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ABSTRACT The core idea ofMulti-Task Learning (MTL) is to develop neural networkswith a shared feature
extraction backbone and multiple prediction heads, each capable of inferring a different task simultaneously.
Parameters in the backbone contribute to all tasks while those in the prediction heads contribute to only one or
fewer tasks. Challenges arise when multiple tasks compete for resource. Existing methods focus on resource
competition in shared parameters and proposed explanatory factors of task conflicts, task dominance, and
gradient stability. However the fundamental nature of MTL is still understudied. In this paper, instead of
following the existing methodology research directions, we carry out large-scale empirical study and provide
deeper insight on understandingMTL. In particular, instead of focusing on resource competition in the shared
parameters in the backbone, we shift our attention to resource competition in the backbone output, which is
the embedded representation that is shared by all prediction heads. We show that the existing explanatory
factors display weak causal relationship with model performance. We propose a novel measurement, which
we term Feature Disentanglement, and show that understanding MTL problems from the perspective of
how the shared representation is leveraged by different prediction heads, is a more faithful and reliable way
than that from the perspective of how supervision signals from different tasks are interfering in the shared
parameters. Additionally, it has been a commonly employed technique to replace gradients w.r.t. shared
parameters with gradients w.r.t. shared representation for reduced computation.We conduct a comprehensive
study and show that unless a theoretical analysis could be developed, there is not general guarantee that this
fast approximation technique would work in practice.

INDEX TERMS Attention mechanism, computer vision, deep learning, explainable AI, machine learning,
multi-objective optimization, multi-task learning, neural networks, representation, robotics.

I. INTRODUCTION

Multi-task learning (MTL) is a learning paradigm that arises
from the need to develop machine learning systems capable
of performing multiple tasks simultaneously. At a high-level,
MTL systems comprises two key components: a single back-
bone and multiple prediction heads. The backbone encodes
input data into a shared representation that is consumed by
the prediction heads, and each prediction head learns to infer
for one task from the extracted shared representation. Multi-
task models are efficient because the majority of parame-
ters lie in the feature extraction backbone and are shared
parameters, while the task-specific parameters are usually

very light-weighed. The merit of designing MTL systems is
two-fold. Firstly, compared to developing a single-task model
for each task, multi-task models significantly reduces overall
model size because the backbone is shared, and hence during
inference it brings faster speed, reduced memory footprint,
and lower power consumption. Secondly, it is a common
belief that the more complex the supervision signals, the
richer the learned representation [1]–[3]. Introducing super-
vision signals from a diverse range of down stream tasks
has been proven to be an effective approach to improve task
performance of each other compared to training single-task
learning systems [4]–[12]. The idea of MTL has already
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FIGURE 1. Illustration of feature disentanglement calculation. In the
above, p·j denotes the mapping i 7→ pij , which is the (smoothened)
distribution of feature saliency at location j across all tasks. Same for
p·(j−1) and p·(j+1). If an extracted feature is disentangled for the T down
stream tasks, then each distribution p·j should be concentrated on fewer
tasks and have lower entropy.

been exploited in classical discriminative computer vision
algorithms well before it becomes an active research topic on
its own [13]–[15].

Despite all the potential benefits MTL can bring, training
a multi-task models is often more challenging, as observed in
the fields of computer vision [11], [15]–[19], natural language
processing [20], [21], meta learning [22], and reinforcement
learning [23]–[27]. Challenges of MTL arise because it re-
quires consideration of multiple objectives when deciding
how parameters in the shared backbone should be updated.
Given vision tasks with a wide range of difficulties, output
dimensions, and types of training loss functions, it is rarely
the case that all tasks ‘‘align well’’ during training. Namely, a
parameter update on the backbone that improves performance
of one task may lead to worse performance of another task
at the same time. This phenomenon is known as negative
transfer or destructive interference [18]. It is widely accepted
that this phenomenon can be explained by two factors: task
conflicts and task dominance (Section III-A). However, em-
pirically found that task conflicts and task dominance have
weak relationship with actual performance.

From the computation perspective, many MTL meth-
ods [10], [28]–[31] involve computing gradients w.r.t. the
shared parameters of all the loss functions, and hence back-
propagation through the backbone is done O(T ) times if
T denotes the number of tasks. This procedure in training
is extremely expensive and prior work [10], [32]–[34] have
proposed to use feature-level gradients (gradients w.r.t. shared
representation) to replace parameter-level gradients (gradi-
ents w.r.t. shared parameters) for more efficient computation,
which we will address as the ‘‘Fast Gradient Surrogate’’ tech-
nique in this paper. However, some work [34] lack theoretical
guarantee or solid empirical analysis to prove effectiveness
of this surrogate and others [35] have reported poor results

when doing so. While the huge saving in computation cost is
appealing, this technique is unfortunately not generalizable to
all gradient-based methods, as we will show in Section V.
In this paper, we take the innovative step to shift research

focus from shared parameters to shared representation. We
borrow ideas from the Explainable AI (XAI) literature and
investigate how the shared representation is used by the
prediction heads from both the bottom-up approach, which
requires back-propagation through the prediction heads, and
the top-down approach, which requires an additional attention
module for each task.We convert the attributions into saliency
maps and draw connection between the saliency maps and
the model performance. Moreover, we implement the feature-
level gradient counterparts of several MTL methods and em-
pirically compare with the originally proposed methods. Our
contribution is two-fold:

• We challenge the traditional assumptions that task con-
flicts and task dominance are reasons why MTL is
harder and propose Feature Disentanglement measure-
ment which can more faithfully and efficiently reveal
problem nature.

• We provide solid empirical evidence and show that there
is no guarantee in practice that the fast gradient sur-
rogate technique will preserve model performance or
even improve it, unless a theoretical analysis could be
developed.

II. BACKGROUND AND PRIOR WORK
Notations and Terminologies. Throughout the paper, we
follow the following notations. T denotes the number of
tasks. X denotes the set of training inputs. Yi denotes the
label space for task i and we define Y :=

⊕T
i=1 Yi as the

collection of all task labels. D ⊂ X ×Y denotes the training
dataset. fθ : X → Y denotes a neural network parametrized
by θ ∈ Ω where Ω is the parameter space. θsh ∈ Rd

denotes shared parameters where d is the total number of
shared parameters. Z ∈ Rh denotes shared representation
where h is the dimension of the embedded feature space.
Li : Yi×Yi → R≥0 denotes the loss functions for the i-th task.
gi := ∇θshLi ∈ Rd denotes each task gradient, or ‘‘parameter-
level gradients’’. G := [g1, ..., gT ] ∈ Rd×T denotes the
gradient matrix whose columns are the task gradients. ∇ZLi

are the ‘‘feature-level gradients’’. The data point at which
these gradients are computed is omitted from the notations
for simplicity and should be inferred from the context. For
any natural number n, [n] := {1, ..., n}.
Problem Framework. In general, multi-task learning can be
formulated as the following optimization problem:

min
θ∈Ω

∑
(x,y)∈D

L(fθ(x), y), (1)

where L is some loss function, either scalar-valued or vector-
valued, defined on Y×Y . The average of all task losses L :=
1
T

∑T
i=1 Li ∈ R≥0, or Equal Weighting (EW), is the most

commonly used baseline. Pareto optimization minimizes the
loss vector L := (L1, ...,LT )

⊤ ∈ RT
≥0 w.r.t. the partial-order

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3429281

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Dayou Mao et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

≤K on RT induced by the pointed, closed, and convex cone
K := RT

≥0 [10], [35]–[37]. As we discuss in the remaining of
this section, wealth of research has been done on efficient and
effective optimization algorithms that solve Problem 1 and on
designing the specific forms of the loss function L.
Methodology Overview. MTL methods can be broadly di-
vided into optimization methods and architecture design, and
optimizationmethods can be further divided into gradient ma-
nipulationmethods, gradient balancingmethods, and gradient
regularization methods. In this paper, we use well-studied
MTLmodels and focus on their optimizationmethods. Before
diving into the details of prior work, we make two remarks
here on the differences and relationships between gradient
manipulation methods (Section II-A) and gradient balancing
methods (Section II-B). (1) Due to the linearity of the gradient
operator∇, scaling the loss function and scaling the gradients
are essentially the same. However, gradient manipulation
methods aim to manipulate the directions of the gradients to
resolve task conflicts, whereas gradient balancing methods
aim to manipulate the magnitudes of the gradients to resolve
task dominance. (2) Gradient manipulation methods focus on
manipulating gradients for the shared parameters and tune
the task-specific parameters as usual single-task learning,
whereas gradient balancing methods scales gradients for all
model parameters.

A. GRADIENT MANIPULATION
To update the shared parameters θsh taking all T tasks into
consideration, gradient manipulation methods [10], [28]–
[30], [32], [33], [35], [38], [39] first compute task gradients
gi = ∇θshLi and propose different methods to compute
coefficients α = (α1, ..., αT )

⊤ ∈ RT and set

ĝ := Gα =

T∑
i=1

αigi ∈ Rd (2)

as gradient for the shared parameters. Prediction heads are
trained as in usual single-task learning, each supervised by
their own loss function. Computation of α can be done either
explicitly or implicitly.

Explicit Methods [28], [29], [33], [38] derive closed-
form formulae for α based on some heuristics and may also
rely on some stochasticity. PCGrad [28] proposed to reduce
task conflicts by projecting the conflicting gradients onto
the normal planes of each other, removing the conflicting
component. GradVac [29] expanded this idea and proposed
to encourage acute angles between gradients by maintaining
an Exponential Moving Average (EMA) of cosine similarity
between task gradients. GradDrop [33] propose to mask the
gradients with Gradient Sign Purity so that the gradient signs
are more aligned. Random Gradient Weighting (RGW) [38]
proposed to randomize α based on Gaussian distribution.

Implicit Methods [10], [30], [32], [35], [39] hypothesize
different objectives and compute the gradient weights α by
solving either an optimization problem or a system of equa-
tions. MGDA [10] re-weighs task gradients so that the result

is the norm minimizer in the convex hull enclosed by the task
gradients. CAGrad [30] proposed to maximize the minimum
amount of decrease (in absolute value) in the individual losses
and could be viewed as a generalized version of MGDA by
adding a search region. Nash-MTL [35] follows a similar idea
as CAGrad, but rather than maximizing the minimum amount
of decrease, it maximizes the sum of the log decreases in each
individual loss. This eventually resolves to solving a (non-
linear) system of equations. Aligned-MTL [32] proposed to
first approximate the gradient matrix G by the closest unitary
matrix Ĝ, which has stability number 1, so that the linear
system ĝ = Gα (Equation 2) is well-defined.

B. GRADIENT BALANCING
Gradient balancing methods [11], [31], [36], [38], [40]–[46],
or loss balancing methods, on the other hand, aim to re-
weigh task losses dynamically so that all tasks are learned
at compatible pace. Let w = (w1, ...,wT )⊤ ∈ RT

≥0 denote
the task weights, then gradient balancing methods solve the
following dynamically re-weighed problem:

min
θ∈Ω

∑
(x,y)∈D

T∑
i=1

wiLi(fθ(x), yi) (3)

Note that this family of algorithms does not emphesize on
the distinction between shared parameters and task-specific
parameters. Computation of w can be done either explicitly
or implicitly, or even by an extra optimizer.
Explicit Methods [31], [38], [40]–[43] compute w explic-

itly based on different heuristics. GradNorm [31] proposed
to control the learning pace of different tasks based on the
relative norm of the gradients gi and does so by assigning task
weights and updating them at each training iteration. Exploit-
ing the same idea as RGW [38], the same paper also proposed
Random Loss Weighting (RLW). In [43], the authors propose
yet another simple weighting mechanism named Dynamic
Weight Average (DWA) to re-weight the losses based on the
relative descending rate of each loss.
ImplicitMethods [36], [44] compute the loss weightsw by

solving an optimization subproblem at each training iteration.
In particular, FAMO [44] proposed that the parameter update
at each training step should maximize the lowest relative
improvement of the task losses. The subtle difference from
CAGrad [30] is that FAMO uses relative improvements, so
that solving the optimization subproblem results in reduc-
ing gradient dominance, whereas CAGrad uses absolute im-
provements and would result in reduced gradient conflicts.
Optimization-Based Methods [11], [45] dynamically up-

date the loss weights with an extra set of objective and op-
timizer. This family of methods optimize the loss weights
together with model parameters during training and hence no
explicit computation or subproblems are needed.

C. GRADIENT REGULARIZATION
Gradient regularization methods [16], [34] design regular-
ization terms in the loss function and solves the following
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optimization problem:

min
θ∈Ω

∑
(x,y)∈D

L(fθ(x), y) + Lreg(G). (4)

In particular, Suteu [16] hypothesized that orthogonal task
gradients are beneficial for learning and added pairwise
squared cosine similarity as the regularization term to en-
courage orthogonal columns in G. Javaloy [34] proposed a
similar idea to regularize the gradients by minimizing the
angles between each task gradient and the average gradient.

D. SALIENCY MAPS IN EXPLAINABLE AI
Explainable AI (XAI) seeks to explain behaviours of AI sys-
tems. Visual explanation method can be broadly categorized
into bottom-up approaches and top-down approaches [47].
Bottom-up approaches rely on gradients of the network pre-
diction w.r.t. intermediate activations [48]. The representative
work, GradCAM [48], of bottom-up approaches proposed to
compute saliencymaps for the intermediate activations via the
magnitude of gradients of class scores w.r.t. the activations.
On the other hand, top-down approaches augment the network
with a small attention module and train together with the
original network [47]. We leverage both types of attribution
technique, together with our proposed Feature Disentangle-
mentmeasurement, to answer the question of ‘‘how the shared
representation is used by the prediction heads’’. More details
are explained in Section III.

E. FAST GRADIENT SURROGATE
Most of the existing MTL algorithms rely on computing
parameter-level gradients ∇θshLi, which requires back prop-
agation through the entire backbone where the shared pa-
rameters lie. In contrast, feature-level gradients ∇ZLi are
a lot cheaper to compute as back propagation is only re-
quired through the prediction heads, which are usually very
light-weighed compared to the backbone. Some works [10],
[32] have provide theoretical reasoning that the optimization
problem could be solved with feature-level gradients ∇ZLi,
as they define an upper bound for the objective function.
However, other works [34], [35] empirically investigated
application of this feature-level surrogate but [34] obtained
reasonable results while [35] observed poor results. We now
empirically prove in this paper that the assumption on gener-
alizability does not hold.

III. METHOD
Shared resource propose a challenge for MTL. Instead of
focusing on the fact that parameters are shared by multiple
tasks, we shift our attention to the fact that extracted image
features are shared by the prediction heads. In this section, we
propose a novel measurement using feature disentanglement
for identifying the challenges in MTL problems. To the best
of our knowledge, we are the first to explicitly quantify the
severity of feature disentanglement and to monitor its training
dynamics.

FIGURE 2. Illustration of RGB-D inputs and model architecture used on
the MetaGraspNet [49] benchmark.

FIGURE 3. Illustration of attention-augmented prediction heads for
top-down attribution. The ⊗ module denotes element-wise
multiplication. A separate attention module is created for each prediction
head. All T attention-augmented prediction heads share the extracted
feature from the backbone, as in the original architecture design.

The intuition behind lies in the gap between Single-task
Learning (STL) and MTL. STL is easier in the sense that
each task could be solved independently. The gap between
MTL and STL could be bridged by allocating disjoint subsets
of the extracted features for each task, while still using a
single backbone.We propose to understand theMTL problem
nature by answering the following research question: what is
the best way for the prediction heads to share the embedded
representation?

A. PRELIMINARIES
The literature is familiar with how task conflicts and task
dominance are defined for two tasks. In this section, we make
it clear how these measures are defined for a set of T tasks in
our experiments.
Task Conflicts. We follow [16], [28], [29] and define the
Gradient Direction Similarity (GDS) measure for T tasks as

αij :=
⟨∇θshLi,∇θshLj⟩

∥∇θshLi∥2∥∇θshLj∥2
for i, j ∈ [T ]; (5a)

GDS :=
1

T (T − 1)

∑{
αij : i, j ∈ [T ], i ̸= j

}
, (5b)

whereαij ∈ [−1,+1] is the cosine value of the angle between
∇θshLi and∇θshLj and quantifies the relationship between the
directions of the task gradients. A lower GDS score indicates
less agreement between the supervision from different losses.
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BBox mAP BBox mAR VMask mAP VMask mAR AMask mAP AMask mAR
Baseline 0.383 0.519 0.518 0.647 0.490 0.617
RGW [38] 0.358 (↓) 0.513 (↓) 0.490 (↓) 0.644 (–) 0.462 (↓) 0.614 (–)
PCGrad [28] 0.370 (↓) 0.526 (↑) 0.500 (↓) 0.657 (↑) 0.454 (↓) 0.595 (↓)
GradVac [29] 0.393 (↑) 0.560 (↑) 0.521 (–) 0.680 (↑) 0.495 (–) 0.654 (↑)
MGDA [10] 0.371 (↓) 0.531 (↑) 0.452 (↓) 0.594 (↓) 0.430 (↓) 0.564 (↓)
CAGrad [30] 0.411 (↑) 0.557 (↑) 0.522 (–) 0.648 (–) 0.488 (–) 0.604 (↓)
GradDrop [33] 0.399 (↑) 0.541 (↑) 0.533 (↑) 0.666 (↑) 0.505 (↑) 0.634 (↑)

Aligned-MTL [32] 0.400 (↑) 0.547 (↑) 0.477 (↓) 0.610 (↓) 0.460 (↓) 0.580 (↓)
IMTL [42] 0.410 (↑) 0.534 (↑) 0.550 (↑) 0.667 (↑) 0.541 (↑) 0.658 (↑)
RLW [38] 0.360 (↓) 0.504 (↓) 0.499 (↓) 0.649 (–) 0.466 (↓) 0.614 (–)
DWA [43] 0.390 (↑) 0.533 (↑) 0.533 (↑) 0.664 (↑) 0.499 (↑) 0.628 (↑)

Uncertainty [11] 0.206 (↓) 0.349 (↓) 0.345 (↓) 0.507 (↓) 0.319 (↓) 0.482 (↓)
FAMO [44] 0.431 (↑) 0.564 (↑) 0.517 (–) 0.623 (↓) 0.510 (↑) 0.613 (–)
CosReg [16] 0.387 (–) 0.545 (↑) 0.522 (–) 0.672 (↑) 0.488 (–) 0.631 (↑)

TABLE 1. Benchmark results of all selected methods with ResNet-18 backbone on MetaGraspNet [49] dataset. Performance increase (with ↑) or decrease
(with ↓) that’s more than 0.01 are shown in brackets after each table entry. Scores within 0.01 offset from the baseline are treated as comparable
performance and labeled by ‘‘–’’. Best viewed in color.

BBox mAP BBox mAR VMask mAP VMask mAR AMask mAP AMask mAR
GDS 64.3% 63.3% 50.5% 60.0% 56.7% 51.0%
GMS 67.6% 70.5% 53.8% 59.5% 50.5% 59.0%
FD 56.7% 58.6% 65.7% 65.7% 65.2% 69.0%

TABLE 2. Ranking similarity results on MetaGraspNet [49] dataset.

FIGURE 4. Training dynamics of GDS using gradients w.r.t. shared
parameters.

Task Dominance. We follow [28] and define the Gradient
Magnitude Similarity (GMS) measure for T tasks as

βij :=
2∥∇θshLi∥2∥∇θshLj∥2
∥∇θshLj∥22 + ∥∇θshLj∥22

, for i, j ∈ [T ]; (6a)

GMS :=
1

T (T − 1)

∑{
βij : i, j ∈ [T ], i ̸= j

}
(6b)

where βij ∈ [0, 1] quantifies the relationship between the
magnitudes of the task gradients. A lower GMS score indi-
cates less aligned learning pace between the losses.

FIGURE 5. Training dynamics of GMS using gradients w.r.t. shared
parameters.

B. BOTTOM-UP AND TOP-DOWN ATTRIBUTION

We leverage both bottom-up and top-down approaches to in-
vestigate how the shared representation is used by the predic-
tion heads. We introduce the details of how these attributions
are defined in this section.
Bottom-up. Inspired by GradCAM [48], we use the feature-
level gradient ∇ZLi to measure how the shared represen-
tation Z contributes to the prediction of each task i. This
computation could be treated as a light-weighed add-on to the
evaluation procedure and does not change the model itself or
its performance.
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FIGURE 6. Training dynamics of Feature Disentanglement (FD) using
gradients w.r.t. shared parameters.

Top-down. We follow the XAI literature on attention mech-
anisms for visual explanation [47] and design add-ons for the
model architecture. Mathematically, if E is the backbone and
Hi is the prediction head for task i, then the original network
f can be written as:

f (x) = [Hi(E(x)), ...,HT (E(x))]Ti=1. (7)

With the additional attention modulesAi, the new network fA
can be written as:

fA(x) := [Hi(Ai(E(x)) ◦ E(x))]Ti=1 (8)

where ◦ denotes element-wise multiplication of two equal-
shaped tensors. During inference, we use the tensorAi(E(x))
as the explanatory tensor of how the shared representation
Z = E(x) is used by the prediction heads. An illustrative
figure is shown in Figure 3. In our experiments, we use a 3x3
conv layer followed by a depthwise separable conv layer as
the attention module Ai.

C. FEATURE DISENTANGLEMENT MEASURE
With the task attribution, or saliency maps Mi, either ob-
tained by bottom-up approach Mi := ∇ZLi or top-down
approach Mi := Ai(E(x)), we now develop a novel quan-
titative measurement of how challenging the MTL problem
of interest is.
Definition. At location j ∈ [h], we can quantify the entropy
S of the saliencies across T tasks by

Sj(Z) := −
T∑
i=1

pij log pij, where (9a)

pij := |Mij|/
T∑

k=1

|Mik |, for i ∈ [T ]. (9b)

The feature disentanglement (FD) measure for the entire
shared representation Z is defined to be the average entropy
across all positions:

FD := S(Z) :=
1

h

h∑
j=1

Sj(Z), (10)

A lower feature disentanglement measurement indicates that
activations are salient to fewer tasks, and hence larger
disentangled-ness. Note that monitoring task conflicts and
task dominance is extremely expensive as they require back
propagation through until the first layer T times to compute
∇θshLi. However, the feature disentanglement measure (ours)
is a lot cheaper as it either only back propagates through
the T prediction heads (bottom-up) or does not compute
back propagation at all (top-down). An illustration of this
definition is shown in Figure 1.

D. EVALUATION PROTOCOL: RANKING SIMILARITY
To quantitatively evaluate the faithfulness of different mea-
sures (GDS, GMS, gradient stability [32], and FD) for reveal-
ing the challenges in MTL problems, we propose Ranking
Similarity to quantify the alignment against test-time perfor-
mance.
Definition. Given a set of n scalarsA := {a1, ..., an} ⊂ R and
two rankings R1,R2 : A → [n] of elements of A, we define
the ranking similarity S(R1,R2) ∈ R between R1 and R2 to
be the following average:

S(R1,R2) :=

1

n(n− 1)

n∑
i,j=1
i ̸=j

I
[
R1 and R2 agree on ai and aj

]
, (11)

where for any i, j ∈ [n] with i ̸= j, R1 and R2 agree on ai and
aj if and only if ‘‘R1(ai) > R1(aj)’’ and ‘‘R2(ai) > R2(aj)’’
have the same truth value. i.e., S(R1,R2) is the percentage of
pairs (ai, aj) with the same ordering under R1 and R2. Larger
ranking similarity means more agreement under different
ranking methods.
Symmetry. Let R1 and R2 be two arbitrary rankings and
let R′

2 be the reverse of R2. i.e., R′
2(a) = n + 1 − R2(a).

Then R1 and R2 agree on a pair (ai, aj) ∈ A × A if and
only if R1 and R′

2 disagree. So S(R1,R′
2) = 1 − S(R1,R2).

As rankings are equivalent to their reverse, we can always
reverse a ranking when making comparisons. So we only
consider |S(R1,R2)− 0.5| in our experiments. The larger the
absolute value, the closer R1 and R2 align. We only report this
symmetric version between test-time performance scores and
MTL challenge measures in the following section.

IV. EXPERIMENTS
A. SETUP
Datasets. We carry out our stud on three benchmark datasets:
MetaGraspNet [49], CityScapes [50], and NYU-v2 [51]. We
provide a new test ground for multi-task learning on the
MetaGraspNet dataset [49], due to its significantly larger
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DE score DE rank SS score SS rank IS score IS rank
Baseline 1.134 (-) 3 17.7% (-) 5 0.034 (-) 4
RGW [38] 1.160 (↓) 6 16.8% (↓) 14 0.046 (↓) 15
PCGrad [28] 1.170 (↓) 9 17.0% (↓) 8 0.046 (↓) 14
GradVac [29] 1.169 (↓) 7 16.8% (↓) 12 0.044 (↓) 9
MGDA [10] 1.215 (↓) 14 17.0% (↓) 9 0.045 (↓) 12
CAGrad [30] 1.169 (↓) 8 17.1% (↓) 7 0.042 (↓) 8
GradDrop [33] 1.101 (↑) 2 17.6% (-) 6 0.045 (↓) 10
Nash-MTL [35] 1.177 (↓) 11 16.8% (↓) 11 0.045 (↓) 11

Aligned-MTL [32] 1.207 (↓) 13 16.8% (↓) 13 0.045 (↓) 13
IMTL [42] 1.174 (↓) 10 16.8% (↓) 10 0.037 (↓) 6
RLW [38] 1.178 (↓) 12 18.5% (↑) 2 0.037 (↓) 7
DWA [43] 1.135 (-) 4 17.8% (-) 3 0.034 (↑) 3

Uncertainty [11] 8.987 (↓) 15 9.5% (↓) 15 0.081 (↓) 16
GradNorm [31] 1.142 (-) 5 17.8% (-) 4 0.036 (↓) 5
FAMO [44] 15.048 (↓) 16 1.3% (↓) 16 0.026 (↑) 2
CosReg [16] 1.067 (↑) 1 20.9% (↑) 1 0.023 (↑) 1

TABLE 3. Benchmark results with ResNet18 backbone on CityScapes [50]. DE stands for depth estimation, evaluated by L1 distance; SS stands for
semantic segmentation, evaluated by mIoU; and IS stands for instance segmentation, evaluated by L1 distance.

DE score DE rank SS score SS rank IS score IS rank
Baseline 0.788 (-) 7 18.8% (-) 2 1.340 (-) 7
RGW [38] 1.064 (↓) 8 18.2% (↓) 4 0.029 (↑) 5
PCGrad [28] 0.000 (↑) 4 17.6% (↓) 8 3.973 (↓) 10
GradVac [29] 0.000 (↑) 2 17.5% (↓) 10 3.971 (↓) 9
MGDA [10] 1.317 (↓) 13 18.0% (↓) 5 0.028 (↑) 3
CAGrad [30] 0.000 (↑) 3 17.6% (↓) 9 3.969 (↓) 8

Nash-MTL [35] 1.238 (↓) 11 17.7% (↓) 7 0.028 (↑) 4
Aligned-MTL [32] 1.302 (↓) 12 18.0% (↓) 6 0.031 (↑) 6

IMTL [42] 0.000 (↑) 1 17.5% (↓) 11 4.002 (↓) 11
RLW [38] 1.125 (↓) 9 20.1% (↑) 1 0.026 (↑) 2
DWA [43] 1.153 (↓) 10 18.6% (↓) 3 0.025 (↑) 1

Uncertainty [11] 0.058 (↑) 6 8.3% (↓) 12 4.068 (↓) 13
FAMO [44] 0.000 (↑) 5 1.1% (↓) 13 4.062 (↓) 12

TABLE 4. Benchmark results with ResNet50 backbone on CityScapes [50]. DE stands for depth estimation, evaluated by L1 distance; SS stands for
semantic segmentation, evaluated by mIoU; and IS stands for instance segmentation, evaluated by L1 distance.

DE score DE rank SS score SS rank IS score IS rank
Baseline 0.000 (-) 3 17.6% (-) 2 3.971 (-) 4

GradVac [29] 0.003 (↓) 8 15.8% (↓) 5 3.982 (-) 7
MGDA [10] 0.001 (↓) 4 16.0% (↓) 4 3.973 (-) 5

Nash-MTL [35] 0.001 (↓) 5 15.4% (↓) 7 3.969 (-) 2
Aligned-MTL [32] 0.001 (↓) 6 15.5% (↓) 6 3.978 (-) 6

RLW [38] 0.001 (↓) 7 18.0% (↑) 1 3.863 (↑) 1
DWA [43] 0.000 (↑) 2 17.5% (-) 3 3.969 (-) 3

Uncertainty [11] 0.064 (↓) 9 8.0% (↓) 8 4.127 (↓) 9
FAMO [44] 0.000 (↑) 1 1.0% (↓) 9 4.111 (↓) 8

TABLE 5. Benchmark results with ResNet18 backbone and attention modules on CityScapes [50]. DE stands for depth estimation, evaluated by L1
distance; SS stands for semantic segmentation, evaluated by mIoU; and IS stands for instance segmentation, evaluated by L1 distance.

DE SS IS
GMS 58.8% 63.6% 61.0%
GDS 62.6% 65.1% 75.4%

Grad Stability 64.0% 65.4% 76.1%
FD 57.4% 64.0% 80.1%

TABLE 6. Ranking similarity results with ResNet18 backbone on
CityScapes [50] using bottom-up approach.

dataset size (∼12k training examples), increased task com-
plexity, and higher real-world value. We refer the readers to
Section IV-B for details of network architecture. For semantic

DE SS IS
GMS 68.6% 67.8% 63.1%
GDS 83.9% 55.2% 52.1%

Grad Stability 84.0% 54.9% 51.8%
FD 58.0% 74.4% 63.6%

TABLE 7. Ranking similarity results with ResNet18 backbone on
CityScapes [50] using top-down approach.

segmentation, we consider all 19 classes in CityScapes and
all 41 classes in NYU-v2. For solidness of our results, we do
not follow the simplified coarse class semantic segmentation
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DE score DE rank NE score NE rank SS score SS rank
Baseline 0.747 (-) 4 42.323 (-) 11 4.8% (-) 3

PCGrad [28] 0.782 (↓) 9 42.105 (-) 10 4.6% (↓) 8
GradVac [29] 0.782 (↓) 8 41.932 (-) 9 4.7% (-) 4
MGDA [10] 0.849 (↓) 14 41.604 (↑) 5 4.1% (↓) 13
CAGrad [30] 0.779 (↓) 7 40.479 (↑) 3 4.6% (↓) 7
GradDrop [33] 0.731 (↑) 2 41.623 (↑) 6 5.5% (↑) 2
Nash-MTL [35] 0.808 (↓) 12 41.692 (↑) 7 4.4% (↓) 10

Aligned-MTL [32] 0.836 (↓) 13 43.043 (↓) 13 4.2% (↓) 12
IMTL [42] 0.806 (↓) 11 41.879 (↑) 8 4.4% (↓) 9
RLW [38] 0.794 (↓) 10 41.244 (↑) 4 4.3% (↓) 11
DWA [43] 0.760 (↓) 6 42.710 (-) 12 4.7% (↓) 6

Uncertainty [11] 9.083 (↓) 15 45.334 (↓) 15 0.3% (↓) 15
GradNorm [31] 0.760 (↓) 5 43.581 (↓) 14 4.7% (↓) 5
FAMO [44] 0.742 (-) 3 35.479 (↑) 1 0.5% (↓) 14
CosReg [16] 0.703 (↑) 1 39.241 (↑) 2 7.8% (↑) 1

TABLE 8. Benchmark results with ResNet18 backbone on NYU-v2 [51]. DE stands for depth estimation, evaluated by L1 distance; NE stands for normal
estimation, evaluated by angle in degrees, and SS stands for semantic segmentation, evaluated by mIoU.

DE score DE rank NE score NE rank SS score SS rank
Baseline 5.534 (-) 5 nan (-) 3 2.4% (-) 6
RGW [38] 8.233 (↓) 9 nan (-) 4 0.9% (↓) 12
PCGrad [28] 6.637 (↓) 7 nan (-) 5 2.2% (↓) 7
GradVac [29] 8.908 (↓) 11 nan (-) 6 1.2% (↓) 8
MGDA [10] 0.899 (↑) 1 43.050 (-) 1 4.6% (↑) 1
CAGrad [30] 4.173 (↑) 4 nan (-) 7 3.1% (↑) 4

Aligned-MTL [32] 8.013 (↓) 8 nan (-) 8 1.1% (↓) 9
IMTL [42] 2.953 (↑) 2 nan (-) 9 3.6% (↑) 3
RLW [38] 3.712 (↑) 3 nan (-) 10 3.7% (↑) 2
DWA [43] 6.165 (↓) 6 nan (-) 11 2.5% (↑) 5

Uncertainty [11] 8.718 (↓) 10 47.429 (-) 2 1.1% (↓) 10
GradNorm [31] 9.229 (↓) 12 nan (-) 12 1.0% (↓) 11

TABLE 9. Benchmark results with ResNet50 backbone on NYU-v2 [51].

DE score DE rank NE score NE rank SS score SS rank
Baseline 3.212 (-) 2 nan (-) 2 3.7% (-) 2
RGW [38] 5.751 (↓) 3 nan (-) 3 2.3% (↓) 3
PCGrad [28] 7.689 (↓) 6 nan (-) 4 1.2% (↓) 6
GradVac [29] 0.885 (↑) 1 42.581 (-) 1 4.8% (↑) 1
RLW [38] 6.842 (↓) 5 nan (-) 5 2.1% (↓) 5
DWA [43] 6.322 (↓) 4 nan (-) 6 2.3% (↓) 4

TABLE 10. Benchmark results with ResNet18 backbone and attention modules on NYU-v2 [51]. DE stands for depth estimation, evaluated by L1 distance;
NE stands for normal estimation, evaluated by angle in degrees, and SS stands for semantic segmentation, evaluated by mIoU.

DE NE SS
GMS 56.8% 61.8% 62.9%
GDS 63.5% 64.9% 68.8%

Grad Stability 66.7% 68.0% 68.2%
FD 60.5% 69.5% 60.7%

TABLE 11. Ranking similarity results with ResNet18 backbone on NYU-v2
[51] using bottom-up approach.

DE NE SS
GMS 65.3% 60.0% 65.3%
GDS 60.5% 64.6% 60.5%

Grad Stability 62.7% 66.7% 62.7%
FD 62.7% 54.4% 62.7%

TABLE 12. Ranking similarity results with ResNet18 backbone on NYU-v2
[51] using top-down approach.

setup as in [28], [38].
Methods. We studied 15 MTL optimization algorithms, from
three categories: (1) we selected PCGrad [28], GradVac [29],
GradDrop [33], RGW [38], MGDA [10], CAGrad [30], Nash-
MTL [35], and Aligned-MTL [32] from the gradient manipu-
lation category (8 in total), (2) we selected Uncertainty [11],
GradNorm [31], IMTL [42], FAMO [44], RLW [38], and
DWA [43] from the gradient balancing category (6 in total),
and (3) CosReg [16] from the gradient regularization cate-
gory. Among these methods, MGDA and Aligned-MTL have
provided theoretical analysis on replacing parameter-level
gradients with feature-level gradients, known as MGDA-UB
and Aligned-MTL-UB, respectively. These variants are also
benchmarked. A comprehensive study on this fast approxi-
mation technique is reported in Section V.
Training. For stochasticity consideration, all experiments
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were repeated 3 times and all results in this paper are average
results across the 3 repetitions. As the focus of this paper is
to study relative performance as compared to the baseline,
rather than proposing novel MTL methods, we focus our ex-
periments on the early stage of training. We refer the readers
to Appendix A for more details.

B. PRELIMINARY STUDY: METAGRASPNET DATASET
Network Architecture. We follow [52], [53] and utilize two
ResNet [54] backbones, one for RGB image input and one
for depth map input. Results at each stage of the ResNet
from the RGB image input and the depth map input are
fused by convolution layers. These fused features collectively
yield the output from the backbone network. Then we feed
the backbone outputs to a Feature Pyramid Network (FPN)
[55] to fuse the features from different levels. On top of
this extracted feature from the FPN neck we attach Region
Proposal Network (RPN) [56] and UOAISNet [52] as predic-
tion heads for amodal object bounding boxes, visible object
masks, amodal object masks, and occlusion predictions. An
architecture overview is shown in Figure 2.
Training Objective and Baseline Definition. We follow
[53] and use the following loss functions: Lrcls and Lrdet

for foreground/background classification and bounding boxes
regression by the RPN head and Lcls, and Ldet by the amodal
detection head; Lvsb for visible object masks prediction, Lamd

for amodal object masks prediction, and Locc for object oc-
clusion prediction. We set the baseline loss function to be

Ltot := Lrcls+Lrdet+Lcls+Ldet+Lvsb+Lamd+Locc, (12)

i.e., the sum of all 7 loss functions.
Experiment Results. Note that experiments are not meant to
replicate existing results but rather comparing performance
of different MTL optimization algorithms against the base-
line. However, we observed extremely poor performance with
GradNorm [31] and Nash-MTL [35], and the feature-level
gradient counterpart of GradDrop [33], which is what orig-
inally proposed, so these methods are not reported on Meta-
GraspNet dataset. Results have shown that GradVac [29],
GradDrop [33], IMTL [42], DWA [43], MGDA-UB [10],
(rep) CAGrad [30], and (rep) CosReg [16] achieved consistent
performance gain compared to the baseline on all 6 evaluation
metrics. GradVac [29], IMTL [42], and (rep)MGDAachieved
top-three performance under a majority (≥ 3) of the metrics.
Full results on MetaGraspNet are summarized in Table 1.

We show interesting examples and qualitatively demon-
strate the effectiveness of our method from the training dy-
namics on MetaGraspNet [49] dataset. Training dynamics of
GDS, GMS, and feature disentanglement scores are plotted
in Figures 4, 5, and 6, respectively. For clarity, we only
plot the relative values to the baseline method. All curves
are smoothened by taking the moving average with window
size equal to 1/10 of the total trajectory length. We also
added transparency to those not of interest and emphasized
ones fromwhich we make important qualitative observations.
When defining the ordering of training trajectories, we took

the mean of the last 50 elements, which is the closest to the
end of training. See Appendix B for more details on how
trajectories were plotted.
Task Conflicts and Task Dominance. Figure 4 and Table
1 have shown that Uncertainty Weighting, which had poor
performance on the test set (Table 1), and GradVac, which
had stronger performance, both achieved high GDS scores.
In contrast, PCGrad and Aligned-MTL, which are hard to
conclude one is superior to the other on the test set, lie far
apart in the GDS plot. Figure 5 and Table 1 have shown that
MGDA and FAMO achieved almost the same GDS curves,
but FAMO achieved significantly better performance results
than MGDA.
Feature Disentanglement. Figure 6 and Table 1 have shown
that most methods applied parameter-level gradients achieved
feature entangled-ness lower than baseline close to the end of
training, with the exception for RGW, PCGrad, MGDA, and
Aligned-MTL These four methods form exactly the comple-
ment of the three methods that achieved performance gain
among the gradient manipulation methods, as reported in
Table 1. Nevertheless, clear decrease trends are displayed in
PCGrad, MGDA, and Aligned-MTL. This provides strong
evidence that the previous success in these methods can be
attributed to learning disentangled features for down stream
tasks.
Quantitative results are shown in Table 2. Results have

shown that on MetaGraspNet [49] dataset, FD has lower
ranking similarities for bounding box predictions compared
to GDS or GMS, but consistently out-performs traditional
GDS and GMS for visible and amodal mask predictions).

C. EXPERIMENTS ON CITYSCAPES
Full benchmark results on CityScapes are summarized in
Tables 3, 4, and 5. Ranking similarity scores are summa-
rized in Tables 6 and 7. Results have shown that feature
disentanglement measure our-performed GMS, GDS, and
gradient stability for instance segmentation task when using
the bottom-up approach and for both semantic and instance
segmentation when using the top-down approach.

D. EXPERIMENTS ON NYU-V2
Full benchmark results on NYU-v2 [51] are summarized in
Tables 8, 9, and 10. Ranking similarity scores are shown in
Tables 11 and 12. Results have shown that feature disentan-
glement measure out-performed GMS for the depth estima-
tion task and performed the best for normal estimation, when
using bottom-up approach. On the other hand, when using
top-down approach, FD only out-performed GDS for depth
estimation.

V. GENERALIZABILITY OF FAST GRADIENT SURROGATE
We now detail our second main contribution of this paper:
we show that the fast gradient technique is not applicable in
general. It has been a common technique to replace ∇θshLi

with ∇ZLi for reduced computation cost [10], [32], [34].
While it might be reasonable to do so due to chain rule and
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BBox mAP BBox mAR VMask mAP VMask mAR AMask mAP AMask mAR
RGW [38] -6.4% -3.6% -6.9% -4.2% -5.9% -3.4%
PCGrad [28] -1.4% -0.7% 0.7% -0.2% 3.2% 3.0%
GradVac [29] -13.9% -7.8% -11.2% -7.6% -14.2% -10.6%
MGDA [10] 14.3% 6.8% 17.8% 12.0% 19.8% 14.1%
CAGrad [30] -0.9% -2.9% 2.9% 2.6% 5.1% 4.8%

Aligned-MTL [32] 2.5% 1.3% 8.1% 5.9% 8.3% 7.7%
IMTL [42] -7.4% -1.5% -8.2% -1.6% -8.1% -1.1%
CosReg [16] 0.2% -2.3% 1.5% 0.3% 0.8% -0.4%

TABLE 13. Benchmark results with ResNet18 backbone on MetaGraspNet dataset but all gradients in the algorithms replaced with feature-level gradients.
Table entries are relative performance change compared to their parameter-level gradient counterparts.

sub-additivity of norms [10], [32], other methods [35] has
reported significant performance degrade with feature-level
gradients in their method. To the best of our knowledge,
there is no prior work addressing the generalizability of this
approximation via comprehensive empirical study across a
large basket of existing algorithms.

We compared the performance using ∇θshLi versus ∇ZLi

on 8 optimization algorithms on the MetaGraspNet [49]
dataset. Full results are summarized in Table 13. Results
have displayed the following: Firstly, only MGDA [10] and
Aligned-MTL [32] achieved consistent performance gain un-
der all evaluation metrics, and these are exactly the two se-
lected methods that argued that feature-level gradients could
be used as an upper bound (up to scaling) during the opti-
mization process. On the other hand, GradVac [29], RGW
[38], and IMTL [42] got significant performance degradation
and hence this surrogate is clearly not applicable to these
algorithms. We conclude that this fast gradient surrogate is
not generalizable and we encourage more theoretical analysis
to be done for each method.

VI. CONCLUSIONS
In this paper, we shift our attention from the traditional studies
on task interference to investigating resource competition in
the shared representation. Through bottom-up and top-down
approaches inspired by the XAI literature, we construct per-
task saliency maps from either the loss gradients w.r.t. shared
representation or the attention module output, which serves
as a gating mechanism on the shared representation. These
saliency maps summarized by our novel feature disentangle-
ment measurement as an explanatory factor for the causal
relationship between MTL problem nature and model perfor-
mance. Through large-scale comprehensive empirical study,
we have shown the effectiveness of feature disentanglement
measure compared to traditional task conflicts, task domi-
nance, and gradient stability on three benchmark datasets:
MetaGraspNet, CityScapes, and NYU-v2. Additionally, we
also provide empirical evidence to disprove the generalizabil-
ity of the fast gradient surrogate technique on MetaGraspNet.
This shows that the prior work on gradient-based methods
do rely on the assumption that resource are competing by
the multiple tasks in the shared parameters, and is not di-
rectly translatable to resource competition in the latent space

where the shared representation lies. The proposed novel
perspectives and reported experimental results provide the
community with deeper insight on the fundamental nature of
MTL problems.

APPENDIX A EXPERIMENT SETUP FOR BENCHMARK
RESULTS
All experiments were done on a pool of GPUs includ-
ing NVIDIA RTX 6000 Ada Generation, NVIDIA RTX
A6000, and NVIDIA GeForce RTX 4090. Throughout, we
use ResNet architectures with pretrained weights on Ima-
geNet [57], and fixed the optimizer to be the PyTorch SGD
optimizer with learning rate 1.0× 10−4 and momentum 0.9.
Linear warm-up learning rate scheduler was also applied in all
experiments. All images, including training, validation, and
testing, are resized to 512× 512. We used batch size of 4 for
experiments on MetaGraspNet [49] and batch size of 32 for
experiments on CityScapes [50] and NYU-v2 [51].

APPENDIX B EXPERIMENT SETUP FOR TRAINING
DYNAMICS OF MTL MEASURES
For preliminary studies on theMetaGraspNet [49] dataset, we
computed the task conflicts and other measures during train-
ing. To save computation, we only compute these measures
every 10 training iterations.With around 3k training iterations
on the MetaGraspNet [49] dataset, we get around 300 data
points on the trajectories. For experiments on CityScapes and
NYU-v2 datasets, these measures are computed during vali-
dation epochs, together with the model performance metrics.

REFERENCES
[1] S. Liu, A. Davison, and E. Johns, ‘‘Self-supervised generalisation with

meta auxiliary learning,’’ Advances in Neural Information Processing Sys-
tems, vol. 32, 2019.

[2] I. Achituve, H. Maron, and G. Chechik, ‘‘Self-supervised learning for
domain adaptation on point clouds,’’ in Proceedings of the IEEE/CVF
winter conference on applications of computer vision, 2021, pp. 123–133.

[3] A. Navon, I. Achituve, H. Maron, G. Chechik, and E. Fetaya, ‘‘Auxiliary
learning by implicit differentiation,’’ arXiv preprint arXiv:2007.02693,
2020.

[4] S. Ruder, ‘‘An overview of multi-task learning in deep neural networks,’’
arXiv preprint arXiv:1706.05098, 2017.

[5] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese,
‘‘Taskonomy: Disentangling task transfer learning,’’ in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp.
3712–3722.

[6] R. Caruana, ‘‘Multitask learning,’’ Machine learning, vol. 28, pp. 41–75,
1997.

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3429281

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Dayou Mao et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[7] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and
L. Van Gool, ‘‘Fast scene understanding for autonomous driving,’’ arXiv
preprint arXiv:1708.02550, 2017.

[8] N. Dvornik, K. Shmelkov, J. Mairal, and C. Schmid, ‘‘Blitznet: A real-
time deep network for scene understanding,’’ in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 4154–4162.

[9] D. Xu, W. Ouyang, X. Wang, and N. Sebe, ‘‘Pad-net: Multi-tasks guided
prediction-and-distillation network for simultaneous depth estimation and
scene parsing,’’ inProceedings of the IEEEConference onComputer Vision
and Pattern Recognition, 2018, pp. 675–684.

[10] O. Sener and V. Koltun, ‘‘Multi-task learning as multi-objective optimiza-
tion,’’ Advances in neural information processing systems, vol. 31, 2018.

[11] A. Kendall, Y. Gal, and R. Cipolla, ‘‘Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics,’’ in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp.
7482–7491.

[12] L. Pinto and A. Gupta, ‘‘Learning to push by grasping: Usingmultiple tasks
for effective learning,’’ in 2017 IEEE international conference on robotics
and automation (ICRA). IEEE, 2017, pp. 2161–2168.

[13] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
‘‘Overfeat: Integrated recognition, localization and detection using convo-
lutional networks,’’ arXiv preprint arXiv:1312.6229, 2013.

[14] R. Girshick, ‘‘Fast r-cnn,’’ in Proceedings of the IEEE international con-
ference on computer vision, 2015, pp. 1440–1448.

[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask r-cnn,’’ in Proceed-
ings of the IEEE international conference on computer vision, 2017, pp.
2961–2969.

[16] M. Suteu and Y. Guo, ‘‘Regularizing deep multi-task networks using
orthogonal gradients,’’ arXiv preprint arXiv:1912.06844, 2019.

[17] I. Kokkinos, ‘‘Ubernet: Training a universal convolutional neural network
for low-, mid-, and high-level vision using diverse datasets and limited
memory,’’ in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 6129–6138.

[18] X. Zhao, H. Li, X. Shen, X. Liang, and Y. Wu, ‘‘A modulation module for
multi-task learning with applications in image retrieval,’’ in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 401–416.

[19] T. Standley, A. Zamir, D. Chen, L. Guibas, J. Malik, and S. Savarese,
‘‘Which tasks should be learned together in multi-task learning?’’ in Inter-
national Conference onMachine Learning. PMLR, 2020, pp. 9120–9132.

[20] Z. Wang, Z. C. Lipton, and Y. Tsvetkov, ‘‘On negative interference in mul-
tilingual models: Findings and a meta-learning treatment,’’ arXiv preprint
arXiv:2010.03017, 2020.

[21] Z.Wang, Z. Dai, B. Póczos, and J. Carbonell, ‘‘Characterizing and avoiding
negative transfer,’’ in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2019, pp. 11 293–11 302.

[22] M. Abdollahzadeh, T. Malekzadeh, and N.-M. M. Cheung, ‘‘Revisit multi-
modal meta-learning through the lens of multi-task learning,’’ Advances in
Neural Information Processing Systems, vol. 34, pp. 14 632–14 644, 2021.

[23] E. Parisotto, J. L. Ba, and R. Salakhutdinov, ‘‘Actor-mimic: Deep multitask
and transfer reinforcement learning,’’ arXiv preprint arXiv:1511.06342,
2015.

[24] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick,
R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell, ‘‘Policy distilla-
tion,’’ arXiv preprint arXiv:1511.06295, 2015.

[25] Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell,
N. Heess, and R. Pascanu, ‘‘Distral: Robust multitask reinforcement learn-
ing,’’ Advances in neural information processing systems, vol. 30, 2017.

[26] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and
H. Van Hasselt, ‘‘Multi-task deep reinforcement learning with popart,’’
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 3796–3803.

[27] T. Schaul, D. Borsa, J. Modayil, and R. Pascanu, ‘‘Ray interference:
a source of plateaus in deep reinforcement learning,’’ arXiv preprint
arXiv:1904.11455, 2019.

[28] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, ‘‘Gradient
surgery for multi-task learning,’’ Advances in Neural Information Process-
ing Systems, vol. 33, pp. 5824–5836, 2020.

[29] Z. Wang, Y. Tsvetkov, O. Firat, and Y. Cao, ‘‘Gradient vaccine: Investi-
gating and improving multi-task optimization in massively multilingual
models,’’ arXiv preprint arXiv:2010.05874, 2020.

[30] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu, ‘‘Conflict-averse gradient de-
scent for multi-task learning,’’ Advances in Neural Information Processing
Systems, vol. 34, pp. 18 878–18 890, 2021.

[31] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, ‘‘Gradnorm:
Gradient normalization for adaptive loss balancing in deep multitask net-
works,’’ in International conference on machine learning. PMLR, 2018,
pp. 794–803.

[32] D. Senushkin, N. Patakin, A. Kuznetsov, and A. Konushin, ‘‘Indepen-
dent component alignment for multi-task learning,’’ in Proceedings of the
IEEE/CVFConference on Computer Vision and Pattern Recognition, 2023,
pp. 20 083–20 093.

[33] Z. Chen, J. Ngiam, Y. Huang, T. Luong, H. Kretzschmar, Y. Chai, and
D. Anguelov, ‘‘Just pick a sign: Optimizing deep multitask models with
gradient sign dropout,’’ Advances in Neural Information Processing Sys-
tems, vol. 33, pp. 2039–2050, 2020.

[34] A. Javaloy and I. Valera, ‘‘Rotograd: Gradient homogenization in multitask
learning,’’ arXiv preprint arXiv:2103.02631, 2021.

[35] A. Navon, A. Shamsian, I. Achituve, H.Maron, K. Kawaguchi, G. Chechik,
and E. Fetaya, ‘‘Multi-task learning as a bargaining game,’’ arXiv preprint
arXiv:2202.01017, 2022.

[36] X. Lin, H.-L. Zhen, Z. Li, Q.-F. Zhang, and S. Kwong, ‘‘Pareto multi-
task learning,’’Advances in neural information processing systems, vol. 32,
2019.

[37] F. Ye, B. Lin, Z. Yue, P. Guo, Q. Xiao, and Y. Zhang, ‘‘Multi-objective meta
learning,’’Advances in Neural Information Processing Systems, vol. 34, pp.
21 338–21 351, 2021.

[38] B. Lin, F. Ye, Y. Zhang, and I. W. Tsang, ‘‘Reasonable effectiveness of
random weighting: A litmus test for multi-task learning,’’ arXiv preprint
arXiv:2111.10603, 2021.

[39] C. Fifty, E. Amid, Z. Zhao, T. Yu, R. Anil, and C. Finn, ‘‘Measur-
ing and harnessing transference in multi-task learning,’’ arXiv preprint
arXiv:2010.15413, 2020.

[40] M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, ‘‘Dynamic
task prioritization for multitask learning,’’ in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 270–287.

[41] H. Yun and H. Cho, ‘‘Achievement-based training progress balancing
for multi-task learning,’’ in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 16 935–16 944.

[42] L. Liu, Y. Li, Z. Kuang, J. Xue, Y. Chen, W. Yang, Q. Liao, and W. Zhang,
‘‘Towards impartial multi-task learning.’’ iclr, 2021.

[43] S. Liu, E. Johns, and A. J. Davison, ‘‘End-to-end multi-task learning with
attention,’’ in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 1871–1880.

[44] B. Liu, Y. Feng, P. Stone, and Q. Liu, ‘‘Famo: Fast adaptive multitask
optimization,’’ arXiv preprint arXiv:2306.03792, 2023.

[45] G. M. Jacob, V. Agarwal, and B. Stenger, ‘‘Online knowledge distillation
for multi-task learning,’’ in Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, 2023, pp. 2359–2368.

[46] E. M. Rudd, M. Günther, and T. E. Boult, ‘‘Moon: A mixed objective
optimization network for the recognition of facial attributes,’’ in Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part V 14. Springer, 2016, pp.
19–35.

[47] K.Mori, H. Fukui, T.Murase, T. Hirakawa, T. Yamashita, and H. Fujiyoshi,
‘‘Visual explanation by attention branch network for end-to-end learning-
based self-driving,’’ in 2019 IEEE Intelligent Vehicles Symposium (IV),
2019, pp. 1577–1582.

[48] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Ba-
tra, ‘‘Grad-cam: Visual explanations from deep networks via gradient-
based localization,’’ in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 618–626.

[49] M. Gilles, Y. Chen, E. Z. Zeng, Y. Wu, K. Furmans, A. Wong, and
R. Rayyes, ‘‘Metagraspnetv2: All-in-one dataset enabling fast and reliable
robotic bin picking via object relationship reasoning and dexterous grasp-
ing,’’ IEEE Transactions on Automation Science and Engineering, pp. 1–
19, 2023.

[50] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, ‘‘The cityscapes dataset for semantic
urban scene understanding,’’ in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 3213–3223.

[51] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, ‘‘Indoor segmentation
and support inference from rgbd images,’’ in Computer Vision–ECCV
2012: 12th European Conference on Computer Vision, Florence, Italy,
October 7-13, 2012, Proceedings, Part V 12. Springer, 2012, pp. 746–760.

[52] S. Back, J. Lee, T. Kim, S. Noh, R. Kang, S. Bak, and K. Lee, ‘‘Unseen
object amodal instance segmentation via hierarchical occlusionmodeling,’’

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3429281

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Dayou Mao et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

in 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 5085–5092.

[53] A. Wong, Y. Wu, S. Abbasi, S. Nair, Y. Chen, and M. J. Shafiee, ‘‘Fast
graspnext: A fast self-attention neural network architecture for multi-task
learning in computer vision tasks for robotic grasping on the edge,’’ in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 2292–2296.

[54] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[55] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[56] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster r-cnn: Towards real-
time object detection with region proposal networks,’’ Advances in neural
information processing systems, vol. 28, 2015.

[57] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘Imagenet:
A large-scale hierarchical image database,’’ in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

DAYOU MAO was an Undergraduate Research Assistant at the Vision and
Image Processing (VIP) Lab in the department of Systems Design Engi-
neering at the University of Waterloo. He is graduating with a Bachelor
of Mathematics degree from the University of Waterloo in June 2024. His
research interest mainly lies within topics on core deep learning and is
dedicated to develop scientific theory in deep learning for vision modelling.

YUHAO CHEN (Member, IEEE) received the B.A.Sc. and Ph.D. degrees
in electrical and computer engineering from Purdue University in 2015 and
2019, respectively. He is currently a Research Assistant Professor in systems
design engineering with the Vision and Image Processing Laboratory (VIP),
University of Waterloo. His research has been focused on developing com-
puter vision and artificial intelligence solutions for industrial applications.
He was a member of the Video and Image Processing (VIPER) Laboratory.

YIFAN WU received the B.Eng. degree in computing from the Imperial
College London, London, U.K., in 2017, and the M.A.Sc. degree in systems
design engineering from the University of Waterloo, Waterloo, ON, Canada,
in 2022. His research interests include optical remote sensing image process-
ing, building extraction, and machine learning.

MAXIMILIAN GILLES received the B.Sc. and M.Sc. degrees in mechanical
engineering from the Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany, in 2017 and 2020, respectively, where he is currently pursuing the
Ph.D. degree. His research interests include robot perception and manipula-
tion, with a special emphasis on material handling applications. He is also a
member of the Robotics and Interactive System Group, Institute for Material
Handling and Logistics (IFL).

ALEXANDER WONG (Member, IEEE) is currently the Canada Research
Chair of Artificial Intelligence and Medical Imaging, a member of the Col-
lege of the Royal Society of Canada, a fellow of the Institute of Engineering
and Technology and International Society for Design and Development in
Education, the Co-Director of the Vision and Image Processing Research
Group, and a Professor with the Department of Systems Design Engineering,
University of Waterloo. He is also a P.Eng. He has published over 650 refer-
eed journals and conference papers in various fields, such as computational
imaging, artificial intelligence, computer vision, and multimedia systems.

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3429281

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


