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Abstract
Classifications	 of	 forest	 vegetation	 types	 and	 characterization	 of	 related	 species	
assemblages	 are	 important	 analytical	 tools	 for	 mapping	 and	 diversity	 monitoring	
of	 forest	 communities.	The	discrimination	of	 forest	 communities	 is	often	based	on	
β-	diversity,	 which	 can	 be	 quantified	 via	 numerous	 indices	 to	 derive	 compositional	
dissimilarity	between	samples.	This	study	aims	to	evaluate	the	applicability	of	unsu-
pervised	classification	for	National	Forest	 Inventory	data	from	Georgia	by	compar-
ing	two	cluster	hierarchies.	We	calculated	the	mean	basal	area	per	hectare	for	each	
woody	species	across	1059	plot	observations	and	quantified	 interspecies	distances	
for	all	87	species.	Following	an	unspuervised	cluster	analysis,	we	compared	the	results	
derived	from	the	species-	neutral	dissimilarity	(Bray-	Curtis)	with	those	based	on	the	
Discriminating	Avalanche	dissimilarity,	which	incorporates	interspecies	phylogenetic	
variation.	 Incorporating	genetic	variation	 in	 the	dissimilarity	quantification	 resulted	
in	a	more	nuanced	discrimination	of	woody	species	assemblages	and	increased	clus-
ter	coherence.	Favorable	statistics	 include	the	total	number	of	clusters	 (23	vs.	20),	
mean	distance	within	clusters	(0.773	vs.	0.343),	and	within	sum	of	squares	(344.13	
vs.	 112.92).	 Clusters	 derived	 from	dissimilarities	 that	 account	 for	 genetic	 variation	
showed	a	more	robust	alignment	with	biogeographical	units,	such	as	elevation	and	
known	habitats.	We	demonstrate	that	the	applicability	of	unsupervised	classification	
of	species	assemblages	to	large-	scale	forest	inventory	data	strongly	depends	on	the	
underlying	quantification	of	dissimilarity.	Our	results	 indicate	that	by	 incorporating	
phylogenetic	variation,	a	more	precise	classification	aligned	with	biogeographic	units	
is	attained.	This	supports	the	concept	that	the	genetic	signal	of	species	assemblages	
reflects	biogeographical	patterns	and	facilitates	more	precise	analyses	for	mapping,	
monitoring,	and	management	of	forest	diversity.
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აბსტრაქტული
ტყის მცენარეულობის ტიპების 
კლასიფიკაცია და მონათესავე 
სახეობათა შეკრების დახასიათება 
მნიშვნელოვანი ანალიტიკური 
ინსტრუმენტებია ტყის ტიპების 
აღწერისა და მრავალფეროვნების 
მონიტორინგისთვის. ტყის ტიპების 
განსხვავება ხშირად ემყარება β- 
მრავალფეროვნებას, რომლის 
რაოდენობრივი დადგენა შესაძლებელია 
მრავალი ინდექსის მეშვეობით 
ნიმუშებს შორის კომპოზიციური 
განსხვავებულობის გამოსათვლელად. 
ეს კვლევა მიზნად ისახავს შეაფასოს 
საქართველოს ეროვნული ტყის 
ინვენტარიზაციის ზედამხედველობის 
გარეშე კლასიფიკაციის გამოყენებადობა 
ორი კლასტერული იერარქიის 
შედარების გზით. ჩვენ გამოვთვალეთ 
საშუალო ბაზალური ფართობი 
ჰექტარზე თითოეული მერქნიანი 
სახეობისთვის 1059 ნაკვეთზე 
დაკვირვებით და რაოდენობრივად 
დავადგინეთ სახეობათაშორისი 
მანძილი 87- ვე სახეობისთვის. ჩვენ 
შევადარეთ სახეობების ნეიტრალური 
განსხვავებულობიდან მიღებული 
შედეგები (ბრეი- კურტისი) ზვავის 
დისკრიმინაციული განსხვავებულობის 
საფუძველზე, რომელიც აერთიანებს 
სახეობათაშორის ფილოგენეტიკურ 
ვარიაციებს. გენეტიკური ცვალებადობის 
ჩართვამ განსხვავებულობის 
რაოდენობრივ განსაზღვრებაში 
გამოიწვია მერქნიანი სახეობების 
შეკრების უფრო ნიუანსური განსხვავება 
და გაზრდილი კლასტერული 
თანმიმდევრულობა. ხელსაყრელი 
სტატისტიკა მოიცავს მტევანთა 
საერთო რაოდენობას (23 v. 20), საშუალო 
მანძილს მტევნის შიგნით (0.773 vs. 0.343) 
და კვადრატების ჯამის ფარგლებში 

(344.13 vs. 112.92). განსხვავებებიდან 
მიღებული კლასტერებმა, რომლებიც 
ითვალისწინებენ გენეტიკურ 
ვარიაციებს, აჩვენეს უფრო მძლავრი 
გასწორება ბიოგეოგრაფიულ 
ერთეულებთან, როგორიცაა სიმაღლე 
და ცნობილი ჰაბიტატები. ჩვენ 
ვაჩვენებთ, რომ სახეობების შეკრების 
უკონტროლო კლასიფიკაციის 
გამოყენებადობა ფართომასშტაბიანი 
ტყის ინვენტარიზაციის მონაცემებზე 
მტკიცედ არის დამოკიდებული 
განსხვავებულობის ფუძემდებლური 
რაოდენობრივი განსაზღვრაზე. 
ჩვენი შედეგები მიუთითებს, რომ 
ფილოგენეტიკური ვარიაციით, უფრო 
ზუსტი კლასიფიკაციაა შესაძლებელი, 
რომელიც შეესაბამება ბიოგეოგრაფიულ 
ერთეულებს. ეს ამტიცებს კონცეფციას, 
რომ სახეობათა შეკრების გენეტიკური 
სიგნალი ასახავს ბიოგეოგრაფიულ 
ნიმუშებს და ხელს უწყობს ტყის 
მრავალფეროვნების აღწერას 
მონიტორინგისა და მართვის უფრო 
ზუსტ ანალიზს.

1  |  INTRODUC TION

Forest	 ecosystems	host	 the	 largest	 share	of	 terrestrial	 biodiver-
sity	and	cover	approximately	one-	third	of	the	global	land	surface	
(FAO,	 2020;	 Gillerot	 et	 al.,	 2021;	 Heym	 et	 al.,	 2021; Torresani 
et al., 2019).	 In	 light	of	 increasing	pressure	on	forests	due	to	cli-
mate	 change	 and	 the	 related	 global	 loss	 of	 biodiversity,	 also	 re-
ferred	 to	 as	 the	 “the	 sixth	mass	 extinction,”	 with	 up	 to	 92%	 of	
terrestrial	endemics	being	anticipated	to	be	negatively	 impacted	
(Manes	 et	 al.,	 2021),	 reliable	 approaches	 to	 assess	 and	 moni-
tor	 forest	 diversity	 are	 required	 (Barnosky	 et	 al.,	 2011; Cowie 
et al., 2022; Faith, 2013;	 Palombo,	2021).	Monitoring	 should	 in-
clude	the	quantification	of	metrics	that	allow	the	classification	of	
ecological	entities	based	on	their	specific	level,	or	degree	of	biodi-
versity,	and	ultimately	according	to	their	respective	conservation	
value,	which	is	required	by	conservationists	(Brooks	et	al.,	2015; 
Zampiglia	et	al.,	2019).	Appropriate	delineation	of	forest	commu-
nities	and	characterization	of	related	species	assemblages	across	
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taxonomic	 groups	 are	 important	 analytical	 tools	 for	 sensible	
monitoring	of	species	diversity	and	biodiversity	management.	On	
broader	scales,	such	metrics	can	be	provided	by	means	of	vegeta-
tion classification which aims to group spatial or temporal diver-
sity	of	species	within	a	finite	set	of	abstract	categories	(de	Cáceres	
et al., 2015).	Vegetation	classification	has	proven	to	provide	ade-
quate	means	for	descriptive	reporting,	communication,	and	map-
ping of forest communities, and related concepts have responded 
to	 changing	 information	 needs	 over	 time.	 Consequently,	 forest-	
type	classifications	exist	for	a	wide	range	of	targets,	that	is,	habi-
tat	quality	(qualitative	assessments	for	biodiversity	management),	
development	over	time	(i.e.,	stand	classification	according	to	age	
classes	for	forest	management)	or	along	biogeographic	gradients,	
and	 remote	 sensing-	based	 mapping	 of	 ecological	 communities	
(de	Cáceres	 et	 al.,	2013;	 de	Cáceres,	Martín-	Alcón,	 et	 al.,	2019; 
Fassnacht et al., 2016; Hao et al., 2021).

One	 approach	 for	 classifying	 forest	 communities	 focuses	 on	
the variation in species compositional characteristics across assem-
blages	of	different	sites	within	a	geographic	area,	which	is	commonly	
known as β-	diversity	 (Legendre	 &	 de	 Cáceres,	2013;	Magurran	&	
McGill,	2011).	β-	diversity	can	be	assessed	by	the	change	in	species	
compositional	 characteristics	 between	 sites	 (i.e.,	 species	 turnover,	
Jost,	2010)	and	a	plethora	of	metrics	exist	to	quantify	the	degree	of	
dissimilarity	between	assemblages	on	various	spatial	and	temporal	
scales	(de	Cáceres	et	al.,	2013;	de	Cáceres,	Coll,	et	al.,	2019; Legendre 
&	 Legendre,	2012;	Magurran	&	McGill,	2011; Ricotta, 2005).	 The	
most	 common	 dissimilarity	 indices	 are	 exclusively	 based	 on	 com-
positional characteristics, that is, species richness and elements 
of	 evenness	 (Magurran,	 2005),	 while	 interspecies	 variability	 (i.e.,	
phylogenetic,	 taxonomic,	 functional,	 or	 traits)	 is	 not	 considered	
(Chao	et	al.,	2018; Chiu et al., 2014;	de	Cáceres	et	al.,	2013; Hao, 
Ganeshaiah,	et	 al.,	2019; Pavoine et al., 2013).	 In	 line	with	 the	 in-
creasing	recognition	that	genetic	diversity	comprises	an	integral	part	
of	biodiversity,	for	example,	as	stated	in	the	definition	of	biodiversity	
by	 the	 Intergovernmental	Platform	on	Biodiversity	and	Ecosystem	
Services	 (IPBES,	 Díaz	 et	 al.,	 2015),	 literature	 on	 how	 to	 incorpo-
rate	 phylogenetics	 as	 aspect	 of	 diversity	 is	 growing	 rapidly	 (Chao	
et al., 2023).	Accordingly,	 several	 authors	 have	 approached	 forest	
community	classification	by	accounting	for	both	compositional	data	
and	 interspecies	 phylogenetic	 variability	 (i.e.,	 Capelo,	 2020; Hao 
et al., 2021; Ricotta et al., 2020;	Webb	et	al.,	2002).	As	phylogeneti-
cally	closely	related	species	often	share	beneficial	traits	for	specific	
environments,	 discriminating	 assemblages	 based	 on	 phylogenetic	
distances	can	serve	as	a	proxy	for	classifying	forest	communities	ac-
cording	to	functional	roles,	environmental	diversity,	and	conserva-
tion	value	(Faith,	2013;	Gilbert	&	Parker,	2022; Hawkins et al., 2014; 
Padullés	Cubino	et	al.,	2021; Pavoine, 2016;	Pavoine	&	Ricotta,	2014; 
Tucker et al., 2017).	Hao,	Ganeshaiah,	et	al.	(2019)	demonstrated	that	
different	patterns	emerged	if	interspecies	taxonomic	distances	were	
considered	for	the	classification	of	global	forest	communities	using	
the	Discriminating	Avalanche	index	(Ganeshaiah	&	Shaankar,	2000).

On	 a	 smaller	 scale,	 National	 Forest	 Inventories	 (NFIs)	 provide	
systematic	and	periodical	observations	of	tree	species	abundances	

based	on	permanent	sample	units	on	a	country-	wide	level	(Corona	
et al., 2011).	 The	 continuous	 adaptation	 of	 variables	 assessed	
during	NFIs	highlights	an	 increasing	emphasis	on	aspects	of	biodi-
versity,	enabling	ecologists	to	investigate	potentials	and	limitations	
of	the	thus	provided	data	(Alberdi	et	al.,	2019; Corona et al., 2011; 
Didion, 2020;	McRoberts	et	al.,	2009).	 Incorporating	phylogenetic	
diversity	of	species	assemblages	extends	the	perspective	on	diver-
sity	 in	 this	 context	 and	 bears	 the	 potential	 to	 deepen	 our	 under-
standing	 of	 the	 complex	 interactions	 among	 woody	 species	 over	
large geographical scales.

In	the	present	study,	we	compare	the	performance	of	two	dis-
similarity	indices	for	the	discrimination	of	forest	woody	species	as-
semblages	when	applied	to	large-	scale	forest	inventory	data	such	as	
the	dataset	of	the	first	NFI	of	Georgia.	To	this	end,	we	applied	unsu-
pervised	clustering	to	the	obtained	dissimilarity	matrices	based	on	
a	conventional	and	a	dissimilarity	index	that	incorporates	interspe-
cies	phylogenetic	distances,	 respectively.	Apart	 from	 statistics	 for	
internal evaluation of the resulting classifications, our comparison 
considered	the	distribution	of	discriminated	assemblages	along	bio-
geographic	gradients.	Based	on	the	assumption	that	genetic	variabil-
ity	of	co-	inhabiting	species	provides	a	signal	that	sufficiently	reflects	
site- specific environmental determinants, we investigated whether 
including	this	variable	in	the	quantification	of	dissimilarity	results	in	
an	improved	reflection	of	biogeographic	gradients.	To	test	the	gen-
eral	applicability,	we	 incorporated	the	phylogenetic	variability	 into	
the classification of a large, real- world dataset and evaluated the 
results	considering	cluster	cohesiveness	and	overall	interpretability.

2  |  DATA AND METHODS

We	compare	two	dissimilarity	indices	for	the	classification	of	woody	
species	assemblages	when	applied	to	NFI	data	of	Georgia.	Adhering	
to	 the	methodological	 approach	underlying	 the	data,	we	 focus	on	
woody	 species,	 that	 is,	 all	 recorded	 species	 that	 meet	 the	 speci-
fied	target	diameter	at	breast	height	(DBH,	at	1.3 m,	MEPA,	2018).	
Consequently,	we	are	referring	to	woody	species	even	if	only	spe-
cies is written hereafter.

2.1  |  Study area

Georgia	 is	 located	 between	 the	 Southern	 Slopes	 of	 the	 Greater	
and	 the	Northern	part	of	 the	Lesser	Caucasus,	 between	41°07′ – 
43°35′ N	 and	40°04′	 –	 46°44′ E	 (Fischer	 et	 al.,	2018).	 The	 forests	
of	Georgia	host	 large	 shares	of	 endemic	 species	 and	 form	part	of	
the	Caucasus	biodiversity	hotspot	(Joppa	et	al.,	2011;	Myers,	2003).	
Existing	 forest	 formations	 range	 from	 Alpine	 coniferous	 forests	
dominated	by	Abies nordmanniana	(Steven)	Spach.	and	Picea orientalis 
(L.)	Peterm.	to	open	juniper	woodland	(dominated	by	Juniperus poly-
carpos excelsa	 subsp.	polycarpos	 (K.	Koch)	Takht.	 and	 J. foetidissima 
Willd.),	encompassing	further	thermophilus	to	xerophytic	mixed	oak	
forest	 (Quercus petrea	 subsp.	 iberica	 (Steven	ex	M.	Bieb.)	Krassiln.,	
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Carpinus betulus L., and C. orientalis	Mill.),	Colchic	alder	carrs	which	
are	dominated	by	Alnus glutinosa	subsp.	barbata	(C.	A.	Mey.)	Yalt.	and	
oriental	beech	(Fagus orientalis	Lipsky)	and	hornbeam-	oriental	beech	
forests	 (Bohn	et	al.,	2007; Dolukhanov, 2010; Fischer et al., 2018; 
Nakhutsrishvili	et	al.,	2021;	Novák	et	al.,	2023).

2.2  |  Forest community data

Between	2018	and	2021,	Georgia	implemented	its'	first	NFI	based	
on	 a	 systematic	 sampling	 grid	 of	 3.6 × 3.6 km	with	 a	 randomly	 se-
lected	origin.	Sampling	units	consist	of	 cluster	plots	 (0.21 ha)	 con-
taining	three	subplots	of	0.0.7 ha	each.	These	subplots	are	arranged	
in	 an	 L-	shaped	 configuration	with	 a	 distance	 of	 100 m	 along	 both	
axes	(Figure 1).	As	18%	of	the	country's	territory	is	currently	not	ac-
cessible	for	government	officials	due	to	an	ongoing	political	conflict	
(MEPA,	2023),	clusters	were	sampled	on	approximately	74%	of	the	
national	forest	area	(Figure 2).

2.2.1  |  Assessment	of	Woody	species

Woody	 species	 were	 recorded	 per	 subplot	 on	 three	 concentric	
nested	subplots	according	to	any	stems'	respective	DBH.	Stems	with	
DBH ≥ 30 cm	were	recorded	on	the	largest	plot	(r = 15 m).	Stems	with	
DBH ≥ 15	 and	≥8 cm	were	 recorded	on	 the	 inner	 nested	plot	 radii	
of	10 m	radius	and	5 m,	respectively	(Figure 1).	Numerous	variables	
were	recorded	per	woody	species,	along	with	the	polar	coordinates	
of	the	stem	axis,	species,	and	DBH	(MEPA,	2018).

From	 the	 entire	 NFI	 data	 set	 (N = 2006),	 all	 accessible	 clus-
ters	 pertaining	 to	 the	 locally	 applied	 land	 use	 class	 “Forest”	 and	

sub-	classes	 “Tree	 covered	 area”	 or	 “Fire	 affected	 forests”	 were	
selected	 for	 analysis	 (MEPA,	2018).	 Subplots	with	 recorded	 inter-
sections	with	a	forest	boundary	(“slopover	sample	plots”)	were	ex-
cluded	 to	avoid	 including	samples	with	extreme	outliers	 regarding	
species	richness	due	to	edge	effects	(Willmer	et	al.,	2022).	Clusters	
containing	species	observations	that	were	not	unambiguously	iden-
tified	at	species	level,	for	example,	Deciduous spp. and Genera spp., 
were	 omitted	 because	 a	 precise	 quantification	 of	 the	 cophenetic	
distances	along	the	phylogenetic	hierarchy	is	not	possible.	Clusters	
containing	subplots	without	woody	species	observations	were	ex-
cluded.	Our	sample	consists	of	all	cluster	plots	comprised	of	obser-
vations	from	three	subplots	(n = 1059,	henceforward	referred	to	as	
“samples”),	which	represent	53%	of	all	clusters.	Figure 2 provides an 
overview	of	the	spatial	distribution	of	samples	used	for	the	analysis.

After	 reprojection	 of	 sample	 locations	 to	 UTM38N,	 WGS84	
(EPSG:	32638),	sample	elevations	[m	above	sea	level]	were	derived	
from	the	digital	elevation	model	 (DEM)	provided	by	Shuttle	Radar	
Topography	Mission	(SRTM,	Farr	et	al.,	2007).	Elevation	values	were	
calculated	 as	 the	 median	 of	 all	 raster	 cell	 values	 (30 × 30 m)	 con-
tained	in	or	crossed	by	the	circular	subplot	area	(r = 15 m + recorded	
GPS	error	[m])	of	the	southwestern	subplot.

2.2.2  |  Species	diversity	data

Diversity	measures	are	usually	based	on	data	representing	the	com-
positional	variation	between	species	(i.e.,	occurrence	and	abundance)	
in	 an	 assemblage	 (Ricotta	 et	 al.,	2021).	 Forest	 species	 communities	
may	display	 similar	 compositional	 characteristics,	 in	 terms	of	counts	
of	observed	species	and	respective	individuals.	However,	species	can	
be	 represented	 by	 large	 numbers	 of	 small-	diameter	 trees,	 or	 stems	
belonging	 to	 the	 same	 individual,	 or	 fewer	 individuals	 but	with	 sig-
nificantly	 large	relative	shares	of	total	basal	area.	Hence,	abundance	
estimates	based	on	counts	of	individuals	do	not	take	significant	differ-
ences	in	the	size	structure	of	occurring	species	into	consideration	and	
may	result	in	distinct	evenness	profiles.	We	used	mean	basal	area	(BA,	
m2/ha)	per	species	and	cluster	plot	as	species	abundances	to	account	
for	the	variation	in	size	of	the	constituents.	By	weighting	compositional	
data	using	BA,	we	incorporate	valuable	structural	information	that	con-
siders	site	occupation	per	species	for	the	quantification	of	β-	diversity	
(de	Cáceres,	Coll,	et	al.,	2019;	McRoberts	et	al.,	2009;	Staudhammer	
&	LeMay,	2001;	Yao	et	al.,	2019).	Consequently,	BA	of	all	living	stems	
was	aggregated	per	cluster	plot	and	species	and	divided	by	3	to	obtain	
mean	BA	estimates	per	sample	(de	Cáceres	et	al.,	2015;	MEPA,	2018).

2.3  |  Analysis

2.3.1  |  Nomenclature

Spelling	and	nomenclature	of	all	recorded	species	were	standardized	
with	the	Taxonomic	Backbone	databases	of	World	Flora	Online	(WFO	
DB,	Kindt,	2020)	and	the	Global	Biodiversity	Information	Facility	(GBIF	

F I G U R E  1 Cluster	plot	configuration	of	the	first	National	Forest	
Inventory	of	Georgia.	Each	cluster	consists	of	three	subplots	for	
tree assessment within three concentric circles according to the 
measured	diameter	at	breast	height	(DBH,	at	1.3 m,	MEPA,	2023).

100 m

100 m
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    |  5 of 16WELLENBECK et al.

Secretariat,	2021).	 In	cases	where	species	 listed	 in	 the	NFI	data	did	
not	yield	an	unequivocal	match	in	the	WFO	DB,	corresponding	records	
were	harmonized	with	Lachashvili	et	al.	(2022)	and	the	nomenclature	
of	the	World	Plants	database	(https:// www. world plants. de)	to	derive	
names	for	all	species	ranked	as	taxonomically	accepted.

2.3.2  |  Phylogenetic	interspecies	distances

A	 phylogenetic	 tree	 encompassing	 all	 observed	 species	 was	 con-
structed	by	matching	the	harmonized	species	list	with	a	mega	phy-
logeny	containing	72,570	species	of	vascular	plants	according	to	the	
World	Plants	database	(GBOTB.extended.WP.tre,	Jin	&	Qian,	2022).	
The	backbone	mega	phylogeny	is	based	on	the	species-	level	phylog-
eny	for	vascular	plants	derived	from	gene	sequencing	from	7	gene	
regions	 and	 39	 fossil	 calibrations	 created	 by	 Zanne	 et	 al.	 (2014),	
which	was	updated	and	expanded	by	Jin	and	Qian	(2022).	Following	
the	 authors'	 recommendation	 to	 consolidate	 taxa	 below	 species	
level	(e.g.,	sub-	species)	with	the	respective	parental	species,	five	in-
fraspecific	taxa	were	combined	with	their	parental	species,	resulting	
in	the	lowest	taxonomic	unit	being	species	level	(Figure 3).	From	the	
thus	created	ultrametric	phylogenetic	tree	(Jin	&	Qian,	2019;	Qian	
&	 Jin,	2016;	 Smith	&	Brown,	2018),	 cophenetic	 distances,	 that	 is,	

the	total	branch	length	connecting	each	pair	of	species	at	the	termi-
nal	nodes	of	the	respective	phylogeny,	were	calculated	(Bevilacqua	
et al., 2021; Hao, Corral- Rivas, et al., 2019; Kling et al., 2018).

Interspecies	 phylogenetic	 distances	 were	 normalized	 within	 a	
square	matrix	that	contained	pairwise	distance	values	[0 < distph ≤ 1]	
between	each	pair	of	species.

2.3.3  |  Dissimilarity	indices

The	Discriminating	Avalanche	index	(dA	equation	[2]	in	Table 1)	de-
veloped	by	Ganeshaiah	and	Shaankar	(2000)	and	described	by	Hao,	
Corral-	Rivas,	 et	 al.	 (2019)	 considers	 interspecies	 dissimilarity	 by	
multiplying	absolute	differences	in	frequencies	(numerator	in	BC)	of	
species i and j	in	two	samples	with	a	specific	distance	between	spe-
cies i and j.	We	use	the	phylogenetic	distances	to	weigh	the	differ-
ence	in	mean	basal	area	between	i and j. Table 1 shows the formulas 
of	both	indices	used	in	this	study.

As	 the	 maximum	 dissimilarity	 value	 obtained	 by	 dA = 
(

1 −
1

n

)

, 
where n	equals	 the	number	of	species,	 the	resulting	dissimilarities	
were	normalized	via	xnorm =

x − xmin

xmax − xmin

, with xmin and xmax representing 
the	minimum	and	maximum	value	of	dA,	respectively	(Hao,	Corral-	
Rivas, et al., 2019;	 Legendre	 &	 Legendre,	 2012).	 Consequently,	

F I G U R E  2 Locations	of	samples	used	from	the	National	Forest	Inventory	of	Georgia,	n = 1059.	Samples	(black	dots)	consist	of	accessible	
cluster	plots	of	equal	sample	size	(three	subplots)	located	inside	forests	that	are	not	intersected	by	forest	boundaries	and	contain	only	
records	of	taxa	identified	at	species	level.	Dashed	lines	mark	the	boundaries	of	inaccessible	areas	from	where	no	field	data	were	obtained.
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6 of 16  |     WELLENBECK et al.

pairwise	 dissimilarity	 values	 of	 the	 two	 resulting	 dissimilarity	ma-
trices	 (1059 × 1059)	 range	 between	 0	 and	 1.	 Pairwise	 values	 of	 1	
imply	that	two	samples	are	completely	different	as	they	do	not	share	
any	species,	whereas	values	of	0	indicate	two	samples	are	equal	in	
terms	of	compositional	characteristics	(Chao	et	al.,	2005; Legendre 
&	 Legendre,	 2012;	 Leyer	 &	 Wesche,	 2008).	 Prior	 to	 clustering,	
a	Mantel	 test	 (Mantel,	1967)	was	performed	 to	 check	 for	 existing	
correlations	between	the	two	dissimilarity	matrices.	As	the	pairwise	
dissimilarities	are	not	normally	distributed,	and	non-	linear	relation-
ships	between	 the	pairwise	dissimilarity	values	exist,	we	used	 the	

Spearman	correlation	coefficient	with	9999	permutations	(Legendre	
&	Legendre,	2012).

2.3.4  |  Isometric	partitioning

The isopam	algorithm	(Schmidtlein	et	al.,	2010)	available	in	package	
“isopam”	(v.	2.0,	Schmidtlein	et	al.,	2024)	combines	isometric	feature	
mapping	and	partitioning	around	medoids	(data	points	that	are	most	
centrally	located	within	each	cluster	with	the	sum	of	dissimilarities	

F I G U R E  3 Phylogeny	for	87	species	listed	in	the	data	sample	of	the	National	Forest	Inventory	of	Georgia.	Interspecies	phylogenetic	
distances	were	calculated	as	total	branch	length	connecting	each	pair	of	species	at	the	terminal	nodes	of	the	hierarchy.	For	respective	
branch	lengths,	see	Figure S1.
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between	medoids	and	all	other	data	points	being	minimized)	in	order	
to	build	clusters	with	a	maximum	number	and	fidelity	of	indicative	
species.	The	isomap	ordination,	which	is	based	on	geodesic	distances	
strongly	determined	by	neighborhood	definitions,	 is	repeated	with	
different parameter settings. The result is clustered, and the clusters 
are	evaluated	according	to	the	criteria	mentioned	above.	These	cri-
teria	are	similar	to	those	used	when	structuring	phytosociological	ta-
bles	(Abe,	2021).	In	this,	and	the	use	of	an	ordination,	isopam is similar 
to Twinspan	(Hill,	1979),	but	does	not	involve	internal	readjustments,	
uses	geodesic	distances	(taking	account	of	“neighbors	of	neighbors”	
in	feature	space),	and	works	on	multidimensional	ordination	spaces.	
It	has	been	previously	used	for	large-	scale	classifications	of	forests	
(Cabido	et	al.,	2018;	Černý	et	al.,	2015;	Zeballos	et	al.,	2020)	and	other	
systems	(Feilhauer	et	al.,	2021; Hein et al., 2014; Peterka et al., 2017; 
Yu	et	al.,	2022).	isopam	can	be	run	both	unsupervised	and	supervised	
(with	reference	plots).	For	the	current	study,	the	original	source	code	
was	extended	to	support	dA	(Capelo,	2020)	and	executed	on	a	com-
puter	with	two	Intel	Xeon	CPUs	(E5-	2630	v3)	and	256 GB	RAM	using	
R	Statistical	Software	 (v	4.3.2;	R	Core	Team,	2023).	To	ease	com-
parability,	we	set	the	maximum	number	of	hierarchy	 levels	to	four	
for	both	classifications.	Subsequently,	we	extracted	lists	of	indicator	
species	frequencies	with	levels	of	significance	according	to	Fisher's	
exact	test	for	each	cluster	using	the	isoTab function, which is part of 
the “isopam”	package.	Fidelity	(“equalized	phi,”	Tichy	&	Chitrý,	2006)	
together	with	Fisher's	 exact	 test	 if	 the	observed	 frequency	 is	 not	
attained	by	chance	are	the	criteria	for	qualifying	as	an	indicator	spe-
cies in isoTab	(Schmidtlein	et	al.,	2024).

2.3.5  |  Evaluation	of	clustering

To	 evaluate	 the	 correspondence	 between	 the	 original	 sample	 dis-
similarities and dendrogram distances, we calculated cophenetic 

correlation coefficients for each hierarchical cluster structure 
(Lapointe	&	Legendre,	1995;	Legendre	&	Legendre,	2012).	The	modi-
fied	Rand	index	was	used	to	evaluate	clustering	performance	based	
on	the	consistency	between	partitions	(Legendre	&	Legendre,	2012).	
Cluster	homogeneity	was	evaluated	via	within	sum	of	squares	(WSS,	
Hao,	Ganeshaiah,	et	al.,	2019)	and	a	comparison	of	the	average	dis-
tance	 between	 and	within	 clusters	 using	 the	 function	clusTer.sTaTs 
of	 the	R	package	 “fpc.”	To	assess	 relevance	of	 the	hierarchies,	we	
compared	indicator	species	and	the	resulting	distributions	of	relative	
BA	among	partitioned	groups	(de	Cáceres	et	al.,	2015).	Evaluation	of	
correspondence	to	biogeographic	units	was	based	on	a	comparison	
of	elevational	ranges	derived	from	the	DEM	between	groups	and	the	
spatial	distribution	of	clusters	 in	relation	to	forest	vegetation-	type	
classifications	presented	by	Bohn	et	al.	(2007).	We	applied	the	non-
parametric	 Kruskal–Wallis	 test	 to	 check	 for	 significance	 between	
groups	due	to	nonnormality	 in	 the	distribution	of	elevation	values	
within	groups	(Shapiro	test).	Henceforward,	we	are	referring	to	the	
initial	partition	at	the	lowest	level	of	the	hierarchy	as	classes,	to	the	
intermediary	 partitions	 as	 branches,	 and	 the	 resulting	 clusters	 as	
assemblages.

2.3.6  |  Data	analysis

The	 analysis	 was	 conducted	 in	 R	 Studio	 version	 2023.09.0-	
463	 (RStudio	 Team,	 2020)	 using	 R	 Base	 version	 4.3.0	 (R	 Core	
Team, 2023).	Harmonization	of	nomenclature	was	 realized	via	 the	
R	package	“Worldflora”	version	1.13-	2	(Kindt,	2020),	and	the	pack-
age	 “V.phylomaker2”	 version	 0.1.0	 was	 used	 to	 match	 observed	
species	 with	 the	 phylogenetic	 backbone	 (Jin	 &	 Qian,	 2022).	 The	
Mantel	 test	and	BC	dissimilarities	were	calculated	using	 the	pack-
ages	“vegan”	version	2.6-	4	 (Oksanen	et	al.,	2022).	A	custom	func-
tion	 was	 embedded	 in	 the	 adjusted	 clustering	 algorithm	 of	 the	
corresponding	R	package	“isopam”	version	1.2.0	for	dA	(Schmidtlein	
et al., 2022).	Clustering	metrics	were	obtained	using	the	R	packages	
“mclust,”	version	6.0.0	(Scrucca	et	al.,	2016),	and	“fpc,”	version	2.2-	
10	(Hennig,	2023).

3  |  RESULTS

Compositional data of n = 1059	 samples	 containing	 65,818	 living	
tree	observations	were	analyzed	(Table 2).	In	total,	87	species	were	
represented	by	52	genera,	29	families,	16	orders,	and	two	classes.

TA B L E  1 Dissimilarity	indices	used	in	this	study.

Bray–Curtis	dissimilarity	
index	(1957)

BC=
∑n

i=1�
pa
i
− pb

i �
∑n

i=1(
pa
i
+ pb

i )

[1]

Discriminating	Avalanche	
(Hao,	Corral-	Rivas,	
et al., 2019)

dA =
1

2

∑n

i=1

∑n

j=1
Δ
a,b

i
dijΔ

a,b

j
[2]

Note:	With	dij = phylogenetic	distance	between	species	i and j	(dij = dji 
and dii = 0);	Δ

a,b

i
 = absolute	difference	between	the	frequencies	of	

species i in plots a and b 
(

|

|

|

pa
i
− pb

i

|

|

|

)

; n = total	number	of	sample	plots;	
pa
i
, pb

i
 = relative	frequencies	of	species	i in plots a and b.

Species richness Mean basal area per species [m2/ha]

n Min Max Meana CV% Min Max Meana CV%

1059 1 12 4.96 
(±2.14)

43.08 2.54 79.02 30.4 
(±12.79)

42.06

Abbreviations:	CV%,	Coefficient	of	variation;	Var.,	Variance.
aMeans are denoted with standard deviation in parenthesis.

TA B L E  2 Summary	statistics	of	
compositional data of cluster plot 
observations	of	the	National	Forest	
Inventory	of	Georgia.
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8 of 16  |     WELLENBECK et al.

Angiosperms	were	represented	by	76	species	(in	87.4%	of	all	sam-
ples)	across	26	different	 families.	Fagaceae	 (six	species)	accounted	
for	the	highest	number	of	observations	followed	by	Betulaceae with 
10	species	(25.3%	and	23.2%	of	all	samples,	respectively),	Rosaceae, 
and Sapindaceae	 (15	and	6	species,	in	11.4%	and	10.3%	of	all	sam-
ples,	 respectively).	 In	 contrast,	 gymnosperms	 (10.3%)	were	 repre-
sented	by	11	species,	belonging	to	three	different	families,	with	the	
largest	 family	being	Pinaceae	 (6	 species)	 followed	by	Cupressaceae 
and Taxaceae	 (4	 and	 1	 species,	 respectively).	 Gymnosperms	were	
observed	in	33%	of	all	samples.

3.1  |  Pairwise dissimilarity

Mantel	statistics	(r = .613	with	p = .0004)	indicated	a	significant	posi-
tive	correlation	between	the	two	dissimilarity	matrices.	Pairwise	dis-
similarities	according	to	dA	ranged	from	0.23	to	0.87,	which	is	almost	
double	the	range	of	that	of	BC	(0.63	to	0.99,	Table 3).

Consequently,	 the	 mean	 dissimilarity	 between	 samples	 (0.79	
for	BC	and	0.38	for	dA,	respectively)	and	thus	overall	variation	was	
higher	for	BC	than	for	dA,	as	for	the	latter,	frequencies	of	dissimilar-
ity	values	<1	were	more	evenly	distributed,	with	very	few	pairwise	
dissimilarities	of	1.	Frequency	distributions	of	sample	dissimilarities	
are provided in Figure S2.

3.2  |  Discrimination of assemblages

The	hierarchical	clustering	based	on	BC	(HCBC)	distinguished	23	as-
semblages	(clusters)	across	four	hierarchical	levels	(I–IV)	and	classes.	
Within	HCBC,	samples	were	partitioned	into	10	and	17	branches	at	
levels	II	to	III,	respectively.	The	hierarchical	clustering	based	on	dA	
(HCdA)	contained	10	and	15	branches	at	levels	II	to	III	and	resulted	
in	20	distinct	assemblages	over	four	levels	and	classes.	Two	assem-
blages	were	not	partitioned	further	below	level	II	in	HCdA	(Figure 4).	
The	number	of	 samples	per	assemblage	 ranged	 from	6	 to	152	 for	
HCBC	(Mean:	82 ± 91.5)	and	3	to	163	for	HCdA	(Mean:	106.1 ± 119.9),	
respectively.	For	HCBC,	the	number	of	observed	species	per	assem-
blage	 ranged	 from	12	 to	54.	For	HCdA,	one	assemblage	contained	
only	 four	 species,	 whereas	 two	 assemblages	 encompassed	 53	
species.

The cophenetic correlation coefficients were 0.492 and 0.442 
for HCBC and HCdA,	respectively.	The	obtained	adjusted	Rand	index	
of	0.317	suggests	a	modest	level	of	similarity	between	the	cluster-
ing	 results.	 Average	 distances	 within	 clusters	 ranged	 from	 0.671	
to 0.875 and 0.196 to 0.49 for HCBC and HCdA,	respectively.	Mean	

distance	between	clusters	was	0.789	for	HCBC and 0.384 for HCdA. 
WSS	values	of	HCBC amounted to 344.13 and 112.92 for HCdA.

3.2.1  |  Evaluation	of	cluster	hierarchies

To	evaluate	the	performance	of	BC	and	dA	for	clustering,	we	com-
pared	 the	 resulting	 classes,	 groups,	 and	 assemblages	 considering	
internal	metrics	of	the	partitioning	process.	A	total	of	77	and	68	in-
dicator	 species	were	 listed	 for	 all	 partitions	 based	on	BC	and	dA,	
respectively.	For	a	characterization	based	on	indicators	and	respec-
tive	frequencies,	only	highly	significant	(p ≤ .001)	species	with	total	
frequencies	 ≥50%	 were	 considered,	 unless	 indicated	 otherwise.	
Indicator	 species	 for	both	partitions	were	A. nordmanniana, A. cap-
padocicum, A. glutinosa, C. betulus, Carpinus orientalis Mill., C. sativa, 
F. orientalis, P. orientalis, Q. petraea	subsp.	polycarpa	(Schur)	Raus,	and	
Tilia rubra	subsp.	caucasica	(Rupr.)	V.	Engl.	In	addition,	Fraxinus excel-
sior L. is an indicator for HCdA.	The	total	number	of	indicators	with	
frequencies	of	100%	was	24	and	8	for	HCBC and HCdA,	respectively.	
Class 1 of HCBC	is	characterized	by	a	high	frequency	of	F. orientalis 
(99%),	whereas	 for	HCdA, F. orientalis and C. betulus are listed with 
frequencies	of	93%	and	75%,	respectively.	In	class	2,	the	highest	fre-
quencies	are	observed	for	Q. petrea	(87%)	and	C. betulus	(82%).	P. ori-
entalis	 (68%),	F. orientalis	 (57%),	 and	A. nordmanniana	 (53%)	are	 the	
most	frequent	indicator	species	in	class	3,	whereas	for	class	4,	these	
are A. glutinosa	(87%)	and	Castanea sativa	Mill.	(61%).	In	HCdA,	highly	
significant indicators in class 1 are F. orientalis	 (93%)	 and	 C. betu-
lus	 (75%),	whereas	 in	 class	 2,	 these	 are	Q. petrea	 (84%),	C. orienta-
lis	(61%),	and	Fraxinus excelsior	L.	(50%).	In	classes	3	and	4	of	HCdA, 
P. orientalis	 (79%),	 A. nordmanniana	 (64%),	 A. glutinosa	 (92%),	 and	
C. sativa	(59%)	represent	highly	significant	indicators	in	classes	3	and	
4,	respectively.	Based	on	these	characteristics,	we	labeled	the	four	
main	classes	according	to	predominant	relative	BA	and	are	referring	
to	these	for	ease	of	readability	henceforward	as	follows:	class	1	 is	
characterized	by	a	dominance	of	Fagus, class 2 is Carpinus- Quercus 
dominated, and classes 3 and 4 are Pinaceae and Alnus- Castanea 
dominated,	respectively.	Synoptic	tables	of	both	cluster	hierarchies	
(Figures S3 and S4,	respectively)	and	a	detailed	description	of	indica-
tor	distributions	per	partition	below	level	I	for	HCdA	(Appendix	S1)	
are provided as appendices.

3.2.2  |  Elevation	and	spatial	distribution

To	evaluate	the	correspondence	of	assemblages	to	existing	biogeo-
graphic	 units,	 we	 compared	 the	 distribution	 of	 sample	 elevations	

Index n Min Max Meana Var. CV%

BC 1059 0.627 0.998 0.789	(±0.099) 0.01 12.55

dA 0.225 0.87 0.383	(±0.147) 0.022 38.38

Abbreviations:	CV%,	Coefficient	of	variation;	Var.,	Variance.
aMeans are denoted with standard deviation in parenthesis.

TA B L E  3 Summary	statistics	of	
mean	pairwise	dissimilarities	between	
samples	based	on	Bray–Curtis	(BC)	and	
Discriminating	Avalanche	(dA)	of	the	
National	Forest	Inventory	data	of	Georgia.
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within	assemblages.	Within	the	four	classes	in	both	hierarchies,	sam-
ple	 elevations	 are	 distributed	 similarly.	 Samples	within	 the	 Fagus- 
dominated	 group	 (class	 1)	 cover	 a	wide	 elevational	 range	 (≤750 m	
to >2000 m	asl),	however,	 in	HCBC,	81%	of	all	 samples	are	 located	
between	>1000	 and	 2000 m	 asl,	 whereas	 in	 HCdA, most samples 
(77%)	are	 located	within	 the	 lower	 range	of	>750	and	1750 m	asl.	
Samples	 with	 Carpinus- Quercus	 dominance	 are	 predominantly	 lo-
cated at elevations <1250 m	 in	 both	 hierarchies.	 The	 majority	 of	
Pinaceae-	dominated	 samples	 lie	 above	 1250 m	 asl,	 whereas	 all	 of	

Alnus- Castanea-	dominated	 samples	 are	 situated	below	1250 m	asl,	
with	 the	majority	 (70%)	positioned	below	750 m	 asl	 for	HCBC and 
HCdA,	respectively.	Overall	classes,	except	for	the	Fagus- dominated 
group, agglomerations of sample elevation values are more pro-
nounced	 within	 assemblages	 of	 HCdA than of HCBC. The applied 
Kruskal–Wallis	test	revealed	highly	significant	differences	(p ≤ .001)	
between	assemblages	for	both	hierarchies	(Figure 5).

Spatial	 distributions	 of	 discriminated	 assemblages	 show	
a	 general	 alignment	 along	 biogeographical	 units.	 Alnus 

F I G U R E  4 Resulting	cluster	hierarchy	
from	the	isopam	partitioning	(dendrogram)	
and pairwise dissimilarities of 1059 
samples	from	the	National	Forest	
Inventory	data	of	Georgia.	Dissimilarities	
are	based	on	the	Bray–Curtis	(a)	and	
discriminating	avalanche	(b)	index.	The	
cell grid is colored according to the 
dissimilarity	values	between	samples	
(rows	and	columns).	In	total,	23	and	20	
assemblages	were	discriminated	for	
Bray–Curtis	and	discriminating	avalanche,	
respectively.	At	level	II	of	the	hierarchical	
clustering	based	on	the	discriminating	
avalanche	index,	10	subgroups	distributed	
over	four	classes	were	labeled	according	
to	dominance	of	relative	basal	area.
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10 of 16  |     WELLENBECK et al.

glutinosa-	dominated	assemblages	agglomerate	in	the	humid	Alder	
carrs	 of	 Eastern	 Georgia	 (Nakhutsrishvili,	 2013),	 whereas	 the	
Pinaceae-	dominated	 assemblages	 are	 predominantly	 located	 in	
montane	to	subalpine	areas	of	 the	Lesser	and	Greater	Caucasus.	
Assemblages	dominated	by	mixed	Quercus spp., Carpinus spp., and 
F. orientalis are situated at intermediate ranges. Those with high 
shares	of	BA	of	Quercus spp. are limited to lower and drier areas, 
while F. orientalis-	dominated	 assemblages	 are	 located	 at	 higher	
elevations.	 Interestingly,	 the	 five	 samples	 assigned	 to	 Juniperus- 
Pistacia	 woodland	 have	 been	 clearly	 discriminated	 within	 HCdA 
that are located in the semi- arid areas of the southwest of the 
country	(Nakhutsrishvili	et	al.,	2021).

To	visually	evaluate	the	spatial	distribution	of	discriminated	as-
semblages,	we	 cut	HCdA	 at	 level	 II	 because	 70%	of	 the	 partitions	
are	not	partitioned	further	below	 level	 II,	 resulting	 in	10	clustered	
assemblages	 (Figure 4).	 Based	 on	 characteristic	 indicator	 species,	
relative	BA	distributions,	and	occupied	elevational	zones,	we	labeled	
each	assemblage	accordingly	and	mapped	the	respective	sample	lo-
cation	 in	 relation	 to	areas	of	 forest	vegetation-	type	classifications	
according	to	Bohn	et	al.	(2007)	(Figure 6).

4  |  DISCUSSION

Parting	from	the	assumption	that	genetic	variation	of	co-	inhabiting	
species provides a signal that reflects site- specific environmental 
determinants, we contrast the performance of a species- neutral dis-
similarity	 index	 (BC)	with	 an	 index	 that	 considers	 interspecies	 ge-
netic	 variation	 (dA)	when	used	 in	 unsupervised	 classification.	Our	

findings	 indicate	 that	 incorporating	 interspecies	 phylogenetic	 dis-
tances	in	the	quantification	of	dissimilarities	results	in	more	coher-
ent	and	ecologically	meaningful	classifications	of	large-	scale	forest	
inventory	data	with	high	β-	diversity.

The Mantel statistics indicate a significant positive correlation 
between	the	dissimilarity	matrices	obtained	for	each	index	(r = .613,	
with p = .0004),	implying	that	essential	patterns	of	variation	among	
samples	are	maintained	in	the	respective	quantifications.	However,	
frequency	 distributions	 and	 visual	 inspection	 of	 dissimilarities	
(Figure 4)	show	overall	higher	dissimilarity	values	based	on	BC,	re-
flecting	 its'	 sensitivity	 to	 species	 turnover.	Whereas	 the	 resulting	
cluster	hierarchies	maintain	a	certain	level	of	agreement	(cophenetic	
correlation = .511),	 the	fact	that	a	correlation	of	one	signifies	com-
plete	similarity	suggests	that	the	dissimilarity	signal	 resulting	from	
dA	is	not	redundant.	Clustering	based	on	dA	performs	slightly	better	
in preserving the original dissimilarities according to the respective 
cophenetic correlation coefficients of .492 and .442 for HCBC and 
HCdA,	respectively.	Dendrogram	topologies,	cluster	validation	met-
rics	(i.e.,	WSS	of	344.123	and	112.917	for	HCBC and HCdA, respec-
tively),	and	distributions	of	relative	BA	among	assemblages	indicate	a	
higher	degree	of	compactness,	separation,	and	yield,	generally	more	
conceivable	clustering	results	based	on	dA.	Overall,	HCdA provided 
enhanced	 general	 interpretability	 and	 succeeded	 in	 discriminating	
clearly	 distinguished	 assemblages	 regarding	 compositional	 charac-
teristics, that is, the P. atlantica and Juniperus woodlands of the semi- 
arid	 lowlands	 of	 Southeastern	Georgia.	 These	 results	 support	 the	
concept	that	an	extension	of	variables	considered	for	quantification	
of	dissimilarity	leads	to	a	refined	conception	for	diversity	classifica-
tion if genetic variation is considered and are in line with the findings 

F I G U R E  5 Sample	elevations	[m	asl]	from	the	National	Forest	Inventory	in	Georgia	per	resulting	cluster	for	Bray–Curtis	(a)	and	
discriminating	avalanche	(b).	The	boxes	represent	interquartile	ranges	and	respective	median	values	(solid	line)	of	sample	elevations	within	
each	clustered	assemblage	(colored	dots).	Resulting	p values of the X2

Kruskal–Wallis test are p = 2.899e-	113	and	p = 1.674e-	115,	with	confidence	
intervals	between	0.544,	1	and	0.538,	and	1	for	assemblages	in	the	hierarchical	clustering	based	on	BC	and	dA,	respectively	(n = 1059).
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of	Hao,	Ganeshaiah,	et	al.	(2019)	and	other	authors	(Capelo,	2020; 
Pavoine	&	Ricotta,	2014;	Ricotta	&	Pavoine,	2015).

As	BC	represents	a	“species-	neutral”	diversity	index	sensu	Chao	
et	 al.	 (2010),	 which	 assumes	 that	 all	 observed	 species	 contribute	
equally	 to	 overall	 diversity,	 and	 species	 turnover	 constitutes	 the	
predominant	signal	for	discrimination,	reflected	by	the	significantly	
higher	 number	 of	 indicator	 species	with	 frequencies	 of	 100%	 (24	
and 8 for HCBC and HCdA,	 respectively).	Conversely,	as	dA	dissim-
ilarity	 considers	 species	 as	phylogenetic	units,	 a	 complete	 species	
turnover	does	not	necessarily	result	in	maximum	dissimilarity	values	
between	two	sites	because	differences	in	abundance	are	weighted	
by	 the	 genetic	 proximity	 between	 species.	 Assuming	 that	 the	 ge-
netic signal of co- occurring species reflects niche occupation within 
given	ecogeographical	areas	(Hawkins	et	al.,	2014),	the	thus	refined	
dissimilarity	signal	appears	to	respond	to	biogeographical	gradients	
in	a	more	interpretable	manner.

The	validity	of	the	presented	approach	relies	on	precise	mea-
surements of tree diameters and accurate species identification 
in	 the	 field.	 While	 traditional	 forest	 science	 prioritized	 genus-	
level	 information,	 growing	 emphasis	 on	 diversity-	related	 issues	

prompted	 forestry	 experts	 to	 be	 increasingly	 trained	 to	 provide	
accurate species identification. The related uncertainties are not 
design-	based	 issues	but	 apply	 to	all	 ecological	 surveys	 requiring	
botanical	 expert	 knowledge	 to	 ensure	 taxon	 detection	 and	 vali-
date	observations	on	species	 level	 (Lam	&	Kleinn,	2008; Roswell 
et al., 2021).	Overall,	only	2%	of	all	cluster	plot	observations	 in-
cluded individuals that were not identified to species level and had 
to	be	excluded.	By	considering	only	 cluster	plot	observations	of	
equal	sample	size	(m = 3,	64%	of	all	cluster	plots)	and	the	exclusion	
of	subplots	overlapping	with	the	forest	boundary	(16%),	our	anal-
yses	are	based	on	a	subsample	of	the	NFI	data,	representing	60%	
of	 all	 cluster	 plot	 observations.	 Hence,	 conclusions	 drawn	 from	
the	presented	 results	 should	 consider,	 for	 example,	 that	 species	
exclusively	occurring	at	forest	boundaries	are	excluded.	Potential	
limitations	to	validity	arise	from	field	sampling	protocols,	as	over-
all	 subplot	 size,	 or	 sampling	 effects	 due	 to	 the	 nested	 subplot	
structure	 (with	 respective	 target	DBH	as	 inclusion	 criteria),	may	
introduce	 bias	 to	 the	 quantification	 of	 dissimilarity	 (de	Cáceres,	
Martín-	Alcón,	 et	 al.,	 2019).	 Accordingly,	 observed	 numbers	 of	
species	 should	 be	 regarded	 as	 proxies	 of	 true	 species	 richness,	

F I G U R E  6 Schematic	overview	of	spatial	distributions	of	discriminated	assemblages	and	main	forest	formations	adapted	from	the	
vegetation-	type	classification	by	Bohn	et	al.	(2007).	Assemblages	are	colored	according	to	the	respective	palette	of	the	four	main	classes	
of	the	cluster	hierarchy	(blue,	beige,	red/orange,	and	green	for	dominance	of	Fagus,	Carpinus-	Quercus,	Pinaceae,	and	Alnus-	Castanea,	
respectively).
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12 of 16  |     WELLENBECK et al.

especially	if	nested	sample	plot	designs	are	applied	that	are	based	
on	specific	diameter	thresholds	(Lin	et	al.,	2020).	Overall	species	
richness	 can	 be	 assumed	 to	 be	 higher	with	 the	 contributions	 of	
smaller-	diameter	 trees	 being	 neglected	 (Corona	 et	 al.,	 2017).	
Aggregations	 to	 cluster	 plot	 level	 could	 potentially	 translate	 to	
generalization	effects	and	the	loss	of	information	on	site-	specific	
environmental factors on smaller scales. The resulting magnitude 
of	 impact	on	the	presented	results,	however,	 is	 likely	to	vary	ac-
cording	to	forest	type,	topographical	condition,	and	management	
regime	(McRoberts	et	al.,	2009).

With	 continuing	 advances	 in	 whole-	genome	 phylogenetics	
and	 functional	 genomics,	 information	 on	 phylogenetic	 diversity	
is	continuously	 improving	 (Kling	et	al.,	2018).	Access	 to	compre-
hensive	 and	 standardized	 phylogenetic	 mega	 trees	 to	 quantify	
species	 genetic	 relationships	 is	 readily	 available	 and	 their	 appli-
cation	 to	 investigate	variation	 in	community	compositions	 is	be-
coming	increasingly	more	common	(Gilbert	&	Parker,	2022;	Jin	&	
Qian,	2022).

Our results are of relevance for a wide range of classifications 
of ecological entities according to conservation value, mapping of 
ecological	 communities,	 or	 other	 discriminative	 objectives.	 The	
method	 aligns	 standard	 canopy	 layer	 data	 from	 forest	 invento-
ries	with	natural	vegetation	types	according	to	Bohn	et	al.	(2007),	
but	 harmonization	 with	 existing	 forest	 typologies	 is	 limited	 due	
to methodological differences, such as the structural vegetation 
layers	considered	and	the	abundance	units	recorded	(e.g.,	Chytrý	
et al., 2020; Mucina et al., 2016).	Investigating	the	degree	to	which	
the	resulting	clusters	can	be	aligned	with	defined	syntaxonomical	
units	 is	an	 interesting	area	 for	 future	 research,	especially	 for	 the	
identification	of	diagnostic	species	from	the	shrub	and	herb	layers	
to refine classifications and the development of practical assess-
ment procedures.

The integration of genetic signals of forest communities during 
characterization	 has	 wide	 implications	 for	 respective	 approaches	
to	classification.	As	a	proxy	 indicative	of	the	relationship	between	
species composition and site conditions, interspecies genetic vari-
ation	extends	the	scope	of	forest	diversity	mapping,	management,	
and	monitoring	to	account	for	alterations	inconceivable	by	conven-
tional	 compositional	 variables.	 Beyond	 the	 potential	 advantage	 of	
streamlining	 processes	 by	 applying	 unsupervised	 classification	 to	
large	datasets,	our	approach	 is	straightforward	and	can	be	 readily	
replicated	with	comparable	data,	provided	entities	are	assessed	 in	
a	systematic	manner.	Ecological	studies	are	frequently	less	system-
atic	and	constrained	by	temporal	and	spatial	scales	due	to	the	dy-
namic nature of communities over time and space. This holds true 
to	a	 lesser	degree	 for	assessments	of	woody	species	communities	
within	the	context	of	national	forest	monitoring	systems,	which	are	
resampled	in	fixed	intervals.	Hence,	from	a	practical	point	of	view,	
the	resulting	network	of	observational	studies	provides	a	valuable	
framework	 for	 a	 systematic	 and	 recurring	 collection	 of	 ecological	
data,	as	additional	costs	and	efforts	can	be	embedded	into	existing	
structures.	 Extending	 the	 scope	of	 study	objectives	 to	 systematic	
assessments	of	a	wider	range	of	botanical	and	potentially	zoological	

taxa	could	provide	powerful	and	statistically	robust	data	for	analy-
ses of organisms, structural components, and the interrelationships 
between	them.

5  |  CONCLUSIONS

We	 present	 an	 approach	 to	 discriminate	 species	 diversity	 from	
NFI	 data	 of	 forest	 communities	with	 high	 β-	diversity	 and	 species	
turnover.	 The	 novelty	 of	 the	method	 lies	 in	 considering	 interspe-
cies	 genetic	 variability	 for	 the	quantification	of	diversity	 and	 sub-
sequent	 classification	 using	 an	 unsupervised	 clustering	 algorithm	
on	a	country-	wide	scale.	We	demonstrate	that	large-	scale	forest	in-
ventory	data	can	be	classified	in	an	ecologically	meaningful	manner	
based	on	mean	basal	area	estimates	per	species	and	consideration	of	
phylogenetic	dissimilarity	between	samples.	The	thus	obtained	dis-
crimination	of	species	assemblages	provides	a	differentiated	picture	
of	 existing	 diversity	 patterns	 along	 expected	biogeographical	 gra-
dients without the need for additional assessments. This approach 
aligns	with	a	biodiversity	concept	considering	genetic	diversity	and	
could	potentially	be	standardized	for	application	to	similar	datasets,	
provided	systematic	data	assessment	is	granted.	The	presented	re-
sults	should	be	considered	as	a	step	 in	evaluating	to	which	extent	
large-	area	 forest	 inventory	data	 could	provide	 a	backbone	 for	 ex-
tended	biodiversity	monitoring	systems,	as	discrimination	of	woody	
species	assemblages	allows	for	systematic	delineation	of	forest	eco-
systems	if	genetic	variation	is	considered.
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