝑗−1
𝑛

𝑏𝑘(𝑣) d𝑣

and with the additional vectors

𝔞𝑘 = (∫
1
𝑛

0
𝑎𝑘(𝑢) d𝑢,∫

2
𝑛

1
𝑛

𝑎𝑘(𝑢) d𝑢,…)

⊤

(𝑘 ∈ [𝛾]) (3.19)

𝔟𝑘 = (∫
1
𝑛

0
𝑏𝑘(𝑣) d𝑣,∫

2
𝑛

1
𝑛

𝑏𝑘(𝑣) d𝑣, …)

⊤

(𝑘 ∈ [𝛾]), (3.20)

𝐂𝑛 =
𝛾
∑
𝑘=1

𝜆𝑘𝔞𝑘𝔟⊤𝑘 . (3.21)

Note that Equation (3.21) denotes an exact decomposition of 𝐂𝑛, but not necessarily the
SVD-decomposition. The difference becomes particularly evident if 𝑛 < 𝛾 and the summa-
tion in (3.21) has more summands than the dimensionality of the 𝑛×𝑛matrix 𝐂𝑛. To be the
SVD, the vectors 𝔞𝑘 and 𝔟𝑘 must be left and right singular vectors. Take 𝔞𝑙 with 𝑙 ∈ [𝛾],

(𝐂𝑛)⊤ 𝔞𝑙 = (
𝛾
∑
𝑘=1

𝜆𝑘𝔞𝑘𝔟⊤𝑘)
⊤

𝔞𝑙 (3.22)

= (
𝛾
∑
𝑘=1

𝜆𝑘𝔟𝑘𝔞⊤𝑘) 𝔞𝑙 (3.23)

=
𝛾
∑
𝑘=1

𝜆𝑘𝔟𝑘(𝔞⊤𝑘𝔞𝑙). (3.24)



Checkerboard Copula Decomposition 29

0.0 0.5 1.0

𝑢

0.0

0.5

1.0

𝑣

1
(a) The continuous copula’s

mass is uniformly dis-
tributed over the blue
rectangles.

0.0 0.5 1.0

𝑢

0.0

0.5

1.0

𝑣
1

(b) The checkerboard cop-
ula’s mass is uniformly
distributed over the blue
rectangles for 𝑛 = 4.

0 5

𝑛

0

1

2

3

4

𝛾(
C
𝑛
)

1
(c) The geometric dimension

𝛾(𝐂𝑛) for increasing 𝑛.

Figure 3.1.: Example for a copula 𝐶1 with corresponding doubly stochastic matrix 𝐂𝑛 that
has strictly smaller geometric dimension 𝛾(𝐂𝑛) thanmin(𝛾(𝐶), 𝑛 − 1) for 𝑛 = 4.

Thus, 𝔞𝑙 is the left singular vector if it is orthogonal to the other {𝔞𝑘 ∶ 𝑘 ∈ [𝛾], 𝑘 ≠ 𝑙} and
if 𝔟𝑙 is a right singular vector. The corresponding singular value is 𝜆𝑘. The orthogonality
condition is trivially fulfilled for 𝛾 = 1 and generally depends on the grid size 𝑛. The or-
thogonal {𝑎𝑘} and {𝑏𝑘} do not induce the orthogonality of the vectors {𝔞𝑘 ∶ 𝑘 ∈ [𝑛]} and
{𝔟𝑘 ∶ 𝑘 ∈ [𝑛]}.
In addition, the decomposition in Equation (3.21) bounds the geometric dimension of the

discretized decomposition by the geometric dimension of the continuous decomposition.
The trivial matrix-order bound is 𝑛 − 1. Example 3.2.1 shows that this is indeed an upper
bound and not an equality. A representation with fewer summands could be possible with
fewer orthogonal vectors.

Example 3.2.1. Let 𝐶1 be a continuous copula with uniform support on the rectangles shown
in Figure 3.1a. The continuous copula’s decomposition has geometric dimension 𝛾(𝐶1) = 3.
Figure 3.1c shows the geometric dimensions of discretizations of 𝐶1 with various grid sizes. For
𝑛 = 4, the geometric dimension of the discretization is 1, and thus strictly smaller than the
continuous geometric dimension and 𝑛 − 1 (see Figure 3.1b).

Similarly to the decompositions of the continuous copula, the decompositions of the cop-
ula CDF do not directly yield decompositions of the PDF. A continuous decomposition of
the CDF with 𝑑 summands is in general form

𝐶(𝑢, 𝑣) = 𝑢𝑣 +
𝑑
∑
𝑘=1

𝜆𝑘𝐹𝑘(𝑢)𝐺𝑘(𝑣), (3.25)
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with orthogonal 𝐹1, … , 𝐹𝑑 and 𝐺1, … , 𝐺𝑑. It implies a decomposition of the PDF for differen-
tiable 𝐹𝑘 and 𝐺𝑘 (𝑘 = 1,… , 𝑑),

𝑐(𝑢, 𝑣) = 𝜕2𝐶
𝜕𝑢𝜕𝑣(𝑢, 𝑣) = 1 +

𝑑
∑
𝑘=1

𝜆𝑘
𝜕𝐹𝑘
𝜕𝑢 (𝑢)

𝜕𝐺𝑘
𝜕𝑣 (𝑣),

that generally lacks the orthogonality of the function 𝜕𝐹1(𝑢)/𝜕𝑢, 𝜕𝐹2(𝑢)/𝜕𝑢, … . However,
the above calculation shows that the number of summands for a representation of PDF is,
at most, the number of summands of CDF, such that 𝑑 is an upper bound for the geometric
dimension, 𝛾, of a PDF decomposition.
Equations (3.25) and (3.18) enable constructing copulas from appropriate {𝜆𝑘}, {𝑓𝑘}, and

{𝑔𝑘}. Rodríguez-Lallena (2004) formulates conditions on the components to ensure the va-
lidity of the resulting copula. Mesiar and Najjari (2014) extend this construction to higher
(finite) dimensions. The construction only yields copulas without tail dependence and thus
excludes, for example, the CA or Gumbel copula. Instead of estimating all components,
some parts in Equation (3.25) can be fixed. Bakam and Pommeret (2022), for example,
uses a Legendre polynomial basis and only fits the remaining coefficients. In Section 3.3.3,
we show that for (transformed) Hermite polynomials and certain {𝜆𝑘}, the Gaussian copula
arises. Allowing not only pairs in Equation (3.18) but also the cross products for 𝑎𝑘(𝑢)𝑏𝑙(𝑣)
(𝑘 ≠ 𝑙) in the summation leads to further copula decomposition methods; see, for example,
called Generalized Partition of Unity Copulas (Pfeifer et al., 2016; Masuhr and Trede, 2020).
We give further examples of the difference between continuous and discretized decom-

position for the FGM copula in Section 3.3.1 and for the Gaussian copula in Section 3.3.3.

3.3. Illustrative singular value decompositions of copulas

This section provides the resulting decompositions for some checkerboard approximations
of parametric copula families (for an overview of the considered families, see Section 2.1).
Section 3.3.1 focuses on symmetric copulas, whereas Section 3.3.2 analyzes asymmetric cop-
ulas. These sections give examples of the resulting singular values and singular vectors, and
we expand on the Frobenius norm-minimizing choice of 𝜂 in the MAR. At the end of Sec-
tion 3.3.1, we provide examples of invalid, that is, non-copula, truncations, and the use of
Algorithm 1. Section 3.3.3 compares the checkerboard and continuous decomposition, as
introduced in Section 3.2.6, for the Gaussian copula. Section 3.3.4 applies the similarity
measures of Section 3.2.5 to various checkerboard copulas.
In this section, we will denote the rank of the truncation by 𝑛∗ ∈ ℕ0 and refer to the

non-MAR model by rawmodel.
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3.3.1. Decompositions of symmetric copulas

We start with simple copulas with low geometric dimensions and get up to high geometric-
dimensional copulas with tail dependence in the later examples in this section. The inde-
pendence copula

𝐶Π(𝑢, 𝑣) = 𝑢𝑣

yields the checkerboard copula 𝐂𝑛 = Π of geometric dimension 0. The comonotonicity
copula

𝐶𝑀(𝑢, 𝑣) = min(𝑢, 𝑣)

yields the checkerboard copula𝐂𝑛 = 𝐼𝑛with geometric dimension 𝑛−1. TheMARwith 𝜂 =
−1 fully recovers the matrix for 𝑛∗ ≥ 0. Thus, the geometric dimensionality is significantly
reduced in the MAR for the comonotonicity copula.
The FGM copula family with CDF

𝐶𝜃,𝐹𝐺𝑀(𝑢, 𝑣) = 𝑢𝑣 + 𝜃𝑢𝑣(1 − 𝑢)(1 − 𝑣)

for 𝜃 ∈ [−1, 1] is of geometric dimensionality 1. Figure 3.2a depicts the first singular vector
with respect to 𝑛 and Figure 3.2b the first singular value, 𝑠1 = |𝜃|/3 for the continuous
representation with respect to 𝜃. The first singular vector is 𝑢1 = 𝛼(1, 1 − 2/(𝑛 − 1), … ,−1)⊤

(𝛼 ∈ ℝ such that ‖𝑢2‖ = 1), being the checkerboard analog of 𝑎1(𝑥) = √3(1−2𝑥) according
to Equation (3.19). The singular vector is the piecewise integrated 𝑎1 since the geometric
dimension is one. For 𝑛∗ = 1, the MAR following the optimization in (3.9) has parameters
𝜂 = 𝑠1/(𝑛 − 1) = |𝜃|/(3(𝑛 − 1)). A numerical optimization in MATLAB yields numerically
equivalent values, as shown in Figure 3.2c. The approximation is improved with the MAR,
but the gain is smaller than for the comonotonicity copula (see Figure 3.2d). The matrix
can be fully recovered for any 𝑛∗ ≥ 1. The calculation of Spearman’s 𝜌𝑆 according to the
representation in Equation (3.10) yields the result for the FGM copula (𝑛∗ ≥ 1)

̂𝜌𝑆( ̂𝐶𝜃,𝐹𝐺𝑀) = (4 − 1/𝑛2)
𝑛∗

∑
𝑘=1

𝑠𝑘⟨𝜔, 𝑢𝑘⟩⟨𝑣𝑘, 𝜔⟩

= (4 − 1/𝑛2)𝜃3 (𝛼
1
‖�̃�‖⟨�̃�, (1, 1 − 2/𝑛, … ,−1)⊤⟩)

2

= 𝜃
3(1 − 1/𝑛2).

The approximated ̂𝜌𝑆 yields the FGM copula’s analytical Spearman’s 𝜌𝑆 of 𝜃/3 for 𝑛 → ∞.
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The Cuadras-Augé (CA) family of copulas (C. M. Cuadras and Augé, 1981) with CDF

𝐶𝜃,CA(𝑢, 𝑣) = {
𝑢𝑣1−𝜃 , 𝑢 ≤ 𝑣
𝑢1−𝜃𝑣 , 𝑢 ≥ 𝑣

for 𝜃 ∈ [0, 1] has an upper tail dependency of 𝜆ᵆ = 𝜃. The corresponding centered, doubly
stochastic matrix is of rank 𝑛 − 1. For 𝜃 = 0, 𝐶0,CA = 𝐶Π, while 𝐶1,CA = 𝐶𝑀 with the
decompositions argued above. Figure 3.3 shows the computed singular vectors and values
for 𝜃 ∈ (0, 1). The singular vectors in Figure 3.3a drop near 𝑢 = 1. The decay of singular
values starting from 𝑠1 is similar for the different values of 𝜃, but it is shifted upward for
higher values of 𝜃, as shown in Figure 3.3b. Figure 3.3d shows that the reconstruction is
significantly improved when the MAR is used, especially for large 𝜃. For large absolute
values of 𝜃, larger absolute values of 𝜂 in the MAR are chosen (see Figure 3.3c).
The Gumbel family of copulas with CDF

𝐶𝜃,Gu(𝑢, 𝑣) = exp (− [(− ln𝑢)𝜃 + (− ln 𝑣)𝜃]
1
𝜃)

for 𝜃 ∈ [1,∞) is anArchimedean copula and exhibits upper tail dependence like theCA cop-
ula. The checkerboard copula contains high values in the upper right part (see Figures 3.5a
and 3.6a). The Gumbel copula is the independence copula for 𝜃 = 1 and approaches the
comonotonicity copula for 𝜃 → ∞. The singular vectors in Figure 3.4a contain jumps next
to 𝑢 = 1 like the singular vectors for the CA copula. Again, the approximation improves
considerably when using the MAR, particularly for higher values of 𝜃, as shown in Fig-
ure 3.4c for approximations of rank one or in Figure 3.4d for approximations of rank five.
The difference in the MAR and the raw representation approximation reduces when the
approximation order increases (see Figure 3.4b).
For higher parameter values 𝜃, the truncated representations of the Gumbel copula con-

tain negative entries. Figures 3.5 and 3.6 show the discretized PDF, its approximation, and
an indicator plot for the invalidity of the elements. The negative elements in Figures 3.5b
and 3.6b have a waveform. The Gumbel copula contains higher peaks for higher param-
eters 𝜃, and the approximation tends to have more negative elements. After applying the
correction algorithm, all elements are nonnegative, and the Frobenius distance between the
(corrected) approximation and the discretized PDF is smaller (seeTable 3.1). The corrections
are smaller for small values of 𝜃 (see Figure 3.5c) than for larger values of 𝜃 (see Figure 3.6c).
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Figure 3.2.:Analysis of the FGM checkerboard copula decompositions using the raw and
MAR model.

𝜃 = 2.5 𝜃 = 7.5

‖𝐂50 −𝐺−1(𝑇10(𝐀50))‖𝐹 0.0084 0.6449
‖𝐂50 −𝑃(𝐺−1(𝑇10(𝐀50)))‖𝐹 0.0084 0.5476
‖𝐺−1(𝑇10(𝐀50)) − 𝑃(𝐺−1(𝑇10(𝐀50)))‖𝐹 0.0008 0.3099
‖𝐺−1(𝑇10(𝐀50)) − 𝑃(𝐺−1(𝑇10(𝐀50)))‖𝐹/‖𝐂50‖𝐹 0.05 % 11.47 %

Table 3.1.: Frobenius distances for the approximation of a Gumbel checkerboard copula
with parameter 𝜃 and 𝑛 = 50. 𝐺−1(𝑇10(𝐀50)) denotes the truncation, and
𝑃(𝐺−1(𝑇10(𝐀50))) the result of Algorithm 1. The distance between the original
and the approximation decreases with the application of Algorithm 1. The last
row displays the relative change through Algorithm 1 with respect to the Frobe-
nius norm of the raw matrix 𝐂50.
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Figure 3.3.:Analysis of theCA checkerboard copula decompositions using the raw andMAR
model for various values of 𝜃 and 𝑛 = 50.

3.3.2. Decompositions of asymmetric copulas

For asymmetric copulas, the left and right singular vectors do not coincide. We use an asym-
metric construction method from Nelsen (2006, p.84), which yields copulas with cubic sec-
tions. The copula CDF is

𝐶𝑎,𝑏,asym(𝑢, 𝑣) = 𝑢𝑣 + 𝑢𝑣(1 − 𝑢)(1 − 𝑣)[(𝑎 − 𝑏)𝑣(1 − 𝑢) + 𝑏], (3.26)

where |𝑏| ≤ 1, [𝑏 − 3 − (9 + 6𝑏 − 3𝑏2)1/2]/2 ≤ 𝑎 ≤ 1, and 𝑎 ≠ 𝑏. The conditions on 𝑎
and 𝑏 ensure the validity of the resulting copula. For 𝑎 = 𝑏 ∈ [−1, 1] the FGM copula with
parameter 𝑏 arises. Figure 3.7 shows the resulting SVD for two configurations of 𝑎 and 𝑏.
For 𝑎 = 0.5 and 𝑏 = −0.5 the resulting copula CDF is

𝐶0.5,−0.5,asym(𝑢, 𝑣) = 𝑢𝑣 + 𝑢(1 − 𝑢)2𝑣2(1 − 𝑣) − 0.5𝑢𝑣(1 − 𝑢)(1 − 𝑣),

and for 𝑎 = −1.5 and 𝑏 = 0.5

𝐶−1.5,0.5,asym(𝑢, 𝑣) = 𝑢𝑣 − 2𝑢𝑣2(1 − 𝑢)2(1 − 𝑣) + 0.5𝑢𝑣(1 − 𝑢)(1 − 𝑣).
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Figure 3.4.:Analysis of the Gumbel checkerboard copula decompositions using the raw and
MAR model for 𝜃 = 10 and 𝑛 = 50.
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Figure 3.5.:Analysis of the truncation of order 10 of a Gumbel checkerboard copula with
𝜃 = 2.5 and 𝑛 = 50.
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Figure 3.6.:Analysis of the truncation of order 10 of a Gumbel checkerboard copula with
𝜃 = 7.5 and 𝑛 = 50.

In both cases, the left and right singular vectors are polynomials of degree two. The geomet-
ric dimension of the discretized copula is 2. Thus, the singular values in Figure 3.7e drop at
3 to zero. The singular values are larger for the first singular value combination than for the
second. The left singular vectors in Figures 3.7a and 3.7c have similar courses but change
order. The right singular vectors (Figures 3.7b and 3.7d) exhibit a greater variation between
the combinations of parameters than the left singular values. They show y-axis mirroring
but also change slope and are shifted.

3.3.3. The Gaussian copula

We end the section with the Gaussian copula and apply the notions of Section 3.2.6. The
Gaussian copula models the dependence structure of multivariate Gaussian distributions.
Let𝐹𝜌 denote a bivariate Gaussian CDFwith correlation 𝜌, variance (1, 1)⊤ andmean (0, 0)⊤,
the PDF by 𝑓𝜌 and the standard univariate Gaussian counterparts by Φ and 𝜑, respectively.
Then, the CDF of a Gaussian copula with correlation 𝜌 ∈ [−1, 1] is given by

𝐶𝜌,𝐺𝑎 = 𝐹𝜌(Φ−1(𝑢), Φ−1(𝑣)).

Figures 3.8a and 3.8b show the resulting PDF decompositions for the checkerboard copula.
As proven in the following, the singular vectors are identical for different |𝜌| ∈ (0, 1) in
the continuous decomposition. No noticeable differences can be observed for the singular
vectors of the checkerboard approximations for different values of 𝜌.
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Figure 3.7.:Analysis of the asymmetric checkerboard copula decomposition of the copula
followingEquation (3.26)with𝑛 = 50 and two configurations of 𝑎 and 𝑏. The left
singular vectors are similar between the two parameter configurations, whereas
the right singular values exhibit strong differences.

For a bivariate Gaussian distribution, Hill (1974) shows a PDF decomposition using Her-
mite polynomials. The following theoremextends its results to theGaussian copula, yielding
a representation in terms of transformed Hermite polynomials. We use the representation
of the probabilist’s Hermite polynomial 𝜓𝑖 of order 𝑖 by

𝜓𝑖(𝑥) = (−1)𝑖 exp (𝑥2/2) 𝑑
𝑖

𝑑𝑥𝑖
exp ( − 𝑥2/2).

Theorem 3.3.1. Let 𝑐𝜌 be a Gaussian copula density with parameter −1 < 𝜌 < 1, Φ the
standard Gaussian CDF, and 𝜓𝑖 the probabilist’s Hermite polynomial of order 𝑖. Then,

𝑐𝜌(𝑢, 𝑣) = 1 +
∞
∑
𝑖=1

𝜌𝑖

𝑖! 𝜓𝑖(Φ
−1(𝑢))𝜓𝑖(Φ−1(𝑣)), 𝑢, 𝑣 ∈ (0, 1). (3.27)
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Figure 3.8.: The checkerboard decomposition of the Gaussian family of copulas for 𝑛 = 50,
the transformed probabilist’s Hermite polynomials, and numerical estimates for
the geometric dimension.

Proof.

𝑐𝜌(𝑢, 𝑣) =
𝑓𝜌(Φ−1(𝑢), Φ−1(𝑣))
𝜑(Φ−1(𝑢))𝜑(Φ−1(𝑣)) |𝑥 ≔ Φ−1(𝑢), 𝑦 ≔ Φ−1(𝑣)

=
𝑓𝜌(𝑥, 𝑦)

𝜑(𝑥) ⋅ 𝜑(𝑦) | Hill (1974)

=

1
2𝜋
exp [− 1

2
(𝑥2 + 𝑦2)] {1 +∑∞

𝑖=1
𝜌𝑖

𝑖!
𝜓𝑖(𝑥)𝜓𝑖(𝑦)}

1
√2𝜋

exp(−𝑥2

2
) 1
√2𝜋

exp(−𝑦2

2
)

=
∞
∑
𝑖=0

𝜌𝑖

𝑖! 𝜓𝑖(Φ
−1(𝑢))𝜓𝑖(Φ−1(𝑣)).

Using the well-known maximal correlation property of the Gaussian distribu-
tion (Klaassen and Wellner, 1997, Section 6 and the references therein), the representation
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Figure 3.9.:Distance between the 𝑑-th piecewise integrated continuous singular vectors and
𝑑-th singular vector of the discretizedmatrix for aGaussian copula for increasing
𝑛 and different values of 𝜌. Distance decreases for all degrees and parameters 𝜌
considered with 𝑛.

in Equation (3.27) is the one obtained by canonical correlation and thus a decomposition in
the sense of Section 3.2.6 (see Lancaster, 1957).
Figure 3.8c shows the first transformed probabilist’s Hermite polynomials 𝜓𝑖 and Fig-

ure 3.8d the geometric dimension of Gaussian checkerboard copulas for various grid sizes
𝑛. The geometric dimension is bounded by 𝑛 − 1 and increases with 𝑛, whereas the contin-
uous Gaussian copula has an infinite geometric dimension. Figure 3.9 shows the distance
between the piecewise integrated transformed Hermite polynomials (see Equations (3.19)
and (3.20)) and the singular vectors of the Gaussian checkerboard copula for polynomial
degrees 1 to 7. The distance decreases with 𝑛 for all degrees. The smaller the parameter 𝜌
and the degree, the faster the distance decreases.

3.3.4. Copula similarities

The difference between copulas can be quantified using the calculated measures of Sec-
tion 3.2.5. Figures 3.10 and 3.11 show examples of the similarity of copulas using the (nor-
malized) Frobenius distance of discretizations of Section 3.2.5. Figure 3.10 shows the dis-
tance between Gaussian copulas with different correlations. While Figure 3.10a shows the
Frobenius distance, Figures 3.10b and 3.10c show the results using the normalizations. In
Figure 3.10b, the distances are scaled by a common factor, which results in pairs of Gaus-
sian copulas with large 𝜌 being considered more dissimilar than pairs with small 𝜌 with
identical difference. The second normalization, 𝛿2, scales based on Pearson’s 𝜙2 of the cop-
ulas and yields similar differences for pairs of the same 𝜌 difference. With increasing dis-
cretization grid size, 𝑛, 𝛿1 tends to shrink the distance, whereas 𝛿2 maintains the value (see
Figure 3.10d). Figure 3.11 shows the two normalizations for various checkerboard approx-
imations of parametric copulas for two values of 𝜏. Using the Frobenius distance or 𝛿1 in
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Figure 3.10.: Comparison of the normalizations of Section 3.2.5 for a Gaussian copula with
various copula correlations 𝜌 and 𝑛 = 100. Normalization 𝛿1 tends to shrink
the distance with increasing 𝑛.

Figure 3.11a generally produces higher distances if at least one copula has a high 𝜏. Normal-
ization 𝛿2 produces close distance values for similar values of 𝜏 as shown in Figure 3.11b and
covers a wider range of possible distances between 0 and 1. Figure 3.11c shows results of
the truncated approximation of 𝛿1 and 𝛿2. Most of the pairs of Gaussian copulas considered
already approximate the distance for small 𝑘∗.

3.4. Visual exploratory analysis of copulas with profile plots

A primary purpose of correspondence analysis is usually to generate visual representations
of high-dimensional data by projecting row and column profiles into a low-dimensional
space while maximizing the covered variation of the data (for an introduction, see, e.g.,
Greenacre, 1984). We start by describing the approach and identifying the characteristics of
the copula visible in the graphs and, thus, the characteristics of the graphs to be analyzed in
Section 3.4.1. In Section 3.4.2, we use empirical data plots from ranked pseudo-observations
to analyze the dependence structure.

3.4.1. Understanding and interpreting profile plots

In profile plots, the similarity of the rows and columns of the checkerboard copula are
shown. A row corresponds to the conditional distribution of 𝑢 given the “row” value of
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Figure 3.11.: Comparison of the normalizations of Section 3.2.5 for a (G)umbel, (C)layton
and (Ga)ussian copula for two different values of 𝜏 and 𝑛 = 100. Kendall’s
𝜏 values refer to the copula to be discretized. Figure 3.11c uses the truncated
representation of 𝛿1 and 𝛿2 and shows the computed values for increasing trun-
cation parameter.

𝑣 (where we use the standard notation of 𝑢 being the horizontal coordinate and 𝑣 being the
vertical coordinate). The row profiles, 𝐅, and the column profiles, 𝐆, correspond to the sin-
gular valueweighted coordinates in the space spanned by the opposing singular vectors, that
is, in the notation of Section 3.2.2, 𝐅 ≔ 𝐔𝐒 and 𝐆 ≔ 𝐕𝐒. All 𝑛 row and column profiles are
shown on the basis of their first two coordinates in the profile plot. Therefore, a row profile
shows the two most significant coordinates of the rows with respect to the basis spanned by
the columns and vice versa. The proximity of different row profiles reflects the similarity
of the corresponding conditional distributions of 𝑢 given the value of 𝑣. For example, for
independent variables, the distribution of 𝑢 given 𝑣 does not change with the value of 𝑣,
and all profile points in a profile plot would match. In a case with monotone dependence
instead, the distribution of 𝑢 given 𝑣 changes with 𝑣, and the profile points referring to dif-
ferent values of 𝑣would not match, and their distance increases with the dissimilarity of the
respective conditional distributions. In a 2-D plot of the first two basis vectors, the 𝑣 value of
the row profile is not visible in the coordinates of the points. Thus, we color the profiles to
reflect the position of the profile: the lighter the color, the closer the 𝑣 value is to zero. Thus,
the row profile for the conditional distribution 𝑢 given 𝑣 ≈ 0 is the point with the lightest
color, and the profile given 𝑣 ≈ 1 is the point with the darkest color.
The profiles of rows and columns, �̃� and �̃�, using theMAR can be computed analogously.

We compare 𝐅 and �̃� for the Clayton copula below. For symmetric copulas, 𝐅 and �̃� differ
only in singular values and not in singular vectors that lead to the same shapes but different
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profile scalings (see Lemma 1). In traditional correspondence analysis, normalizations of
the row and column profiles account for the variation of the frequencies of the individual
profiles. All profiles have the same frequencies in the copula domain. Therefore, normal-
izations are not necessary in this setting. Although sometimes plotted in one figure, the
distances between a row and a column profile cannot be interpreted directly because the
representation is based on a different basis. The profile plots of rows and columns are iden-
tical if the underlying copula is symmetric positive definite; that is, 𝐂𝑛 and (𝐂𝑛)⊤ are equal,
and 𝐂𝑛 is positive definite. The matrix 𝐂𝑛 is, in particular, for exchangeable copulas, sym-
metric but not necessarily positive definite. A copula is exchangeable if (𝐹𝑋(𝑋), 𝐹𝑌(𝑌)) has
the same distribution as (𝐹𝑌(𝑌), 𝐹𝑋(𝑋)). The plot of several copula profiles in one plot dis-
plays differences between copulas.
Figure 3.12 shows graphs for some of the copulas of Sections 3.3.1 and 3.3.2, visualizing

the general characteristics depicted in the profile plot. Profiles of the raw model lying close
to the zero point indicate approximately conditionally independent distributions since the
most significant coordinates are close to zero. For an independence copula, all profiles lie
close to zero. Significant deviations between the components in the rawmodel graph and the
MARmodel graph refer to strong characteristics of the comonotonicity copula. Figure 3.12a
shows examples for an independence and in Figures 3.12b and 3.12c for a comonotonicity
copula. Through the points’ colors, the plots also display how the profiles evolve and how
rapidly the profiles change. Points of similar colors lying close together exhibit a smooth evo-
lution of the copula, whereas varying distances show more extensive changes of the copula
in certain areas. Increasing changes are evident, for example, in the case of tail dependence,
where the profiles change rapidly in the area of the tail. The plot of the comonotonicity cop-
ula in the rawmodel in Figure 3.12b shows unordered profiles. The comonotonicity copulas
SVD is ambiguous since any orthonormal set of vectors forms singular vectors of the diago-
nal matrix. Thus, the calculated basis is merely random, and the profiles are scattered. For
the Gumbel copula, the profiles in Figures 3.12d and 3.12e evolve smoothly. Still, the dif-
ferences become larger for higher values of 𝜃 and the profiles closer to one since the copula
has an upper tail dependence that increases with 𝜃. Using the MAR affects the profiles only
slightly in Figure 3.12e as MAR only changes singular values and not singular vectors for
symmetric copulas. Figure 3.12f shows the profiles of a Gaussian copula for different values
of 𝜌 in one chart. The similarity of profiles changes most pronounced in the tails of the
profiles, whereas the profile differences corresponding to middle columns and rows remain
similar. Figure 3.12g depicts the row and column profiles of an asymmetric copula, where
the profiles do not coincide but are mirrored with respect to the horizontal axis.
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Figure 3.12.: Row and column profiles for four copulas with various parameters, each with
grid size𝑛 = 50. Except for the copula in (3.12g), the displayed copulas are sym-
metric and have identical row and column profiles. The profiles reflect various
copula characteristics, such as the strength of dependence, symmetry for dif-
ferent axes, and areas with high variation.
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3.4.2. Profile plots illustrated with a data example

Using data from an engineering context, we apply the graphical dependence assessment to
empirical data. Coblenz et al. (2020) model the distribution of fuel drops that are generated
by a fuel injector in a jet engine using vine copulas. The droplets are characterized by five
variables 𝑥1, … , 𝑥5, that is, the size of the drop, the position in the 𝑥 and 𝑦 directions, and
the velocity in the 𝑥 and 𝑦 directions. Data are generated using numerical simulations under
different operating conditions of jet engines, specified by the air velocity, the air pressure,
and the thickness of the atomizing edge. Coblenz et al. (2020) publish statistically simulated
data for different operating conditions. We focus on one of the ten operating conditions
modeled, that is, an air velocity of 90𝑚𝑠−1, an air pressure of 5 bar, and a thickness of the
atomizing edge of 230𝜇𝑚 since this is the largest of the provided datasets. It consists of 5,252
points in the five dimensions listed above.
The published data of Coblenz et al. (2020) is available in the rank-transformed copula do-

main, which we denote by 𝑢1, … , 𝑢5. Note that due to the rank transformation, all values of
the 𝑢𝑗 are in the discrete set {1/5252, 2/2525, … , 1}. The copula domain’s relative frequency
table, 𝐂𝑛, is computed by counting the number of points per lattice box in 𝐼𝑛 × 𝐼𝑛. Observa-
tions lying precisely on a grid boundary are counted for the box below. We use 𝑛 = 26 as a
divisor of 5252 for the analysis so that the resulting table has 202 observations in each row
and column, and dividing each cell by 202 leads to a doubly stochastic matrix. For each dis-
tinct pair of dimensions, we plot the row profiles, the column profiles, and a checkerboard
copula plot of the pseudo-observations in Figure 3.13. We focus on five of the pairs here,
the graphs for the combinations (𝑢1, 𝑢3), (𝑢1, 𝑢5), (𝑢2, 𝑢5), (𝑢3, 𝑢5), and (𝑢4, 𝑢5) are shown in
Appendix A.4 in Figure A.1.
As profile points are obtained from empirical data, they deviate from their theoretical

counterparts. To visualize statistical noise in the plots, we show typical minimal and maxi-
mal values of profiles for an independence copula by a gray rectangle in the plots. The gray
rectangles are obtained by sampling 5252 realizations from an independence copula and
computing their row and column profiles. The procedure is repeated 100 times. The rectan-
gles cover 95% of the minimal and maximal point coordinates of the 100 samples in every
dimension. Thus, if the profiles are outside the gray box, the underlying copula is unlikely
to be the independence copula. This approach aligns with Greenacre (1984), who advocates
resampling methods, for example, bootstrapping, over using asymptotic results for profile
values. Again, the darker the point’s color, the closer the conditional distribution’s condi-
tioning variable is to one.
The profile plots for variables 𝑢1 and 𝑢2 in Figures 3.13a and 3.13b show that some pro-

files deviate from others and that there is a continuous development with the conditioning
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variable. For row profiles, that is, conditional distributions 𝑢2 given 𝑢1, with 𝑢1 close to one
(dark points in the row profile plot) and column profiles 𝑢2 close to zero (light points in the
column profile plot), the profiles change and indicate that the variables are not indepen-
dent. The checkerboard plot in Figure 3.13c shows a peak at (0, 1). Further information is
covered by noise. The profiles in Figures 3.13d and 3.13e exhibit a U-shaped pattern and are
mirrored with respect to the vertical axis. Thus, the dependence has a countermonotonic
characteristic that is reflected loosely in the checkerboard copula plot in Figure 3.13f. While
high values are apparent near (0, 1) and (1, 0), the pattern in between is hard to distinguish.
The row and column profiles of Figures 3.13g and 3.13h differ clearly. Whereas the row pro-
files evolve in a similar direction with stronger changes near 0, the column profiles undergo
a cyclical transformation. The profiles corresponding to small and large values of 𝑢3 are sim-
ilar, and the profiles for 𝑢3 near 0.5 are different. This pattern is a sign of U or hump-shaped
dependence, which is also reflected in the checkerboard plot. For variables 𝑢2 and 𝑢4, Fig-
ures 3.13j to 3.13l show a typical tail-dependence behavior. The profiles change rapidly for
small values of 𝑢2 and 𝑢4, whereas they evolve relatively smoothly for larger values. The
behavior of the profile plots in Figures 3.13m and 3.13n is similar to variables 𝑢2 and 𝑢3, but
is exchanged. The row profiles undergo a cyclical transformation, while the column profiles
evolve smoothly. As the U-shaped form is more apparent than for variables 𝑢1 and 𝑢4, the
profiles show a stronger pattern for variables 𝑢3 and 𝑢4. The u-shape is distinguishable in
Figure 3.13o.
Overall, the row and profile plots provide at least the same amount of information as the

checkerboard plots, but they are more transparent and less cluttered than the checkerboard
plots.

3.5. Conclusion

This chapter analyzes truncations of singular value decompositions (SVDs) and correspon-
dence analysis of checkerboard copulas. Checkerboard copulas can be mapped to doubly
stochastic matrices, making it straightforward to ensure copula properties for the approxi-
mations. We find that some common copulas, for example, comonotonicity-like, have high
ranks and thus are poorly represented in the straightforward SVD and that truncations can
have negative elements. To account for comonotonicity-like copulas with high ranks, we
adapt a representation anchored with the comonotonicity copula and show its performance
in examples. We compute the nearest valid doubly stochastic matrix to correct the trun-
cations with negative entries. We analyze representations of statistical characteristics of
copulas, like Kendall’s 𝜏, Spearman’s 𝜌, or differences between copulas through the decom-
position. The truncations can be used to compute discretized versions of continuous decom-
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(c) Checkerboard plot for
variables 𝑢1 and 𝑢2.
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(f) Checkerboard plot for
variables 𝑢1 and 𝑢4.
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(h) Column profiles for vari-
ables 𝑢2 and 𝑢3.
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(i) Checkerboard plot for
variables 𝑢2 and 𝑢3.
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(k) Column profiles for vari-
ables 𝑢2 and 𝑢4. A pro-
file at (0.60, 0.27) is out of
scope.

0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

(l) Checkerboard copula plot
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(n) Column profiles for vari-
ables 𝑢3 and 𝑢4.
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(o) Checkerboard plot for
variables 𝑢3 and 𝑢4.

Figure 3.13.: Profile and checkerboard plots of the fuel injector spray characteristics in jet
engines fromCoblenz et al. (2020). The physical interpretations of the variables
are drop size (𝑢1), x-position (𝑢2), y-position (𝑢3), x-velocity (𝑢4), and y-velocity
(𝑢5).



Checkerboard Copula Decomposition 47

positions, linking our analysis to continuous decompositions. We derive a decomposition of
the Gaussian copula into transformed Hermite polynomials and show that the discretized
singular vectors draw closer to the transformed Hermite polynomials with increasing grid
size. We analyze correspondence analysis profile plots for copulas and show that they reveal
asymmetries and non-monotonic dependence. Profile plots for various copulas are shown,
and the graphical analysis is illustrated on a dataset on fuel injector spray characteristics in
jet engines.
Other approaches for reducing the comonoticity-like characteristics of the copula are pos-

sible, such as using rook copulas (Cottin and Pfeifer, 2014) and, for empirical data, sample-
dependent grid sizes (Janssen, Swanepoel, andVeraverbeke, 2012) or anchoringwith respect
to other copulas while varying the sample size (Cuberos, Masiello, andMaume-Deschamps,
2020). They need more complex fitting of the parameters and components and might use
different grid sizes. Thus, we leave the comparison of these methods for further research.
In this chapter, we do not expand on the empirical estimation of the model. It is well

known that the empirical checkerboard copula converges to the theoretical checkerboard
copula. Perturbation theory analyzes the effect of noise on the results of the SVD (for a
concise overview, see, e.g., Stewart, 1991). The singular vectors can suffer from large fluc-
tuations for small noise; the singular values, however, are estimated more robustly. Thus,
the visual analysis in Section 3.4 is less prone to noise than plotting the singular vectors
directly.
Although the approach can be extended to larger dimensions, it is not straightforward.

The concept of the checkerboard copula is viewed in a higher dimension, for example, in
Carley and M. D. Taylor (2002). There is no direct analog of SVD in three and higher di-
mensions, but various approaches exist. See, for example, Kolda and Bader (2009) for an
introduction. Copula-specific methods for modeling high-dimensional data include vine
copulas (Joe, 1996; Bedford and Cooke, 2002; Panagiotelis et al., 2017; Czado, 2019) and
nested Archimedean copulas (Savu and Trede, 2010; Hofert and Mächler, 2011), where the
copulas involved could be analyzed using the methods presented here.



4. Combining Point Forecasts to

Probabilistic Forecasts Using Copulas

This chapter introduces the copula combined density method to combine multiple point
forecasts into a single calibrated probabilistic forecast using copulas. The chapter is based
on “Combining Point Forecasts to Calibrated Probabilistic Forecasts Using Copulas”, joint
work with Oliver Grothe (Publ. II). It was presented at the DAGStat Conference 2022 and
the 42nd International Symposium on Forecasting (Conf. I; Conf. III).
The chapter is structured as follows. Section 4.1 motivates the new forecast combination

algorithm based on relevant literature, and the contributions of this chapter are outlined.
The existing algorithms for combining forecasts and their application are described in Ap-
pendix B.1. Section 4.2 establishes the copula combined density (CCD) method, which is
motivated by copula time series models and a Bayesian derivation. Then, we prove its cali-
bration for a known dependence and marginal structure and show that the forecast is equal
to the combination of point forecast by Bates and Granger (1969) for Gaussian forecast er-
rors. We give examples of the effect of model components and their misspecification on
the combined forecast. The simulation studies in Section 4.3 compare the CCD method to
other forecast aggregation algorithms and show the effect of the training size on estimation.
These are followed by a worked-through example for employing the CCD method to en-
ergy price forecasts in Section 4.4. Section 4.5 concludes the chapter. The code for further
combinations using the CCD method is available at https://github.com/jo-rie/ccd.

4.1. Introduction

Combining point forecasts from various sources into a distributional forecast not only gath-
ers the information embedded in the different forecasts but also incorporates information
on the uncertainty of the forecast into the result. Unlike point forecasts, distributional fore-
casts report not only a characteristic value of a forecast, for example, the mean, but also
information on the uncertainty of the forecast by spread, prediction intervals, and tail de-
cay (see Dawid, 1984; Tay and Wallis, 2000; Gneiting, Balabdaoui, and Raftery, 2007; Hall
and Mitchell, 2007 and Section 2.2).
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The point forecasts to be combined into a joint probability forecast might come from dif-
ferent institutions, models, or sensors measuring the same quantity with errors. However,
overlapping information sets, model structures, or other influencing factors analogously af-
fect several forecasts. They might introduce complex dependence structures between fore-
cast errors (see, for example, the electricity price forecasts in Section 4.4). We propose a
point forecast combination method that explicitly models the forecast dependence struc-
ture through a copula model and generates a combined density forecast. The copula model
accounting for dependencies between the forecast errors can alter the combined forecast’s
location, spread, and shape. Generating a density forecast makes all statistical information
of a distributional forecast available.
There are various forecast combinationmethodswithout dedicated dependencemodeling

inmultiple applications. Forecast combinationmethods are, among others, used to combine
weather predictions from various models or parameter configurations (Gneiting, Raftery, et
al., 2005; Berrocal, Raftery, and Gneiting, 2007; Glahn et al., 2009; Kleiber, Raftery, and
Gneiting, 2011), wind power generation (J. W. Taylor, McSharry, and Buizza, 2009), eco-
nomic data (Stock and Watson, 2004) or multi-sensor data (Khaleghi et al., 2013). Early
aggregation methods address the combination of airline passenger forecasts and are based
solely on the correlation of the forecast errors instead of the complete dependence struc-
ture (Bates and Granger, 1969). More recent approaches for combining forecasts can be
divided intomethods for point forecast combination andmethods for distributional forecast
combination. The earliest of the latter ones is the traditional linear pool (TLP; Genest and
Zidek, 1986), combining the distributional forecasts’ CDFs linearly. The TLP tends to issue
too wide forecasts (see Section 2.2), thus, the spread-adjusted linear pool (SLP) and beta-
transformed linear pool (BLP) were proposed (Gneiting and Ranjan, 2013). They extend
the TLP by a spread-adjustment parameter for the individual forecasts and the following
transformation by the CDF of the beta distribution, respectively. Established algorithms for
point forecast combinations are ensemble model output statistics (EMOS) in Wilks (2011)
and Bayesian model averaging (BMA) in Raftery et al. (2005).
In general, the combination of point forecasts can profit frommodeling the forecast error

dependence, and the accuracy of the combined forecast can increase. Copulas are a well-
known approach for modeling dependencies between random variables due to the possibil-
ity to differentiate between dependency and marginal modeling and are employed in var-
ious applications (Nelsen, 2006; Joe, 2014 and also Cherubini and Luciano, 2004; Grothe
and Schnieders, 2011). Copulas are already being used in the context of forecasting as
well. Schefzik, Thorarinsdottir, and Gneiting (2013) propose ensemble copula coupling for
ensemble forecasts. A model based on the dependence structure of the ensemble mem-
bers generates new ensemble realizations, that is, new samples of the same dimensionality.
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Grothe, Kächele, and Krüger (2023) uses the Shaake shuffle to generate multivariate prob-
abilistic forecasts from univariate point forecasts. Madadgar and Moradkhani (2014) use
copulas within BMA for every member of the ensemble. In contrast, we use an ensemble
of different forecasts in our setting to compute a single combined forecast. This problem
is touched upon in the literature but has not yet received broader attention. Jouini and
Clemen (1996) lies the ground by mentioning a copula combination for expert models in
their highly influential research paper. Yazdandoost, Zakipour, and Izadi (2021) uses a cop-
ula to model the joint distribution of precipitation observations and forecasts and compute
(combined) point forecasts. De Oliveira et al. (2017) uses copulas to compute maximum-
likelihood (point) forecasts, and Mitchell (2013) proposes a method for combining density
forecasts using copulas and, thus, directly employing the method of Jouini and Clemen
(1996). Whereas ensemble copula coupling and copulas in BMA are widely accepted, copu-
las in the combination of point or density forecasts did not receive greater attention.
In this chapter, we formulate the CCDmethod. In its general notion formulated through-

out the chapter, the CCD method combines point forecasts into a single, calibrated density
forecast based on copulas and time series techniques. The point forecastsmight be generated
from uncalibrated density forecasts (see Section 4.4 for an example) so that themethod com-
bines uncalibrated densities into calibrated ones. Since the method embeds the approaches
by de Oliveira et al. (2017) and Mitchell (2013), as a special case, the method’s copula com-
bination part can also directly combine several calibrated density forecasts. We prove the
method’s theoretical properties and analyze and validate them in simulation studies. Ad-
ditionally, we give criteria in which the combined forecasts profit from the advanced de-
pendence modeling. We expand on the procedure for fitting the marginals and copula and
the influence of incorrect or incomplete characterizations of the marginal distributions. We
apply the CCD method to combine the electricity price forecasts of Marcjasz et al. (2023).
The contribution of this chapter is manifold: We formulate a unifying approach to com-

bine point or distributional forecasts into a common density forecast for a quantity of inter-
est. We prove theoretical properties and evaluate the method’s performance in simulation
studies. The specification of model components is described, and the effects of misspecifica-
tion are inspected. Through simulations, practical advice on the characteristics of the data,
making it beneficial to use the method, is derived, for example, in terms of the necessary
training sample size and the dependence structure. Themethods are applied in a real-world
data study, and the improvement in calibration is quantified.
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4.2. The copula combined density (CCD) method

The copula combined densitymethod is amethod to combine𝐾 point forecasts from various
sources into a single density forecast. Thereby, it uses the common density of all 𝐾 point
forecast errors 𝜺𝑡+ℎ|𝑡 issued at time 𝑡 for time 𝑡 + ℎ:

𝑓𝜺𝑡+ℎ|𝑡 (𝜀
1
𝑡+ℎ|𝑡, … , 𝜀

𝐾
𝑡+ℎ|𝑡) . (4.1)

It lies at hand to model the density using a copula and thus split the individual error margin
from the dependence structure model. Wemotivate Equation (4.1) in Section 4.2.1 and then
derive the CCD forecast starting from the above equation in Section 4.2.2. Subsequently, we
show that the forecasts produced are calibrated when knowing the dependence structure of
the forecast errors and that it embeds the point forecast combination by Bates and Granger
(1969) in Section 4.2.3. Section 4.2.4 reviews the effects of component misspecification on
the CCD forecasts.

4.2.1. Modeling the forecast error density

We start by introducing some notation. Let

̂x𝑡+ℎ|𝑡 = ( ̂𝑥1𝑡+ℎ|𝑡, … , ̂𝑥𝐾𝑡+ℎ|𝑡) (4.2)

be 𝐾 point forecasts for the value of some quantity of interest 𝑥𝑡+ℎ at time 𝑡 + ℎ, made with
the information available at time 𝑡, for forecasters 1, … , 𝐾. We restrict 𝑥𝑡+ℎ and ̂x𝑡+ℎ|𝑡 to take
values in ℝ (resp. ℝ𝐾) and the set of time indices to be discrete. Let

𝜀𝑘𝑡+ℎ|𝑡 = ̂𝑥𝑘𝑡+ℎ|𝑡 − 𝑥𝑡+ℎ ∼ 𝐹𝜀𝑘𝑡+ℎ|𝑡(⋅) (4.3)

be the individual error of forecaster 𝑘 = 1,… , 𝐾, which is unknown until 𝑡 + ℎ. Note that
the error can alternatively be defined as the true value minus the forecast (Nowotarski and
Weron, 2018). Let 𝑓𝜀𝑘𝑡+ℎ|𝑡 denote the corresponding marginal PDF to 𝐹𝜀𝑘𝑡+ℎ|𝑡. The vector of all
individual point forecast errors is denoted by

𝜺𝑡+ℎ|𝑡 = (𝜀1𝑡+ℎ|𝑡, … , 𝜀
𝐾
𝑡+ℎ|𝑡) ∼ 𝐹𝜺𝑡+ℎ|𝑡(⋅, … , ⋅)

with common density of the forecast errors 𝑓𝜺𝑡+ℎ|𝑡(⋅, … , ⋅).
In practice, one has to estimate the distributions of 𝜀𝑘𝑡+ℎ|𝑡 (𝑘 = 1,… , 𝐾) and 𝜺𝑡+ℎ|𝑡 using

historical data
{(𝜀11+ℎ|1, … , 𝜀

𝐾
1+ℎ|1) , … , (𝜀

1
𝑇+ℎ|𝑇, … , 𝜀

𝐾
𝑇+ℎ|𝑇)} .
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In general, one could use a (non)parametric multivariate model for the density 𝑓𝜺𝑡+ℎ|𝑡, like a
multivariate Gaussian distribution or a multivariate kernel density estimation. These mod-
els are restrictive in the parametric case or suffer from the curse of dimensionality in the
nonparametric case. On the contrary, using a copula allows splitting the margin and de-
pendence structure model and provides flexibility and feasibility in higher dimensions (see
Section 2.1).
By applying Sklar’s theorem (Sklar, 1959), there is some copula 𝐶𝜺𝑡+ℎ|𝑡 such that

𝐹𝜺𝑡+ℎ|𝑡 (𝜀
1
𝑡+ℎ|𝑡, … , 𝜀

𝐾
𝑡+ℎ|𝑡) = 𝐶𝜺𝑡+ℎ|𝑡 (𝐹𝜀1𝑡+ℎ|𝑡(𝜀

1
𝑡+ℎ|𝑡), … , 𝐹𝜀𝐾𝑡+ℎ|𝑡(𝜀

𝐾
𝑡+ℎ|𝑡)) . (4.4)

Differentiation of Equation (4.4) yields

𝑓𝜺𝑡+ℎ|𝑡 (𝜀
𝐾
𝑡+ℎ|𝑡) = 𝑐𝜺𝑡+ℎ|𝑡 (𝐹𝜀1𝑡+ℎ|𝑡(𝜀

1
𝑡+ℎ|𝑡), … , 𝐹𝜀𝐾𝑡+ℎ|𝑡(𝜀

𝐾
𝑡+ℎ|𝑡)) ⋅

𝐾
∏
𝑘=1

𝑓𝜀𝑘𝑡+ℎ|𝑡(𝜀
𝑘
𝑡+ℎ|𝑡) (4.5)

with 𝑐𝜺𝑡+ℎ|𝑡 =
𝜕𝐾

𝜕ᵆ1…𝜕ᵆ𝐾
𝐶𝜺𝑡+ℎ|𝑡(𝑢1, … , 𝑢𝐾) being the corresponding copula density to 𝐶.

The problem of finding and fitting the appropriate models for the components in Equa-
tion (4.5) is calledmultivariate copula time series forecasting. Models for marginal densities
and copula in Equation (4.4) can be chosen independently. In our worked-through exam-
ple in Section 4.4, we use neural networks and kernel density estimation for the marginal
densities and a vine copula for their dependence structure.
For the general setup of multivariate time series forecasting, we refer to Patton (2012).

Margins and copula can either be modeled parametrically or nonparametrically, respec-
tively. Entirely (non-)parametric models use a (non-)parametric approach for the margins
and the copula. In a semi-parametric approach, the margins are estimated nonparamet-
rically, and the copula model is parametric. Patton (2012) suggests using the model with
maximum likelihood on historical error data; however, scoring rules could also be used for
model selection and estimation. Section 2.1 summarizes essential parametric copulamodels
and references for nonparametric copula models.
In the next section, we use Equation (4.5) to derive a density forecast for 𝑥𝑡+ℎ. However,

other quantities of interest can be derived from Equation (4.5), such as a maximum likeli-
hood point forecast for 𝑥𝑡+ℎ (de Oliveira et al., 2017).
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4.2.2. The CCD forecast

Through the methods of Section 4.2.1 we can model the density

𝑓𝜺𝑡+ℎ|𝑡 (𝜀
1
𝑡+ℎ|𝑡, … , 𝜀

𝐾
𝑡+ℎ|𝑡)

4.3
= 𝑓𝜺𝑡+ℎ|𝑡 ( ̂𝑥1𝑡+ℎ|𝑡 − 𝑥𝑡+ℎ, … , ̂𝑥𝐾𝑡+ℎ|𝑡 − 𝑥𝑡+ℎ|𝑥𝑡+ℎ) (4.6)

for any marginal and dependence structure for continuous forecast errors. This denotes
a density in 𝜺 or ̂x𝑡+ℎ|𝑡 knowing 𝑥𝑡+ℎ, respectively. At time 𝑡, the forecasts ̂x𝑡+ℎ|𝑡 can be
observed, but 𝑥𝑡+ℎ remains unknown until 𝑡 + ℎ. Taking a Bayesian perspective, we can
reformulate Equation (4.6) as a likelihood.
Instead of varying ̂x𝑡+ℎ|𝑡 in Equation (4.5) and holding 𝑥𝑡+ℎ fixed, 𝑥𝑡+ℎ can be varied

ℒ𝑡+ℎ|𝑡(𝑥𝑡+ℎ) = 𝑓𝜺𝑡+ℎ|𝑡 ( ̂𝑥1𝑡+ℎ|𝑡 − 𝑥𝑡+ℎ, … , ̂𝑥𝐾𝑡+ℎ|𝑡 − 𝑥𝑡+ℎ|𝑥𝑡+ℎ) . (4.7)

Intuitively, Equation (4.5) then calculates the likelihood of getting the observed point fore-
casts for different true values 𝑥𝑡+ℎ. By normalising Equation (4.7), one gets the forecast
density ̂𝑓𝑡+ℎ|𝑡 for 𝑥𝑡+ℎ

̂𝑓𝑡+ℎ|𝑡(𝑥𝑡+ℎ) = (∫
ℝ
ℒ𝑡+ℎ|𝑡(𝑦)𝑑𝑦)

−1

⋅ ℒ𝑡+ℎ|𝑡(𝑥𝑡+ℎ). (4.8)

̂𝑓𝑡+ℎ|𝑡(𝑥𝑡+ℎ) is the CCD forecast for the random quantity 𝑥𝑡+ℎ.

Remark 4.2.1. The numerical computation of the normalizing constant ∫ℝℒ𝑡+ℎ|𝑡(𝑦) d 𝑦
might not be necessary if only samples of the distributions are of interest. Some randomnumber
generationmethods workwith likelihood and do not require a normalized density, for example,
the Metropolis-Hasting algorithm (Hastings, 1970; H. Wang et al., 2017).

If one of the forecasts is missing for a time step, the CCD can easily be adapted by inte-
gration over ℝ. Let the 𝑗-th forecast be missing. Then, the CCD forecast is

̂𝑓𝑡+ℎ|𝑡(𝑥𝑡+ℎ) ∝ ℒ𝑡+ℎ|𝑡(𝑥𝑡+ℎ)

= 𝑐−𝑗𝜺𝑡+ℎ|𝑡(𝐹𝜀1𝑡+ℎ|𝑡( ̂𝑥1𝑡+ℎ|𝑡 − 𝑥𝑡+ℎ), … , 𝐹𝜀𝑗−1𝑡+ℎ|𝑡
( ̂𝑥𝑗−1𝑡+ℎ|𝑡 − 𝑥𝑡+ℎ),

𝐹𝜀𝑗+1𝑡+ℎ|𝑡
( ̂𝑥𝑗+1𝑡+ℎ|𝑡 − 𝑥𝑡+ℎ), … , 𝐹𝜀𝐾𝑡+ℎ|𝑡( ̂𝑥𝐾𝑡+ℎ|𝑡 − 𝑥𝑡+ℎ))⋅

𝐾
∏

𝑘=1,𝑘≠𝑗
𝑓𝜀𝑘𝑡+ℎ|𝑡(𝜀

𝑘
𝑡+ℎ|𝑡)
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where 𝑐−𝑗𝜺𝑡+ℎ|𝑡 denotes the marginal copula density without 𝑗. This approach generalizes nat-
urally to more than one missing forecast.

4.2.3. Properties of CCD forecasts

We prove two outstanding properties of the CCD method: combining a vast range of point
forecasts to a calibrated forecast and embedding the well-known combination by Bates and
Granger (1969).

Theorem4.2.1 (Calibration of theCCDmethod). Let �̂� be continuous randompoint forecasts
for𝑋 asmotivated in Section 4.2.2with finite error density. Let ̂𝑓 be the CCD forecast for𝑋using
the true error marginals and copula and ̂𝐹 the corresponding CDF. Then the CCD forecast is
calibrated, that is

𝑍�̂� = 𝐹(𝑋) ∼ 𝑈(0, 1).

The proof of Theorem 4.2.1 is given in Appendix B.2.1. Since any multivariate distribu-
tion that admits a density can be expressed in the copula representation, any point forecast
combination with bounded density can be combined into a calibrated forecast.
For two forecasts with bivariate Gaussian errors, that is, they have Gaussian marginals

and a Gaussian copula, the CCD density forecast can be computed explicitly and takes the
form of a Gaussian PDF. Its parameters are equal to the forecast error variance minimizing
combination stated by Bates and Granger (1969).

Theorem 4.2.2. Let 𝑥 be the quantity of interest, ̂𝑥1 and ̂𝑥2 point forecasts for 𝑥 and 𝜀𝑖 = ̂𝑥𝑖−𝑥
the error of forecast 𝑖 for 𝑖 ∈ {1, 2}. Let 𝜀1 and 𝜀2 be jointly Gaussian with mean 0, standard
deviations𝜎1 and𝜎2, and correlation coefficient 𝜌. Then, the CCD forecast ̂𝑓 according to Equa-
tion (4.8) is normally distributed with mean

𝜇𝑐 = 𝑘 ⋅ ̂𝑥1 + (1 − 𝑘) ⋅ ̂𝑥2, with 𝑘 =
𝜎22 − 𝜌𝜎1𝜎2

𝜎21 + 𝜎22 − 2𝜌𝜎1𝜎2
(4.9)

and standard deviation

𝜎𝑐 =
𝜎1𝜎2√1 − 𝜌2

√𝜎21 + 𝜎22 − 2𝜌𝜎1𝜎2
. (4.10)

The proof of Theorem 4.2.2 follows directly from Equation (4.8). The necessary calcula-
tions are carried out in Appendix B.2.2.
Bates and Granger (1969) establish the density forecast by minimizing the mean squared

error. Thus, the CCD method minimizes the mean squared error for two jointly Gaussian
forecast errors. Whether this holds for other margins and copulas is an open question.
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4.2.4. Effects of model components

The following section expands on the average effects of the model components on the com-
bined forecast, shows which PIT histograms indicate incorrect specification of which com-
ponents, and thus lays the foundation for explaining the CCDmethod’s performance in the
simulations of Section 4.3. In two simulations, either the copula family or the marginal dis-
tribution is specified incorrectly, and the resulting forecasts are displayed through their PIT
histograms. Of course, incorrectly specified margins influence the copula fitting process,
typically leading to misspecified copulas. Thus, the two effects shown here can be mutually
dependent.

Misspecified copula

Figure 4.1 starts by visualizing the effect of the copula on a single CCD forecast. For point
forecasts ̂𝑥 = (−0.5, 0.7) and standard normal margins, the combined forecasts resulting
from different copula families with 𝜏 = 0.8 are shown in Figure 4.1a. The point forecasts are
far from each other in quantile terms (0.31, 0.76). Thus, when assuming a Clayton copula,
the two forecast errors are assumed to lie in the upper tail, as in the lower tail, widespread
points are unlikely due to the lower tail dependence. Thus, the combined forecast is shifted
to the left. For the Frank copula, the point forecasts are assumed to lie in one of the tails;
thus, the combination is bimodal, with modes below the lower and above the higher point
forecast. The Gauss combination lies between the two point forecasts, and for the Gumbel
copula, the reverse of the Clayton copula is the case.
Figure 4.1b shows a similar plot for ̂𝑥 = (1, 1.2). The point forecast quantiles lie close

together (0.84, 0.88), and the CCD combinations differ not as wildly as for Figure 4.1b.
The combinations for Clayton and Gumbel are shifted to the converse directions, as argued
above. Using the Frank or Gaussian copula, the mean lies within the two point forecasts.
In summary, the copula has a major influence on the shape and the width of the combined
prediction.
The sample results in Figure 4.2a show the averaged effect of the copula specification

on the combined forecasts: For point forecast errors with Frank, Gaussian, Clayton, and
Gumbel copulas, 10 000 two-dimensional point forecasts are generated and evaluated using
all those copulas. Standard normal distributions are used in the generation of point fore-
cast errors and the evaluation in the CCD method. Figure 4.2a shows results for 𝜏 = 0.4,
while Figure 4.2b shows results for 𝜏 = 0.8. For the small value of 𝜏 = 0.4, the influence
of the copula family on the calibration is relatively small. If Clayton and Gumbel are mis-
taken, the histograms contain discernible deviations from equal height bars. For 𝜏 = 0.8,
the influence of the copula on the calibration is larger. The histograms exhibit skewness
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Figure 4.1.: Illustrative CCD combinations for two point forecasters with standard normally
distributed forecast errors and different parametric copula families. All copulas
have parameters such that Kendall’s 𝜏 = 0.8. Depending on the copula family,
the CCD forecast mean is shifted, and the spread is decreased compared to the
two raw forecasts as different regions of the copula are likely to have quantiles
being far apart or close together.

and underdispersion for incorrect copulas, for example, if a Clayton instead of a Gumbel
copula is used in the CCD method. As argued above and in Figure 4.1, the copula in the
CCD combination impacts the shift and width of the combined forecast. Again, misspec-
ifications, including Clayton and Gumbel copula, influence the resulting histograms most
because they have inverse tail dependence properties. The results for using a Gaussian cop-
ula seemwell-calibrated for 𝜏 = 0.8 and normalmargins in Figure 4.2b. However, this is not
the case for 𝜏 = 0.4 or non-normal margins (see Figure B.1). For normal margins, Figure 4.1
illustrates how the Gaussian copula leads to less sharp densities than the true model. Thus,
fitting the true copula in the CCD method is also in the case of normal margins and strong
dependencies between the forecasts favorable.

Misspecified margins

Figure 4.3 shows the effect of incorrect margins on the combined forecast. The point fore-
cast errors are generated using a t distribution with mean 0, variance 1, and 4 degrees of
freedom. In the CCD method, a standard normal distribution is used. Thus, the mean and
variance are specified correctly, but the tails decay too fast. 10 000 samples are generated
for different copula families, each with 𝜏 = 0.4. The true copula but the wrong marginal
distributions are used in the evaluation. The combined forecasts are overdispersed like the
marginal forecasts. Thus, the too-light tails carry through the CCDmethod. For Clayton and
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(a) 𝜏 = 0.4. The effect of an incorrect copula estimation is rather small for small rank correlations.
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(b) 𝜏 = 0.8. For higher rank correlations, the effects are significant and unsymmetric.

Figure 4.2.: Effect of a misspecified copula on the calibration of the CCD forecast. 10 000
points are evaluated using the “fit” copula family for data stemming from the
“true” copula. Both copulas use the same, “true” 𝜏. The margins are standard
normal.
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Figure 4.3.: Effect of a misspecified margin on the calibration of the CCD forecast. For all
copulas, the combined forecast is overdispersed; forGumbel andClayton copula,
the histogram is, in addition, unsymmetric.

Gumbel copula, this is particularly evident in the regions of tail dependence, where more
values than predicted lie in the tail.

4.3. Simulations

In this section, simulation studies evaluate the overall performance of the CCD method
and an appropriate training sample size. In Section 4.3.1, we compare the CCD method to
other forecast combination algorithms, that is, TLP, SLP, BLP andEMOS (seeAppendixB.1).
Section 4.3.2 reviews the effect of the training sample on the resulting CCD forecast if an
automatic fitting algorithm is used.

4.3.1. Comparison to other forecast combination algorithms

Weconduct a simulation study that underpins the ability of theCCDmethod to produce cali-
brated forecasts for individual forecasts with a complicated dependence structure compared
to the forecast combination algorithms (see Appendix B.1). We identify situations where
CCD is particularly powerful by varying the marginal error distribution, the copula family,
and the rank correlation of the errors. Table 4.1 summarizes the considered marginal distri-
butions, copulas, and rank correlations. For 𝜏 = 0, all copulas are equal to the independence
copula. Therefore, distinguishing between different copulas is redundant in this case. As
Section 4.2.2 points out, CCD can combine any number of point forecasts. We restrict the
simulation to the case of two forecasts to maintain the number of combinations feasible.
All scenarios are evaluated through the same scheme. Based on the copula and margins,

6 000 two-dimensional error data points are sampled and divided into a training data set
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Component Values

Copula Clayton, Frank, Gaussian, Gumbel
Margins ℳ1 Uniform on (−√12/2,√12/2)

ℳ2 Gaussian (0, 1)
ℳ3 Student’s t with (𝜇 = 0, 𝜎 = √1/2, 𝜈 = 4)

𝜏 0, 0.4, 0.8

Table 4.1.:Overview of the components in the simulation study in Section 4.3.1. The
marginal distribution parameters are chosen to have the same mean and vari-
ance.

of 5 000 points and an evaluation set containing 1 000 points. The algorithms TLP, SLP,
BLP, and EMOS are fit numerically using the logarithmic score minimizing parameters for
the training data set. The CCD method’s copula family and parameter are fit based on the
AIC using the pyvinecopulib python library’s select function (Nagler and Vatter, 2021),
whereby the set of copulas contains all parametric copulas of the package without the BB7
copula due to numerical instabilities in the tail. The TLP, SLP, BLP, and the CCD method
use the true marginal distributions. We report the EMOS results only for normal margins,
as we use an EMOS formulation resulting in a normal distribution. To our knowledge, no
generalizations of the EMOS approach to uniform or t distributions are available, and the
optimization for those distributions is not straightforward. BMA with access to the true
marginal distribution results in theTLP; thuswe do not include BMA separately. The overall
approach of CCD is compared to EMOS and BMA. Through the comparison with TLP, SLP,
BLP, we analyze the copula-combination-step in the CCD method.
Then, the different methods are evaluated based on the test set data points. KS and AD

test statistics assess the probabilistic calibration of the resulting forecast combination. Fur-
thermore, the RMSE of the forecast combinationmeans is calculated to evaluate the forecast
location and the LS as a simultaneous measure of calibration and sharpness.
Each combination of the simulation scheme is run 100 times. Boxplots summarize the

results for each scenario and each evaluation measure separately. We show some boxplots
here to underpin the most significant results. The remaining figures are in the appendix.
Table 4.2 links each simulation scenario to the associated figure.

Results

The simulations show that modeling the dependence structure of the forecast through its
copula in CCD increases the power of the combined forecast in all the aspects considered.
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Figure 4.4.: CCD simulation results for the scenariowithmarginsℳ1, 𝜏 = 0.8, and a Clayton
copula.
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Figure 4.5.: CCD simulation results for the scenariowithmarginsℳ1, 𝜏 = 0.8, and aGumbel
copula.
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Figure 4.6.: CCD simulation results for independent forecasts with marginsℳ1.
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Figure 4.7.: CCD simulation results for independent forecasts with marginsℳ2.
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Figure 4.8.: CCD simulation results for independent forecasts with marginsℳ3.

The CCD forecasts always perform at least comparably well as any other forecast method in
terms of probabilistic calibration, forecast means, and combined calibration and sharpness.
The means of the combined forecasts differ slightly between the different methods. For

dependence structures with tail dependence, for example, Clayton and Gumbel copula with
𝜏 = 0.8, the CCD means are closer to the realization. With an upper tail dependence, CDF-
transformed forecasts lying close together in the upper tail cause theCCD-combined forecast
to shift to the left. The other algorithms cannot deal with this situation separately. Figure 4.5
shows this as an example for standard normalmargins, 𝜏 = 0.8, and theGumbel copula. The
forecast mean is considerably closer in terms of the RMSE than for the other forecast com-
bination algorithms. For a lower tail dependence, the same applies the other way around
(see Figure 4.4).
The calibration differs widely for the different algorithms in the scenarios. TheTLP is par-

ticularly poorly calibrated forℳ1 andℳ3 with low rank correlations (Figures 4.6 and 4.8).
As proven in Gneiting and Ranjan (2013), the TLP combined forecasts are uncalibrated in
general for calibrated individual forecasts, while BLP can combine any marginal forecast
to a calibrated forecast. Nevertheless, for high-rank correlations, TLP, SLP, and BLP per-
form comparably well. Low-rank correlations cause TLP and SLP to produce uncalibrated
forecasts.
EMOS is only evaluated for marginsℳ2 and the only algorithm in which calibration and

score evolve incoherently. The forecasts are for scenarios with large 𝜏 among the worst cali-
brated (for example, Figure 4.4 and B.6), but EMOS performs better in terms of the logarith-
mic score.
Overall, the CCD method remarkably outperforms the other algorithms in the scenarios

with nonlinear dependence while being systematically at least as good as the other method
in all cases.
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𝜏 0.4 0.8
ℳ1 ℳ2 ℳ3 ℳ1 ℳ2 ℳ3

Clayton Fig. B.2 Fig. B.8 Fig. B.16 Fig. 4.4 Fig. B.12 Fig. B.20
Frank Fig. B.3 Fig. B.9 Fig. B.17 Fig. B.6 Fig. B.13 Fig. B.21
Gaussian Fig. B.4 Fig. B.10 Fig. B.18 Fig. B.7 Fig. B.14 Fig. B.22
Gumbel Fig. B.5 Fig. B.11 Fig. B.19 Fig. 4.5 Fig. B.15 Fig. B.23

Table 4.2.: List of evaluation figures for the simulations in Section 4.3.1. Some figures are
displayed in Appendix B.3.
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Figure 4.9.: CCD simulation results for different training sizes 𝑛 and an independence cop-
ula.

4.3.2. Effect of the training sample size

The following simulation investigates the likelihood of misspecification of the copula, fam-
ily, and parameter with respect to the training sample size. Thus, it shows how much train-
ing data should be available to apply the method reasonably. The marginal distributions are
standard normal for two forecasters and are known to the CCD method. The copula is au-
tomatically adjusted using the select-function of the package pyvinecopula (Nagler and
Vatter, 2021) using a sample of 𝑛 points. The CCDmethod is evaluated on 1 000 data points
with the estimated copula. The procedure is repeated 50 times for each configuration of
copula and training sample size 𝑛. Figures 4.9, 4.10 and 4.11 show the results for the inde-
pendence, the Gaussian and Gumbel copula, the latter two with 𝜏 = 0.8. For all copulas, the
fit is reasonably good for 𝑛 = 500 in terms of all measures considered and for all true copu-
las. For larger 𝑛, the fluctuation, possibly due to the influence of outliers, increases slightly.
A smaller data size is sufficient for the simple dependence structure as for the independence
copula in Figure 4.9.
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Figure 4.10.: CCD simulation results for different training sizes𝑛 and aGaussian copulawith
rank correlation 𝜏 = 0.8.
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Figure 4.11.: CCD simulation results for different training sizes 𝑛 and a Gumbel copula with
rank correlation 𝜏 = 0.8.

4.4. Electricity price forecast combination

Electricity price forecasting (EPF) has received much attention in recent years as the in-
creasing number of volatile electricity production plants, such as solar or wind power farms,
raises large fluctuations in electricity prices. Although the literature on electricity price
point forecasting ismuch broader (see, for example, the review in Lago et al., 2021), there are
works on probabilistic electricity price forecasting (Nowotarski andWeron, 2018; Petropou-
los et al., 2022; Grothe, Kächele, and Krüger, 2023). The distributional approach of Marcjasz
et al. (2023) outperforms not only other probabilistic algorithms but also point prediction al-
gorithms when using the forecasted mean as a point forecast in forecasting the day-ahead
electricity prices for Germany. It uses distributional deep neural networks (DDNNs) for
probabilistic forecasts of electricity prices with a wide range of input features. Two different
parametric output distributions are considered in different setups: the normal and John-
son’s SU (JSU) distributions. To account for random effects on hyperparameter tuning, the



Combining Point Forecasts to Probabilistic Forecasts Using Copulas 64

hyperparameters for the DDNN are fit four times, leading to four different DDNN for each of
the distributions. Forecasts of the same distribution family are combined using a traditional
linear pool with equal weights and horizontal averaging. We show in the following that the
combined forecasts generated inMarcjasz et al. (2023) – although outperforming competing
forecasting procedures – can be considerably improved in terms of calibration by using the
CCDmethod to combine the results of the different models. The remainder of the section is
structured as follows. We start by briefly describing the setup of the considered data. Then,
we expand on the models considered in Section 4.4.1, including the model parameters and
the CCD components. Section 4.4.2 evaluates the results and compares them to those stated
in Marcjasz et al. (2023).
The model’s input data are aligned with the availability of the data for the day-ahead auc-

tion. The spot market day-ahead auction takes place at noon, and all hours of the following
day are traded in a uniform price auction. The models aim to predict Germany’s hourly
electricity price for the next day at 11:30 am. The data available to estimate the model are
historical day-ahead electricity prices, day-ahead load forecasts, day-ahead combined renew-
able electricity sources forecasts, EU emission allowance prices, and coal, gas, and oil prices,
as well as weekday dummies. The data comprises the years 2015 to 2020. The data is divided
into several subsequent training periods for the different model components as the models
build upon each other (see Figure 4.15). The initial training period of neural networks and
hyperparameter tuning runs from January 1, 2015, to December 25, 2018. The marginal
models and copula are trained with the data from December 26, 2018, to June 26, 2019, and
June 27, 2019 to December 31, 2019, respectively. After the initial training, the models are
retrained daily to perform the 24 hourly distributional forecasts and evaluated from January
1, 2020, to December 31, 2020.

4.4.1. Models

The models proposed in Marcjasz et al. (2023) are distributional deep neural network
(DDNN)models, being neural networks where the last layer represents one or several distri-
butions, for example, for subsequent time steps. Marcjasz et al. (2023) identify the normal
and the JSU distribution as particularly powerful in EPF. The models have a complex struc-
ture with various hyperparameters to fit. Thus, the fitting is usually initialized at random.
The hyperparameter tuning is repeated four times to account for random effects, yielding
four different model setups for each distribution. For more information on the models, hy-
perparameters, and tuning, we refer to Marcjasz et al. (2023). We denote these models by
DDNN-Normal-𝑖 and DDNN-JSU-𝑖 (𝑖 ∈ [4]). To combine the results, Marcjasz et al. (2023)
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Model abbr. Description

DDNN-Normal-𝑖 Distributional deep neural network (DDNN)model byMarcjasz et al.
(2023) forecasting normal distribution parameters.

DDNN-JSU-𝑖 DDNNmodel forecasting JSU distribution parameters.
KDE-𝑑-𝑖 Kernel density estimation (KDE) estimation using the DDNN-𝑑-𝑖

mean forecast as point forecast and past errors.
Normal-TLP TLP with equal weights of the DDNN-Normal models.
JSU-TLP TLP with equal weights of the DDNN-JSU models.
CCD-All CCD model using the KDE-Normal-1… 4 as marginal models and a

vine copula as dependence model. If -Hourly is appended, a separate
copula per hour of the day is fit. All data is used to fit the vine copula.

CCD-1Y Like CCD-All, but at most, the last year is used when fitting the cop-
ula.

CCD-13/14 OnlyKDE-Normal-1 andKDE-Normal-3 orKDE-Normal-1 andKDE-
Normal-4 are used in the CCDmethod. The appendices are analogous
to the ones for the CCD model with all marginals.

Table 4.3.:Model abbreviation overview for electricity price forecasting (EPF). The model
number 𝑖 ∈ [4] refers to a specific result of the hyperparameter tuning, and 𝑑
denotes the normal or JSU distribution.

suggests simple linear aggregation. We denote by Normal-TLP and JSU-TLP the TLP with
equal weights of the DDNN-Normal and DDNN-JSU models.
The pair plots in Figures 4.14 and B.24 show that the point forecast errors of the differ-

ent models exhibit high dependencies with Kendall’s 𝜏 ranging from 0.726 to 0.776 for the
DDNN-normal models. Thus, the simulations in Section 4.3 suggest that the combination
benefits from using the CCDmethod. For the CCDmethod, we do not use the DDNNmodel
output directly as the marginal distributions are not calibrated with skewed histograms and
show slightly too light tails (see Figure 4.12). As the point forecasts by the DDNN perform
well, we use them as point forecast input for the CCDmethod. We focus on normal forecasts
as they produce better point forecasts in terms of MAE and RMSE and use a kernel density
estimation (KDE) for the marginal distributions. KDE is a flexible and straightforward ap-
proach for data that do not follow a parametric distribution, as is the case here. We do not
apply a further time series model, as the DDNNmodels already incorporate sequential time
series information. The KDE uses the last half-year of data and a Gaussian kernel. The re-
sulting PIT histograms for the KDEmodels are shown in Figure B.26 and provide reasonably
calibrated, although not perfectly calibrated, marginals.
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We employ a vine copula model for the dependence model in the CCD method (see Sec-
tion 2.1), as it is a flexible and straightforward applicable model for high-dimensional de-
pendence structures. We use the standard settings of Nagler and Vatter (2021) but exclude
the BB7 copula as it suffers from numerical instabilities in the tails in our calculations. The
copula is refit every 24 hours and then used to compute the 24 hourly probabilistic forecasts.
Figure 4.15 visualizes the training periods for the different model components. Further in-
formation and executable code are available on GitHub (Link to be inserted).
We compute four different CCD models combining all four marginal models. We differ-

entiate between the size of the copula training data and the number of fitted copulas per
day. The size of the training data is all available data (“All”) or data from at most the last
year (“1Y”). The number of copulas is either one for all hours of the day or 24 if a sepa-
rate copula is fitted for each hour (“Hourly”). Taking this together yields CCD-All, CCD-1Y
for the one-copula-per-day models, and CCD-All-Hourly and CCD-1Y-Hourly. As noted in
Hong et al. (2016), restricting the set of combined models to the best-performing models
is often beneficial. Thus, we also compute the combination using only DDNN-Normal-1
and DDNN-Normal-3 and DDNN-Normal-1 and DDNN-Normal-4. We report only the non-
hourly fitting for those combinations, as it performs considerably better on the combination
of all models.
Figure 4.16 shows the copula fit for the combinations of DDNN-Normal-1 and DDNN-

Normal-3 and DDNN-Normal-1 and DDNN-Normal-4. The fit of the copula remains stable
over time, with a student’s t copula having a rank correlation of approximately 0.65 and 0.72,
respectively. Only in one of the fits is a BB1 copula used (Joe andHu, 1996; Nikoloulopoulos,
Joe, and H. Li, 2012). There is no simple way of visualizing the dependence structure over
time for the higher-dimensional copula models.

4.4.2. Results

We analyze the results of the different models through their PIT histograms and the numer-
ical scores listed in Table B.1. The evaluation period runs from 2020-01-01 to 2020-12-31 for
all models. Note that Marcjasz et al. (2023) uses a longer evaluation period and reports the
average pinball loss, which produces approximately half as high as the CRPS values listed
here. Figure 4.12 shows the resulting PIT histograms for the four individual DDNN-Normal
models. All of them are skewed and show slightly too light tails. As typical for TLPs, the
resulting combination is overdispersed as Figure 4.13 displays, regardless of distribution.
Table B.1 also shows the KS test statistic of the PIT values assessing the calibration numer-
ically. The TLP tends to be calibrated slightly worse than the best of the individual models
for both distributions, but MAE, RMSE, and CRPS are improved considerably through the
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Figure 4.12.: PIT histograms for the forecasts by the DDNN-Normal models with different
hyperparameter setups for EPF. The analog results for the DDNN-JSU models
are shown in Figure B.25.
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Figure 4.13.: PIT histograms for the TLP of normal or JSU models in EPF. The forecasts are
overdispersed and skewed for the normal distribution.

combination. As the PIT histograms indicate, the TLP forecasts are too broad, producing a
too large variance.
Figure 4.17 shows the resulting PIT histograms for the non-hourly fit of all models and

the combination of DDNN-Normal-1 andDDNN-Normal-4. The histograms are remarkably
better calibrated than any non-CCD method. The KS test statistics are approximately half
the value of the TLP counterparts. For CCD-All, it is 0.0174, while it is 0.0399 for Normal-
TLP. The forecast location is comparable to the TLP approach with a slightly better MAE
and a slightly higher RMSE for all CCD models.
Combining the four models in CCD performs better than combining only two models.

While the KS test statistics are better than for any of the non-CCD models, RMSE, MAE
and CRPS are lower for CCD-All and CCD-1Y than for CCD-All-13 or CCD-1Y-13. The dif-



Combining Point Forecasts to Probabilistic Forecasts Using Copulas 68

−40 −20 0 20

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
D

N
N

-N
o
r
m

a
l-

1

−40 −20 0 20

−40

−30

−20

−10

0

10

20

τ = 0.746

−40 −20 0 20

−40

−30

−20

−10

0

10

20

30

τ = 0.754

−40 −20 0 20

−40

−30

−20

−10

0

10

20

30

τ = 0.776

−40 −20 0 20

−40

−30

−20

−10

0

10

20

D
D

N
N

-N
o
r
m

a
l-

2

−40 −20 0 20

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

−40 −20 0 20

−40

−30

−20

−10

0

10

20

30

τ = 0.731

−40 −20 0 20

−40

−30

−20

−10

0

10

20

30

τ = 0.726

−40 −20 0 20

−40

−30

−20

−10

0

10

20

D
D

N
N

-N
o
r
m

a
l-

3

−40 −20 0 20

−40

−30

−20

−10

0

10

20

−40 −20 0 20

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

−40 −20 0 20

−40

−30

−20

−10

0

10

20

30

τ = 0.736

−40 −20 0 20

DDNN-Normal-1

−40

−30

−20

−10

0

10

20

D
D

N
N

-N
o
r
m

a
l-

4

−40 −20 0 20

DDNN-Normal-2

−40

−30

−20

−10

0

10

20

−40 −20 0 20

DDNN-Normal-3

−40

−30

−20

−10

0

10

20

30

−40 −20 0 20

DDNN-Normal-4

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 4.14.: Forecast error dependence plot for the DDNN-Normal models in EPF. The
lower left plots display scatter plots of the errors, whereas the upper right plots
visualize the contours of a two-dimensional kernel density estimation. On the
diagonal, histograms of the errors for the individual models are shown. The
resulting Kendall’s 𝜏 is displayed in the lower right corner of the contour plots.
The models have a strong pairwise dependence with many large negative er-
rors.
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Figure 4.15.: Visualization of training and evaluation data sets for the different CCD model
components in EPF.

ference between CCD-All and CCD-1Y is slight, with CCD-1Y yielding better MAE, RMSE,
and CRPS while being slightly less calibrated.
An overall copula for all hours yields a better fit than the hourly copula fitting (see Fig-

ures B.27 (a) and (b) in the appendix). The copula estimation for the hourly models has only
1/24th of the training data available. As argued in Section 4.3.2, this is insufficient for a rea-
sonable copula fit, particularly in four dimensions. However, the results are better calibrated
than for the non-CCDmodels. The combination of DDNN-Normal-1 and DDNN-Normal-3
produces better-located results with smaller CRPS and is comparably well calibrated com-
pared to the combination of DDNN-Normal-1 and DDNN-Normal-4.

4.5. Conclusion

We formulate a point forecast combination method based upon the likelihood of a copula
time series model, the copula combined density (CCD) method. It uses a copula model to
combine individually fitted time series for every point forecast error to a joint density fore-
cast. We show that this approach produces calibrated forecasts for correctly estimated time
series and copula models. The CCD method embeds the squared error minimizing point
forecast combination method by Bates and Granger (1969). We give remarks on missing
forecasts and expand on methods for fitting model components, with a particular focus on
estimating the copula.
In a simulation study, we identify scenarios in which CCD is superior to other algorithms,

including TLP, SLP, BLP, and EMOS in terms of calibration and scores. The scenarios com-
prise, in particular, those with complicated dependence structures, e.g., high-rank correla-
tion, asymmetric dependencies, and non-normal marginal distributions. In all the scenar-
ios considered, the CCD method is at least as good as any other method. We describe and
analyze the effects of incorrectly specified marginal and dependence models and conduct
simulations on typical sample sizes to estimate the copula components sufficiently in stan-
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Figure 4.16.: Estimation of the copula rank correlation for the daily fitting in 2020 in the
CCD method for EPF. The copulas are fit using all data from 2019-06-27.

dard settings. As a rule of thumb, 500 data points are necessary to estimate the components.
This number might be strongly reduced if parts of the model components are known due to
a-priori-knowledge or parametric assumptions.
We apply the method to hourly electricity price forecasting in Germany. We combine

state-of-the-art distributional deep neural networks (DDNNs) outputs using a kernel density
estimation of the margins and a vine copula for their dependence structure. This approach
yields better-calibrated forecasts than the competing methods.
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Figure 4.17.: PIT histograms for the CCD models using all data or at most one year of data
to fit and using all DDNN-Normal models or only models 1 and 3.



5. Assessing the Ability to Track Changes

for Forecasts, Nowcasts, and

Measurements

This chapter proposes a toolbox for evaluating the ability to track changes for forecasts, now-
casts, andmeasurements. It is based on joint work with Bolin Liu, Bernd Saugel, and Oliver
Grothe (Publ. III).
Section 5.1 begins with introducing the ability to track changes and the fields of now-

casting, forecasting, and measurement and reviewing existing evaluation schemes in the
respective fields. Section 5.2 formalizes the ability to track changes and investigates sev-
eral extensions, such as noise-aware methods, confidence intervals, and probabilistic fore-
casts and nowcasts. Additionally, we introduce a new graphical method, which can simul-
taneously assess different intervals and asymmetries. In Section 5.3, we show the results
of applying our method to several practical examples from measurement, forecasting, and
nowcasting. Hence, we provide blueprints for applying the proposed evaluation in practice
and make remarks on interpreting the measures. We conclude the chapter in Section 5.4.
Ready-to-use code for further assessment of the ability to track changes (ATC) is available
at https://github.com/jo-rie/aatc.

5.1. Introduction

Measurements, nowcasts, or forecasts ideally should correctly reflect changes in the values
of interest. It is thus important to meticulously assess the ability of measurements, now-
casts, or forecasts to correctly predict the direction of changes in values – which we refer
to as the ability to track changes (ATC). Although measurements, nowcasts, and forecasts
fundamentally differ as they either measure or predict a value, similar methods can be used
to assess their ATC.
Forecasting methods predict the future based on historical data, patterns, or exogenous

factors. A forecast is computed based on the current value of interest and an estimate of its
future development. In medicine and healthcare, forecasting – for example – is used to pre-
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dict patient volumes in emergency departments (Jones et al., 2008; Rostami-Tabar, Browell,
and Svetunkov, 2023) or the demand of emergency medical services (Haugsbo Hermansen
and Mengshoel, 2021).
Methodologically evolved from forecasting (Browning and Collier, 1989), nowcasting

methods focus on predictions for the present, the immediate future, and the recent
past (Bańbura et al., 2013; World Meteorological Organization (WMO), 2017). Nowcasting
methods use high-frequency indicators or preliminary measurements related to the value
of interest and focus on updating predictions using currently available information (Castle,
Hendry, and Kitov, 2017). Nowcasting, for example, can assess the current situation dur-
ing an ongoing epidemic, considering the main pathogenic, epidemiological, clinical, and
socio-behavioral factors (Wu et al., 2021) or provide daily numbers of COVID-19 cases for
events that have occurred but have not yet been reported (Günther et al., 2021; Wolffram
et al., 2023).
Measurements aim to obtain accurate and precise values of a measurable quantity (mea-

surand; Squara et al., 2021a; Squara et al., 2021b). Repeated measurements can be used to
track changes in a value over time. When introducing newmeasurement methods, they are
evaluated against current referencemethods, often called the “gold standard”, by simultane-
ously measuring the same quantity with the new method and the reference method – often
in various individuals or different clinical settings.
In forecasting and nowcasting, the evaluation of the measurement performance is based

on statistical methods quantifying the accuracy such as the RMSE, probabilistic scoring
rules, and calibration measures (Gneiting, Balabdaoui, and Raftery, 2007; Günther et al.,
2021; Wolffram et al., 2023). None of them assesses the method’s ATC.
In a prediction competition on armed conflicts, the assessment of theATC recently gained

attention as Vesco et al. (2022) proposed the novel targeted absolute deviation with direc-
tion augmentation (TADDA) score with an additive tracking-changes-component for evalu-
ation. However, the score poses an unintuitive incentive to forecasters and is thus theoreti-
cally problematic (Bracher et al., 2023). When evaluating the measurement performance of
a measurement method, comparative statistics such as Bland-Altman analysis (Bland and
Altman, 1986) and the percentage error (L. A. H. Critchley and J. A. J. H. Critchley, 1999) are
commonly used. How to best assess the ATC of measurement methods is a field of ongoing
research (Saugel, Grothe, and Wagner, 2015; Saugel, Grothe, and Nicklas, 2018; Hiraishi,
Tanioka, and Shimokawa, 2021).
In this chapter, we focus on how to assess the ability of measurements, nowcasts, or fore-

casts to track changes. We formalize the concept of ATC and present visual techniques and
quantitative measures to assess it – considering both noiseless data and data with noise and
small non-informative changes. We introduce the conditional ATC plot, a new graphical
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Application Predicted change computation

Measurement (𝑥𝑡 − 𝑥𝑡−𝑙)𝑇𝑡=𝑙
Nowcasting 𝐱Δ,𝑙 = {

(𝑥𝑡|𝑡 − 𝑥𝑡−𝑙|𝑡)𝑇𝑡=𝑙, if 𝑦𝑡−𝑙 is not known at time 𝑡,
(𝑥𝑡|𝑡 − 𝑦𝑡−𝑙)𝑇𝑡=𝑙, otherwise.

Forecasting 𝐱Δ,𝑙 = (𝑥𝑡|𝑡−𝑙 − 𝑦𝑡−𝑙)𝑇𝑡=𝑙

Table 5.1.: Computation of the predicted change in the different applications. For nowcast-
ing and forecasting, 𝑥𝑡|𝜏 refer to values issued at 𝜏 with a target time 𝑡. For mea-
surement, 𝑥𝑡 denotes the test device measurement at time 𝑡.

method for assessing the local ability, and review bootstrap methods for calculating con-
fidence intervals. We extend the concept of assessment to probabilistic predictions. We
exemplarily illustrate the proposed methods to assess the ATC for nowcasting during the
COVID-19 pandemic, patient admissions to an emergency department, and non-invasive
blood pressure measurements – and thus provide blueprints for future assessments.

5.2. Assessment of the ability to track changes (ATC)

This section presents methods for assessing the ability to track changes for measurements,
nowcasts, and forecasts. Section 5.2.1 introduces the notation and gives notes on the com-
putation of changes in the different fields. Section 5.2.2 reviews the four-quadrant plot, a
graphicalmethod, and Section 5.2.3 derives numericalmeasures. In Sections 5.2.4 and 5.2.5,
we extend themeasures to account for noise and non-informative changes and introduce the
conditional ATC plot. Section 5.2.6 considers measures and graphical tools for probabilistic
forecasts and nowcasts.

5.2.1. Computing changes and notation

The assessment of ATC is based on the measured/observed/true and the predicted changes
in a value of interest over a time horizon 𝑙. Themeasured change is straightforward to com-
pute for all types of measurement, nowcast, or forecast. Let y = (𝑦𝑡)𝑇𝑡=0 denote the actual
values for nowcasting or forecasting, or gold standard measurements up to time 𝑇. The se-
quence of changes is then given by the differences of values in y with horizon 𝑙, that is,

𝐲Δ,𝑙𝑡 = (𝑦𝑡 − 𝑦𝑡−𝑙) for 𝑡 = 𝑙, … , 𝑇. (5.1)

The definition of the predicted change depends on the context; Table 5.1 summarizes the
notation for measurements, nowcasts, or forecasts and the computation of the predicted
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change. For nowcasting, let 𝑥𝑡|𝜏 denote the nowcast for time 𝑡 computedwith the knowledge
of time 𝜏. We call 𝑡 the target time and 𝜏 the issue time. The predicted change is computed
by

𝐱Δ,𝑙 = {
(𝑥𝑡|𝑡 − 𝑥𝑡−𝑙|𝑡)𝑇𝑡=𝑙 if 𝑦𝑡−𝑙 is not known at time 𝑡,
(𝑥𝑡|𝑡 − 𝑦𝑡−𝑙)𝑇𝑡=𝑙 otherwise.

(5.2)

When computing the predicted change of a nowcast for a time 𝑡, we use the best knowledge
available at that time 𝑡, and the true value might not be known yet. If the true value 𝑦𝑡−𝑙 is
known at time 𝑡, the predicted change is computed by the difference between the nowcast
and the true value, as 𝑦𝑡−𝑙 is also known by the nowcaster and incorporated into the nowcast.
Through the computation in Equation (5.2), the predicted change can be computed with the
knowledge of the nowcaster at time 𝑡.
The notation is similar for forecasting: Let 𝑥𝑡|𝜏 denote the forecast for target time 𝑡 and

issue time 𝜏. The predicted change is computed by

𝐱Δ,𝑙 = (𝑥𝑡|𝑡−𝑙 − 𝑦𝑡−𝑙)𝑇𝑡=𝑙 (5.3)

with the same structure as in the nowcasting case and consistent indiceswith𝐲Δ,𝑙. If the true
value 𝑦𝑡−𝑙 is not known at time 𝑡−𝑙, a similar modification can bemade as in Equation (5.2).
The distinction between forecast and issue time is unnecessary in measurement analysis,

as the measurement is typically available with a very short time lag. Thus, 𝑥𝑡 denotes the
test method measurement for time 𝑡. The computation

(𝑥𝑡 − 𝑥𝑡−𝑙)𝑇𝑡=𝑙 (5.4)

yields the change by the test method. It is computed purely by the test method without the
gold standard 𝑦𝑡 to analyze whether the gold standard and test method changes are consis-
tent. Accordingly, 𝑦𝑡−𝑙 is not used in the computation even if known at time 𝑡 in contrast to
forecasting and nowcasting.
In applications, data are often not available for all time steps, for example, due to tech-

nical problems or delays in data transfer (see the examples in Sections 5.3.1 and 5.3.2). We
refer to time steps for which either measurement, nowcast, or forecast or true values are un-
available as missing values. Systematical missing values could lead to a biased assessment,
and missing data should be inspected for any underlying patterns. If the missing values are
not systematic, random, and occur scarcely, data pairs with missing values can be excluded
from the data to calculate the measures (see Van Buuren, 2018, Section 1.3). Note that in
the case of measurement data, one missing value in the time series leads to two undefined
differences in the change series; that is if 𝑥𝑡 is missing, 𝑥Δ𝑡 and 𝑥Δ𝑡+𝑙 are undefined; if an
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observation 𝑦𝑡 is missing, 𝑦Δ𝑡 and 𝑦Δ𝑡+𝑙 are undefined. The data pair is excluded even if the
corresponding nowcast or forecast is available.

5.2.2. The four-quadrant plot

Formally, the assessment of ATC is the same for measurements, nowcasts, and forecasts,
given the notation for the respective application of Section 5.2.1. In the following, we omit
the horizon 𝑙 for ease of notation; 𝐱Δ and 𝐲Δ refer to 𝐱Δ,𝑙 and 𝐲Δ,𝑙 for a common horizon
𝑙. The ATC is maximal if all predicted change directions are correct; that is, the sign of all
elements of 𝐱Δ and 𝐲Δ coincide. Consequently, when assessing the ATC, we examine the
statistical consistency of sign(𝐱Δ) and sign(𝐲Δ). A simple yet insightful method is the four-
quadrant plot (see, e.g., Perrino, Harris, and Luther, 1998; Saugel, Grothe, and Wagner,
2015). In a four-quadrant plot, the occured changes and the predicted changes are plotted
together, that is, (𝑦Δ𝑡 , 𝑥Δ𝑡 ) for 𝑡 = 𝑙, … , 𝑇. Thus, the x-axis of a four-quadrant plot shows the
true value differences, whereas the y-axis displays the prediction data differences. Points
in the green upper right and lower left quadrants reflect a correct change direction for the
respective time step, whereas points in the remaining red quadrants show incorrectly pre-
dicted changes. Figure 5.1a displays a basic four-quadrant plot, and Figure 5.2a shows a
four-quadrant graph for simulated data with 𝑇 = 1461, for example, four years of daily data
(for the data generation, see Appendix C.1.1).
The four-quadrant plot can be extended by including information on the time index in the

point color to reveal effects over time. In Figure 5.2b, the point colors turn fromblue to green
for higher time indices 𝑡, that is, more recent values; (𝑦Δ𝑙 , 𝑥

Δ
𝑙 ) is blue and turns green until

(𝑦Δ𝑇 , 𝑥Δ𝑇). However, four-quadrant plots become crowded for larger datasets, and sequential
information on the differences is complex to assess thoroughly.
The four-quadrant plot is intuitive to interpret, and themagnitude and direction of change

are shown simultaneously. Other visualization techniques, such as polar plots, lack the four-
quadrant plot’s clarity and intuition without adding more information on the ATC (Saugel,
Grothe, andWagner, 2015).

5.2.3. The ATC ratio and other measures

Analyzing the number of points in the green versus red quadrants is a standard approach
in the ATC assessment of measurement data (L. A. Critchley, Lee, and Ho, 2010; Saugel,
Grothe, and Wagner, 2015). With that, we estimate the probability of a correctly predicted
change direction, 𝑃(𝑋Δ𝑌Δ > 0), where 𝑌Δ and 𝑋Δ denote random variables for future in-
cremental changes. Since 𝑧1𝑧2 > 0 imposes the same condition as sign(𝑧1) = sign(𝑧2)
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(c) Four-quadrant plot

with horizontal
exclusion area.
Points 1 and 7 are
excluded.
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(d) Four-quadrant plot

with cross-shaped
exclusion area.
Points 1, 6 and 7 are
excluded.

Figure 5.1.: Illustrations of the four-quadrant plot with sample points and with and without
exclusion areas. The rectangular exclusion area in Figure 5.1b excludes only
points where both components are likely to be noise-driven, while the exclusion
areas in Figures 5.1c and 5.1d exclude points where at least one component is
noise-driven.

(𝑧1, 𝑧2 ∈ ℝ ∖ {0}), the standard estimator for 𝑃(𝑋Δ𝑌Δ > 0) is

𝜇(𝐱Δ, 𝐲Δ) ≔
∑𝑡∈𝒯 𝟙 {𝑥

Δ
𝑡 𝑦Δ𝑡 > 0}

|𝒯| . (5.5)

Here, the numerator counts the number of same-sign-changes, while the denominator is the
number of considered pairs (𝑦Δ𝑡 , 𝑥Δ𝑡 ). Thus, 𝜇 is the proportion of concordant changes on all
changes. We refer to this estimator as the ATC ratio of the prediction and set 𝒯 = {𝑙, … , 𝑇}.
Visually, the measure computes the fraction of points in the upper right or lower left quad-
rant. Similar evaluations are used in other scientific areas, for example, with contingency
tables in dichotomous forecasting or with confusion matrices in classification analysis (see,
e.g., the introductions in James et al. 2021, Ch. 4, and Jolliffe and Stephenson, 2012, Ch. 3).
Many other measures can be adapted from those fields to deepen the analysis. Two simple
measures that focus on a positive or negative predicted change are the positive and negative
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ATC ratios 𝜇+ and 𝜇−, respectively. They are defined as

𝜇+(𝐱Δ, 𝐲Δ) ≔
∑𝑡∈𝒯 𝟙 {𝑥

Δ
𝑡 𝑦Δ𝑡 > 0} 𝟙 {𝑥Δ𝑡 > 0}

∑𝑡∈𝒯 𝟙 {𝑥
Δ
𝑡 > 0}

, and (5.6)

𝜇−(𝐱Δ, 𝐲Δ) ≔
∑𝑡∈𝒯 𝟙 {𝑥

Δ
𝑡 𝑦Δ𝑡 > 0} 𝟙 {𝑥Δ𝑡 < 0}

∑𝑡∈𝒯 𝟙 {𝑥
Δ
𝑡 < 0}

. (5.7)

They estimate the probability of a correct prediction of the direction of change, given that
the predicted direction is positive or negative, that is, 𝑃(𝑋Δ𝑌Δ > 0|𝑋Δ > 0) and 𝑃(𝑋Δ𝑌Δ >
0|𝑋Δ < 0).
Rolling estimates of the above measures detect changes in performance over time and

can give a sharper estimate of the current ATC. For the ATC ratio, a rolling estimate with a
backward-looking window of length 𝑤 at time 𝑡 is given by

𝜇𝑡;𝑤(𝐱Δ, 𝐲Δ) ≔
∑𝑡

𝑡⋆=𝑡−𝑤+1 𝟙 {𝑥
Δ
𝑡⋆𝑦

Δ
𝑡⋆ > 0}

𝑤 .

Backward-looking windows estimate the ATC ratio at a time 𝑡 considering the 𝑤 time steps
before time 𝑡. The window length𝑤 controls the smoothing of the estimate; a larger𝑤 gives
smoother results, while a small 𝑤 focuses on local variations. Plotting the rolling estimates
for 𝑡 = 𝑤 − 1,… , 𝑇 yields an estimate of the ATC ratio over time. Figure 5.2c depicts a
rolling window estimate of the ATC ratio for the simulated data of Figures 5.2a and 5.2b.
While colored four-quadrant plots, as in Figure 5.2b, illustrate ongoing overall drifts in the
ATC, seasonal aspects are only revealed in rolling window estimates.

5.2.4. Accounting for noise and non-informative small changes and
bootstrapping confidence intervals

The above measures can be extended to account for information on the point’s location
within the quadrant. For example, points close to the zero point may have less explana-
tory power or may be less reliable than points far away from zero on one of the diagonals.
Suppose noise or non-systematic effects are present in the true values or predictions. In that
case, noise can drive a point’s assignment to a quadrant instead of a systematic ATC. This is
more likely for points with at least one small coordinate.
Using an exclusion area around the zero point, as further defined below, is a straight-

forward and highly interpretable extension of the measures of Section 5.2.3 accounting for
such effects (see, e.g., Saugel, Grothe, andWagner, 2015; L. A. Critchley, Lee, and Ho, 2010).
Points within that area are omitted in the calculation of the measures. In particular, the
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(c) Rolling estimate of the ATC ratio over time

with window length 91.

Figure 5.2.: Visualizations for data with a time-varying ATC ratio. We defer information on
the data generation process to the appendix (see C.1.1). The ATC ratio for the
entire data set is 𝜇 = 0.7577. The strong seasonality of the ATC ratio becomes
visible in Figure 5.2c. The green curve 𝑘𝑡 shows the theoretical probability that
𝑥Δ𝑡 has the same sign as 𝑦Δ𝑡 for each time step. The rolling estimates are shifted
to the right compared to 𝑘𝑡 as the windows look backward. Thus, the yearly
course of the ATC ratio can be detected. The ATC ratio has a pronounced sinus-
shaped seasonality with a peak after a quarter of a year and a low point after
three quarters.

measurement, nowcast, or forecast is likely to have a noise component; thus, 𝐱Δ should be
subject to an exclusion area. The measures of Equations (5.5), (5.6) and (5.7) without points
in the exclusion area 𝐸 are

𝜇𝑒(𝐱Δ, 𝐲Δ, 𝐸) ≔
∑𝑡∈𝒯 𝟙 {𝐱

Δ𝐲Δ > 0} 𝟙 {(𝑦Δ𝑡 , 𝑥Δ𝑡 ) ∉ 𝐸}

∑𝑡∈𝒯 𝟙 {(𝑦
Δ
𝑡 , 𝑥Δ𝑡 ) ∉ 𝐸}

, (5.8)

𝜇+𝑒 (𝐱Δ, 𝐲Δ, 𝐸) ≔
∑𝑡∈𝒯 𝟙 {𝑥

Δ
𝑡 𝑦Δ𝑡 > 0} 𝟙 {𝑥Δ𝑡 > 0, (𝑦Δ𝑡 , 𝑥Δ𝑡 ) ∉ 𝐸}

∑𝑡∈𝒯 𝟙 {𝑥
Δ
𝑡 > 0, (𝑦Δ𝑡 , 𝑥Δ𝑡 ) ∉ 𝐸}

, and (5.9)

𝜇−𝑒 (𝐱Δ, 𝐲Δ, 𝐸) ≔
∑𝑡∈𝒯 𝟙 {𝑥

Δ
𝑡 𝑦Δ𝑡 > 0} 𝟙 {𝑥Δ𝑡 < 0, (𝑦Δ𝑡 , 𝑥Δ𝑡 ) ∉ 𝐸}

∑𝑡∈𝒯 𝟙 {𝑥
Δ
𝑡 < 0, (𝑦Δ𝑡 , 𝑥Δ𝑡 ) ∉ 𝐸}

. (5.10)

The measures are then estimators for the probability of predicting the correct direction,
given that the point’s location is not driven by noise or non-informative changes.
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The estimators accept various shapes of the exclusion area (see Figure 5.1). A rectangular
exclusion area, 𝐸 = {(𝑦, 𝑥) ∈ ℝ2 ∶ (−𝜀𝑥 ≤ 𝑥 ≤ 𝜀𝑥) ∧ (−𝜀𝑦 ≤ 𝑦 ≤ 𝜀𝑦)} for 𝜀𝑥, 𝜀𝑦 > 0,
leaves out points that are small in both components. An exclusion area along one axis, for
example, 𝐸 = {(𝑦, 𝑥) ∈ ℝ2 ∶ (−𝜀𝑥 ≤ 𝑥 ≤ 𝜀𝑥)} for 𝜀𝑥 > 0, removes points in which one of the
components could change sign by a small amount of noise. A cross-shaped exclusion area,
𝐸 = {(𝑦, 𝑥) ∈ ℝ2 ∶ (−𝜀𝑥 ≤ 𝑥 ≤ 𝜀𝑥) ∨ (−𝜀𝑦 ≤ 𝑦 ≤ 𝜀𝑦)} for 𝜀𝑥, 𝜀𝑦 > 0, along both axes accounts
for the sign reversal in both components.
In most applications, the shape and size of the exclusion area can be chosen based on

domain knowledge or expert opinions. The size determination can also be based on a pro-
portion of the total variance or the total range of the data; for example, the 10% smallest
absolute values in each component determine the exclusion area size. A third approach is
to visualize the ATC ratio for different sizes of 𝐸 and thus inspect the effects of the exclusion
area size on the estimates. For examples of such plots, see Section 5.3.1.
Confidence intervals can account for the estimation uncertainty of the measures above.

Bootstrap confidence intervals are based on resampling and not on parametric assump-
tions as classical confidence intervals are (for introductions see Hesterberg, 2011; Bittmann,
2021). Many new samples are drawn with replacement from the dataset, and the statistic of
interest is computed for each sample, yielding an estimate for the distribution of the statistic
of interest. Based on the derived “new” samples of the statistic, the confidence intervals can
be derived through different bootstrapping methods. We use the bias-corrected and acceler-
ated (BCa) approach for bootstrapping in the following, as it holds the confidence level for
small and large samples and has a moderate computation time (see the simulation study in
Appendix C.1.2).

5.2.5. The conditional ATC plot

The estimators described above give information on the probabilities 𝑃(𝑋Δ𝑌Δ > 0|𝑋Δ𝑌Δ ∉
𝐸), 𝑃(𝑋Δ𝑌Δ > 0|𝑋Δ > 0,𝑋Δ𝑌Δ ∉ 𝐸) and 𝑃(𝑋Δ𝑌Δ > 0|𝑋Δ < 0,𝑋Δ𝑌Δ ∉ 𝐸). A still finer
analysis might be gained by considering the conditional distribution 𝑃(𝑋Δ𝑌Δ > 0|𝑋Δ = 𝜒)
to assess the ATC of a prediction for a specific change𝑋Δ = 𝜒 of themeasurement, nowcast,
or forecast. Thereby, 𝑃(𝑋Δ𝑌Δ > 0|𝑋Δ = 𝜒) denotes the probability of a correct direction
given a predicted change of 𝜒. Thus, if a change of 𝜒 is observed in practice, one can directly
assess its credibility. Amultivariate kernel density estimation (KDE) facilitates a continuous
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estimation of 𝑃(𝑋Δ𝑌Δ > 0|𝑋Δ = 𝜒) by estimating the components 𝑓𝑋Δ,𝑌Δ and 𝑓𝑋Δ of

𝑃(𝑋Δ𝑌Δ > 0|𝑋Δ = 𝜒) =
⎧

⎨
⎩

∫0
−∞

𝑓𝑋Δ,𝑌Δ(𝜒,𝑦)

𝑓𝑋Δ(𝜒)
d 𝑦 if 𝜒 < 0,

∫∞
0

𝑓𝑋Δ,𝑌Δ(𝜒,𝑦)

𝑓𝑋Δ(𝜒)
d 𝑦 if 𝜒 > 0,

for 𝜒 ≠ 0 through a KDE. Gramacki (2018) provides a comprehensive introduction tomulti-
variate KDE, and implementations are available inmany programming languages, for exam-
ple, in the statsmodels in Python (Seabold and Perktold, 2010). The KDE yields estimates
for 𝑃(𝑋Δ𝑌Δ > 0|𝑋Δ = 𝜒) for all values of 𝜒 ∈ ℝ. Multivariate KDE takes a kernel and
bandwidth selector as modeling parameters. We advise using a Gaussian kernel and the
cross-validation maximum likelihood as bandwidth selector (see Appendix C.1.3).
Assessing 𝑃(𝑋Δ𝑌Δ > 0|𝑋Δ = 𝜒) graphically by drawing 𝑃(𝑋Δ𝑌Δ > 0|𝑋Δ = 𝜒) against

𝜒 eases the simultaneous evaluation of various 𝜒. Furthermore, the graph facilitates the
comparison of various methods in a single graph, and asymmetries of 𝑃(𝑋Δ𝑌Δ > 0|𝐱Δ = 𝜒)
with respect to 𝜒 in the ATC can be detected. We refer to the plot as a conditional ATC plot.

5.2.6. Probabilistic evaluation

In nowcasting and forecasting, probabilistic predictions have become more prevalent in re-
cent years (see Section 2.2 and the applications in Sections 5.3.1 and 5.3.2). In this section,
we develop ATC assessments for probabilistic measurements and nowcasts. Probabilistic
predictions issue a probability distribution for the quantity of interest based on their avail-
able information and, thus, include a point estimate and information on the prediction un-
certainty and quantiles simultaneously. Probabilistic predictions thus also contain a prob-
ability of a positive or negative change. For ATC assessment, we compare the predicted
probability of positive change, denoted by 𝑝𝑡, with the occurrence of positive changes.
Probabilistic predictions can be a CDF, PDF, or quantiles. The CDF is the most general

and can be used to derive the others, given that they exist. Let us first assume that the
prediction is a CDF, and that 𝑦𝑡−𝑙 is known at time 𝑡 (see Table 5.1). Appendix C.1.4 extends
the analysis to quantile predictions or unknown true values.
Let for a forecast 𝐹𝑡|𝑡−𝑙(𝑥) denote the predicted CDF for target time 𝑡 and issue time 𝑡 − 𝑙,

where the index is analogous to the point notation of Section 5.2.1. The CDF 𝐹𝑡|𝑡−𝑙(𝑥) spec-
ifies the forecasted probability that the quantity of interest is at most 𝑥. A positive change
occurs for any value at 𝑡 larger than the true value 𝑦𝑡−𝑙 and the CDF 𝐹𝑡|𝑡−𝑙(𝑦𝑡−𝑙) yields the
predicted probability of any value at most 𝑦𝑡−𝑙, and, thus, a negative change. Accordingly,
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the forecasted probability of a positive change is

𝑝𝑡 = 1 − 𝐹𝑡|𝑡−𝑙(𝑦𝑡−𝑙) 𝑡 = 𝑙, … , 𝑇.

The computation differs slightly for nowcasts, that is,

𝑝𝑡 = 1 − 𝐹𝑡|𝑡(𝑦𝑡−𝑙) 𝑡 = 𝑙, … , 𝑇,

with analogous derivations as above. Let 𝑧𝑡 denote the indicator that the observed change
at time 𝑡 is positive, that is,

𝑧𝑡 = 𝟙 {𝑦Δ𝑡 > 0} 𝑡 = 𝑙, … , 𝑇.

The predictive power of p = (𝑝𝑡)𝑇𝑡=𝑙 for z = (𝑧𝑡)𝑇𝑡=𝑙 can be assessed using probabilistic di-
chotomous forecast evaluation methods. Dichotomous forecasts predict a binary outcome,
such as a positive or negative change, and are evaluated numerically using scoring rules or
visually through reliability diagrams. For general notes on assessing probabilistic forecasts,
see Section 2.2.
The BS is a widely used scoring rule for dichotomous probabilistic forecasts (Brier, 1950).

In our context, it is

𝐵𝑆(p, z) = 1
𝑇 − 𝑙 + 1

𝑇
∑
𝑡=𝑙
(𝑝𝑡 − 𝑧𝑡)2.

Lower values indicate the consideredmethod’s higher probabilistic ATC.TheBS assesses the
calibration and sharpness of the forecast and the observation simultaneously (Ranjan and
Gneiting, 2010; Mitchell andWallis, 2011). Calibration refers to the statistical consistency of
forecasts and observations; that is, the event occurs with the issued probability and is con-
sidered the more fundamental quality (Gneiting, Balabdaoui, and Raftery, 2007). Sharpness
refers to the spread of the forecast; probabilities close to zero and one are preferable as they
convey a higher certainty.
Graphical methods are a standard tool for evaluating the calibration of probabilistic fore-

casts in detail. In dichotomous forecasting, the reliability diagram is frequently used (Ran-
jan and Gneiting, 2010). The reliability diagram plots the observed frequency of the positive
outcome against the (binned) predicted probability. For example, it shows the proportion of
observed increases, given that the predicted probability of increase was approximately 0.7.
Ideally, the predicted probability equals the observed frequency, and the reliability diagram
is a 45-degree line. Local deviations from the 45-degree line indicate amiscalibration for spe-
cific forecast probabilities. Thus, the reliability visualizes the local and overall calibration
simultaneously. For an example of a reliability diagram, see Section 5.3.2.
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5.3. Application to medical/healthcare nowcasting,
forecasting, and measurement data

This section applies the ATC assessment to three different datasets from the medical and
healthcare sector to illustrate the usage. The respective code is supplied on Github to ease
further applications. Section 5.3.1 analyzes nowcasts for the seven-day hospitalization rate
during the COVID-19 pandemic in Germany. In Section 5.3.2, the ATC of forecasts for
the number of patient admissions to a hospital’s emergency department is assessed. Sec-
tion 5.3.3 examines the assessment of blood pressure measurements.

5.3.1. Nowcasting during the COVID-19 pandemic

In Germany, the seven-day hospitalization rate was established as a central steering mea-
sure in November 2021 during the COVID-19 pandemic, and the imposition of severe pub-
lic restrictions was based on it (Robert Koch Institute, 2021). However, the publication of
the definite hospitalization rate was substantially delayed and partially flawed for two main
reasons. First, the reporting process was delayed because – among other reasons – differ-
ent authorities were involved in passing the data to the RKI (Robert Koch Institute, 2024).
Second, the seven-day hospitalization rate allocated all COVID-19-related hospitalizations
to the date of the first positive test (for a detailed description, seeWolffram et al., 2023). The
COVID-19-Nowcasting-Hub (C19-Hub) collected various nowcasts in a predefined setup,
including the mean, median and other quantiles of the predicted seven-day hospitalization
rate (for further information see Wolffram et al., 2023 and Table C.2 for the abbreviations
used). In addition to those nowcasts,Wolfframet al. (2023) construct two ensemblemethods
using the ensembles’ mean or median. We denote them by ENS-MEAN and ENS-MED. In
line with the initial study design, we consider the period from November 22, 2021, to April
29, 2022, as the evaluation period. We use the data from February 8, 2024, for the true values
and focus on nowcasts for all inhabitants of Germany. Figure C.4 in Appendix C.2 displays
the true and nowcast data for the evaluation period. The time comprises the fourth wave’s
end in December 2021 and nearly the entire fifth wave of the pandemic in Germany, lasting
until May 28, 2022 (Tolksdorf, Loenenbach, and Buda, 2022).
To assess the impact of taken measures and the direction of the curve, the knowledge

of whether hospitalization rates rise or fall is essential. Thus, the ATC assessment is par-
ticularly relevant for the nowcasts of the seven-day hospitalization rate. If hospitalization
rates rise, measures should be tightened, while falling rates might allow for loosening mea-
sures. Asymmetries are especially relevant for assessing whether some models are better at
recognizing a fall than a rise or vice versa.
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Model RMSE MAE Count

ILM 648 504 153
RKI 810 670 156
RIVM 820 674 159
ENS-MED 832 675 158
ENS-MEAN 841 666 158
LMU 979 810 159
SZ 1,048 834 159
SU 1,127 899 159
KIT 1,161 912 159
EPI 1,513 1,006 159

Table 5.2.: Point evaluationmeasures for the issuedmean of the different models in COVID-
19 nowcasting. “RMSE” and “MAE” are accuracy measures, while “Count” lists
the number of non-missing values. The RMSE orders themodels. The evaluation
period comprises 159 days, and only a few nowcasts are missing (for explanations
of the missing values, seeWolffram et al., 2023, Tables A2, A3, and A4). Note that
the high values for the EPImodel could be driven by an exceptionally far-off value
at the end of the evaluation period (see Figure C.4).

Results

Table 5.2 summarizes the non-ATC-aware point evaluationmeasures for the issuedmean of
the different models. The best-performing models in terms of RMSE and MAE are the ILM
and RKI models. The ensemble methods ENS-MED and ENS-MEAN perform worse than
the bestmodels regarding themean location. The performance of themodels is diverse, with
more than twice as high RMSE values for the worst models compared to the best models.
In the following, we apply the ATC assessment for the short-term horizons one and

medium-termhorizons seven and 14 days. The horizons seven and 14 reflect a typical period
until new policy changes are taken. We start by providing background information on the
marginal distributions of the actual value and nowcast changes for the different horizons in
Table C.3 in Appendix C.2 such as standard deviation and quantiles of the nowcasts and true
values. The variability and general level of changes grow with the horizon: The standard
deviation increases from roughly 300 for horizon one to 1,200 for horizon seven and 2,000
for horizon 14 days. Similarly, the 10%-quantile of changes, the basis for the exclusion area
size, increases. The exclusion area is rectangular; a point falls within it if both 𝐲Δ and 𝐱Δ are
below the respective 10%-quantile of the absolute changes. Thus, points are still included in
the ATC assessment if they are large in one dimension but not in the other, thus ensuring
that substantial changes in, for example, 𝐲Δ are to be recognized by the nowcast and vice
versa.
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𝜇7 𝜇+,7 𝜇−,7 𝜇7𝑞0.1 𝜇+,7𝑞0.1 𝜇−,7𝑞0.1

EPI 0.77
(0.71, 0.82)

0.67
(0.58, 0.75)

0.87
(0.79, 0.92)

0.78
(0.72, 0.83)

0.68
(0.59, 0.77)

0.88
(0.81, 0.93)

ILM 0.85
(0.80, 0.89)

0.73
(0.64, 0.80)

0.99
(0.94, 1.00)

0.85
(0.80, 0.90)

0.74
(0.65, 0.81)

0.99
(0.94, 1.00)

KIT 0.74
(0.69, 0.79)

0.64
(0.55, 0.72)

0.87
(0.80, 0.93)

0.75
(0.69, 0.80)

0.64
(0.55, 0.72)

0.88
(0.81, 0.94)

LMU 0.80
(0.74, 0.85)

0.70
(0.62, 0.79)

0.91
(0.84, 0.95)

0.81
(0.75, 0.86)

0.72
(0.63, 0.79)

0.92
(0.85, 0.96)

ENS-MEAN 0.82
(0.76, 0.86)

0.71
(0.63, 0.79)

0.94
(0.89, 0.99)

0.82
(0.76, 0.87)

0.71
(0.63, 0.78)

0.96
(0.90, 0.99)

ENS-MED 0.82
(0.76, 0.87)

0.70
(0.62, 0.78)

0.96
(0.90, 0.99)

0.83
(0.77, 0.87)

0.72
(0.63, 0.79)

0.96
(0.90, 0.99)

RIVM 0.83
(0.77, 0.87)

0.74
(0.65, 0.81)

0.92
(0.86, 0.96)

0.83
(0.78, 0.88)

0.74
(0.65, 0.81)

0.93
(0.87, 0.97)

RKI 0.72
(0.65, 0.77)

0.60
(0.51, 0.67)

0.98
(0.92, 1.00)

0.73
(0.67, 0.78)

0.61
(0.52, 0.68)

0.98
(0.92, 1.00)

SU 0.81
(0.75, 0.86)

0.71
(0.62, 0.78)

0.92
(0.85, 0.96)

0.81
(0.75, 0.85)

0.71
(0.63, 0.79)

0.92
(0.85, 0.96)

SZ 0.78
(0.72, 0.83)

0.67
(0.58, 0.75)

0.91
(0.84, 0.96)

0.78
(0.72, 0.83)

0.67
(0.58, 0.75)

0.92
(0.85, 0.97)

Table 5.3.: The ATC ratio 𝜇7, positive ATC ratio 𝜇+,7, and negative ATC ratio 𝜇−,7 for the
models without andwith exclusion areas for the horizon seven days in COVID-19
nowcasting. The exclusion areas are rectangles centered on the zero points with
a width and height of twice the 10%-quantile of the absolute values of nowcast
and true values. The subscript 𝑞0.1 denotes the measures with exclusion area.

Table 5.3 lists the ATC ratios for all models without and with exclusion areas for the hori-
zon of seven days. The ATC ratios without exclusion area range from 0.72 to 0.85 for the
horizon of seven days. The negative ATC ratios are higher than the positive ATC ratios for
all models. The confidence intervals for the positive and negative ATC ratios do not overlap
for all models, indicating that the ATC ratios are indeed different. The 10%-quantile exclu-
sion areas have, at most, an influence of 0.03 on the ratios. The model with the highest ATC
ratio is the ILM model, and the model with the lowest is the RKI model. The confidence
intervals between all models without and with exclusion areas overlap. The positive ATC
ratio implies a similar ranking of the models than the overall ATC, while the negative ratio
provides a different ranking, for example, for the RKI model. For the horizons of one and
14 days, we refer to Table C.4 in Appendix C.2.
Figure 5.3 shows the conditional ATC plots and the ATC ratio over the exclusion area for

the horizon seven days; the respective plots for the horizons one day and 14 days are shown
in Figure C.6. Here, only the best models in point evaluation measures, ILM, RKI, RIVM,
and ENS-MED, are shown to keep the plots easily readable. If RKI or ILM issues a fall in the
hospitalization rate, the probability of a fall is higher than if RIVM or ENS-MED issues a
fall. The opposite is the case for a nowcasted hospitalization rate increase, and the difference
between the models’ performance is more prominent than for a fall. Similar observations
can be made for the horizon of 14 days in Figure C.6b. For a horizon of one day, the models’
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(a) Conditional ATC plot.
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(b) ATC ratio over exclusion area size in 𝐱Δ.

Figure 5.3.: Conditional ATC plot and ATC ratio over exclusion area for the nowcasts of the
seven-day hospitalization rate ILM, RKI, RIVM, and ENS-MED for the horizon
seven days in COVID-19 nowcasting.

conditional ATC difference is less pronounced (see Figure C.6a). The RKI model is still
less conclusive when issuing an increase in the hospitalization rate, while RIVM is most
informative in that case. The curves cross for an issued fall, with ENS-MED being on top for
issued falls above 250.
The ATC ratios for various exclusion areas are shown in Figure 5.3b. The ATC ratio gen-

erally increases with larger exclusion areas. While the RIVM and ENS-MED ATC ratios
evolve similarly, the RKI and ILMATC ratios get closer. For the horizon of one day, the RKI
ATC ratio decreases with increasing exclusion area size while the other models rise (see Fig-
ure C.6c). For the horizon of 14 days, all ATC ratio curves increase with the exclusion area
size (see Figure C.6d).
Figure 5.4 shows the Brier score (BS) and reliability diagrams for the same subset of mod-

els, the ILM, RKI, RIVM, and ENS-MED. The probabilities of increase for the differentmod-
els are computed using the nowcast quantiles. For each horizon 𝑙, 10, 000 samples of the
forecast date 𝑡 and the forecast date 𝑡 − 𝑙 based on the nowcasts of issue date 𝑡 are generated,
and the proportion of positive changes is computed (see Appendix C.1.4). Remember that
a low BS and a reliability diagram along the diagonal are signs of a high ATC. The BS is
the lowest for the RIVM model for a one-day-horizon, while the ENS-MED model has the
best BS for the horizon of seven and 14 days. The RKI model yields the highest BS for all
horizons. Note that the BS is 0.25 for random guessing; thus, all models perform better than
random guessing. The reliability diagrams show that the models are not well calibrated for
the horizon of one day. While for predicted probabilities below 0.5, the observed ratio of in-
creases is smaller, it is higher than predicted for probabilities above 0.5. Figure C.7c shows
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1 d 7 d 14 d

ILM 0.1783 0.1269 0.1119
RIVM 0.1606 0.1136 0.1274
RKI 0.1893 0.2200 0.1712
ENS-MED 0.1812 0.1096 0.1066

(a) BS for the different models and horizons.
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(b) Reliability diagram for horizon one day.

Figure 5.4.: Brier scores and reliability diagrams for the COVID-19 nowcasting models ILM,
RKI, RIVM, and ENS-MED. The reliability diagram bins are chosen according
to the empirical quantiles of the predicted probabilities. In the computation of
BS and reliability diagram, missing values are excluded. The reliability diagram
for the horizons seven and 14 days is in the appendix (see Figure C.7).

the observed predicted increase probabilities for all horizons. For the horizons of seven and
14 days, the nowcasters issue only a few moderate probabilities, and most probabilities are
near zero and one.

Discussion

For all horizons, the influence of the exclusion area on the 10%-quantile level is negligible.
For example, the ATC ratio changes at most by 0.03 for the EPI model with 𝜇−,14. The
exclusion areas are thus not crucial for the ATC assessment in the case of the nowcasts of
the seven-day hospitalization rate. The lower bound of confidence intervals is at least 0.68
for all models, indicating that they perform better than random guessing the trend.
ATC assessment evaluates the models differently from point evaluation measures. RKI is

among the best in point evaluation measures but performs worse in ATC assessment. The
assessment of asymmetry in the conditional ATC plots is crucial for interpreting the ATC
ratios, with the RKI model being the most prominent example.
Figure 5.3b shows that larger exclusion areas increase the ATC ratio, indicating that the

predicted direction is more accurate for large predicted changes.
The probabilistic ATC assessment shows that the models are better than random guess-

ing. The reliability diagram cannot provide information if specific probabilities are issued



Assessing the Ability to Track Changes for Forecasts, Nowcasts, and Measurements 88

scarcely. Thus, the reliability diagrams for the horizons of seven and 14 days do not con-
tain information on moderate probabilities. The BS values, however, work well for those
examples and provide a good measure for the ATC of the models.
A more extensive data size would be beneficial for assessing the models’ performance.

For the evaluation period of 159 days, the ATC ratio confidence intervals overlap; thus, no
conclusions can be drawn from the ATC assessment comparing the models.

5.3.2. Forecasting patient admissions to an emergency department

In a second example, we consider forecasting patient admissions to an emergency depart-
ment per hour with data and models by Rostami-Tabar, Browell, and Svetunkov (2023). Ev-
ery 12 hours, the models issue hourly forecasts for the next 48 hours.
Rostami-Tabar, Browell, and Svetunkov (2023) publish means and probabilistic quantile

forecasts for various models and input data. We use the published mean as a point forecast
for the ATC assessment and evaluate the probabilistic ATC based on the quantile forecasts
subsequently. Considering only the forecasts of at least 36 hours ahead, we restrict the eval-
uation period to March 2, 2018, at noon, to February 28, 2019, at 23:00, comprising 8,724
hours.
In this setup, ATC assessment is a simple and intuitive way to assess the models’ perfor-

mance. The ATC perspective is easy for the management to understand and implement, as
simple comparisons of the expected workload to a recent shift can be made. If, for example,
the staff was near capacity during the last shift and an increase in the number of patient
admissions is expected, management can take measures to adjust the workload.
The number of patient admissions has a strong weekly and daily pattern. Thus, we con-

sider the horizons of 72 hours, the last already observed shift of the same hour of day, and
seven days, the previous shift of the same hour and day, in ATC assessment.

Results

Table 5.4 lists the point evaluation measures and the count of available forecasts. The best-
performing models regarding RMSE and MAE are the NBI-2 and Poisson-2 models. More
than 8,600 forecasts are available for all models, with changes in the number due to missing
values on four afternoons in 2018.
We start by analyzing the marginal distributions for the predicted and observed changes

for the three- and seven-day horizons in Table 5.5, again. The computed difference aligns
with Section 5.2.1, that is, the difference between the forecastedmean and true value of three
and seven days before, as the actual value is available when issuing the forecast. The positive
change fraction varies between 0.39 and 0.63 for the horizon of three days and between 0.37
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Model RMSE MAE Count

NBI-2 8.883 3.200 8688
Poisson-2 8.884 3.200 8688
Poisson-1 9.164 3.238 8688
Benchmark-2 9.246 3.236 8688
Ttr-2 9.394 3.266 8688
NOtr-1 9.413 3.276 8688
NOtr-2 9.413 3.276 8688
Poisson-2-I 9.458 3.276 8688
Benchmark-1 10.065 3.331 8688
GBM-2 11.663 3.542 8688
tbats 12.905 3.912 8724
Prophet 13.078 3.877 8724
qreg-1 13.337 3.758 8688
Regression-Poisson 21.162 4.818 8724
ADAM-iETSX 28.000 5.561 8724
ETS 29.358 5.742 8724

Table 5.4.: Point evaluation measures for the forecasting models for patient admissions to
an emergency department. The smaller count for some models stems from miss-
ing forecasts scattered throughout the evaluation period. Note that the reported
values for the RMSE differ from those in Rostami-Tabar, Browell, and Svetunkov
(2023) due to differences in the evaluation period.

and 0.63 for the horizon of seven days. The variability of changes decreases for the larger
horizon for most models; only for the ETS model does it increase. The 10%-quantile of the
changes is between zero and one for all models and horizons. Thus, we use an exclusion
area of size 1. The resulting fraction of included values in the computation is also listed in
Table 5.5 and is at least 79% of the values.
Table 5.6 lists the ATC ratios for all models for three and seven-day horizons. The ATC

ratios range from 0.68 to 0.84 for a horizon of three days and from 0.68 to 0.82 for seven days.
The negative and positive ATC ratios differ for all models and horizons. For some models,
for example, the GBM-2model, the positive ATC ratio is higher than the negative ATC ratio,
and for somemodels, for example, the tbatsmodel, vice versa. The confidence intervalwidth
is at most 0.02 for the ATC ratios and at most 0.03 for the positive and negative ATC ratios.
The models GBM-2, qreg-1, and Benchmark-1 have the highest positive ATC ratio for the
three and seven-day horizons, while Poisson-2 and NBI-2 have the highest negative ATC
ratio.
Figure 5.5 shows the conditional ATC plots for the models Benchmark-1, GBM-2, NBI-2,

Poisson-2, and qreg-1 for the horizons three and seven days and thus inspects the local ATC
of themodels with highest positive and negative ATC ratio. The conditional ATC plots show
similar courses for the two horizons, though the curves are shifted downwards for the hori-
zon of seven days. The model’s relative ATC evolves consistently for the two horizons, with
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(1), l=3 𝜍𝑥Δ,3 𝑞0.1(𝑥Δ,3) (2), l=3 (1), l=7 𝜍𝑥Δ,7 𝑞0.1(𝑥Δ,7) (2), l=7

ADAM-iETSX 0.57 7.76 0.83 0.88 0.57 7.49 0.78 0.87
Benchmark-1 0.45 5.05 0.50 0.80 0.44 4.43 0.47 0.78
Benchmark-2 0.51 5.11 0.52 0.80 0.50 4.29 0.45 0.78
ETS 0.58 7.49 0.78 0.87 0.58 7.68 0.84 0.88
GBM-2 0.39 4.93 0.51 0.80 0.37 4.61 0.49 0.79
NBI-2 0.53 5.04 0.52 0.81 0.53 4.41 0.48 0.79
NOtr-1 0.52 5.03 0.51 0.81 0.51 4.41 0.49 0.79
NOtr-2 0.52 5.03 0.51 0.81 0.51 4.41 0.49 0.79
Poisson-1 0.53 5.04 0.51 0.81 0.52 4.38 0.48 0.79
Poisson-2 0.53 5.05 0.52 0.80 0.53 4.42 0.48 0.78
Poisson-2-I 0.51 5.03 0.51 0.81 0.50 4.42 0.49 0.79
Prophet 0.62 5.27 1.00 0.91 0.62 5.15 1.00 0.91
Regression-Poisson 0.51 6.65 0.67 0.85 0.51 6.49 0.67 0.85
Ttr-2 0.51 5.03 0.50 0.81 0.50 4.41 0.49 0.79
qreg-1 0.39 5.01 0.49 0.81 0.39 4.84 0.51 0.80
tbats 0.63 5.35 1.00 0.92 0.63 5.04 1.00 0.92
True 0.54 6.61 1.00 0.93 0.55 5.90 1.00 0.92

Table 5.5.:Marginal analysis of the forecast and true changes in patient admissions to an
emergency department. The column (1) shows the fraction of values greater than
zero for horizon 𝑙, 𝜎𝑥Δ,𝑙 the standard deviation, and 𝑞0.1(𝑥Δ,𝑙) the 10% quantile of
the changes’ absolute values. Column (2) shows the fraction of values not in the
exclusion area of size one.

the NBI-2 and Poisson-2 models being indistinguishable. The GBM-2 model outperforms
the qreg-1 model for all predicted changes. The models NBI-2 and Poisson-2 have the high-
est ATC for all negative predicted changes and the lowest for all positive predicted changes.
Benchmark-1 lies between the other models for all predicted changes.
Figure 5.6 visualizes the probabilistic ATC assessment for the same subset of models. The

Brier scores (BSs) are shown in Figure 5.6a, and the reliability diagrams for the horizons
three and seven days in Figures 5.6b and 5.6c. The BSs are smallest for NBI-2 and Poisson-2
for both horizons, while the BSs for the other models are larger and differ more. The qreg-1
model has both horizons’ highest BS. The reliability diagrams of GBM-2 and NBI-2 are also
close and show a too-small fraction of increases for the predicted probability overall. For
the other models, the reliability diagrams show a fraction of increases that are too large for
the corresponding predicted probability.

Discussion

The ATC is consistent for the two horizons, with themodels’ relative ATC evolving similarly
for the two horizons. The models’ ATC is generally higher for the smaller horizon, but the
changes are minor, and confidence intervals overlap.
The positive and negative ATC ratios differ for all models. While some models, such as

GBM-2 and qreg-1, have the highest positive ATC ratio, others, such as Poisson-2 and NBI-2,
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𝜇3 𝜇+,3 𝜇−,3 𝜇7 𝜇+,7 𝜇−,7

ADAM-iETSX 0.70
(0.69, 0.71)

0.68
(0.67, 0.69)

0.72
(0.71, 0.73)

0.68
(0.67, 0.69)

0.67
(0.66, 0.69)

0.69
(0.67, 0.70)

Benchmark-1 0.83
(0.82, 0.84)

0.86
(0.85, 0.87)

0.81
(0.79, 0.82)

0.81
(0.80, 0.82)

0.86
(0.85, 0.87)

0.78
(0.76, 0.79)

Benchmark-2 0.84
(0.83, 0.84)

0.83
(0.82, 0.85)

0.84
(0.83, 0.85)

0.82
(0.81, 0.83)

0.83
(0.82, 0.84)

0.80
(0.79, 0.82)

ETS 0.68
(0.67, 0.69)

0.66
(0.65, 0.67)

0.70
(0.69, 0.72)

0.67
(0.66, 0.68)

0.66
(0.64, 0.67)

0.68
(0.66, 0.69)

GBM-2 0.82
(0.81, 0.82)

0.90
(0.89, 0.91)

0.77
(0.76, 0.78)

0.78
(0.77, 0.79)

0.88
(0.87, 0.90)

0.73
(0.72, 0.74)

NBI-2 0.84
(0.83, 0.85)

0.83
(0.82, 0.84)

0.85
(0.84, 0.86)

0.82
(0.81, 0.83)

0.82
(0.81, 0.83)

0.82
(0.81, 0.83)

NOtr-1 0.83
(0.83, 0.84)

0.83
(0.82, 0.84)

0.84
(0.82, 0.85)

0.81
(0.80, 0.82)

0.82
(0.81, 0.83)

0.80
(0.79, 0.81)

NOtr-2 0.83
(0.83, 0.84)

0.83
(0.82, 0.84)

0.84
(0.82, 0.85)

0.81
(0.80, 0.82)

0.82
(0.81, 0.83)

0.80
(0.79, 0.81)

Poisson-1 0.84
(0.83, 0.84)

0.82
(0.81, 0.83)

0.85
(0.84, 0.86)

0.82
(0.81, 0.82)

0.82
(0.81, 0.83)

0.81
(0.80, 0.82)

Poisson-2 0.84
(0.83, 0.85)

0.83
(0.82, 0.84)

0.85
(0.84, 0.86)

0.82
(0.81, 0.82)

0.82
(0.81, 0.83)

0.82
(0.80, 0.83)

Poisson-2-I 0.83
(0.83, 0.84)

0.84
(0.83, 0.85)

0.83
(0.82, 0.84)

0.81
(0.80, 0.82)

0.83
(0.81, 0.84)

0.80
(0.79, 0.81)

Prophet 0.75
(0.74, 0.76)

0.72
(0.71, 0.73)

0.79
(0.77, 0.80)

0.74
(0.73, 0.74)

0.72
(0.70, 0.73)

0.76
(0.75, 0.77)

Regression-Poisson 0.72
(0.71, 0.73)

0.73
(0.71, 0.74)

0.72
(0.70, 0.73)

0.70
(0.69, 0.71)

0.71
(0.70, 0.73)

0.69
(0.67, 0.70)

Ttr-2 0.84
(0.83, 0.84)

0.84
(0.83, 0.85)

0.83
(0.82, 0.85)

0.81
(0.80, 0.82)

0.83
(0.82, 0.84)

0.80
(0.79, 0.81)

qreg-1 0.80
(0.79, 0.80)

0.88
(0.87, 0.89)

0.75
(0.74, 0.76)

0.77
(0.76, 0.78)

0.86
(0.85, 0.88)

0.71
(0.70, 0.72)

tbats 0.75
(0.74, 0.76)

0.72
(0.71, 0.73)

0.80
(0.78, 0.81)

0.73
(0.72, 0.74)

0.71
(0.69, 0.72)

0.76
(0.74, 0.77)

Table 5.6.:ATC ratio 𝜇, positive ATC ratio 𝜇+, and negative ATC ratio 𝜇− for themodels with
the exclusion of zero-containing points for the horizons 72 hours and seven days
in the forecasting of patient admissions to an emergency department.
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(a) Horizon three days.
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(b) Horizon seven days.

Figure 5.5.: Conditional ATC plots for the horizons three and seven days and the models
with the best positive or negative ATC in forecasting the patient admissions to an
emergency department. The plots of NBI-2 and Poisson-2 are indistinguishable.
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3 d 7 d

Benchmark-1 0.1586 0.1761
GBM-2 0.1590 0.1759
NBI-2 0.1549 0.1717
Poisson-2 0.1549 0.1714
qreg-1 0.1679 0.1843

(a) BS for the different models
and horizons.
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zon three days.
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(c) Reliability diagram for hori-

zon seven days.

Figure 5.6.: Probabilistic ATC assessment for the models Benchmark-1, GBM-2, NBI-2,
Poisson-2, and qreg-1 for the horizons three and seven days in forecasting pa-
tient admissions to an emergency department. The Brier score in Figure 5.6a
evaluates the calibration and sharpness of the probabilistic ATC simultaneously,
while the two plots on the right assess solely the calibration, that is, whether the
predicted probability of increase occurs empirically. Probabilistic ATC by the BS
is best for the models NBI-2 and Poisson-2 for both lags.

have the highest negative ATC ratio. Thus, the uncertainty of the model’s predicted change
has to be assessed differently based on the direction.
The probabilistic ATC assessment results endorse the point ATC assessment and assign

the best scores to NBI-2 and Poisson-2. The reliability diagrams show that they underesti-
mate the fraction of increases slightly.
Overall, the example provides performance assessments that are different from standard

point evaluation measures and thus provide further insights into the strengths and weak-
nesses of the models. While the models with the lowest RMSE, NBI-2, and Poisson-2, also
have a high ATC, three models with below-average point evaluation measures, Benchmark-
1, GBM-2, and qreg-1, have a high positive ATC.

5.3.3. Non-invasive blood pressure monitoring

We here consider the ATC of non-invasive blood pressure measurements from the MIMIC-
III database that includes data of critically ill patients treated in intensive care units of the
Beth Israel Deaconess Medical Center in Boston (Massachusetts, USA, A. E. Johnson et al.,
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2016, Moody et al., 2017; available through Goldberger et al., 2000). We focus on invasive
arterial blood pressure (ABP) and non-invasive blood pressure (NBP) measurements and
thus limit our analysis to datasets containing simultaneous measurements of ABP and NBP
simultaneously. 2,548 datasets include at least one measurement of systolic ABP and NBP,
and 1,327 include at least one pair of simultaneously measured systolic ABP and NBP; for
the mean ABP and NBP, the numbers are 2,605 and 1,516, respectively. We assess the ATC
of non-invasive blood pressuremeasurements (test method) compared to intraarterial blood
pressuremeasurements (referencemethod, gold standard). We consider the horizons of one
minute, five minutes, and 15 minutes for the ATC assessment, as those are typical intervals
of NBP measurements.

Results

Again, we exclude the smallest 10% of absolute changes in ATC assessment. The resulting
four-quadrant plots of the mean and systolic blood pressure measurements for the different
horizons are shown in Figure 5.7. The number of points in the four-quadrant plot is smaller
due to the restriction to data records with measurements of mean or systolic ABP and NBP
simultaneously for two consecutive timeswith the specified horizons. Thus, we use theNBP
measurements as the test method and the ABP measurements as the gold standard. For the
systolic measurements, 290, 332, and 442 points are available for the horizons of one, five,
and 15 minutes; for the mean measurements, 406, 430, and 542.
The ATC ratios, including confidence intervals for the different horizons, are listed in

Table 5.7. The confidence intervals have lower bounds of 0.5 or slightly above for the mea-
surements with a horizon of one minute. For larger horizons, the ATC ratio increases. The
difference between positive and negative ATC ratios is small for all types and horizons, with
overlapping confidence intervals.
Figure 5.8 shows the conditional ATC plots for the different horizons and the systolic

and mean blood pressure measurements. It becomes apparent that the systolic measure-
ments have a higher ATC than the meanmeasurements, except for small negative predicted
changes.

Discussion

The four-quadrant plots contain a considerable number of extreme points. Whether these
points are due tomeasurement errors or extreme values is not distinguishable. Some authors
argue to exclude the measurements below the 10%-quantile of the absolute changes and the
points above the 90%-quantile (see L. A. Critchley, Lee, and Ho, 2010). We do not follow this
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Figure 5.7.: Four-quadrant plots for the different horizons 𝑙 and the systolic and mean blood

pressure measurements. The upper row contains systolic measurements, and
the lower row contains meanmeasurements. The columns contain the horizons
one, five, and 15 minutes.

approach here, as the extreme values are not necessarily measurement errors and could be
particularly relevant.
The difference between positive and negative ATC ratios is small in this example. The

positive and negative ATC ratios have overlapping confidence intervals, the conditional ATC
plots do not contain prominent deviations in the course, and the four-quadrant plots do not
display asymmetries.
The bootstrap confidence intervals are wide. The width is around 0.1 for the ATC ratio,

while it gets up to 0.16 for the negative ATC ratio for systolic measurement and the horizon
of one minute. Thus, the confidence intervals cover 0.5 for systolic measurement and the
horizon of one minute, and the equality to random guessing cannot be excluded.

5.4. Discussion and conclusion

In this chapter, we examine various methods to assess the ability to track changes (ATC) for
measurements, nowcasts, or forecasts, that is, whether they correctly predict the direction
of changes in values. While the computation of predicted change varies between the appli-
cation areas of measurement, nowcasting, and forecasting, the assessment can be based on



Assessing the Ability to Track Changes for Forecasts, Nowcasts, and Measurements 95

Type 𝑙 𝜇𝑙 𝜇+,𝑙 𝜇−,𝑙

Systolic 1 0.55 (0.50, 0.60) 0.59 (0.52, 0.65) 0.58 (0.50, 0.66)
Systolic 5 0.63 (0.59, 0.68) 0.70 (0.64, 0.75) 0.62 (0.56, 0.69)
Systolic 15 0.69 (0.65, 0.73) 0.72 (0.66, 0.76) 0.74 (0.69, 0.79)
Mean 1 0.55 (0.51, 0.59) 0.62 (0.56, 0.68) 0.56 (0.50, 0.62)
Mean 5 0.59 (0.55, 0.64) 0.65 (0.59, 0.71) 0.62 (0.56, 0.68)
Mean 15 0.62 (0.58, 0.65) 0.65 (0.60, 0.70) 0.66 (0.61, 0.71)

Table 5.7.:ATC ratios for the different horizons 𝑙 and the systolic and mean blood pressure
measurements.
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(c) Horizon 15 minutes.

Figure 5.8.: Conditional ATC plot for the systolic and mean blood pressure measurements
and the horizons one, five, and 15 minutes.

the same methods. The ATC assessment can accompany other evaluation techniques, such
as measures of deviation or probabilistic scoring rules.
Four-quadrant plots facilitate the visual inspection of the ATC for a measurement, now-

cast, or forecast (see Section 5.2.2). The ATC ratio, the ratio of change directions predicted
correctly over the total number of changes, numerically evaluates ATC. Visually, it is the
proportion of concordant points in a four-quadrant plot (see Section 5.2.3). The positive and
negative ATC ratios analyze the ATC ratio given whether the predicted change is positive or
negative, respectively. Thus, they quantify the credibility of the respective predictions. The
applications of Section 5.3.3 show that models, in general, indeed have different positive
and negative ATC and that they add valuable information to the ATC ratio. In the applica-
tions, the bootstrap confidence intervals of Section 5.2.3 are used to quantify the estimation
uncertainty of the ATC measures. The width of the confidence intervals is around 0.1 for
around 100 samples, while it is around 0.01 for 8000 samples. For models with reasonably
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high ATC, 100 samples are thus sufficient to differentiate from random guessing or to assess
models with high ATC differences.
A conditional ATC plot visualizes the probability of correct change direction prediction

over the predicted change of the measurement, nowcast, or forecast (see Section 5.2.5). It is
based on a multivariate kernel density estimation (KDE) of predicted and observed change.
In the application, the conditional ATC plot gives reasonable insights into the local effects
of the ATC. Section 5.2.6 adapts measures of probabilistic forecast evaluation to the ATC
assessment of probabilistic forecasts and nowcasts. The Brier score (BS) as numerical as-
sessment of probabilistic ATC is introduced, and reliability diagrams are used to visualize
the local ATC of probabilistic forecasts.
Themethods of ATC assessment are applied to COVID-19-nowcasting, forecasting the pa-

tient admissions to an emergency department, and invasive and non-invasive blood pressure
measurements in Section 5.3. While ATC assessment should not be the only aspect, it is a
valuable addition to evaluating nowcasts, forecasts, andmeasurements. Models with highly
different accuracies are usually scored similarly inATC assessment, but ATC assessment can
differentiate between models with similar accuracies. As in the application in Section 5.3.1,
models with medial point forecast evaluation measures can have the most meaningful pos-
itive ATC.
We did not expand on two modeling aspects throughout this chapter, which we leave for

further research. In the estimation, we did not consider sequential correlation. The com-
putation of differences is a standard procedure in time series analysis to remove sequential
dependence, but, in general, some could remain, and the estimators could account for it.
Similarly, the bootstrap confidence intervals could be adapted to consider sequential corre-
lation using time-series bootstrap methods (Härdle, Horowitz, and Jens‐Peter Kreiss, 2003;
Jens-Peter Kreiss and Lahiri, 2012).
The estimators of Section 5.2.3 do not account for imbalances in the number of observed

positive and negative changes (for theoretical analysis, see Jolliffe and Stephenson, 2012,
Chapter 3). Significant differences in the number of observed positive and negative changes
are unlikely in the ATC setting, as 𝐲Δ is obtained from differencing time series data and oc-
cur, for example, if the true value contains a few high jumps in one direction and many
smaller jumps in the other. However, if the number of positive and negative observed
changes differs widely, unbalanced-data-aware measures should be considered. There are
various adapted measures for unbalanced outcomes, for example, Cohen’s 𝜅 (Cohen, 1960)
or those listed in Jolliffe and Stephenson (2012, Table 3.3).



6. Conclusion

This thesis presents contributions to the decomposition and analysis of checkerboard copu-
las, the combination of point forecasts using copula time seriesmodels, and the evaluation of
the ability to track changes for forecasts, nowcasts, and measurements. In all contributions,
dependence modeling plays a prominent role. While the first contribution provides insights
into a specific class of dependence model structures, the second applies copula dependence
modeling to derive a combined density forecast and improve forecast calibration. The third
contribution assesses the joint development of predicted and actual changes and infers new
measures and visualization techniques to evaluate forecasts, nowcasts, and measurements.
After reviewing the fundamentals of copula models, forecasting, and its evaluation in

Chapter 2, Chapter 3 introduces the singular value decomposition of doubly stochastic ma-
trices representing checkerboard copulas. Thus, a better comprehensible representation of
the checkerboard copula and various insights into the dependence structure are obtained.
The decomposition yields a structural understanding of various checkerboard copula prop-
erties, such as Spearman’s 𝜌 and Kendall’s 𝜏. Several methods extend the decomposition,
such as the monotonicity anchored representation for comonotonic copulas and the map-
ping to the nearest doubly stochastic matrix for truncations with negative entries. The de-
composition is illustrated for various checkerboard approximations of parametric copulas
and empirical data on fuel injector spray characteristics in jet engines.
Chapter 4 presents a point forecast combination method that accounts for the depen-

dence structure of the forecast errors through a copula time series model. Thus, particular
properties of the combination, such as asymmetric dependencies, can be incorporated into
the combined density, improving the calibration and location of combined forecasts. The
method theoretically yields calibrated combined density forecasts, and simulations show
superior results to other combination methods in calibration, sharpness, and forecast lo-
cation. An empirical data example of electricity price spot market forecasts illustrates the
method’s ability to improve calibration in practice.
Chapter 5 raises new measures and visualization techniques for assessing the ability to

track changes for nowcasts, forecasts, andmeasurements. The ability to track changes (ATC)
refers to the ability to correctly predict the direction of changes in values. In standard evalu-
ationmeasures, the ATC is not distinctly assessed, although it is usually central information
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in practice, whether quantities rise or fall. Our derived measures are easily interpretable,
and ready-to-use published code makes further applications straightforward. Additionally,
we provide extensions to analyze local effects or quantify estimation uncertainty, and we ex-
tend the scope to assessing probabilistic nowcasts and forecasts. Themethods are illustrated
in three large data applications: COVID-19-nowcasting, forecasting patient admissions in an
emergency department, and invasive and non-invasive blood pressure measurements.
The contributions raise interesting topics for further research. The approach of Chap-

ter 3 could be extended to Bernstein copulas, which are also based on a doubly stochastic
matrix. For Bernstein copulas, the empirical aspects of fitting could be investigated (for ex-
ample, based on Janssen, Swanepoel, andVeraverbeke, 2012). The copula combined density
(CCD) approach could be included in a larger framework for forecasting. Recently, founda-
tion models, pre-trained neural networks for time series analysis, have been proposed. In
the approach of Woo et al. (2024), the foundation model results in a linear combination of
densities, which could be replaced by the CCDmethod. As those models are pre-trained on
large datasets, the copula fit would be based on a broad data basis and account for within-
model dependencies in the results. Besides, the result of the CCDmethod could bemodified
to a probability mass function for a discrete quantity of interest using discrete copulas (Gen-
est and Nešlehová, 2007). The combination of discrete forecasts has received less attention
but is crucial for count data, such as patient admissions (see Section 5.3.2).
In summary, this thesis provides various improvements in the analysis and application of

dependence modeling by simplifying the assessment of incorporated dependence informa-
tion for checkerboard copulas, enhancing point forecast combination to a density forecast,
and evaluating the ability of forecasts, nowcasts, and measurements to predict the correct
direction of change.
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A. Appendix to Chapter 3

The section provides additional material to Chapter 3 and is based on Publ. I. Appendix A.1
contains the proofs for the algorithms of Appendix 3.2.3 and, thereby, highlights the differ-
ence for symmetric and asymmetric matrices. Appendix A.2 discusses the decomposition
of the checkerboard copula in terms of the Hellinger distance instead of the Frobenius one.
In Appendix A.3, we derive the formulas of Kendall’s 𝜏 and Spearman’s 𝜌 for Section 3.2.4.
Finally, Appendix A.4 provides additional plots for the empirical example of fuel injector
spray characteristics in Section 3.4.2.

A.1. Calculations for the algorithms of Section 3.2.3

We consider the problem

𝑃1(𝐀) ≔ argmin
𝐁∈ℝ𝑛×𝑛

‖𝐀 − 𝐁‖2𝐹 s.t. 𝐁𝟙 = 𝟙, 𝐁⊤𝟙 = 𝟙,

with a symmetric matrix 𝐀 in Appendix A.1.1 and an asymmetric 𝐀 in Appendix A.1.2.
The solution of 𝑃1(𝐀1) has a closed form, if the matrix 𝐀1 is symmetric, that is,

𝑃sym1 (𝐀1) = 𝐀1 + ( 1
𝑛
𝐼𝑛 −

1
𝑛
𝐀1 +

1
𝑛2
𝟙⊤𝐀1𝟙𝐼𝑛)𝟙𝟙⊤ −

1
𝑛
𝟙𝟙⊤𝐀1.

In the case of an asymmetric matrix 𝐀1, the problem 𝑃1(𝐀1) boils down to a linear system
(see Appendix A.1.2).
For 𝑃2(𝐀2),

𝑃2(𝐀2) = arg min
𝐁 ∈ ℝ𝑛×𝑛

‖𝐀2 − 𝐁‖2𝐹

s.t. 𝐁𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ [𝑛],

there exists a closed-form solution independent of the symmetry of 𝐀2. As the Frobenius
norm can be minimized elementwise,

‖𝐁 − 𝐀2‖2𝐹 = ∑
𝑖,𝑗∶(𝐀2)𝑖𝑗<0

(𝐁 − 𝐀2)2𝑖𝑗 + ∑
𝑖,𝑗∶(𝐀2)𝑖𝑗≥0

(𝐁 − 𝐀2)2𝑖𝑗 𝐵 ∈ ℝ𝑛×𝑛,
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the solution of 𝑃2(𝐀2) is the elementwise positive part of 𝐴2. Algorithm 1 combines 𝑃1 and
𝑃2.

A.1.1. Symmetric copula

The proof is analogous to Zass and Shashua (2007) for symmetric 𝐀. We provide it here for
completeness and to emphasize its inapplicability to asymmetric matrices. Let 𝐀 = 𝐀⊤ and
𝑃∗1 (𝐀) be the relaxation

𝑃∗1 (𝐀) ≔ argmin
𝐁∈ℝ𝑛×𝑛

‖𝐀 − 𝐁‖2𝐹 s.t. 𝐁𝟙 − 𝟙 + 𝐁⊤𝟙 − 𝟙 = 0.

If 𝐁 = 𝐁⊤, 𝐁𝟙 − 𝟙 + 𝐁⊤𝟙 − 𝟙 = 0 ⇒ 𝐁𝟙 = 𝟙 = 𝐁⊤𝟙. Thus, if 𝐁 ≔ 𝑃∗1 (𝑋) = 𝐁⊤, 𝐁 is also
the solution of 𝑃1(𝑋). Let 𝐿(𝐀, 𝜇) be the Lagrangian of 𝑃∗1 (𝐀) with

𝐿(𝐁, 𝜇) = trace(𝐁⊤𝐁) − trace(2𝐀⊤𝐁) − 2𝜇⊤(𝐁𝟙 + 𝐁⊤𝟙 − 2𝟙).

Then,

𝜕𝐿(𝐁, 𝜇)
𝜕𝐁 = 2𝐁 − 2𝐀 − 2𝜇𝟙⊤ − 2𝟙𝜇⊤

!
= 0 ⇔

𝐁 = 𝐀 + 𝜇𝟙⊤ + 𝟙𝜇⊤ ⇔ |(⋅)⊤ (A.1)
𝐁⊤ = 𝐀⊤ + 𝟙𝜇⊤ + 𝜇𝟙⊤

and

𝐁 + 𝐁⊤ = (𝐀 + 𝐀⊤) + 2 ⋅ 𝜇𝟙⊤ + 2 ⋅ 𝟙𝜇⊤ ⇔ (A.2)
𝐁𝟙 + 𝐁⊤𝟙 = 2 ⋅ 𝟙⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
follows from 𝜕𝐿(𝐁,𝜇)

𝜕𝜇
=0

= (𝐀 + 𝐀⊤)𝟙 + 2 ⋅ 𝜇 𝟙⊤𝟙⏟
=𝑛

+2 ⋅ 𝟙𝜇⊤𝟙 ⇔ …

𝜇 = 1
𝑛(𝐼𝑛 −

1
2𝑛𝟙𝟙

⊤)(𝐼𝑛 −
1
2(𝐀 + 𝐀⊤))𝟙, (A.3)

using (𝑛𝐼𝑛 + 𝟙𝟙⊤)−1 = 1
𝑛
(𝐼𝑛 +

1
2𝑛
𝟙𝟙⊤). Plugging 𝜇 from Equation (A.3) into (A.1) yields

𝐁 = 𝐀 + (1𝑛(𝐼𝑛 −
1
2𝑛𝟙𝟙

⊤)(𝐼𝑛 −
1
2(𝐀 + 𝐀⊤))𝟙)𝟙⊤ + 𝟙(1𝑛(𝐼𝑛 −

1
2𝑛𝟙𝟙

⊤)(𝐼𝑛 −
1
2(𝐀 + 𝐀⊤))𝟙)

⊤

= 𝐀 + (1𝑛𝐼𝑛 −
1
2𝑛(𝐀 + 𝐀⊤) + 1

2𝑛2𝟙
⊤(𝐀 + 𝐀⊤)𝟙𝐼𝑛)𝟙𝟙⊤ −

1
2𝑛𝟙𝟙

⊤(𝐀 + 𝐀⊤)

𝐀=𝐀⊤
= 𝐀 + (1𝑛𝐼𝑛 −

1
𝑛𝐀 + 1

𝑛2𝟙
⊤𝐀𝟙𝐼𝑛)𝟙𝟙⊤ −

1
𝑛𝟙𝟙

⊤𝐀 (A.4)
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input :Matrix 𝐀 ∈ ℝ𝑛×𝑛, 𝜖 > 0, number of maximal iterations 𝑐max
output: Nearest doubly stochastic matrix 𝐁

1 Set 𝐁 = 𝐀 and 𝑐 = 1;
2 Update 𝐁 = 𝑃1(𝐁);
3 while ∃𝑖, 𝑗 ∶ 𝐁𝑖,𝑗 < −𝜖 ∧ 𝑐 ≤ 𝑐max do
4 Update 𝐁 = 𝑃2(𝐁);
5 Update 𝐁 = 𝑃1(𝐁);
6 Update 𝑐 = 𝑐 + 1;
7 end
Algorithm 1: Algorithm to compute the nearest doubly stochastic matrix in terms of
the Frobenius error following Zass and Shashua (2007) for symmetric matrices𝐀 and
𝜖 > 0. The stopping criterion 𝑐 ≤ 𝑐max ensures the termination of the algorithm. The
solutions of 𝑃1 and 𝑃2 can be found in Appendix A.1.

The result for 𝐁 in Equation (A.4) is symmetric and, thus, also solution for 𝑃1(𝐀):

𝐁⊤ = (𝐀 + (1𝑛𝐼𝑛 −
1
𝑛𝐀 + 1

𝑛2𝟙
⊤𝐀𝟙𝐼𝑛)𝟙𝟙⊤ −

1
𝑛𝟙𝟙

⊤𝐀)
⊤

= 𝐀 + (1𝑛𝐼𝑛 −
1
𝑛𝐀 + 1

𝑛2𝟙
⊤𝐀𝟙𝐼𝑛)𝟙𝟙⊤ −

1
𝑛𝟙𝟙

⊤𝐀

= 𝐁,

using

(𝐀𝟙𝟙⊤)𝑖𝑗 = (
𝑛
∑
𝑘=1

𝐀𝑖𝑘) = (
𝑛
∑
𝑘=1

𝐀𝑘𝑗) = (𝟙𝟙⊤𝐀)𝑖𝑗, 𝑖, 𝑗 ∈ [𝑛].

A.1.2. Asymmetric copula

For asymmetric 𝐀, the result of 𝑃∗1 (𝐀) is not symmetric and thus is not a solution to the
original problem 𝑃1(𝐀).
Instead, the solution of a Karush-Kuhn-Tucker equation system yields the solution for 𝑃1.

The problem
𝑃1(𝐀) ≔ argmin

𝐁∈ℝ𝑛×𝑛
‖𝐀 − 𝐁‖2𝐹 s.t. 𝐁𝟙 = 𝟙, 𝐁⊤𝟙 = 𝟙
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with the Lagrange function and its derivative

𝐿(𝐁, 𝜆, 𝜇) = trace(𝐁⊤𝐁) − trace(2𝐀⊤𝐁) − 𝜆⊤(𝐁𝟙 − 𝟙) − 𝜇⊤(𝐁⊤𝟙 − 𝟙)
𝜕𝐿
𝜕𝐁𝑖𝑗

(𝐁, 𝜆, 𝜇) = 2𝐁𝑖𝑗 − 2𝐀𝑖𝑗 − 𝜆𝑗 − 𝜇𝑖 for 𝑖, 𝑗 ∈ [𝑛]

yields the system

2𝐁𝑖𝑗 − 𝜆𝑗 − 𝜇𝑖 = 2𝐀𝑖𝑗 ∀(𝑖, 𝑗) ∈ [𝑛] × [𝑛] (A.5)
𝑛
∑
𝑖=1

𝐁𝑖𝑗 = 1 ∀𝑗 ∈ [𝑛] (A.6)

𝑛
∑
𝑗=1

𝐁𝑖𝑗 = 1 ∀𝑖 ∈ [𝑛]. (A.7)

The solution of the Karush-Kuhn-Tucker equation system is the solution of the linear
equation system 𝐾𝑏 = 𝑎 with

�̃� = (
2𝐼𝑛2×𝑛2 [𝟙 ⊗ 𝐼𝑛×𝑛] [𝐼𝑛×𝑛 ⊗ 𝟙]

[𝟙⊤ ⊗ 𝐼𝑛×𝑛] 0 0
[𝐼𝑛×𝑛 ⊗ 𝟙⊤] 0 0

) , ̃𝑏 = (
vec (𝐁)
𝜆
𝜇

) , ̃𝑎 = (
vec (2𝐴)
0𝑛×1

0𝑛×1
)

and 𝐾 = �̃�1∶𝑛2+2𝑛−1,1∶𝑛2+2𝑛−1, 𝑏 = ̃𝑏1∶𝑛2+2𝑛−1, 𝑎 = ̃𝑎1∶𝑛2+2𝑛−1. Thereby, ⊗ denotes the
Kronecker product of thematrices, and vec (⋅) denotes the column-wise stacking of amatrix
into a vector. The last row and column are excluded, as the matrix 𝐾 is singular and the
constraint∑𝑛

𝑗=1 𝐁𝑛𝑗 = 1 is guaranteed by the remaining Constraints (A.6) and (A.7). Then,
the first 𝑛2 elements of the solution 𝑏 rearranged as matrix 𝐁 are the solution of 𝑃1.
Additionally, Algorithm 1 has to be expanded by a deflection component (see Zass and

Shashua, 2007; Dykstra, 1983), as summarized in Algorithm 2.

A.2. Decomposition in terms of the Hellinger distance

The singular value decomposition and the algorithms of Section 3.2.3 yieldminimal errors in
terms of the Frobenius norm. The SVD is also the best low-rank approximation considering
the spectral norm (Mirsky, 1960). In statistics, the Hellinger distance is often used to assess
the proximity of densities (see Aya-Moreno, Geenens, and Penev, 2018; Meier, Kirch, and
Meyer, 2020, for two recent contributions). In this section, we analyze Hellinger distance-
based decompositions for two different versions of the Hellinger distance for matrices, as, to
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input :Matrix 𝐀 ∈ ℝ𝑛×𝑛, 𝜖 > 0, number of maximal iterations 𝑐max
output: Nearest doubly stochastic matrix 𝐁

1 Set 𝐁 = 𝐀 and 𝑐 = 1;
2 Set 𝐁1,1 = 𝑃1(𝐁) and 𝐼1,1 = 𝐁1,1 − 𝐁 ;
3 Set 𝐁1,2 = 𝑃2(𝐁 + 𝐼1,1) and 𝐼1,2 = 𝐁𝑐,2 − (𝐁 + 𝐼𝑐,1) ;
4 repeat
5 Update 𝑐 = 𝑐 + 1;
6 Set 𝐁𝑐,1 = 𝑃1(𝐁 + 𝐼𝑐−1,2) and 𝐼𝑐,1 = 𝐁𝑐,1 − (𝐁 + 𝐼𝑐−1,2) ;
7 Set 𝐁𝑐,2 = 𝑃2(𝐁 + 𝐼𝑐,1) and 𝐼𝑐,2 = 𝐁𝑐,2 − (𝐁 + 𝐼𝑐,1) ;
8 until

(𝐁+𝐼𝑐,1+𝐼𝑐,2) ≥ −𝜖∧|(𝐁+𝐼𝑐,1+𝐼𝑐,2)𝟙−𝟙| < 𝜖∧|(𝐁+𝐼𝑐,1+𝐼𝑐,2)⊤𝟙−𝟙| < 𝜖∧𝑐 ≤ 𝑐max;
Algorithm 2: Algorithm to compute the nearest doubly stochastic matrix in terms of
the Frobenius error following Zass and Shashua (2007) for asymmetricmatrices𝐀 and
𝜖 > 0. The stopping criterion 𝑐 ≤ 𝑐max ensures the termination of the algorithm. The
solutions of 𝑃1 and 𝑃2 can be found in A.1.2. 𝐁𝑐,𝑑 denotes the solution in iteration 𝑐 in
the subproblem 𝑑 and 𝐼𝑐,𝑑 the corresponding incremental change.

our knowledge, there is no agreed definition in thematrix case yet. For amatrix square root-
based Hellinger distance, the decomposition generalizes from the Frobenius case, while it
is of a different and more complicated structure for an elementwise square root Hellinger
distance.
For discrete probability distributions 𝑝 = (𝑝1, … , 𝑝𝑛) and 𝑞 = (𝑞1, … , 𝑞𝑛), the Hellinger

norm 𝑑𝐻 is computed by

𝑑𝐻(𝑝, 𝑞) =
1
√2

[
𝑛
∑
𝑖=1

(√𝑝𝑖 −√𝑞𝑖))2]
1/2

= 1
√2

[
𝑛
∑
𝑖=1
(𝑝𝑖 + 𝑞𝑖) − 2∑

𝑖=1
√𝑝𝑖𝑞𝑖]

1/2

.

For matrices, there are different notions of the Hellinger distance in literature. We consider
a formulation based on the matrix square root first (Bhatia, Gaubert, and Jain, 2019) and
then turn to an elementwise square root method (Rao, 1995).
Bhatia, Gaubert, and Jain (2019) starts from the decomposition of the Hellinger distance

for densities into an arithmetic and geometric mean. As the geometric mean for matrices
can be interpreted in various ways, different notions of the distance can be obtained. We
use their most straightforward generalization yielding the Hellinger distance for positive
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semidefinite, and, thus symmetric, matrices 𝐴 and 𝐵

𝑑𝐻(𝐴, 𝐵) = ‖𝐴1/2 − 𝐵1/2‖𝐹 = [trace(𝐴 + 𝐵) − 2 trace(𝐴1/2𝐵1/2)]1/2 .

Thereby, 𝐴1/2 denotes the matrix square root with (𝐴1/2)⊤𝐴1/2 = 𝐴1/2𝐴1/2 = 𝐴.

Lemma 3. The low-rank approximation problem of a positive definite matrix 𝐴 yields the
same eigenvectors and eigenvalues for the Frobenius and the Hellinger distance.

Proof. Let 𝑃𝐹(𝐴, 𝑘) the low-rank approximation problem in terms of the Frobenius distance

𝑃𝐹(𝐴, 𝑘) ≔ min
𝐵∈ℝ𝑛×𝑛

‖𝐴 − 𝐵‖𝐹 s.t. rank(𝐵) ≤ 𝑘

and 𝑃𝐻(𝐴, 𝑘) in terms of the Hellinger distance

𝑃𝐻(𝐴, 𝑘) = min
𝐵∈ℝ𝑛×𝑛

‖𝐴1/2 − 𝐵1/2‖𝐹 s.t. rank(𝐵) ≤ 𝑘, 𝐵 positive semidefinite, (A.8)

as the matrix square root is unique and rank(𝐵) = rank(𝐵1/2) (Horn and C. R. Johnson,
2012, Theorem 7.2.6).
Thus, the minimizing argument, 𝐵1/2, of Problem 𝑃𝐻(𝐴, 𝑘) is the 𝑘-truncated SVD of 𝐴1/2.

Due to the positive definiteness of 𝐴, left and right singular values are identical, and the
eigenvalue decomposition

𝐴1/2 ≔ 𝑈Λ(𝑈)⊤ (A.9)

existswith eigenvectormatrix𝑈 and diagonal eigenvaluematrixΛ. This yields for thematrix
square root of the minimizing argument, 𝐵1/2, of 𝑃𝐻(𝐴, 𝑘) and the minimizing argument, B,

𝐵1/2 = 𝑈[𝑘]Λ[𝑘](𝑈[𝑘])⊤ and
𝐵 = 𝐵1/2𝐵1/2 = 𝑈[𝑘]Λ2[𝑘](𝑈[𝑘])⊤.

The eigenvectors of 𝐴1/2 and 𝐴 are identical and the singular vectors are squared, as

𝐴 = 𝐴1/2𝐴1/2 = (𝑈Λ𝑈⊤)(𝑈Λ𝑈⊤)⊤ = 𝑈Λ2𝑈⊤.

Thus, the minimizing argument of 𝑃𝐹(𝐴, 𝑘) is

𝑈[𝑘]Λ2[𝑘](𝑈[𝑘])⊤

and equal to the minimizing argument of 𝑃𝐻(𝐴, 𝑘).
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This definition of the Hellinger distance obtains the same decomposition as with the
Frobenius distance. The coefficient 𝜂 in the MAR can also be computed with the Hellinger
distance instead of the Frobenius distance in Equation (3.8). However, the definition of the
Hellinger distance only for positive semidefinite copulas is restrictive, as valid bistochastic
matrices do not need to be positive definite, for example, unsymmetric.
Rao (1995) and C. M. Cuadras and D. Cuadras (2006) define the Hellinger distance in

terms of an elementwise square root, thus considering only matrices with non-negative ele-
ments. Let√𝐴 denote the elementwise square root of a matrix 𝐴. Then, the decomposition
based on the elementwise Hellinger decomposition is for a symmetric checkerboard copula
𝐂𝑛

√𝐂𝑛 = 𝑈𝐻Λ𝐻(𝑈𝐻)⊤. (A.10)

Truncations 𝑇𝑛⋆(√𝐂𝑛) have to be squared elementwise to get a low-rank approximation of
the Hellinger decomposition. Note that the squared decomposition does not keep the rank
of 𝑇𝑛⋆(√𝐀𝑛). The MAR could be used in the elementwise Hellinger decomposition, and the
optimization in Equation (3.8) could be adapted and solved by a general optimization prob-
lem solver. To our knowledge, no optimizations similar to those in the Frobenius case are
available for the elementwise Hellinger scenario, as either the objective function contains
square roots or the constraints are non-linear. While the elements of the squared decom-
position are non-negative, the row and column sums are not one, in general, and, thus, the
squared decomposition is not doubly stochastic.
All in all, the elementwiseHellinger decomposition is not as straightforward as the Frobe-

nius decomposition, as the squared decomposition does not keep the rank of the truncation,
and the attached optimization problems getmore complex. Through the elementwise square
root, the influence of peaks in the checkerboard copula on the objective function is reduced
compared to the Frobenius case. It is a modeling choice, whether this is desired or not. Rao
(1995) and C.M. Cuadras andD. Cuadras (2006) point out that elementwiseHellinger-based
decomposition’s main advantage is the independence from the row and column marginals.
However, the marginals are constant in the checkerboard copula setting; thus, the corre-
spondence analysis does not depend on them. Thus, we do not expand on the Hellinger
decompositions in the main part of the thesis.

A.3. Computations for Spearman’s 𝜌 and Kendall’s 𝜏 in
Section 3.2.4

As in Section 3.2.4, 𝐀𝑛 = 𝐔𝐒𝐕⊤ denotes the centered copulas SVD. Let additionally be
𝐮0 = 𝐯0 = 1/√𝑛 ⋅ 𝟙 and 𝑠0 = 1 to ease the notation. The equations for Spearman’s 𝜌 in
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Section 3.2.4 follow from

𝜌(𝐂𝑛) ≔ 3
𝑛 trace (𝛀𝐂

𝑛) − 3

= 3
𝑛 trace (Ω

𝑛−1
∑
𝑘=0

𝐮𝑘𝑠𝑘𝐯⊤𝑘) − 3

= 3
𝑛

𝑛−1
∑
𝑘=0

𝑠𝑘 trace (Ω𝐮𝑘𝐯⊤𝑘) − 3

=
3‖�̌�‖2

𝑛

𝑛−1
∑
𝑘=0

𝑠𝑘 trace (𝝎𝝎⊤𝐮𝑘𝐯⊤𝑘) − 3

=
3 ⋅ (4

3
𝑛 − 1

3𝑛
)

𝑛

𝑛−1
∑
𝑘=0

𝑠𝑘 trace (𝝎⊤𝐮𝑘𝐯⊤𝑘𝝎) − 3

= (4 − 1
𝑛2
)
𝑛−1
∑
𝑘=0

𝑠𝑘⟨𝝎, 𝐮𝑘⟩⟨𝐯𝑘, 𝝎⟩ − 3

= (4 − 1
𝑛2
) (⟨𝝎, 1

√𝑛
⋅ 𝟙⟩

2
+

𝑛∗

∑
𝑘=1

𝑠𝑘⟨𝝎, 𝐮𝑘⟩⟨𝐯𝑘, 𝝎⟩) − 3

= (4 − 1
𝑛2
)
𝑛−1
∑
𝑘=1

𝑠𝑘⟨𝝎, 𝐮𝑘⟩⟨𝐯𝑘, 𝝎⟩ + 3 − 3

= (4 − 1
𝑛2
)
𝑛−1
∑
𝑘=1

𝑠𝑘⟨𝝎, 𝐮𝑘⟩⟨𝐯𝑘, 𝝎⟩.

Similarly follows for the MAR decomposition, �̃�𝑛 = �̃��̃�(�̃�)⊤,

𝜌(𝐂𝑛) = 3
𝑛 trace (𝛀(

𝑛−1
∑
𝑘=1

�̃�𝑘 ̃𝑠𝑘�̃�⊤𝑘 − 𝜂𝐼𝑛 + (1 + 𝜂)𝚷𝑛)) − 3

= (4 − 1
𝑛2
) [

𝑛−1
∑
𝑘=1

̃𝑠𝑘 trace (𝝎𝝎⊤�̃�𝑘�̃�⊤𝑘) − 𝜂 trace (𝝎𝝎⊤𝐼𝑛) + (1 + 𝜂) trace (𝝎𝝎⊤𝚷𝑛)] − 3

= (4 − 1
𝑛2
) [

𝑛−1
∑
𝑘=1

̃𝑠𝑘⟨�̃�𝑘, 𝝎⟩⟨�̃�𝑘, 𝝎⟩ − 𝜂‖𝝎‖2 + (1 + 𝜂)⟨𝝎, 1
√𝑛

⋅ 𝟙⟩
2
] − 3

= (4 − 1
𝑛2
) [

𝑛−1
∑
𝑘=1

̃𝑠𝑘⟨�̃�𝑘, 𝝎⟩⟨�̃�𝑘, 𝝎⟩ − (4 − 1
𝑛2
)𝜂 + 3

𝑛
(1 + 𝜂)] − 3

(∗)
= (4 − 1

𝑛2
) [

𝑛−1
∑
𝑘=1

(𝑠𝑘 + 𝜂)⟨�̃�𝑘, 𝝎⟩2 − (4 − 1
𝑛2
)𝜂 + 3

𝑛
(1 + 𝜂)] − 3,

where (∗) is only valid for symmetric �̃�𝑛.
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The respective computations for Kendall’s 𝜏 are

𝜏(𝐂𝑛) ≔ 1 − 1
𝑛2 trace (𝐄𝐂

𝑛𝐄(𝐂𝑛)⊤)

= 1 − 1
𝑛2

𝑛−1
∑
𝑘1=0

𝑛−1
∑
𝑘2=0

𝑠𝑘1𝑠𝑘2 trace (𝐄𝐮𝑘1𝐯
⊤
𝑘1𝐄𝐯𝑘2𝐮

⊤
𝑘2)

= 1 − 1
𝑛2

𝑛−1
∑
𝑘1=0

𝑛−1
∑
𝑘2=0

𝑠𝑘1𝑠𝑘2 trace (𝐮
⊤
𝑘2𝐄𝐮𝑘1𝐯

⊤
𝑘1𝐄𝐯𝑘2)

= 1 − 1
𝑛2

𝑛−1
∑
𝑘1=0

𝑛−1
∑
𝑘2=0

𝑠𝑘1𝑠𝑘2⟨𝐮𝑘2, 𝐄𝐮𝑘1⟩⟨𝐯𝑘1, 𝐄𝐯𝑘2⟩

and for the MAR analogously.

A.4. Further figures for Section 3.4.2
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(a) Row profiles for variables
𝑢1 and 𝑢3.
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(b) Column profiles for vari-
ables 𝑢1 and 𝑢3.
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(c) Checkerboard plot for
variables 𝑢1 and 𝑢3.
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(d) Row profiles for variables
𝑢1 and 𝑢5.
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(e) Column profiles for vari-
ables 𝑢1 and 𝑢5.
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(f) Checkerboard plot for
variables 𝑢1 and 𝑢5.
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(g) Row profiles for variables
𝑢2 and 𝑢5.

−0.2 0.0 0.2 0.4 0.6

G:,1

0.00

0.25

0.50

G
:,

2

(h) Column profiles for vari-
ables 𝑢2 and 𝑢5.
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(i) Checkerboard plot for
variables 𝑢2 and 𝑢5.
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(j) Row profiles for variables
𝑢3 and 𝑢5.
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(k) Column profiles for vari-
ables 𝑢3 and 𝑢5.
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(l) Checkerboard plot for
variables 𝑢3 and 𝑢5.
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(m) Rowprofiles for variables
𝑢4 and 𝑢5.
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(n) Column profiles for vari-
ables 𝑢4 and 𝑢5.
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(o) Checkerboard plot for
variables 𝑢4 and 𝑢5.

Figure A.1.: The remaining profile and checkerboard plots of the fuel injector spray charac-
teristics in jet engines from Coblenz et al. (2020) from Section 3.4.2. The other
dimension combinations are shown in Figure 3.13. The physical interpretations
of the variables are drop size (𝑢1), x-position (𝑢2), y-position (𝑢3), x-velocity (𝑢4),
and y-velocity (𝑢5). For the variable pairs (𝑢1, 𝑢5) and (𝑢2, 𝑢5), no deviation from
independence is discernible. A weak hump-shape can be observed for variables
𝑢1 and 𝑢3. Again, the course of column profiles is reversed in the middle of the
profiles. The plots show a Gaussian-like behavior for variables 𝑢3 and 𝑢5. The
profile plots for variables 𝑢4 and 𝑢5 show a weak deviation from independence
for the profiles near 𝑢4 = 1 and extreme values of 𝑢5.



B. Appendix to Chapter 4

The section presents additionalmaterial for Chapter 4 and is based on Publ. II. Appendix B.1
introduces other forecast combinationmethods used in the simulation study in Section 4.3.1.
Appendix B.2 contains the proofs of the theorems presented in Section 4.2.3. Appendices B.3
and B.4 present additional results for the simulations of Section 4.3 and the electricity price
forecast combination of Section 4.4.

B.1. Forecast combination methods

Inmany situations, different forecasts are available in the form of predictive distributions or
point forecasts, for example, in the area of weather predictions where forecasts of different
weather services or originating from different models are available (see, for example, the
reviews in Hall and Mitchell, 2007; Gneiting and Katzfuss, 2014; X. Wang et al., 2023).
Combining these different forecasts can formanewpredictive distribution that is better than
all individual ones since it combines the information of the different forecasters. Depending
on the form of the predictions, different algorithms can be applied to combine them. As
for individual forecasts, the aggregated predictive distribution should be sharp subject to
calibration (see Section 2.2). Thus, scoring rules can be used to fit all the model parameters.
In practice, one has to determine the combination scheme and parameters considering

training data from the past. This training data includes the forecasts in the form of CDFs
issued by different forecasters 1, … , 𝐾 at times 1, … , 𝑇 and the corresponding realizing ob-
servation 𝑦𝑡

{(𝐹1,𝑗, … , 𝐹𝐾,𝑗, 𝑦𝑡) ∶ 𝑗 = 1,… , 𝑇}.

Training data can similarly be given as densities or point forecasts and realizing observa-
tions.
We start by introducing algorithms for the combination of distributional forecasts. Al-

though the CCD method accepts point forecasts, the following algorithms are used in the
simulation study in Section 4.3.1 with the true marginal distributions. A simple example of
an aggregation method is the traditional linear pool (TLP), where the individual forecasts

110
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are combined linearly

𝐺𝑇𝐿𝑃
𝜃 (𝐹1, … , 𝐹𝐾) =

𝐾
∑
𝑖=1

𝜃𝑖𝐹𝑖

with the parameter 𝜃 = (𝜃1, … , 𝜃𝐾) ∈ Θ = {𝜃 ∶ 𝜃𝑖 > 0,∑𝐾
𝑖=1 𝜃𝑖 = 1}. Ranjan and Gneiting

(2010) proves that the TLP tends to increase the dispersion and combinations of calibrated
individual forecasts are overdispersed.
Berrocal, Raftery, and Gneiting (2007), Glahn et al. (2009) and Kleiber, Raftery, and Gnei-

ting (2011) propose a nonlinear aggregation method to overcome the shortcomings of the
TLP,whichGneiting andRanjan (2013) generalized to the spread-adjusted linear pool (SLP).
With 𝐹𝑖(𝑦) = 𝐹0𝑖 (𝑦 − 𝜇𝑖) and 𝑓𝑖(𝑦) = 𝑓0𝑖 (𝑦 − 𝜇𝑖) for 𝜇𝑖 being the unique median of 𝐹𝑖 for
𝑖 = 1, … , 𝐾, the SLP can be written as

𝐺𝑐(𝑦) =
𝐾
∑
𝑖=1

𝜃𝑖𝐹0𝑖 (
𝑦 − 𝜇𝑖
𝑐 )

with density

𝑔𝑐(𝑦) =
1
𝑐

𝐾
∑
𝑖=1

𝜃𝑖𝑓0𝑖 (
𝑦 − 𝜇𝑖
𝑐 ).

Hereby, 𝜃1, … , 𝜃𝐾 are again strictly positive weights summing up to 1, and 𝑐 is the spread-
adjustment parameter taking strictly positive values. For 𝑐 = 1, the traditional linear pool
arises.
The beta-transformed linear pool (BLP) is again an extension of the TLP, where the re-

sult of the linear combination is transformed with the CDF of a beta distribution 𝐵𝛼,𝛽 with
parameters 𝛼 and 𝛽 (Ranjan and Gneiting, 2010)

𝐺𝛼,𝛽 = 𝐵𝛼,𝛽(
𝐾
∑
𝑖=1

𝜔𝑖𝐹𝑖).

The parameter space is then

Θ = {(𝛼, 𝛽, 𝜃1, … , 𝜃𝐾) ∶ 𝛼, 𝛽, 𝜃1, … , 𝜃𝐾 > 0,
𝐾
∑
𝑖=1

𝜃𝑖 = 1}.

𝛼 and 𝛽 are the parameters of the beta distribution and 𝜃1, … , 𝜃𝐾 are linear weights. Through
the transformation, the BLP can combine a wide class of forecasts to calibrated fore-
casts (Gneiting and Ranjan, 2013).
In addition to those methods for combining distributional forecasts, there are methods

for combining point forecasts from various sources. A set of point forecasts is often called
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an ensemble prediction system; therefore, these methods are also called ensemble output
statistics.
An early point forecast combination algorithm dates back to Bates and Granger (1969).

They compute the linear combination of two unbiased point forecasts ̂𝑥1 and ̂𝑥2 with error
variances 𝜎21 and 𝜎22 and correlation coefficient 𝜌 that minimizes the variance of the com-
bined forecast. They conclude that the forecast

̂𝑥 = 𝑘 ̂𝑥1 + (1 − 𝑘) ̂𝑥2

with
𝑘 =

𝜎22 − 𝜌𝜎1𝜎2
𝜎21 + 𝜎22 − 2𝜌𝜎1𝜎2

and resulting standard deviation

𝜎 =
𝜎1𝜎2√1 − 𝜌2

√𝜎21 + 𝜎22 − 2𝜌𝜎1𝜎2

is optimal if all observations are equally weighted in the variance computation. Using ̂𝑥 and
𝜎 as parameters of a Gaussian distribution yields a probabilistic forecast for the quantity of
interest.
Two more advanced and flexible methods for point forecast combination are Bayesian

model averaging (BMA) by Raftery et al. (2005) and ensemble model output statis-
tics (EMOS, Gneiting, Raftery, et al., 2005). In BMA, the combined PDF is a weighted
average of the forecast PDFs. The forecast PDF is based on individual bias-corrected point
forecasts. The BMAmodel for 𝑦 is then

𝑝(𝑦|𝑥1, … , 𝑥𝑚) =
𝑚
∑
𝑖=1

𝑤𝑚𝑔𝑚(𝑦|𝑥𝑚).

Thereby, 𝑥1, … , 𝑥𝑚 are the bias-corrected point forecasts, 𝑔𝑘(𝑦|𝑥𝑘) is the conditional PDF of
𝑦 dependent on 𝑥𝑘, given that 𝑥𝑘 is the best forecast in the ensemble, and𝑤𝑘 are nonnegative
weights that sum up to 1.
The EMOSmethod issues a single parametric distribution, where the distribution param-

eters are calculated based on the ensemble predictions (see for general instructions, for ex-
ample,Wilks, 2011, Chapter 7.7). The normal predictive distribution of EMOS for ensemble
members 𝑋1, … , 𝑋𝑚 and ensemble variance 𝑆2 is

𝒩(𝑎 + 𝑏1𝑋1 +⋯+ 𝑏𝑚𝑋𝑚, 𝑐 + 𝑑𝑆2). (B.1)
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For a more straightforward interpretation, 𝑏1, … , 𝑏𝑚 can be restricted to be nonnegative.
Other parametric distributions, such as truncated normal or log-normal distributions, are
possible (Baran and Lerch, 2018).

B.2. Proofs for Chapter 4

B.2.1. Proof of Theorem 4.2.1

Proof. Due to Sklar’s theorem (Sklar, 1959), the density inEquation (4.5) is the actual density
of the forecast errors. In the following, we will omit the copula notation and write in terms
of the error density 𝑓.
The proof proceeds by a rotation of the ℝ𝐾 such that the first basis vector of the new

basis has coordinates (1, … , 1)with respect to the original space. Let 𝑇 be the corresponding
orthonormal transformation matrix, that is, det(𝑇) = 1 and the first column of the inverse
matrix (𝑇−1)⋅1 = (1/√𝑛,… , 1/√𝑛)′. Let then 𝜙 ∶ ℝ𝐾 → ℝ𝐾, 𝑥 ↦ 𝜙(𝑥) = 𝑥 ⋅ 𝑇 be a
linear mapping, and 𝑔(𝑧) ≔ 𝑓(𝑧 ⋅ 𝑇) the density with points according to the transformed
coordinates. Note that 𝑥 is a row vector. Then the CCD forecast CDF can be expressed as

̂𝐹(𝑦) = 1
𝑙 ∫

𝑦

−∞
ℒ(𝛾|�̂�)𝑑𝛾

= 1
𝑙 ∫

𝑦

−∞
𝑓( ̂𝑥1 − 𝛾,… , ̂𝑥𝐾 − 𝛾)𝑑𝛾

= 1
𝑙 ∫

𝑦

−∞
𝑓(�̂� − 𝛾 ⋅ (1, … , 1))𝑑𝛾

= 1
𝑙 ∫

𝑦

−∞
𝑓((�̂� − 𝛾 ⋅ (1, … , 1)) ⋅ 𝑇−1 ⋅ 𝑇)𝑑𝛾

= 1
𝑙 ∫

𝑦

−∞
𝑔(�̂� ⋅ 𝑇−1⏟⎵⏟⎵⏟

≕ ̂𝐳
−𝛾 ⋅ (1, … , 1) ⋅ 𝑇−1)𝑑𝛾

= 1
𝑙 ∫

𝑦

−∞
𝑔( ̂𝐳 − 𝛾 ⋅ √𝑛 ⋅ (1, 0, … 0))𝑑𝛾 ≕ 𝐺( ̂𝐳).

As the random variable𝑌models the error, its true distribution is a point mass in 0. Instead,
the forecasts �̂� resp. ̂𝐳 are probabilistic. This is reflected in the following notion 𝐺𝑧 where
𝑦 = 0 is fixed and the values of ̂𝐳 = ( ̂𝑧1, ̂𝐳−1) vary

𝐺𝑧( ̂𝑧1, ̂𝑧−1) =
1

𝑙( ̂𝑧1, ̂𝑧−1)
∫

0

−∞
𝑔(( ̂𝑧1, ̂𝑧−1) − 𝛾 ⋅ √𝑛 ⋅ (1, 0, … 0))𝑑𝛾. (B.2)
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The notation 𝐳−𝑖 takes the vector 𝐳 without the 𝑖-th entry. Let now ̂𝐳−1 ∈ 𝑅𝐾−1 be fixed.
Then,

𝐺𝑧( ̂𝑧1, ̂𝐳−1) → 1, for ̂𝑧1 → −∞
𝐺𝑧( ̂𝑧1, ̂𝐳−1) → 0, for ̂𝑧1 →∞.

𝐺𝑧 is as integral of a bounded function, a continuous function in ̂𝑧1. Therefore, for all 𝑢 ∈
(0, 1) the minimum

min{𝑧1 ∈ ℝ ∶ 𝐺𝑧(𝑧1, 𝐳−1)} ≕ 𝑧∗1(𝐳−1).

exists. Let now 𝑢 ∈ (0, 1) be fixed.

ℙ {𝐺𝑧(𝑧1, 𝐳−1) ≤ 𝑢|𝐳−1} =
1

𝑙(𝑧1, 𝐳−1)
⋅ (B.3)

∫
∞

−∞
𝟙 {𝐺𝑧(𝑧1, 𝐳−1) ≤ 𝑢} 𝑔(𝑧1, 𝐳−1)𝑑𝑧1 (B.4)

= 1
𝑙(𝑧1, 𝐳−1)

∫
∞

𝑧∗1(𝐳−1)
𝑔(𝑧1, 𝐳−1)𝑑𝑧1 (B.5)

= 𝐺𝑧(𝑧∗1 , 𝐳−1) (B.6)
= 𝑢. (B.7)
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Then, with 𝑔𝐳−1 being the marginal density of 𝐳−1 and 𝑔𝑧1|𝐳−1 being the density of 𝑧1 condi-
tioning on 𝐳−1, for all 𝑧−1 ∈ ℝ𝐾−1 and 𝑢 ∈ (0, 1)

ℙ {𝐺(0) ≤ 𝑢} = ∫
ℝ𝐾

𝑔(𝑧1, … , 𝑧𝐾)𝟙 {𝐺𝑧(𝑧1, … , 𝑧𝐾) ≤ 𝑢} d 𝑧 (B.8)

= ∫
ℝ𝐾−1

∫
ℝ
𝑔𝑧1|𝐳−1(𝑧1|𝐳−1)𝑔𝐳−1(𝐳−1) (B.9)

𝟙 {𝐺𝑧(𝑧1, … , 𝑧𝐾) ≤ 𝑢} d 𝑧1 d 𝐳−1 (B.10)

= ∫
ℝ𝐾−1

𝑔𝐳−1(𝐳−1)∫
ℝ
𝑔𝑧1|𝐳−1(𝑧1|𝐳−1) (B.11)

𝟙 {𝐺𝑧(𝑧1, … , 𝑧𝐾) ≤ 𝑢} d 𝑧1 d 𝐳−1 (B.12)

= ∫
ℝ𝐾−1

𝑔𝐳−1(𝐳−1)ℙ {𝐺
𝑧(𝑧1, 𝐳−1) ≤ 𝑢|𝐳−1} d 𝐳−1 (B.13)

= ∫
ℝ𝐾−1

𝑔𝐳−1(𝐳−1)𝑢 d 𝐳−1 (B.14)

= 𝑢. (B.15)

Thus,
𝑍�̂� = 𝐹(𝑌) = 𝐺(0) ∼ 𝑈(0, 1).

B.2.2. Proof of Theorem 4.2.2

Proof. According to Equation (4.8)

̂𝑓(𝑥) = 𝛼 ⋅ ℒ(𝑥)
= 𝛼 ⋅ 𝑓(𝜀1,𝜀2)( ̂𝑥1 − 𝑥, ̂𝑥2 − 𝑥|𝑥)

with 𝛼 ∈ ℝ being the normalising constant such that ∫ℝ ̂𝑓(𝑥)𝑑𝑥 = 1. Let 𝐶𝐺𝑎
𝑅 be a Gauss-

Copula with mean 𝜇 = 0 and correlation matrix 𝑅 = Corr((𝜀1, 𝜀2)′). Let 𝐹𝜀1 = Φ𝜀1 resp.
𝐹𝜀2 = Φ𝜀2 be the (normally distributed) CDF of 𝜀1 resp. 𝜀2 and 𝐹

−1
𝜀1 = Φ−1

𝜀1 resp. 𝐹−1𝜀2 =
Φ−1
𝜀2 the corresponding inverse. Let Φ𝑅 be a bivariate Gaussian CDF with mean 𝜇 = 0 and
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correlation matrix 𝑅 = Corr((𝜀1, 𝜀2)′) and 𝜙𝑅 the corresponding density. Then

𝑓(𝜀1,𝜀2)( ̂𝑥1 − 𝑥, ̂𝑥2 − 𝑥|𝑥)

= 𝜕2
𝜕 ̂𝑥1𝜕 ̂𝑥2

𝐹(𝜀1,𝜀2)( ̂𝑥1 − 𝑥, ̂𝑥2 − 𝑥|𝑥)

= 𝜕2
𝜕 ̂𝑥1𝜕 ̂𝑥2

𝐶𝐺𝑎
𝑅 (𝐹𝜀1( ̂𝑥1 − 𝑥|𝑥), 𝐹𝜀2( ̂𝑥2 − 𝑥|𝑥))

= 𝜕2
𝜕 ̂𝑥1𝜕 ̂𝑥2

Φ𝑅(Φ−1(𝐹𝜀1( ̂𝑥1 − 𝑥|𝑥)), Φ−1(𝐹𝜀2( ̂𝑥2 − 𝑥|𝑥))

= 𝜙𝑅( ̂𝑥1 − 𝑥, ̂𝑥2 − 𝑥|𝑥)

= 1
2𝜋𝜎1𝜎2√1 − 𝜌2

⋅

exp
⎡
⎢
⎢
⎢
⎣

− 1
2(1 − 𝜌2) (

( ̂𝑥1 − 𝑥)2

𝜎21
− 2

𝜌( ̂𝑥1 − 𝑥)( ̂𝑥2 − 𝑥)
𝜎𝑥𝜎𝑦

+ ( ̂𝑥2 − 𝑥)2

𝜎22
)

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
≕𝛽

⎤
⎥
⎥
⎥
⎦

.

Thereby, 𝛽 can be simplified to

𝛽 = ( ̂𝑥1 − 𝑥)2

𝜎21
− 2

𝜌( ̂𝑥1 − 𝑥)( ̂𝑥2 − 𝑥)
𝜎1𝜎2

+ ( ̂𝑥2 − 𝑥)2

𝜎22

= 1
𝜎21

(𝑥2 − 2 ̂𝑥1𝑥 + ̂𝑥21) +
2𝜌
𝜎1𝜎2

(−𝑥2 + 𝑥 ( ̂𝑥1 + ̂𝑥2) − ̂𝑥1 ̂𝑥2)+

1
𝜎22

(𝑥2 − 2 ̂𝑥2𝑥 + ̂𝑥22)

= 𝑥2 ( 1
𝜎21

−
2𝜌
𝜎1𝜎2

+ 1
𝜎22
) − 2𝑥 (

̂𝑥1
𝜎21

−
𝜌 ( ̂𝑥1 + ̂𝑥2)

𝜎1𝜎2
+ ̂𝑥2
𝜎22
)+

(
̂𝑥21
𝜎21

−
2𝜌 ̂𝑥1 ̂𝑥2
𝜎1𝜎2

+
̂𝑥22
𝜎22
)

=
𝜎21 + 𝜎22 − 2𝜌𝜎1𝜎2

𝜎21 𝜎22
(𝑥2 − 2𝑥𝜇𝑐 + 𝑙)

=
𝜎21 + 𝜎22 − 2𝜌𝜎1𝜎2

𝜎21 𝜎22
(𝑥2 − 2𝑥𝜇𝑐 + 𝜇2𝑐 − (𝜇2𝑐 − 𝑙))
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with the constants with regard to 𝑥

𝜇𝑐 = 𝑘 ̂𝑥1 + (1 − 𝑘) ̂𝑥2, (B.16)

𝑘 =
𝜎22 − 𝜌𝜎1𝜎2

𝜎21 + 𝜎22 − 2𝜌𝜎1𝜎2
, and (B.17)

𝑙 =
𝜎21 𝜎22

𝜎21 + 𝜎22 − 2𝜌𝜎1𝜎2
(
̂𝑥21
𝜎21

−
2𝜌 ̂𝑥1 ̂𝑥2
𝜎1𝜎2

+
̂𝑥22
𝜎22
) . (B.18)

Then it follows for ̂𝑓(𝑥)

̂𝑓(𝑥) ∝ 𝑓(𝜀1,𝜀2)( ̂𝑥1 − 𝑥, ̂𝑥2 − 𝑥|𝑥)

= 1
2𝜋𝜎1𝜎2√1 − 𝜌2

⋅

exp [− 1
2(1 − 𝜌2)

𝜎21 + 𝜎22 − 2𝜌𝜎1𝜎2
𝜎21 𝜎22

(𝑥2 − 2𝑥𝜇𝑐 + 𝜇2𝑐 − (𝜇2𝑐 − 𝑙))]

= 1
2𝜋𝜎1𝜎2√1 − 𝜌2

exp ( 1
2𝜎2𝑐

(𝜇2𝑐 − 𝑙)) ⋅ exp [− 1
2𝜎2𝑐

(𝑥2 − 2𝑥𝜇𝑐 + 𝜇2𝑐)]

∝ 1
√2𝜋𝜎𝑐

exp [−12
(𝑥 − 𝜇𝑐)

2

𝜎2𝑐
] ,

which is the density of a normal distributed random variable with mean 𝜇𝑐 and variance 𝜎2𝑐 .
̂𝑓(𝑥) is the density of a normal distribution, as it is proportional to it, and it has to have the

same normalizing constant to be a proper density with ∫ℝ ̂𝑓(𝑥)𝑑𝑥 = 1.

B.3. Further simulation results
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(b) The margins are Student’s t with (𝜇 = 0, 𝜎 = √1/2, 𝜈 = 4).

Figure B.1.: Effect of a misspecified copula on the calibration of the forecast. 10 000 points
are evaluated using the “fit” copula family for data stemming from the “true”
copula. Both copulas use the same, “true” 𝜏 = 0.8. For notes on the interpreta-
tion, see Section 4.2.4.
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Figure B.2.: CCDsimulation results for the scenariowithmarginsℳ1, 𝜏 = 0.4, and aClayton
copula.
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Figure B.3.: CCD simulation results for the scenario with marginsℳ1, 𝜏 = 0.4, and a Frank
copula.
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Figure B.4.: CCD simulation results for the scenario with marginsℳ1, 𝜏 = 0.4, and a Gaus-
sian copula.
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Figure B.5.: CCD simulation results for the scenario with marginsℳ1, 𝜏 = 0.4, and a Gum-
bel copula.
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Figure B.6.: CCD simulation results for the scenario with marginsℳ1, 𝜏 = 0.8, and a Frank
copula.
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Figure B.7.: CCD simulation results for the scenario with marginsℳ1, 𝜏 = 0.8, and a Gaus-
sian copula.
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Figure B.8.: CCDsimulation results for the scenariowithmarginsℳ2, 𝜏 = 0.4, and aClayton
copula.
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Figure B.9.: CCD simulation results for the scenario with marginsℳ2, 𝜏 = 0.4, and a Frank
copula.
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Figure B.10.: CCD simulation results for the scenario withmarginsℳ2, 𝜏 = 0.4, and a Gaus-
sian copula.



Appendix to Chapter 4 122

BL
P

CC
D

EM
OSSL

P
TL
P

0.82

0.84

0.86

0.88

0.90

0.92

0.94

1
(a) RMSE

BL
P

CC
D

EM
OSSL

P
TL
P

1.25

1.30

1.35

1.40

1
(b) LS

BL
P

CC
D

EM
OSSL

P
TL
P

0

5

10

15

1
(c) AD

BL
P

CC
D

EM
OSSL

P
TL
P

0.02

0.04

0.06

0.08

1
(d) KS

Figure B.11.: CCD simulation results for the scenario withmarginsℳ2, 𝜏 = 0.4, and a Gum-
bel copula.
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Figure B.12.: CCD simulation results for the scenario with marginsℳ2, 𝜏 = 0.8, and a Clay-
ton copula.
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Figure B.13.: CCD simulation results for the scenario withmarginsℳ2, 𝜏 = 0.8, and a Frank
copula.
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Figure B.14.: CCD simulation results for the scenario withmarginsℳ2, 𝜏 = 0.8, and a Gaus-
sian copula.
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Figure B.15.: CCD simulation results for the scenario withmarginsℳ2, 𝜏 = 0.8, and a Gum-
bel copula.
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Figure B.16.: CCD simulation results for the scenario with marginsℳ3, 𝜏 = 0.4, and a Clay-
ton copula.
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Figure B.17.: CCD simulation results for the scenario withmarginsℳ3, 𝜏 = 0.4, and a Frank
copula.
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Figure B.18.: CCD simulation results for the scenario withmarginsℳ3, 𝜏 = 0.4, and a Gaus-
sian copula.
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Figure B.19.: CCD simulation results for the scenario withmarginsℳ3, 𝜏 = 0.4, and a Gum-
bel copula.
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Figure B.20.: CCD simulation results for the scenario with marginsℳ3, 𝜏 = 0.8, and a Clay-
ton copula.
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Figure B.21.: CCD simulation results for the scenario withmarginsℳ3, 𝜏 = 0.8, and a Frank
copula.
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Figure B.22.: CCD simulation results for the scenario withmarginsℳ3, 𝜏 = 0.8, and a Gaus-
sian copula.
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Figure B.23.: CCD simulation results for the scenario withmarginsℳ3, 𝜏 = 0.8, and a Gum-
bel copula. Note that the AD test statistic cannot be displayed for the CCD
method due to numerical instabilities in the test statistic in some simulation
runs.
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B.4. Further results for Section 4.4
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Figure B.24.: Forecast error dependence plot for the DDNN-JSU models in EPF. The lower
left plots display scatter plots of the errors, whereas the upper right plots vi-
sualize the contours of a two-dimensional kernel density estimation. On the
diagonal, histograms of the errors for the individual models are shown. The
resulting Kendall’s 𝜏 is displayed in the lower right corner of the contour plots.
The errors are strongly pairwise dependent, and Kendall’s 𝜏 is smaller than for
the DDNN-Normal models. The DDNN-JSUmodels have more extreme errors
than the DDNN-Normal models.
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MAE RMSE CRPS KS

DDNN-JSU-1 4.2641 8.5946 3.0138 0.0650
DDNN-JSU-2 4.2085 6.9521 2.9999 0.0483
DDNN-JSU-3 4.2617 10.7822 3.0108 0.0820
DDNN-JSU-4 4.0343 7.2352 2.8870 0.0323
DDNN-Normal-1 4.0403 6.6909 2.9538 0.0473
DDNN-Normal-2 4.1099 6.6992 3.0098 0.0799
DDNN-Normal-3 4.0714 6.4846 2.9649 0.0733
DDNN-Normal-4 4.0765 6.6180 2.9626 0.0376
KDE-JSU-1 4.2652 8.6027 3.2679 0.0289
KDE-JSU-2 4.2084 6.9546 3.1888 0.0458
KDE-JSU-3 4.2637 10.8575 3.2443 0.0274
KDE-JSU-4 4.0339 7.2532 3.0762 0.0369
KDE-Normal-1 4.0403 6.6909 3.0619 0.0323
KDE-Normal-2 4.1099 6.6992 3.1116 0.0278
KDE-Normal-3 4.0714 6.4846 3.0316 0.0356
KDE-Normal-4 4.0765 6.6180 3.0868 0.0317
JSU-TLP 3.8716 7.6316 2.7436 0.0394
Normal-TLP 3.8626 6.3833 2.8145 0.0399
CCD-All 3.8885 6.2289 2.8838 0.0174
CCD-Hourly 3.9505 6.3056 2.9523 0.0224
CCD-1Y-Hourly 3.9472 6.3002 2.9504 0.0240
CCD-1Y 3.8860 6.2164 2.8816 0.0187
CCD-13-All 3.8751 6.1365 2.8795 0.0240
CCD-13-1Y 3.8764 6.1399 2.8808 0.0240
CCD-14-All 3.9342 6.3185 2.9447 0.0243
CCD-14-1Y 3.9320 6.3094 2.9423 0.0239

Table B.1.: Results of point (MAE, RMSE), probabilistic (CRPS), and calibration (KS) evalua-
tion for the different models on electricity price forecasts. For all columns, lower
values indicate better forecasts. The combined forecasts tend to have a lower
MAE and RMSE than the individual models and are better calibrated, but do not
necessarily have a lower CRPS than the individual models.
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Figure B.25.: PIT histograms for the forecasts by the DDNN-JSU models with different hy-
perparameter setups in EPF. The histograms are skewed, indicating a bad fore-
cast calibration.
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(a) KDE-Normal-1
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(b) KDE-Normal-2
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(c) KDE-Normal-3
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(d) KDE-Normal-4

Figure B.26.: PIT histograms for the forecasts by the KDE models with different hyperpa-
rameter setups in EPF.TheKDE is slightly underdispersed but better calibrated
than the corresponding DDNNmodels. Note the different scales on the y-axis.
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(a) CCD-All-Hourly
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(b) CCD-1Y-Hourly
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(c) CCD-All-14
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(d) CCD-1Y-14

Figure B.27.: PIT histograms for the CCDmodels using all data or at most one year of data to
fit and using all DDNN-Normal models or only models DDNN-Normal-1 and
DDNN-Normal-4.



C. Appendix to Chapter 5

The section provides additional material on Chapter 5 and is based on Publ. III. Ap-
pendix C.1 contains material on the derivation and the measures of Section 5.2 by present-
ing the sample data generation schemes and illustrative simulation studies on bootstrapping
confidence intervals and bandwidth selection in multivariate KDE for the conditional ATC
plot. Appendix C.2 presents additional results for the assessment of ATC for COVID-19
nowcasting in Section 5.3.1.

C.1. Additional material on Section 5.2

C.1.1. Data generation for Section 5.2

The first dataset is generated by sequentially generating 𝐱Δ and 𝐲Δ. First, the 𝑥Δ𝑡 are sampled
as a sum of a standard normal randomnumber and a uniform randomnumber on (−10, 10):

𝑥Δ𝑡 ∼ 𝑁(0, 1) + 𝑈(−10, 10) 𝑡 = 1,… , 𝑇.

Subsequently, the 𝐲Δ are simulated for a constant ATC ratio 𝑘 by

𝑦Δ𝑡 = 𝑥Δ𝑡 ⋅ 𝑛𝑡 ⋅ 𝑏𝑡,

where 𝑛𝑡 is a truncated normal distribution withmean one and standard deviation 0.5, trun-
cated at 0, and 𝑏𝑡 is a symmetric Bernoulli random variable with parameter 𝑘. For a time-
varying ATC ratio, the parameter 𝑘 is modified to have awave-shape function over time, that
is,

𝑘𝑡 = 0.75 + sin(𝑡/365.25 ⋅ 2𝜋)/4.

For the asymmetric ATC ratio, 𝑘 is a function of 𝑥Δ𝑡 ,

𝑘(𝑥) = 0.5 +min {max {𝑥 + 5
10 , 0} , 1} /2.

132
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In the second approach, 𝑦Δ𝑡 and 𝑥Δ𝑡 are modeled to be multivariate normal with mean 0
and covariance matrix

Σ = (
4 3
3 4

) .

Thus, the conditional probability of correct direction prediction can be calculated by a con-
ditional normal distribution to

𝑃(𝑌Δ𝑋Δ > 0|𝑋Δ = 𝑥) = Φ( 3
2√7

𝑥) ,

where Φ is a standard normal CDF.
The four-quadrant plots for the sample realizations of the data generation schemes are

shown in Figure C.1.

C.1.2. Simulation study on bootstrapping confidence intervals

We examine three methods for bootstrapping for computing confidence intervals for the
ATC ratio: the intuitive percentile and themore sophisticated basic and BCamethod. In the
percentile approach, the confidence interval for the level𝛼 is built directly from the empirical
distribution of the bootstrap estimators. The basic approach computes the confidence inter-
val based on the non-bootstrap estimate using the bootstrapped quantile deviations (Davison
and Hinkley, 1997). The BCa method modifies the quantiles of the empirical bootstrap dis-
tribution by a bias and an acceleration parameter (Efron, 1987). Typically, the percentile
approach needs larger datasets and provides an easy and fast estimate, while the BCa is
computationally expensive but requires smaller datasets for reasonable confidence inter-
vals. The basic approach balances these two objectives. We compare the approaches in a
small synthetic data study on their small-dataset behavior and computation time.
We vary the number of time steps 𝑇 to take typical time-series values, such as 30 for

daily data in a month, 52 for weekly data, 168, 365, 720, and 1024. The considered datasets
are the first dataset with asymmetric dependence and the second dataset outlined in Ap-
pendix C.1.1. In the calculations, the scipy package’s implementation of bootstrap confi-
dence intervals is used (Virtanen et al., 2020). The prescribed confidence level is 90 %, and
the number of bootstrap samples is 10, 000. The share of confidence intervals covering the
true values per method and 𝑇 are shown in Table C.1. The true values of the accuracy are
computed based on a dataset of size 108, yielding 0.7501 and 0.7700 for the two datasets.
The computation times per method and dataset are shown in Figure C.2. For the small sam-
ple sizes up to 𝑇 = 168, only the BCa method keeps the confidence interval size and yields
slightly wider confidence intervals. The method’s results are similar for the larger sample
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percentile basic BCa

30 0.84 (0.249) 0.86 (0.250) 0.91 (0.257)
52 0.89 (0.194) 0.89 (0.193) 0.89 (0.198)
168 0.91 (0.109) 0.90 (0.109) 0.90 (0.110)
365 0.90 (0.074) 0.90 (0.074) 0.90 (0.074)
720 0.90 (0.053) 0.90 (0.053) 0.90 (0.053)
1024 0.90 (0.044) 0.90 (0.044) 0.89 (0.044)

(a) First dataset with asymmetry.

percentile basic BCa

30 0.87 (0.243) 0.88 (0.242) 0.92 (0.249)
52 0.87 (0.188) 0.89 (0.188) 0.90 (0.192)
168 0.89 (0.106) 0.90 (0.106) 0.90 (0.107)
365 0.90 (0.072) 0.90 (0.072) 0.90 (0.072)
720 0.90 (0.052) 0.90 (0.052) 0.90 (0.052)
1024 0.89 (0.043) 0.90 (0.043) 0.90 (0.043)

(b) Second dataset.

Table C.1.: Proportion of bootstrap confidence intervals covering the true value of ATC ratio
per method and sample size 𝑇. The average width of the confidence interval is
listed in brackets.

sizes. The computation time for theBCamethod is slightly larger than for the othermethods,
but all methods have a moderate computation time. BCa is the only method that maintains
the confidence level for small datasets while increasing the computation time only moder-
ately for larger datasets. Therefore, we use the BCa method for confidence intervals in the
applications in Section 5.3.

C.1.3. Visualization of different bandwidth selectors in multivariate KDE

We examine the resulting conditional ATC plots for the three well-known KDE bandwidth
selectors, rule-of-thumb, cross-validation maximum likelihood, and cross-validation least
squares using the statsmodels Python package (Seabold and Perktold, 2010) in Figure C.3.
While the rule-of-thumb is based only on the covariance matrix, the other two numerically
optimize the bandwidth with a hold-one-out least squares or likelihood objective function.
The dashed line shows the theoretical 𝑃(𝑌Δ𝑋Δ > 0|𝑋Δ = 𝜒). The second method, cross-
validation least squares, requires long computation times while yielding small or no band-
width results, even for two relatively small datasets. The rule-of-thumb and cross-validation
maximum likelihood methods yield reasonable results at moderate computation times.

C.1.4. Probabilistic ATC evaluation

Section 5.2.6 outlines the assessment of probabilistic ATC for nowcasts and forecasts and
specifies the computation for predictions in terms of aCDF and known true values. Here, we
outline the computation for quantile forecasts and yet unknown, probabilistic true values.
If forecasts or nowcasts are given as quantiles, 𝑝𝑡 can be determined by interpolations

among the quantiles. Let 𝑞𝑝 denote the quantiles for target time 𝑡 + 𝑙 for even-spaced prob-
abilities 𝑝 ∈ {1/�̂�, … , (𝑝−1)/�̂�} (�̂� ∈ ℕ∖ {1, 2}) and 𝑦𝑡 the true value at time 𝑡. The quantiles
𝑞𝑝 generally differ for each time step, but we omit an index here for ease of notation. The
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probability 𝑝𝑐𝑡 of a negative change is between 𝑝⋆ and 𝑝⋆ + 1/�̂� for

𝑝⋆ = max{𝑝 ∈ {1/�̂�, … , (�̂� − 1)/�̂�} ∶ 𝑞𝑝 ≤ 𝑦𝑡}, if 𝑞1/�̂� ≤ 𝑦𝑡 ≤ 𝑞1−1/�̂�.

Quantiles do not determine the location within the interval [𝑝⋆, 𝑝⋆ + 1/�̂�]. Under the as-
sumption of a uniform distributionwithin the quantile interval, the probability of a negative
change is

𝑝𝑐𝑡 =
𝑦𝑡 − 𝑞𝑝⋆

�̂�(𝑞𝑝⋆+1 − 𝑞𝑝⋆)
+ 𝑝⋆.

The approach does not yet assign probabilities for 𝑦𝑡 smaller than the smallest quantile 𝑞1/𝑝
or greater than the largest quantile. As a simple extension, we assume that the probabil-
ity mass is uniformly distributed on an interval of the same length as the nearest interval
specified by the quantiles. This yields

𝑝𝑐𝑡 =

⎧
⎪

⎨
⎪
⎩

max{ 1
�̂�
−

𝑞𝑝⋆−𝑦𝑡
�̂�(𝑞𝑝2/�̂�−𝑞1/�̂�)

, 0} , if 𝑦𝑡 < 𝑞1/𝑝,

min{ 1
�̂�
−

𝑦𝑡−𝑞(�̂�−1)/�̂�
�̂�(𝑞(�̂�−1)/�̂�−𝑞(�̂�−2)/�̂�)

, 1} , if 𝑦𝑡 > 𝑞1−1/𝑝,
𝑦𝑡−𝑞𝑝⋆

�̂�(𝑞𝑝⋆+1−𝑞𝑝⋆)
+ 𝑝⋆ , otherwise.

The probability of positive change is 𝑝𝑡 = 1 − 𝑝𝑐𝑡 .
If the true value is given as a distribution because it is still unknown, the probabilities 𝑝𝑡

can be computed by integration. Let for two nowcasts the distributions be given by PDFs
𝑓𝑡+𝑙|𝑡+𝑙 and 𝑓𝑡|𝑡+𝑙 with CDFs 𝐹𝑡+𝑙|𝑡+𝑙 and 𝐹𝑡|𝑡+𝑙. Then, the probability of a negative change
can be computed by

𝑝𝑐𝑡 = ∫
𝑥1,𝑥2∈ℝ∶𝑥2<𝑥1

𝑓𝑡|𝑡+𝑙(𝑥1)𝑓𝑡+𝑙|𝑡+𝑙(𝑥2) d (𝑥1, 𝑥2)

= ∫
𝑥1∈ℝ

∫
𝑥1

−∞
𝑓𝑡|𝑡+𝑙(𝑥1)𝑓𝑡+𝑙|𝑡+𝑙(𝑥2) d 𝑥2 d 𝑥1

= ∫
𝑥1∈ℝ

𝑓𝑡|𝑡+𝑙(𝑥1)𝐹𝑡+𝑙|𝑡+𝑙(𝑥1) d 𝑥2 d 𝑥1. (C.1)

Thereby, the distributions are assumed to be independent. If the nowcasts have the form of
a multivariate distribution, including the dependence of the two PDFs, 𝑓𝑡+𝑙|𝑡+𝑙(𝑥2) has to be
replaced by the PDF conditional on 𝑥1. As a Monte Carlo approximation of Equation (C.1),
the probability can also be calculated by sampling from 𝑓𝑡+𝑙|𝑡+𝑙 and 𝑓𝑡|𝑡+𝑙 and calculating the
fraction of negative changes. For forecasts, the indexes have to be shifted. If no PDFs are
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Abbreviation Nowcasting hub key

EPI Epiforecasts-independent
ILM ILM-prop
KIT KIT-simple_nowcast
LMU LMU_StaBLab-GAM_nowcast
RIVM RIVM-KEW
RKI RKI-weekly_report
SU SU-hier_bayes
SZ SZ-hosp_nowcast
ENS-MEAN NowcastHub-MeanEnsemble
ENS-MED NowcastHub-MedianEnsemble

Table C.2.:Matching the abbreviation to the key in the COVID-19 nowcasting hub. Infor-
mation on the models and references are listed in Wolffram et al. (2023, Table 1).

(1), l=1 𝜍𝑥Δ,1 𝑞0.1(𝑥Δ,1) (1), l=7 𝜍𝑥Δ,7 𝑞0.1(𝑥Δ,7) (1), l=14 𝜍𝑥Δ,14 𝑞0.1(𝑥Δ,14)

EPI 86 520 44 83 1411 78 80 1976 144
ILM 86 281 26 81 1457 102 82 2356 140
KIT 84 354 50 89 1306 171 83 1964 265
LMU 65 285 26 84 1180 124 78 1946 167
ENS-MEAN 85 267 23 86 1213 98 83 1955 235
ENS-MED 88 259 23 88 1206 101 81 1955 186
RIVM 77 241 32 81 1264 123 77 2034 190
RKI 99 362 34 106 1194 145 99 1832 325
SU 91 376 47 85 1390 180 80 2126 263
SZ 92 201 26 89 1154 184 87 1889 241
True 75 262 27 66 1237 126 73 2193 284

Table C.3.:Marginal analysis of the COVID-19 nowcast and true changes for the horizons
one, seven, and 14 days. The column (1), 𝑙 = 𝑙 shows the number of values
greater than zero for horizon 𝑙, 𝜎𝑥Δ,𝑙 the standard deviation, and 𝑞0.1(𝑥Δ,𝑙) the
10% quantile of the changes’ absolute values.

available, they can be estimated from the CDF or quantiles, or the CDF or quantiles can be
used to generate samples for the Monte Carlo approximation. This approach is applied in
Section 5.3.1, as the true values are published with a delay of more than 80 days, and the
nowcasts are given as quantiles.

C.2. Additional results for Section 5.3.1
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𝜇1 𝜇+,1 𝜇−,1 𝜇1𝑞0.1 𝜇+,1𝑞0.1 𝜇−,1𝑞0.1

EPI 0.68
(0.62, 0.74)

0.64
(0.55, 0.72)

0.73
(0.63, 0.81)

0.69
(0.63, 0.75)

0.64
(0.56, 0.73)

0.75
(0.65, 0.82)

ILM 0.73
(0.67, 0.79)

0.67
(0.58, 0.76)

0.82
(0.73, 0.89)

0.74
(0.68, 0.79)

0.68
(0.60, 0.76)

0.82
(0.72, 0.89)

KIT 0.62
(0.55, 0.68)

0.58
(0.49, 0.67)

0.65
(0.56, 0.75)

0.62
(0.56, 0.69)

0.59
(0.51, 0.67)

0.66
(0.57, 0.74)

LMU 0.66
(0.60, 0.72)

0.66
(0.57, 0.75)

0.66
(0.57, 0.73)

0.66
(0.59, 0.72)

0.66
(0.55, 0.75)

0.66
(0.57, 0.73)

ENS-MEAN 0.81
(0.75, 0.85)

0.76
(0.68, 0.84)

0.88
(0.81, 0.93)

0.81
(0.75, 0.86)

0.76
(0.68, 0.83)

0.88
(0.81, 0.94)

ENS-MED 0.75
(0.68, 0.80)

0.69
(0.60, 0.77)

0.81
(0.73, 0.89)

0.75
(0.69, 0.80)

0.69
(0.61, 0.77)

0.83
(0.74, 0.90)

RIVM 0.77
(0.72, 0.82)

0.75
(0.66, 0.83)

0.79
(0.71, 0.85)

0.78
(0.72, 0.83)

0.75
(0.66, 0.83)

0.81
(0.73, 0.87)

RKI 0.74
(0.68, 0.80)

0.67
(0.59, 0.75)

0.88
(0.79, 0.93)

0.74
(0.67, 0.79)

0.66
(0.58, 0.73)

0.87
(0.78, 0.93)

SU 0.71
(0.65, 0.77)

0.66
(0.57, 0.74)

0.78
(0.69, 0.85)

0.72
(0.66, 0.78)

0.67
(0.58, 0.75)

0.79
(0.70, 0.87)

SZ 0.74
(0.69, 0.80)

0.68
(0.60, 0.76)

0.82
(0.73, 0.88)

0.74
(0.69, 0.80)

0.68
(0.60, 0.76)

0.82
(0.73, 0.88)

(a) One day.
𝜇14 𝜇+,14 𝜇−,14 𝜇14𝑞0.1 𝜇+,14𝑞0.1 𝜇−,14𝑞0.1

EPI 0.83
(0.77, 0.87)

0.79
(0.70, 0.85)

0.87
(0.80, 0.92)

0.85
(0.80, 0.90)

0.81
(0.73, 0.87)

0.90
(0.83, 0.95)

ILM 0.86
(0.81, 0.90)

0.78
(0.70, 0.85)

0.96
(0.90, 0.99)

0.87
(0.82, 0.91)

0.80
(0.71, 0.86)

0.96
(0.90, 0.99)

KIT 0.81
(0.75, 0.86)

0.76
(0.67, 0.83)

0.87
(0.79, 0.92)

0.82
(0.76, 0.86)

0.76
(0.68, 0.84)

0.88
(0.81, 0.93)

LMU 0.88
(0.83, 0.92)

0.85
(0.77, 0.91)

0.91
(0.85, 0.95)

0.89
(0.85, 0.93)

0.87
(0.79, 0.92)

0.91
(0.85, 0.95)

ENS-MEAN 0.83
(0.77, 0.87)

0.77
(0.69, 0.84)

0.89
(0.83, 0.95)

0.84
(0.78, 0.88)

0.78
(0.70, 0.85)

0.91
(0.84, 0.95)

ENS-MED 0.84
(0.79, 0.89)

0.79
(0.70, 0.85)

0.90
(0.83, 0.95)

0.85
(0.80, 0.90)

0.80
(0.72, 0.86)

0.91
(0.84, 0.96)

RIVM 0.85
(0.80, 0.89)

0.82
(0.74, 0.88)

0.88
(0.80, 0.93)

0.85
(0.80, 0.90)

0.83
(0.75, 0.89)

0.88
(0.80, 0.93)

RKI 0.81
(0.75, 0.86)

0.71
(0.63, 0.77)

0.98
(0.93, 1.00)

0.81
(0.75, 0.86)

0.71
(0.63, 0.78)

1.00
(nan, nan)

SU 0.88
(0.83, 0.92)

0.84
(0.76, 0.90)

0.92
(0.86, 0.96)

0.89
(0.84, 0.93)

0.85
(0.77, 0.91)

0.94
(0.87, 0.97)

SZ 0.82
(0.77, 0.87)

0.76
(0.68, 0.83)

0.90
(0.83, 0.94)

0.83
(0.78, 0.88)

0.78
(0.69, 0.85)

0.90
(0.83, 0.94)

(b) 14 days.

Table C.4.:ATC ratio 𝜇, positive ATC ratio 𝜇+, and negative ATC ratio 𝜇− for the models
without and with exclusion areas for the horizon one and 14 days in COVID-19
nowcasting. The exclusion areas are rectangles centered on the zero points with
a width and height to exclude the 10%-quantile of the absolute values of nowcast
or true values.
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(a) Constant ATC ratio.
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(d) Second approach.

Figure C.1.: Four-quadrant plots for sample realizations of the data generation schemes of
Section C.1.1. Although the first and second plots differ over time, their differ-
ence is not discernible in the plots. The third data set’s asymmetry is visible in
the plot, but the decrease in the ATC near 0 is not visible.
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(a) First dataset with asymmetry.
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(b) Second dataset.

Figure C.2.: Boxplot of the computation time for different bootstrapping methods and data
set sizes 𝑇. The computation time refers to bootstrapping one confidence inter-
val based upon 10, 000 values. Each boxplot reflects 10, 000 samples. The BCa
method takes slightly longer than the other two, but the difference is negligible.
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(a) First dataset with asymmetric dependence.
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(b) Second dataset.

Figure C.3.: Conditional ATC plot for different bandwidth selection processes. Cross-
validation least squares takes a considerably larger computation time. It con-
verges neither for the first nor the second data set with an exclusion area and
yields a bandwidth too small for the second data set. The rule of thumb is the
fastest method but tends to oversmooth. The cross-validation maximum likeli-
hood method yields a more reasonable bandwidth with moderate computation
time. 𝜀 specifies an exclusion area 𝐸 = {(𝑥, 𝑦) ∈ ℝ2 ∶ (−𝜀 ≤ 𝑥 ≤ 𝜀)} in 𝐱Δ-
direction.
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(a) Realisations.
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(b) Same-day nowcasts.

Figure C.4.: True and nowcast data of the seven-day-hospitalization in Germany from
November 22, 2021, to April 29, 2022 (C19-Hub). The outliers in the RKI model
of values above 108 are removed before the following analysis.
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Figure C.5.: Four-quadrant plots for the COVID-19 nowcast models ILM, RIVM, RKI, and

ENS-MEAN and the horizons of one, seven, and 14 days. The spread in both
directions increases with the horizon.
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(a) Conditional ATC plot for horizon one.
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(b) Conditional ATC plot for horizon 14.
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(c) ATC ratio over exclusion area size in 𝐱Δ for

horizon one.
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(d) ATC ratio over exclusion area size in 𝐱Δ for
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Figure C.6.: Conditional ATC plot and ATC ratio over exclusion area for the COVID-19 now-
cast models ILM, RKI, RIVM, and ENS-MED for the horizon seven days. Note
the different axis scalings of theATC ratios for the two horizons. While the ENS-
MEDmodel has a rather lowATC ratio for small exclusion areas, it is increasing
fast for larger exclusion areas. The RKImodel is among the worst, except for the
small negative predicted changes.
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(a) Reliability diagram for horizon seven days.
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(b) Reliability diagram for horizon 14 days.
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(c) Count histogram of the predicted probabilities for the horizon one, seven, and 14 days.

Figure C.7.: The reliability diagram for the COVID-19 nowcasting models ILM, RIVM, RKI,
and ENS-MED for the horizon seven and 14 days. Additionally, the count of
predicted probabilities for the horizons is shown. The reliability diagram bins
are chosen according to the empirical quantiles of the predicted probabilities.
As the models issue small or large probabilities of increase for the higher hori-
zons, little information on the accuracy of moderate probability predictions is
available.
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