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Abstract
Classifications of forest vegetation types and characterization of related species 
assemblages are important analytical tools for mapping and diversity monitoring 
of forest communities. The discrimination of forest communities is often based on 
β-diversity, which can be quantified via numerous indices to derive compositional 
dissimilarity between samples. This study aims to evaluate the applicability of unsu-
pervised classification for National Forest Inventory data from Georgia by compar-
ing two cluster hierarchies. We calculated the mean basal area per hectare for each 
woody species across 1059 plot observations and quantified interspecies distances 
for all 87 species. Following an unspuervised cluster analysis, we compared the results 
derived from the species-neutral dissimilarity (Bray-Curtis) with those based on the 
Discriminating Avalanche dissimilarity, which incorporates interspecies phylogenetic 
variation. Incorporating genetic variation in the dissimilarity quantification resulted 
in a more nuanced discrimination of woody species assemblages and increased clus-
ter coherence. Favorable statistics include the total number of clusters (23 vs. 20), 
mean distance within clusters (0.773 vs. 0.343), and within sum of squares (344.13 
vs. 112.92). Clusters derived from dissimilarities that account for genetic variation 
showed a more robust alignment with biogeographical units, such as elevation and 
known habitats. We demonstrate that the applicability of unsupervised classification 
of species assemblages to large-scale forest inventory data strongly depends on the 
underlying quantification of dissimilarity. Our results indicate that by incorporating 
phylogenetic variation, a more precise classification aligned with biogeographic units 
is attained. This supports the concept that the genetic signal of species assemblages 
reflects biogeographical patterns and facilitates more precise analyses for mapping, 
monitoring, and management of forest diversity.
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აბსტრაქტული
ტყის მცენარეულობის ტიპების 
კლასიფიკაცია და მონათესავე 
სახეობათა შეკრების დახასიათება 
მნიშვნელოვანი ანალიტიკური 
ინსტრუმენტებია ტყის ტიპების 
აღწერისა და მრავალფეროვნების 
მონიტორინგისთვის. ტყის ტიპების 
განსხვავება ხშირად ემყარება β-
მრავალფეროვნებას, რომლის 
რაოდენობრივი დადგენა შესაძლებელია 
მრავალი ინდექსის მეშვეობით 
ნიმუშებს შორის კომპოზიციური 
განსხვავებულობის გამოსათვლელად. 
ეს კვლევა მიზნად ისახავს შეაფასოს 
საქართველოს ეროვნული ტყის 
ინვენტარიზაციის ზედამხედველობის 
გარეშე კლასიფიკაციის გამოყენებადობა 
ორი კლასტერული იერარქიის 
შედარების გზით. ჩვენ გამოვთვალეთ 
საშუალო ბაზალური ფართობი 
ჰექტარზე თითოეული მერქნიანი 
სახეობისთვის 1059 ნაკვეთზე 
დაკვირვებით და რაოდენობრივად 
დავადგინეთ სახეობათაშორისი 
მანძილი 87-ვე სახეობისთვის. ჩვენ 
შევადარეთ სახეობების ნეიტრალური 
განსხვავებულობიდან მიღებული 
შედეგები (ბრეი-კურტისი) ზვავის 
დისკრიმინაციული განსხვავებულობის 
საფუძველზე, რომელიც აერთიანებს 
სახეობათაშორის ფილოგენეტიკურ 
ვარიაციებს. გენეტიკური ცვალებადობის 
ჩართვამ განსხვავებულობის 
რაოდენობრივ განსაზღვრებაში 
გამოიწვია მერქნიანი სახეობების 
შეკრების უფრო ნიუანსური განსხვავება 
და გაზრდილი კლასტერული 
თანმიმდევრულობა. ხელსაყრელი 
სტატისტიკა მოიცავს მტევანთა 
საერთო რაოდენობას (23 v. 20), საშუალო 
მანძილს მტევნის შიგნით (0.773 vs. 0.343) 
და კვადრატების ჯამის ფარგლებში 

(344.13 vs. 112.92). განსხვავებებიდან 
მიღებული კლასტერებმა, რომლებიც 
ითვალისწინებენ გენეტიკურ 
ვარიაციებს, აჩვენეს უფრო მძლავრი 
გასწორება ბიოგეოგრაფიულ 
ერთეულებთან, როგორიცაა სიმაღლე 
და ცნობილი ჰაბიტატები. ჩვენ 
ვაჩვენებთ, რომ სახეობების შეკრების 
უკონტროლო კლასიფიკაციის 
გამოყენებადობა ფართომასშტაბიანი 
ტყის ინვენტარიზაციის მონაცემებზე 
მტკიცედ არის დამოკიდებული 
განსხვავებულობის ფუძემდებლური 
რაოდენობრივი განსაზღვრაზე. 
ჩვენი შედეგები მიუთითებს, რომ 
ფილოგენეტიკური ვარიაციით, უფრო 
ზუსტი კლასიფიკაციაა შესაძლებელი, 
რომელიც შეესაბამება ბიოგეოგრაფიულ 
ერთეულებს. ეს ამტიცებს კონცეფციას, 
რომ სახეობათა შეკრების გენეტიკური 
სიგნალი ასახავს ბიოგეოგრაფიულ 
ნიმუშებს და ხელს უწყობს ტყის 
მრავალფეროვნების აღწერას 
მონიტორინგისა და მართვის უფრო 
ზუსტ ანალიზს.

1  |  INTRODUC TION

Forest ecosystems host the largest share of terrestrial biodiver-
sity and cover approximately one-third of the global land surface 
(FAO,  2020; Gillerot et  al.,  2021; Heym et  al.,  2021; Torresani 
et al., 2019). In light of increasing pressure on forests due to cli-
mate change and the related global loss of biodiversity, also re-
ferred to as the “the sixth mass extinction,” with up to 92% of 
terrestrial endemics being anticipated to be negatively impacted 
(Manes et  al.,  2021), reliable approaches to assess and moni-
tor forest diversity are required (Barnosky et  al.,  2011; Cowie 
et  al.,  2022; Faith,  2013; Palombo, 2021). Monitoring should in-
clude the quantification of metrics that allow the classification of 
ecological entities based on their specific level, or degree of biodi-
versity, and ultimately according to their respective conservation 
value, which is required by conservationists (Brooks et al., 2015; 
Zampiglia et al., 2019). Appropriate delineation of forest commu-
nities and characterization of related species assemblages across 
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taxonomic groups are important analytical tools for sensible 
monitoring of species diversity and biodiversity management. On 
broader scales, such metrics can be provided by means of vegeta-
tion classification which aims to group spatial or temporal diver-
sity of species within a finite set of abstract categories (de Cáceres 
et al., 2015). Vegetation classification has proven to provide ade-
quate means for descriptive reporting, communication, and map-
ping of forest communities, and related concepts have responded 
to changing information needs over time. Consequently, forest-
type classifications exist for a wide range of targets, that is, habi-
tat quality (qualitative assessments for biodiversity management), 
development over time (i.e., stand classification according to age 
classes for forest management) or along biogeographic gradients, 
and remote sensing-based mapping of ecological communities 
(de Cáceres et  al., 2013; de Cáceres, Martín-Alcón, et  al., 2019; 
Fassnacht et al., 2016; Hao et al., 2021).

One approach for classifying forest communities focuses on 
the variation in species compositional characteristics across assem-
blages of different sites within a geographic area, which is commonly 
known as β-diversity (Legendre & de Cáceres, 2013; Magurran & 
McGill, 2011). β-diversity can be assessed by the change in species 
compositional characteristics between sites (i.e., species turnover, 
Jost, 2010) and a plethora of metrics exist to quantify the degree of 
dissimilarity between assemblages on various spatial and temporal 
scales (de Cáceres et al., 2013; de Cáceres, Coll, et al., 2019; Legendre 
& Legendre, 2012; Magurran & McGill, 2011; Ricotta,  2005). The 
most common dissimilarity indices are exclusively based on com-
positional characteristics, that is, species richness and elements 
of evenness (Magurran,  2005), while interspecies variability (i.e., 
phylogenetic, taxonomic, functional, or traits) is not considered 
(Chao et al., 2018; Chiu et al., 2014; de Cáceres et al., 2013; Hao, 
Ganeshaiah, et  al., 2019; Pavoine et al., 2013). In line with the in-
creasing recognition that genetic diversity comprises an integral part 
of biodiversity, for example, as stated in the definition of biodiversity 
by the Intergovernmental Platform on Biodiversity and Ecosystem 
Services (IPBES, Díaz et  al.,  2015), literature on how to incorpo-
rate phylogenetics as aspect of diversity is growing rapidly (Chao 
et  al.,  2023). Accordingly, several authors have approached forest 
community classification by accounting for both compositional data 
and interspecies phylogenetic variability (i.e., Capelo,  2020; Hao 
et al., 2021; Ricotta et al., 2020; Webb et al., 2002). As phylogeneti-
cally closely related species often share beneficial traits for specific 
environments, discriminating assemblages based on phylogenetic 
distances can serve as a proxy for classifying forest communities ac-
cording to functional roles, environmental diversity, and conserva-
tion value (Faith, 2013; Gilbert & Parker, 2022; Hawkins et al., 2014; 
Padullés Cubino et al., 2021; Pavoine, 2016; Pavoine & Ricotta, 2014; 
Tucker et al., 2017). Hao, Ganeshaiah, et al. (2019) demonstrated that 
different patterns emerged if interspecies taxonomic distances were 
considered for the classification of global forest communities using 
the Discriminating Avalanche index (Ganeshaiah & Shaankar, 2000).

On a smaller scale, National Forest Inventories (NFIs) provide 
systematic and periodical observations of tree species abundances 

based on permanent sample units on a country-wide level (Corona 
et  al.,  2011). The continuous adaptation of variables assessed 
during NFIs highlights an increasing emphasis on aspects of biodi-
versity, enabling ecologists to investigate potentials and limitations 
of the thus provided data (Alberdi et al., 2019; Corona et al., 2011; 
Didion, 2020; McRoberts et al., 2009). Incorporating phylogenetic 
diversity of species assemblages extends the perspective on diver-
sity in this context and bears the potential to deepen our under-
standing of the complex interactions among woody species over 
large geographical scales.

In the present study, we compare the performance of two dis-
similarity indices for the discrimination of forest woody species as-
semblages when applied to large-scale forest inventory data such as 
the dataset of the first NFI of Georgia. To this end, we applied unsu-
pervised clustering to the obtained dissimilarity matrices based on 
a conventional and a dissimilarity index that incorporates interspe-
cies phylogenetic distances, respectively. Apart from statistics for 
internal evaluation of the resulting classifications, our comparison 
considered the distribution of discriminated assemblages along bio-
geographic gradients. Based on the assumption that genetic variabil-
ity of co-inhabiting species provides a signal that sufficiently reflects 
site-specific environmental determinants, we investigated whether 
including this variable in the quantification of dissimilarity results in 
an improved reflection of biogeographic gradients. To test the gen-
eral applicability, we incorporated the phylogenetic variability into 
the classification of a large, real-world dataset and evaluated the 
results considering cluster cohesiveness and overall interpretability.

2  |  DATA AND METHODS

We compare two dissimilarity indices for the classification of woody 
species assemblages when applied to NFI data of Georgia. Adhering 
to the methodological approach underlying the data, we focus on 
woody species, that is, all recorded species that meet the speci-
fied target diameter at breast height (DBH, at 1.3 m, MEPA, 2018). 
Consequently, we are referring to woody species even if only spe-
cies is written hereafter.

2.1  |  Study area

Georgia is located between the Southern Slopes of the Greater 
and the Northern part of the Lesser Caucasus, between 41°07′ – 
43°35′ N and 40°04′ – 46°44′ E (Fischer et  al., 2018). The forests 
of Georgia host large shares of endemic species and form part of 
the Caucasus biodiversity hotspot (Joppa et al., 2011; Myers, 2003). 
Existing forest formations range from Alpine coniferous forests 
dominated by Abies nordmanniana (Steven) Spach. and Picea orientalis 
(L.) Peterm. to open juniper woodland (dominated by Juniperus poly-
carpos excelsa subsp. polycarpos (K. Koch) Takht. and J. foetidissima 
Willd.), encompassing further thermophilus to xerophytic mixed oak 
forest (Quercus petrea subsp. iberica (Steven ex M. Bieb.) Krassiln., 
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Carpinus betulus L., and C. orientalis Mill.), Colchic alder carrs which 
are dominated by Alnus glutinosa subsp. barbata (C. A. Mey.) Yalt. and 
oriental beech (Fagus orientalis Lipsky) and hornbeam-oriental beech 
forests (Bohn et al., 2007; Dolukhanov, 2010; Fischer et al., 2018; 
Nakhutsrishvili et al., 2021; Novák et al., 2023).

2.2  |  Forest community data

Between 2018 and 2021, Georgia implemented its' first NFI based 
on a systematic sampling grid of 3.6 × 3.6 km with a randomly se-
lected origin. Sampling units consist of cluster plots (0.21 ha) con-
taining three subplots of 0.0.7 ha each. These subplots are arranged 
in an L-shaped configuration with a distance of 100 m along both 
axes (Figure 1). As 18% of the country's territory is currently not ac-
cessible for government officials due to an ongoing political conflict 
(MEPA, 2023), clusters were sampled on approximately 74% of the 
national forest area (Figure 2).

2.2.1  |  Assessment of Woody species

Woody species were recorded per subplot on three concentric 
nested subplots according to any stems' respective DBH. Stems with 
DBH ≥ 30 cm were recorded on the largest plot (r = 15 m). Stems with 
DBH ≥ 15 and ≥8 cm were recorded on the inner nested plot radii 
of 10 m radius and 5 m, respectively (Figure 1). Numerous variables 
were recorded per woody species, along with the polar coordinates 
of the stem axis, species, and DBH (MEPA, 2018).

From the entire NFI data set (N = 2006), all accessible clus-
ters pertaining to the locally applied land use class “Forest” and 

sub-classes “Tree covered area” or “Fire affected forests” were 
selected for analysis (MEPA, 2018). Subplots with recorded inter-
sections with a forest boundary (“slopover sample plots”) were ex-
cluded to avoid including samples with extreme outliers regarding 
species richness due to edge effects (Willmer et al., 2022). Clusters 
containing species observations that were not unambiguously iden-
tified at species level, for example, Deciduous spp. and Genera spp., 
were omitted because a precise quantification of the cophenetic 
distances along the phylogenetic hierarchy is not possible. Clusters 
containing subplots without woody species observations were ex-
cluded. Our sample consists of all cluster plots comprised of obser-
vations from three subplots (n = 1059, henceforward referred to as 
“samples”), which represent 53% of all clusters. Figure 2 provides an 
overview of the spatial distribution of samples used for the analysis.

After reprojection of sample locations to UTM38N, WGS84 
(EPSG: 32638), sample elevations [m above sea level] were derived 
from the digital elevation model (DEM) provided by Shuttle Radar 
Topography Mission (SRTM, Farr et al., 2007). Elevation values were 
calculated as the median of all raster cell values (30 × 30 m) con-
tained in or crossed by the circular subplot area (r = 15 m + recorded 
GPS error [m]) of the southwestern subplot.

2.2.2  |  Species diversity data

Diversity measures are usually based on data representing the com-
positional variation between species (i.e., occurrence and abundance) 
in an assemblage (Ricotta et  al., 2021). Forest species communities 
may display similar compositional characteristics, in terms of counts 
of observed species and respective individuals. However, species can 
be represented by large numbers of small-diameter trees, or stems 
belonging to the same individual, or fewer individuals but with sig-
nificantly large relative shares of total basal area. Hence, abundance 
estimates based on counts of individuals do not take significant differ-
ences in the size structure of occurring species into consideration and 
may result in distinct evenness profiles. We used mean basal area (BA, 
m2/ha) per species and cluster plot as species abundances to account 
for the variation in size of the constituents. By weighting compositional 
data using BA, we incorporate valuable structural information that con-
siders site occupation per species for the quantification of β-diversity 
(de Cáceres, Coll, et al., 2019; McRoberts et al., 2009; Staudhammer 
& LeMay, 2001; Yao et al., 2019). Consequently, BA of all living stems 
was aggregated per cluster plot and species and divided by 3 to obtain 
mean BA estimates per sample (de Cáceres et al., 2015; MEPA, 2018).

2.3  |  Analysis

2.3.1  |  Nomenclature

Spelling and nomenclature of all recorded species were standardized 
with the Taxonomic Backbone databases of World Flora Online (WFO 
DB, Kindt, 2020) and the Global Biodiversity Information Facility (GBIF 

F I G U R E  1 Cluster plot configuration of the first National Forest 
Inventory of Georgia. Each cluster consists of three subplots for 
tree assessment within three concentric circles according to the 
measured diameter at breast height (DBH, at 1.3 m, MEPA, 2023).

100 m

100 m

r = 5 m

r = 10 m

r = 15 m
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Secretariat, 2021). In cases where species listed in the NFI data did 
not yield an unequivocal match in the WFO DB, corresponding records 
were harmonized with Lachashvili et al. (2022) and the nomenclature 
of the World Plants database (https://​www.​world​plants.​de) to derive 
names for all species ranked as taxonomically accepted.

2.3.2  |  Phylogenetic interspecies distances

A phylogenetic tree encompassing all observed species was con-
structed by matching the harmonized species list with a mega phy-
logeny containing 72,570 species of vascular plants according to the 
World Plants database (GBOTB.extended.WP.tre, Jin & Qian, 2022). 
The backbone mega phylogeny is based on the species-level phylog-
eny for vascular plants derived from gene sequencing from 7 gene 
regions and 39 fossil calibrations created by Zanne et  al.  (2014), 
which was updated and expanded by Jin and Qian (2022). Following 
the authors' recommendation to consolidate taxa below species 
level (e.g., sub-species) with the respective parental species, five in-
fraspecific taxa were combined with their parental species, resulting 
in the lowest taxonomic unit being species level (Figure 3). From the 
thus created ultrametric phylogenetic tree (Jin & Qian, 2019; Qian 
& Jin, 2016; Smith & Brown, 2018), cophenetic distances, that is, 

the total branch length connecting each pair of species at the termi-
nal nodes of the respective phylogeny, were calculated (Bevilacqua 
et al., 2021; Hao, Corral-Rivas, et al., 2019; Kling et al., 2018).

Interspecies phylogenetic distances were normalized within a 
square matrix that contained pairwise distance values [0 < distph ≤ 1] 
between each pair of species.

2.3.3  |  Dissimilarity indices

The Discriminating Avalanche index (dA equation [2] in Table 1) de-
veloped by Ganeshaiah and Shaankar (2000) and described by Hao, 
Corral-Rivas, et  al.  (2019) considers interspecies dissimilarity by 
multiplying absolute differences in frequencies (numerator in BC) of 
species i and j in two samples with a specific distance between spe-
cies i and j. We use the phylogenetic distances to weigh the differ-
ence in mean basal area between i and j. Table 1 shows the formulas 
of both indices used in this study.

As the maximum dissimilarity value obtained by dA = 
(

1 −
1

n

)

, 
where n equals the number of species, the resulting dissimilarities 
were normalized via xnorm =

x − xmin

xmax − xmin

, with xmin and xmax representing 
the minimum and maximum value of dA, respectively (Hao, Corral-
Rivas, et  al.,  2019; Legendre & Legendre,  2012). Consequently, 

F I G U R E  2 Locations of samples used from the National Forest Inventory of Georgia, n = 1059. Samples (black dots) consist of accessible 
cluster plots of equal sample size (three subplots) located inside forests that are not intersected by forest boundaries and contain only 
records of taxa identified at species level. Dashed lines mark the boundaries of inaccessible areas from where no field data were obtained.
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6 of 16  |     WELLENBECK et al.

pairwise dissimilarity values of the two resulting dissimilarity ma-
trices (1059 × 1059) range between 0 and 1. Pairwise values of 1 
imply that two samples are completely different as they do not share 
any species, whereas values of 0 indicate two samples are equal in 
terms of compositional characteristics (Chao et al., 2005; Legendre 
& Legendre,  2012; Leyer & Wesche,  2008). Prior to clustering, 
a Mantel test (Mantel, 1967) was performed to check for existing 
correlations between the two dissimilarity matrices. As the pairwise 
dissimilarities are not normally distributed, and non-linear relation-
ships between the pairwise dissimilarity values exist, we used the 

Spearman correlation coefficient with 9999 permutations (Legendre 
& Legendre, 2012).

2.3.4  |  Isometric partitioning

The isopam algorithm (Schmidtlein et al., 2010) available in package 
“isopam” (v. 2.0, Schmidtlein et al., 2024) combines isometric feature 
mapping and partitioning around medoids (data points that are most 
centrally located within each cluster with the sum of dissimilarities 

F I G U R E  3 Phylogeny for 87 species listed in the data sample of the National Forest Inventory of Georgia. Interspecies phylogenetic 
distances were calculated as total branch length connecting each pair of species at the terminal nodes of the hierarchy. For respective 
branch lengths, see Figure S1.
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    |  7 of 16WELLENBECK et al.

between medoids and all other data points being minimized) in order 
to build clusters with a maximum number and fidelity of indicative 
species. The isomap ordination, which is based on geodesic distances 
strongly determined by neighborhood definitions, is repeated with 
different parameter settings. The result is clustered, and the clusters 
are evaluated according to the criteria mentioned above. These cri-
teria are similar to those used when structuring phytosociological ta-
bles (Abe, 2021). In this, and the use of an ordination, Isopam is similar 
to Twinspan (Hill, 1979), but does not involve internal readjustments, 
uses geodesic distances (taking account of “neighbors of neighbors” 
in feature space), and works on multidimensional ordination spaces. 
It has been previously used for large-scale classifications of forests 
(Cabido et al., 2018; Černý et al., 2015; Zeballos et al., 2020) and other 
systems (Feilhauer et al., 2021; Hein et al., 2014; Peterka et al., 2017; 
Yu et al., 2022). Isopam can be run both unsupervised and supervised 
(with reference plots). For the current study, the original source code 
was extended to support dA (Capelo, 2020) and executed on a com-
puter with two Intel Xeon CPUs (E5-2630 v3) and 256 GB RAM using 
R Statistical Software (v 4.3.2; R Core Team, 2023). To ease com-
parability, we set the maximum number of hierarchy levels to four 
for both classifications. Subsequently, we extracted lists of indicator 
species frequencies with levels of significance according to Fisher's 
exact test for each cluster using the Isotab function, which is part of 
the “isopam” package. Fidelity (“equalized phi,” Tichy & Chitrý, 2006) 
together with Fisher's exact test if the observed frequency is not 
attained by chance are the criteria for qualifying as an indicator spe-
cies in Isotab (Schmidtlein et al., 2024).

2.3.5  |  Evaluation of clustering

To evaluate the correspondence between the original sample dis-
similarities and dendrogram distances, we calculated cophenetic 

correlation coefficients for each hierarchical cluster structure 
(Lapointe & Legendre, 1995; Legendre & Legendre, 2012). The modi-
fied Rand index was used to evaluate clustering performance based 
on the consistency between partitions (Legendre & Legendre, 2012). 
Cluster homogeneity was evaluated via within sum of squares (WSS, 
Hao, Ganeshaiah, et al., 2019) and a comparison of the average dis-
tance between and within clusters using the function cluster.stats 
of the R package “fpc.” To assess relevance of the hierarchies, we 
compared indicator species and the resulting distributions of relative 
BA among partitioned groups (de Cáceres et al., 2015). Evaluation of 
correspondence to biogeographic units was based on a comparison 
of elevational ranges derived from the DEM between groups and the 
spatial distribution of clusters in relation to forest vegetation-type 
classifications presented by Bohn et al. (2007). We applied the non-
parametric Kruskal–Wallis test to check for significance between 
groups due to nonnormality in the distribution of elevation values 
within groups (Shapiro test). Henceforward, we are referring to the 
initial partition at the lowest level of the hierarchy as classes, to the 
intermediary partitions as branches, and the resulting clusters as 
assemblages.

2.3.6  |  Data analysis

The analysis was conducted in R Studio version 2023.09.0-
463 (RStudio Team,  2020) using R Base version 4.3.0 (R Core 
Team,  2023). Harmonization of nomenclature was realized via the 
R package “Worldflora” version 1.13-2 (Kindt, 2020), and the pack-
age “V.phylomaker2” version 0.1.0 was used to match observed 
species with the phylogenetic backbone (Jin & Qian,  2022). The 
Mantel test and BC dissimilarities were calculated using the pack-
ages “vegan” version 2.6-4 (Oksanen et al., 2022). A custom func-
tion was embedded in the adjusted clustering algorithm of the 
corresponding R package “isopam” version 1.2.0 for dA (Schmidtlein 
et al., 2022). Clustering metrics were obtained using the R packages 
“mclust,” version 6.0.0 (Scrucca et al., 2016), and “fpc,” version 2.2-
10 (Hennig, 2023).

3  |  RESULTS

Compositional data of n = 1059 samples containing 65,818 living 
tree observations were analyzed (Table 2). In total, 87 species were 
represented by 52 genera, 29 families, 16 orders, and two classes.

TA B L E  1 Dissimilarity indices used in this study.

Bray–Curtis dissimilarity 
index (1957)

BC=
∑n

i=1�
pa
i
− pb

i �
∑n

i=1(
pa
i
+ pb

i )

[1]

Discriminating Avalanche 
(Hao, Corral-Rivas, 
et al., 2019)

dA =
1

2

∑n

i=1

∑n

j=1
Δ
a,b

i
dijΔ

a,b

j
[2]

Note: With dij = phylogenetic distance between species i and j (dij = dji 
and dii = 0); Δ

a,b

i
 = absolute difference between the frequencies of 

species i in plots a and b 
(

|

|

|

pa
i
− pb

i

|

|

|

)

; n = total number of sample plots; 
pa
i
, pb

i
 = relative frequencies of species i in plots a and b.

Species richness Mean basal area per species [m2/ha]

n Min Max Meana CV% Min Max Meana CV%

1059 1 12 4.96 
(±2.14)

43.08 2.54 79.02 30.4 
(±12.79)

42.06

Abbreviations: CV%, Coefficient of variation; Var., Variance.
aMeans are denoted with standard deviation in parenthesis.

TA B L E  2 Summary statistics of 
compositional data of cluster plot 
observations of the National Forest 
Inventory of Georgia.
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8 of 16  |     WELLENBECK et al.

Angiosperms were represented by 76 species (in 87.4% of all sam-
ples) across 26 different families. Fagaceae (six species) accounted 
for the highest number of observations followed by Betulaceae with 
10 species (25.3% and 23.2% of all samples, respectively), Rosaceae, 
and Sapindaceae (15 and 6 species, in 11.4% and 10.3% of all sam-
ples, respectively). In contrast, gymnosperms (10.3%) were repre-
sented by 11 species, belonging to three different families, with the 
largest family being Pinaceae (6 species) followed by Cupressaceae 
and Taxaceae (4 and 1 species, respectively). Gymnosperms were 
observed in 33% of all samples.

3.1  |  Pairwise dissimilarity

Mantel statistics (r = .613 with p = .0004) indicated a significant posi-
tive correlation between the two dissimilarity matrices. Pairwise dis-
similarities according to dA ranged from 0.23 to 0.87, which is almost 
double the range of that of BC (0.63 to 0.99, Table 3).

Consequently, the mean dissimilarity between samples (0.79 
for BC and 0.38 for dA, respectively) and thus overall variation was 
higher for BC than for dA, as for the latter, frequencies of dissimilar-
ity values <1 were more evenly distributed, with very few pairwise 
dissimilarities of 1. Frequency distributions of sample dissimilarities 
are provided in Figure S2.

3.2  |  Discrimination of assemblages

The hierarchical clustering based on BC (HCBC) distinguished 23 as-
semblages (clusters) across four hierarchical levels (I–IV) and classes. 
Within HCBC, samples were partitioned into 10 and 17 branches at 
levels II to III, respectively. The hierarchical clustering based on dA 
(HCdA) contained 10 and 15 branches at levels II to III and resulted 
in 20 distinct assemblages over four levels and classes. Two assem-
blages were not partitioned further below level II in HCdA (Figure 4). 
The number of samples per assemblage ranged from 6 to 152 for 
HCBC (Mean: 82 ± 91.5) and 3 to 163 for HCdA (Mean: 106.1 ± 119.9), 
respectively. For HCBC, the number of observed species per assem-
blage ranged from 12 to 54. For HCdA, one assemblage contained 
only four species, whereas two assemblages encompassed 53 
species.

The cophenetic correlation coefficients were 0.492 and 0.442 
for HCBC and HCdA, respectively. The obtained adjusted Rand index 
of 0.317 suggests a modest level of similarity between the cluster-
ing results. Average distances within clusters ranged from 0.671 
to 0.875 and 0.196 to 0.49 for HCBC and HCdA, respectively. Mean 

distance between clusters was 0.789 for HCBC and 0.384 for HCdA. 
WSS values of HCBC amounted to 344.13 and 112.92 for HCdA.

3.2.1  |  Evaluation of cluster hierarchies

To evaluate the performance of BC and dA for clustering, we com-
pared the resulting classes, groups, and assemblages considering 
internal metrics of the partitioning process. A total of 77 and 68 in-
dicator species were listed for all partitions based on BC and dA, 
respectively. For a characterization based on indicators and respec-
tive frequencies, only highly significant (p ≤ .001) species with total 
frequencies ≥50% were considered, unless indicated otherwise. 
Indicator species for both partitions were A. nordmanniana, A. cap-
padocicum, A. glutinosa, C. betulus, Carpinus orientalis Mill., C. sativa, 
F. orientalis, P. orientalis, Q. petraea subsp. polycarpa (Schur) Raus, and 
Tilia rubra subsp. caucasica (Rupr.) V. Engl. In addition, Fraxinus excel-
sior L. is an indicator for HCdA. The total number of indicators with 
frequencies of 100% was 24 and 8 for HCBC and HCdA, respectively. 
Class 1 of HCBC is characterized by a high frequency of F. orientalis 
(99%), whereas for HCdA, F. orientalis and C. betulus are listed with 
frequencies of 93% and 75%, respectively. In class 2, the highest fre-
quencies are observed for Q. petrea (87%) and C. betulus (82%). P. ori-
entalis (68%), F. orientalis (57%), and A. nordmanniana (53%) are the 
most frequent indicator species in class 3, whereas for class 4, these 
are A. glutinosa (87%) and Castanea sativa Mill. (61%). In HCdA, highly 
significant indicators in class 1 are F. orientalis (93%) and C. betu-
lus (75%), whereas in class 2, these are Q. petrea (84%), C. orienta-
lis (61%), and Fraxinus excelsior L. (50%). In classes 3 and 4 of HCdA, 
P. orientalis (79%), A. nordmanniana (64%), A. glutinosa (92%), and 
C. sativa (59%) represent highly significant indicators in classes 3 and 
4, respectively. Based on these characteristics, we labeled the four 
main classes according to predominant relative BA and are referring 
to these for ease of readability henceforward as follows: class 1 is 
characterized by a dominance of Fagus, class 2 is Carpinus-Quercus 
dominated, and classes 3 and 4 are Pinaceae and Alnus-Castanea 
dominated, respectively. Synoptic tables of both cluster hierarchies 
(Figures S3 and S4, respectively) and a detailed description of indica-
tor distributions per partition below level I for HCdA (Appendix S1) 
are provided as appendices.

3.2.2  |  Elevation and spatial distribution

To evaluate the correspondence of assemblages to existing biogeo-
graphic units, we compared the distribution of sample elevations 

Index n Min Max Meana Var. CV%

BC 1059 0.627 0.998 0.789 (±0.099) 0.01 12.55

dA 0.225 0.87 0.383 (±0.147) 0.022 38.38

Abbreviations: CV%, Coefficient of variation; Var., Variance.
aMeans are denoted with standard deviation in parenthesis.

TA B L E  3 Summary statistics of 
mean pairwise dissimilarities between 
samples based on Bray–Curtis (BC) and 
Discriminating Avalanche (dA) of the 
National Forest Inventory data of Georgia.
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    |  9 of 16WELLENBECK et al.

within assemblages. Within the four classes in both hierarchies, sam-
ple elevations are distributed similarly. Samples within the Fagus-
dominated group (class 1) cover a wide elevational range (≤750 m 
to >2000 m asl), however, in HCBC, 81% of all samples are located 
between >1000 and 2000 m asl, whereas in HCdA, most samples 
(77%) are located within the lower range of >750 and 1750 m asl. 
Samples with Carpinus-Quercus dominance are predominantly lo-
cated at elevations <1250 m in both hierarchies. The majority of 
Pinaceae-dominated samples lie above 1250 m asl, whereas all of 

Alnus-Castanea-dominated samples are situated below 1250 m asl, 
with the majority (70%) positioned below 750 m asl for HCBC and 
HCdA, respectively. Overall classes, except for the Fagus-dominated 
group, agglomerations of sample elevation values are more pro-
nounced within assemblages of HCdA than of HCBC. The applied 
Kruskal–Wallis test revealed highly significant differences (p ≤ .001) 
between assemblages for both hierarchies (Figure 5).

Spatial distributions of discriminated assemblages show 
a general alignment along biogeographical units. Alnus 

F I G U R E  4 Resulting cluster hierarchy 
from the isopam partitioning (dendrogram) 
and pairwise dissimilarities of 1059 
samples from the National Forest 
Inventory data of Georgia. Dissimilarities 
are based on the Bray–Curtis (a) and 
discriminating avalanche (b) index. The 
cell grid is colored according to the 
dissimilarity values between samples 
(rows and columns). In total, 23 and 20 
assemblages were discriminated for 
Bray–Curtis and discriminating avalanche, 
respectively. At level II of the hierarchical 
clustering based on the discriminating 
avalanche index, 10 subgroups distributed 
over four classes were labeled according 
to dominance of relative basal area.
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10 of 16  |     WELLENBECK et al.

glutinosa-dominated assemblages agglomerate in the humid Alder 
carrs of Eastern Georgia (Nakhutsrishvili,  2013), whereas the 
Pinaceae-dominated assemblages are predominantly located in 
montane to subalpine areas of the Lesser and Greater Caucasus. 
Assemblages dominated by mixed Quercus spp., Carpinus spp., and 
F. orientalis are situated at intermediate ranges. Those with high 
shares of BA of Quercus spp. are limited to lower and drier areas, 
while F. orientalis-dominated assemblages are located at higher 
elevations. Interestingly, the five samples assigned to Juniperus-
Pistacia woodland have been clearly discriminated within HCdA 
that are located in the semi-arid areas of the southwest of the 
country (Nakhutsrishvili et al., 2021).

To visually evaluate the spatial distribution of discriminated as-
semblages, we cut HCdA at level II because 70% of the partitions 
are not partitioned further below level II, resulting in 10 clustered 
assemblages (Figure  4). Based on characteristic indicator species, 
relative BA distributions, and occupied elevational zones, we labeled 
each assemblage accordingly and mapped the respective sample lo-
cation in relation to areas of forest vegetation-type classifications 
according to Bohn et al. (2007) (Figure 6).

4  |  DISCUSSION

Parting from the assumption that genetic variation of co-inhabiting 
species provides a signal that reflects site-specific environmental 
determinants, we contrast the performance of a species-neutral dis-
similarity index (BC) with an index that considers interspecies ge-
netic variation (dA) when used in unsupervised classification. Our 

findings indicate that incorporating interspecies phylogenetic dis-
tances in the quantification of dissimilarities results in more coher-
ent and ecologically meaningful classifications of large-scale forest 
inventory data with high β-diversity.

The Mantel statistics indicate a significant positive correlation 
between the dissimilarity matrices obtained for each index (r = .613, 
with p = .0004), implying that essential patterns of variation among 
samples are maintained in the respective quantifications. However, 
frequency distributions and visual inspection of dissimilarities 
(Figure 4) show overall higher dissimilarity values based on BC, re-
flecting its' sensitivity to species turnover. Whereas the resulting 
cluster hierarchies maintain a certain level of agreement (cophenetic 
correlation = .511), the fact that a correlation of one signifies com-
plete similarity suggests that the dissimilarity signal resulting from 
dA is not redundant. Clustering based on dA performs slightly better 
in preserving the original dissimilarities according to the respective 
cophenetic correlation coefficients of .492 and .442 for HCBC and 
HCdA, respectively. Dendrogram topologies, cluster validation met-
rics (i.e., WSS of 344.123 and 112.917 for HCBC and HCdA, respec-
tively), and distributions of relative BA among assemblages indicate a 
higher degree of compactness, separation, and yield, generally more 
conceivable clustering results based on dA. Overall, HCdA provided 
enhanced general interpretability and succeeded in discriminating 
clearly distinguished assemblages regarding compositional charac-
teristics, that is, the P. atlantica and Juniperus woodlands of the semi-
arid lowlands of Southeastern Georgia. These results support the 
concept that an extension of variables considered for quantification 
of dissimilarity leads to a refined conception for diversity classifica-
tion if genetic variation is considered and are in line with the findings 

F I G U R E  5 Sample elevations [m asl] from the National Forest Inventory in Georgia per resulting cluster for Bray–Curtis (a) and 
discriminating avalanche (b). The boxes represent interquartile ranges and respective median values (solid line) of sample elevations within 
each clustered assemblage (colored dots). Resulting p values of the X2

Kruskal–Wallis test are p = 2.899e-113 and p = 1.674e-115, with confidence 
intervals between 0.544, 1 and 0.538, and 1 for assemblages in the hierarchical clustering based on BC and dA, respectively (n = 1059).
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of Hao, Ganeshaiah, et al. (2019) and other authors (Capelo, 2020; 
Pavoine & Ricotta, 2014; Ricotta & Pavoine, 2015).

As BC represents a “species-neutral” diversity index sensu Chao 
et  al.  (2010), which assumes that all observed species contribute 
equally to overall diversity, and species turnover constitutes the 
predominant signal for discrimination, reflected by the significantly 
higher number of indicator species with frequencies of 100% (24 
and 8 for HCBC and HCdA, respectively). Conversely, as dA dissim-
ilarity considers species as phylogenetic units, a complete species 
turnover does not necessarily result in maximum dissimilarity values 
between two sites because differences in abundance are weighted 
by the genetic proximity between species. Assuming that the ge-
netic signal of co-occurring species reflects niche occupation within 
given ecogeographical areas (Hawkins et al., 2014), the thus refined 
dissimilarity signal appears to respond to biogeographical gradients 
in a more interpretable manner.

The validity of the presented approach relies on precise mea-
surements of tree diameters and accurate species identification 
in the field. While traditional forest science prioritized genus-
level information, growing emphasis on diversity-related issues 

prompted forestry experts to be increasingly trained to provide 
accurate species identification. The related uncertainties are not 
design-based issues but apply to all ecological surveys requiring 
botanical expert knowledge to ensure taxon detection and vali-
date observations on species level (Lam & Kleinn, 2008; Roswell 
et al., 2021). Overall, only 2% of all cluster plot observations in-
cluded individuals that were not identified to species level and had 
to be excluded. By considering only cluster plot observations of 
equal sample size (m = 3, 64% of all cluster plots) and the exclusion 
of subplots overlapping with the forest boundary (16%), our anal-
yses are based on a subsample of the NFI data, representing 60% 
of all cluster plot observations. Hence, conclusions drawn from 
the presented results should consider, for example, that species 
exclusively occurring at forest boundaries are excluded. Potential 
limitations to validity arise from field sampling protocols, as over-
all subplot size, or sampling effects due to the nested subplot 
structure (with respective target DBH as inclusion criteria), may 
introduce bias to the quantification of dissimilarity (de Cáceres, 
Martín-Alcón, et  al.,  2019). Accordingly, observed numbers of 
species should be regarded as proxies of true species richness, 

F I G U R E  6 Schematic overview of spatial distributions of discriminated assemblages and main forest formations adapted from the 
vegetation-type classification by Bohn et al. (2007). Assemblages are colored according to the respective palette of the four main classes 
of the cluster hierarchy (blue, beige, red/orange, and green for dominance of Fagus, Carpinus-Quercus, Pinaceae, and Alnus-Castanea, 
respectively).
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especially if nested sample plot designs are applied that are based 
on specific diameter thresholds (Lin et al., 2020). Overall species 
richness can be assumed to be higher with the contributions of 
smaller-diameter trees being neglected (Corona et  al.,  2017). 
Aggregations to cluster plot level could potentially translate to 
generalization effects and the loss of information on site-specific 
environmental factors on smaller scales. The resulting magnitude 
of impact on the presented results, however, is likely to vary ac-
cording to forest type, topographical condition, and management 
regime (McRoberts et al., 2009).

With continuing advances in whole-genome phylogenetics 
and functional genomics, information on phylogenetic diversity 
is continuously improving (Kling et al., 2018). Access to compre-
hensive and standardized phylogenetic mega trees to quantify 
species genetic relationships is readily available and their appli-
cation to investigate variation in community compositions is be-
coming increasingly more common (Gilbert & Parker, 2022; Jin & 
Qian, 2022).

Our results are of relevance for a wide range of classifications 
of ecological entities according to conservation value, mapping of 
ecological communities, or other discriminative objectives. The 
method aligns standard canopy layer data from forest invento-
ries with natural vegetation types according to Bohn et al. (2007), 
but harmonization with existing forest typologies is limited due 
to methodological differences, such as the structural vegetation 
layers considered and the abundance units recorded (e.g., Chytrý 
et al., 2020; Mucina et al., 2016). Investigating the degree to which 
the resulting clusters can be aligned with defined syntaxonomical 
units is an interesting area for future research, especially for the 
identification of diagnostic species from the shrub and herb layers 
to refine classifications and the development of practical assess-
ment procedures.

The integration of genetic signals of forest communities during 
characterization has wide implications for respective approaches 
to classification. As a proxy indicative of the relationship between 
species composition and site conditions, interspecies genetic vari-
ation extends the scope of forest diversity mapping, management, 
and monitoring to account for alterations inconceivable by conven-
tional compositional variables. Beyond the potential advantage of 
streamlining processes by applying unsupervised classification to 
large datasets, our approach is straightforward and can be readily 
replicated with comparable data, provided entities are assessed in 
a systematic manner. Ecological studies are frequently less system-
atic and constrained by temporal and spatial scales due to the dy-
namic nature of communities over time and space. This holds true 
to a lesser degree for assessments of woody species communities 
within the context of national forest monitoring systems, which are 
resampled in fixed intervals. Hence, from a practical point of view, 
the resulting network of observational studies provides a valuable 
framework for a systematic and recurring collection of ecological 
data, as additional costs and efforts can be embedded into existing 
structures. Extending the scope of study objectives to systematic 
assessments of a wider range of botanical and potentially zoological 

taxa could provide powerful and statistically robust data for analy-
ses of organisms, structural components, and the interrelationships 
between them.

5  |  CONCLUSIONS

We present an approach to discriminate species diversity from 
NFI data of forest communities with high β-diversity and species 
turnover. The novelty of the method lies in considering interspe-
cies genetic variability for the quantification of diversity and sub-
sequent classification using an unsupervised clustering algorithm 
on a country-wide scale. We demonstrate that large-scale forest in-
ventory data can be classified in an ecologically meaningful manner 
based on mean basal area estimates per species and consideration of 
phylogenetic dissimilarity between samples. The thus obtained dis-
crimination of species assemblages provides a differentiated picture 
of existing diversity patterns along expected biogeographical gra-
dients without the need for additional assessments. This approach 
aligns with a biodiversity concept considering genetic diversity and 
could potentially be standardized for application to similar datasets, 
provided systematic data assessment is granted. The presented re-
sults should be considered as a step in evaluating to which extent 
large-area forest inventory data could provide a backbone for ex-
tended biodiversity monitoring systems, as discrimination of woody 
species assemblages allows for systematic delineation of forest eco-
systems if genetic variation is considered.
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