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Abstract

Classifications of forest vegetation types and characterization of related species
assemblages are important analytical tools for mapping and diversity monitoring
of forest communities. The discrimination of forest communities is often based on
B-diversity, which can be quantified via numerous indices to derive compositional
dissimilarity between samples. This study aims to evaluate the applicability of unsu-
pervised classification for National Forest Inventory data from Georgia by compar-
ing two cluster hierarchies. We calculated the mean basal area per hectare for each
woody species across 1059 plot observations and quantified interspecies distances
for all 87 species. Following an unspuervised cluster analysis, we compared the results
derived from the species-neutral dissimilarity (Bray-Curtis) with those based on the
Discriminating Avalanche dissimilarity, which incorporates interspecies phylogenetic
variation. Incorporating genetic variation in the dissimilarity quantification resulted
in a more nuanced discrimination of woody species assemblages and increased clus-
ter coherence. Favorable statistics include the total number of clusters (23 vs. 20),
mean distance within clusters (0.773 vs. 0.343), and within sum of squares (344.13
vs. 112.92). Clusters derived from dissimilarities that account for genetic variation
showed a more robust alignment with biogeographical units, such as elevation and
known habitats. We demonstrate that the applicability of unsupervised classification
of species assemblages to large-scale forest inventory data strongly depends on the
underlying quantification of dissimilarity. Our results indicate that by incorporating
phylogenetic variation, a more precise classification aligned with biogeographic units
is attained. This supports the concept that the genetic signal of species assemblages
reflects biogeographical patterns and facilitates more precise analyses for mapping,

monitoring, and management of forest diversity.
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1 | INTRODUCTION

Forest ecosystems host the largest share of terrestrial biodiver-
sity and cover approximately one-third of the global land surface
(FAO, 2020; Gillerot et al., 2021; Heym et al., 2021; Torresani
et al., 2019). In light of increasing pressure on forests due to cli-
mate change and the related global loss of biodiversity, also re-
ferred to as the “the sixth mass extinction,” with up to 92% of
terrestrial endemics being anticipated to be negatively impacted
(Manes et al., 2021), reliable approaches to assess and moni-
tor forest diversity are required (Barnosky et al., 2011; Cowie
et al., 2022; Faith, 2013; Palombo, 2021). Monitoring should in-
clude the quantification of metrics that allow the classification of
ecological entities based on their specific level, or degree of biodi-
versity, and ultimately according to their respective conservation
value, which is required by conservationists (Brooks et al., 2015;
Zampiglia et al., 2019). Appropriate delineation of forest commu-
nities and characterization of related species assemblages across
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taxonomic groups are important analytical tools for sensible
monitoring of species diversity and biodiversity management. On
broader scales, such metrics can be provided by means of vegeta-
tion classification which aims to group spatial or temporal diver-
sity of species within a finite set of abstract categories (de Caceres
et al., 2015). Vegetation classification has proven to provide ade-
quate means for descriptive reporting, communication, and map-
ping of forest communities, and related concepts have responded
to changing information needs over time. Consequently, forest-
type classifications exist for a wide range of targets, that is, habi-
tat quality (qualitative assessments for biodiversity management),
development over time (i.e., stand classification according to age
classes for forest management) or along biogeographic gradients,
and remote sensing-based mapping of ecological communities
(de Céaceres et al., 2013; de Caceres, Martin-Alcén, et al., 2019;
Fassnacht et al., 2016; Hao et al., 2021).

One approach for classifying forest communities focuses on
the variation in species compositional characteristics across assem-
blages of different sites within a geographic area, which is commonly
known as B-diversity (Legendre & de Caceres, 2013; Magurran &
McGill, 2011). B-diversity can be assessed by the change in species
compositional characteristics between sites (i.e., species turnover,
Jost, 2010) and a plethora of metrics exist to quantify the degree of
dissimilarity between assemblages on various spatial and temporal
scales (de Caceresetal.,2013; de Caceres, Coll, etal., 2019; Legendre
& Legendre, 2012; Magurran & McGill, 2011; Ricotta, 2005). The
most common dissimilarity indices are exclusively based on com-
positional characteristics, that is, species richness and elements
of evenness (Magurran, 2005), while interspecies variability (i.e.,
phylogenetic, taxonomic, functional, or traits) is not considered
(Chao et al.,, 2018; Chiu et al., 2014; de Caceres et al., 2013; Hao,
Ganeshaiah, et al., 2019; Pavoine et al., 2013). In line with the in-
creasing recognition that genetic diversity comprises an integral part
of biodiversity, for example, as stated in the definition of biodiversity
by the Intergovernmental Platform on Biodiversity and Ecosystem
Services (IPBES, Diaz et al., 2015), literature on how to incorpo-
rate phylogenetics as aspect of diversity is growing rapidly (Chao
et al., 2023). Accordingly, several authors have approached forest
community classification by accounting for both compositional data
and interspecies phylogenetic variability (i.e., Capelo, 2020; Hao
et al., 2021; Ricotta et al., 2020; Webb et al., 2002). As phylogeneti-
cally closely related species often share beneficial traits for specific
environments, discriminating assemblages based on phylogenetic
distances can serve as a proxy for classifying forest communities ac-
cording to functional roles, environmental diversity, and conserva-
tion value (Faith, 2013; Gilbert & Parker, 2022; Hawkins et al., 2014;
Padullés Cubino et al., 2021; Pavoine, 2016; Pavoine & Ricotta, 2014;
Tucker et al., 2017). Hao, Ganeshaiah, et al. (2019) demonstrated that
different patterns emerged if interspecies taxonomic distances were
considered for the classification of global forest communities using
the Discriminating Avalanche index (Ganeshaiah & Shaankar, 2000).

On a smaller scale, National Forest Inventories (NFls) provide
systematic and periodical observations of tree species abundances
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based on permanent sample units on a country-wide level (Corona
et al., 2011). The continuous adaptation of variables assessed
during NFIs highlights an increasing emphasis on aspects of biodi-
versity, enabling ecologists to investigate potentials and limitations
of the thus provided data (Alberdi et al., 2019; Corona et al., 2011;
Didion, 2020; McRoberts et al., 2009). Incorporating phylogenetic
diversity of species assemblages extends the perspective on diver-
sity in this context and bears the potential to deepen our under-
standing of the complex interactions among woody species over
large geographical scales.

In the present study, we compare the performance of two dis-
similarity indices for the discrimination of forest woody species as-
semblages when applied to large-scale forest inventory data such as
the dataset of the first NFI of Georgia. To this end, we applied unsu-
pervised clustering to the obtained dissimilarity matrices based on
a conventional and a dissimilarity index that incorporates interspe-
cies phylogenetic distances, respectively. Apart from statistics for
internal evaluation of the resulting classifications, our comparison
considered the distribution of discriminated assemblages along bio-
geographic gradients. Based on the assumption that genetic variabil-
ity of co-inhabiting species provides a signal that sufficiently reflects
site-specific environmental determinants, we investigated whether
including this variable in the quantification of dissimilarity results in
an improved reflection of biogeographic gradients. To test the gen-
eral applicability, we incorporated the phylogenetic variability into
the classification of a large, real-world dataset and evaluated the

results considering cluster cohesiveness and overall interpretability.

2 | DATA AND METHODS

We compare two dissimilarity indices for the classification of woody
species assemblages when applied to NFI data of Georgia. Adhering
to the methodological approach underlying the data, we focus on
woody species, that is, all recorded species that meet the speci-
fied target diameter at breast height (DBH, at 1.3m, MEPA, 2018).
Consequently, we are referring to woody species even if only spe-

cies is written hereafter.

2.1 | Studyarea

Georgia is located between the Southern Slopes of the Greater
and the Northern part of the Lesser Caucasus, between 41°07’ -
43°35'N and 40°04’ - 46°44'E (Fischer et al., 2018). The forests
of Georgia host large shares of endemic species and form part of
the Caucasus biodiversity hotspot (Joppa et al., 2011; Myers, 2003).
Existing forest formations range from Alpine coniferous forests
dominated by Abies nordmanniana (Steven) Spach. and Picea orientalis
(L.) Peterm. to open juniper woodland (dominated by Juniperus poly-
carpos excelsa subsp. polycarpos (K. Koch) Takht. and J. foetidissima
Willd.), encompassing further thermophilus to xerophytic mixed oak
forest (Quercus petrea subsp. iberica (Steven ex M. Bieb.) Krassiln.,
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FIGURE 1 Cluster plot configuration of the first National Forest
Inventory of Georgia. Each cluster consists of three subplots for
tree assessment within three concentric circles according to the
measured diameter at breast height (DBH, at 1.3m, MEPA, 2023).

Carpinus betulus L., and C.orientalis Mill.), Colchic alder carrs which
are dominated by Alnus glutinosa subsp. barbata (C. A. Mey.) Yalt. and
oriental beech (Fagus orientalis Lipsky) and hornbeam-oriental beech
forests (Bohn et al., 2007; Dolukhanov, 2010; Fischer et al., 2018;
Nakhutsrishvili et al., 2021; Novak et al., 2023).

2.2 | Forest community data

Between 2018 and 2021, Georgia implemented its' first NFI based
on a systematic sampling grid of 3.6 x3.6km with a randomly se-
lected origin. Sampling units consist of cluster plots (0.21ha) con-
taining three subplots of 0.0.7 ha each. These subplots are arranged
in an L-shaped configuration with a distance of 100m along both
axes (Figure 1). As 18% of the country's territory is currently not ac-
cessible for government officials due to an ongoing political conflict
(MEPA, 2023), clusters were sampled on approximately 74% of the
national forest area (Figure 2).

2.21 | Assessment of Woody species

Woody species were recorded per subplot on three concentric
nested subplots according to any stems' respective DBH. Stems with
DBH 2 30cm were recorded on the largest plot (r=15m). Stems with
DBH =15 and =8cm were recorded on the inner nested plot radii
of 10 m radius and 5m, respectively (Figure 1). Numerous variables
were recorded per woody species, along with the polar coordinates
of the stem axis, species, and DBH (MEPA, 2018).

From the entire NFI data set (N=2006), all accessible clus-
ters pertaining to the locally applied land use class “Forest” and

sub-classes “Tree covered area” or “Fire affected forests” were
selected for analysis (MEPA, 2018). Subplots with recorded inter-
sections with a forest boundary (“slopover sample plots”) were ex-
cluded to avoid including samples with extreme outliers regarding
species richness due to edge effects (Willmer et al., 2022). Clusters
containing species observations that were not unambiguously iden-
tified at species level, for example, Deciduous spp. and Genera spp.,
were omitted because a precise quantification of the cophenetic
distances along the phylogenetic hierarchy is not possible. Clusters
containing subplots without woody species observations were ex-
cluded. Our sample consists of all cluster plots comprised of obser-
vations from three subplots (n=1059, henceforward referred to as
“samples”), which represent 53% of all clusters. Figure 2 provides an
overview of the spatial distribution of samples used for the analysis.

After reprojection of sample locations to UTM38N, WGS84
(EPSG: 32638), sample elevations [m above sea level] were derived
from the digital elevation model (DEM) provided by Shuttle Radar
Topography Mission (SRTM, Farr et al., 2007). Elevation values were
calculated as the median of all raster cell values (30x30m) con-
tained in or crossed by the circular subplot area (r=15m +recorded

GPS error [m]) of the southwestern subplot.

2.2.2 | Species diversity data

Diversity measures are usually based on data representing the com-
positional variation between species (i.e., occurrence and abundance)
in an assemblage (Ricotta et al., 2021). Forest species communities
may display similar compositional characteristics, in terms of counts
of observed species and respective individuals. However, species can
be represented by large numbers of small-diameter trees, or stems
belonging to the same individual, or fewer individuals but with sig-
nificantly large relative shares of total basal area. Hence, abundance
estimates based on counts of individuals do not take significant differ-
ences in the size structure of occurring species into consideration and
may result in distinct evenness profiles. We used mean basal area (BA,
m?/ha) per species and cluster plot as species abundances to account
for the variation in size of the constituents. By weighting compositional
data using BA, we incorporate valuable structural information that con-
siders site occupation per species for the quantification of p-diversity
(de Caceres, Coll, et al., 2019; McRoberts et al., 2009; Staudhammer
& LeMay, 2001; Yao et al.,, 2019). Consequently, BA of all living stems
was aggregated per cluster plot and species and divided by 3 to obtain
mean BA estimates per sample (de Caceres et al., 2015; MEPA, 2018).

2.3 | Analysis
2.3.1 | Nomenclature
Spelling and nomenclature of all recorded species were standardized

with the Taxonomic Backbone databases of World Flora Online (WFO
DB, Kindt, 2020) and the Global Biodiversity Information Facility (GBIF
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FIGURE 2 Locations of samples used from the National Forest Inventory of Georgia, n=1059. Samples (black dots) consist of accessible
cluster plots of equal sample size (three subplots) located inside forests that are not intersected by forest boundaries and contain only
records of taxa identified at species level. Dashed lines mark the boundaries of inaccessible areas from where no field data were obtained.

Secretariat, 2021). In cases where species listed in the NFI data did
not yield an unequivocal match in the WFO DB, corresponding records
were harmonized with Lachashvili et al. (2022) and the nomenclature
of the World Plants database (https://www.worldplants.de) to derive
names for all species ranked as taxonomically accepted.

2.3.2 | Phylogenetic interspecies distances

A phylogenetic tree encompassing all observed species was con-
structed by matching the harmonized species list with a mega phy-
logeny containing 72,570 species of vascular plants according to the
World Plants database (GBOTB.extended.WP.tre, Jin & Qian, 2022).
The backbone mega phylogeny is based on the species-level phylog-
eny for vascular plants derived from gene sequencing from 7 gene
regions and 39 fossil calibrations created by Zanne et al. (2014),
which was updated and expanded by Jin and Qian (2022). Following
the authors' recommendation to consolidate taxa below species
level (e.g., sub-species) with the respective parental species, five in-
fraspecific taxa were combined with their parental species, resulting
in the lowest taxonomic unit being species level (Figure 3). From the
thus created ultrametric phylogenetic tree (Jin & Qian, 2019; Qian
& Jin, 2016; Smith & Brown, 2018), cophenetic distances, that is,

the total branch length connecting each pair of species at the termi-

nal nodes of the respective phylogeny, were calculated (Bevilacqua

et al., 2021; Hao, Corral-Rivas, et al., 2019; Kling et al., 2018).
Interspecies phylogenetic distances were normalized within a

<1]

square matrix that contained pairwise distance values [O<distph <

between each pair of species.

2.3.3 | Dissimilarity indices

The Discriminating Avalanche index (dA equation [2] in Table 1) de-
veloped by Ganeshaiah and Shaankar (2000) and described by Hao,
Corral-Rivas, et al. (2019) considers interspecies dissimilarity by
multiplying absolute differences in frequencies (numerator in BC) of
species i and j in two samples with a specific distance between spe-
cies i and j. We use the phylogenetic distances to weigh the differ-
ence in mean basal area between i and j. Table 1 shows the formulas
of both indices used in this study.
As the maximum dissimilarity value obtained by dA:(l - %)
where n equals the number of species, the resulting dissimilarities
X=X,

were normalized via X,y = 2%, with x ;. and x ., representing

ax ~ Xmin

the minimum and maximum value of dA, respectively (Hao, Corral-

Rivas, et al., 2019; Legendre & Legendre, 2012). Consequently,
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FIGURE 3 Phylogeny for 87 species listed in the data sample of the National Forest Inventory of Georgia. Interspecies phylogenetic
distances were calculated as total branch length connecting each pair of species at the terminal nodes of the hierarchy. For respective

branch lengths, see Figure S1.

pairwise dissimilarity values of the two resulting dissimilarity ma-
trices (1059 x 1059) range between O and 1. Pairwise values of 1
imply that two samples are completely different as they do not share
any species, whereas values of O indicate two samples are equal in
terms of compositional characteristics (Chao et al., 2005; Legendre
& Legendre, 2012; Leyer & Wesche, 2008). Prior to clustering,
a Mantel test (Mantel, 1967) was performed to check for existing
correlations between the two dissimilarity matrices. As the pairwise
dissimilarities are not normally distributed, and non-linear relation-
ships between the pairwise dissimilarity values exist, we used the

Spearman correlation coefficient with 9999 permutations (Legendre
& Legendre, 2012).

2.3.4 | Isometric partitioning

The 1sopam algorithm (Schmidtlein et al., 2010) available in package
“isopam” (v. 2.0, Schmidtlein et al., 2024) combines isometric feature
mapping and partitioning around medoids (data points that are most
centrally located within each cluster with the sum of dissimilarities
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between medoids and all other data points being minimized) in order
to build clusters with a maximum number and fidelity of indicative
species. The isomap ordination, which is based on geodesic distances
strongly determined by neighborhood definitions, is repeated with
different parameter settings. The result is clustered, and the clusters
are evaluated according to the criteria mentioned above. These cri-
teria are similar to those used when structuring phytosociological ta-
bles (Abe, 2021). In this, and the use of an ordination, Isopam is similar
to Twinspan (Hill, 1979), but does not involve internal readjustments,
uses geodesic distances (taking account of “neighbors of neighbors”
in feature space), and works on multidimensional ordination spaces.
It has been previously used for large-scale classifications of forests
(Cabidoetal., 2018; Cerny et al., 2015; Zeballos et al., 2020) and other
systems (Feilhauer et al., 2021; Hein et al., 2014; Peterka et al., 2017;
Yu et al., 2022). Isoram can be run both unsupervised and supervised
(with reference plots). For the current study, the original source code
was extended to support dA (Capelo, 2020) and executed on a com-
puter with two Intel Xeon CPUs (E5-2630 v3) and 256 GB RAM using
R Statistical Software (v 4.3.2; R Core Team, 2023). To ease com-
parability, we set the maximum number of hierarchy levels to four
for both classifications. Subsequently, we extracted lists of indicator
species frequencies with levels of significance according to Fisher's
exact test for each cluster using the Isotas function, which is part of
the “isopam” package. Fidelity (“equalized phi,” Tichy & Chitry, 2006)
together with Fisher's exact test if the observed frequency is not
attained by chance are the criteria for qualifying as an indicator spe-

cies in Isotas (Schmidtlein et al., 2024).

2.3.5 | Evaluation of clustering

To evaluate the correspondence between the original sample dis-

similarities and dendrogram distances, we calculated cophenetic

TABLE 1 Dissimilarity indices used in this study.

Bray-Curtis dissimilarity
index (1957)

Al (1]
BC= o)
Discriminating Avalanche

(Hao, Corral-Rivas,
etal., 2019)

dA= 230, 37, Adart (2]

0=

Note: With dﬂ: phylogenetic distance between species i and j (dl.j=dj‘.
and d“=0); Af‘b=absolute difference between the frequencies of
speciesiin plotsaandb (|pf’ - pf’|); n=total number of sample plots;
pf,pf’: relative frequencies of speciesiin plots a and b.

TABLE 2 Summary statistics of

. Species rich
compositional data of cluster plot pecies richness
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correlation coefficients for each hierarchical cluster structure
(Lapointe & Legendre, 1995; Legendre & Legendre, 2012). The modi-
fied Rand index was used to evaluate clustering performance based
on the consistency between partitions (Legendre & Legendre, 2012).
Cluster homogeneity was evaluated via within sum of squares (WSS,
Hao, Ganeshaiah, et al., 2019) and a comparison of the average dis-
tance between and within clusters using the function cLUSTER.STATS
of the R package “fpc.” To assess relevance of the hierarchies, we
compared indicator species and the resulting distributions of relative
BA among partitioned groups (de Caceres et al., 2015). Evaluation of
correspondence to biogeographic units was based on a comparison
of elevational ranges derived from the DEM between groups and the
spatial distribution of clusters in relation to forest vegetation-type
classifications presented by Bohn et al. (2007). We applied the non-
parametric Kruskal-Wallis test to check for significance between
groups due to nonnormality in the distribution of elevation values
within groups (Shapiro test). Henceforward, we are referring to the
initial partition at the lowest level of the hierarchy as classes, to the
intermediary partitions as branches, and the resulting clusters as

assemblages.

2.3.6 | Dataanalysis

The analysis was conducted in R Studio version 2023.09.0-
463 (RStudio Team, 2020) using R Base version 4.3.0 (R Core
Team, 2023). Harmonization of nomenclature was realized via the
R package “Worldflora” version 1.13-2 (Kindt, 2020), and the pack-
age “V.phylomaker2” version 0.1.0 was used to match observed
species with the phylogenetic backbone (Jin & Qian, 2022). The
Mantel test and BC dissimilarities were calculated using the pack-
ages “vegan” version 2.6-4 (Oksanen et al., 2022). A custom func-
tion was embedded in the adjusted clustering algorithm of the
corresponding R package “isopam” version 1.2.0 for dA (Schmidtlein
et al., 2022). Clustering metrics were obtained using the R packages
“mclust,” version 6.0.0 (Scrucca et al., 2016), and “fpc,” version 2.2-
10 (Hennig, 2023).

3 | RESULTS

Compositional data of n=1059 samples containing 65,818 living
tree observations were analyzed (Table 2). In total, 87 species were

represented by 52 genera, 29 families, 16 orders, and two classes.

Mean basal area per species [m?/ha]

observations of the National Forest n Min

Inventory of Georgia.
1059 1

Max Mean?® CV% Min Max Mean?® CV%
12 4.96 43.08 2.54 79.02 304 42.06
(+2.14) (+12.79)

Abbreviations: CV%, Coefficient of variation; Var., Variance.
#Means are denoted with standard deviation in parenthesis.
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Angiosperms were represented by 76 species (in 87.4% of all sam-
ples) across 26 different families. Fagaceae (six species) accounted
for the highest number of observations followed by Betulaceae with
10 species (25.3% and 23.2% of all samples, respectively), Rosaceae,
and Sapindaceae (15 and 6 species, in 11.4% and 10.3% of all sam-
ples, respectively). In contrast, gymnosperms (10.3%) were repre-
sented by 11 species, belonging to three different families, with the
largest family being Pinaceae (6 species) followed by Cupressaceae
and Taxaceae (4 and 1 species, respectively). Gymnosperms were

observed in 33% of all samples.

3.1 | Pairwise dissimilarity

Mantel statistics (r=.613 with p=.0004) indicated a significant posi-
tive correlation between the two dissimilarity matrices. Pairwise dis-
similarities according to dA ranged from 0.23 to 0.87, which is almost
double the range of that of BC (0.63 to 0.99, Table 3).

Consequently, the mean dissimilarity between samples (0.79
for BC and 0.38 for dA, respectively) and thus overall variation was
higher for BC than for dA, as for the latter, frequencies of dissimilar-
ity values <1 were more evenly distributed, with very few pairwise
dissimilarities of 1. Frequency distributions of sample dissimilarities
are provided in Figure S2.

3.2 | Discrimination of assemblages

The hierarchical clustering based on BC (HCy) distinguished 23 as-
semblages (clusters) across four hierarchical levels (I1-1V) and classes.
Within HC, samples were partitioned into 10 and 17 branches at
levels Il to lll, respectively. The hierarchical clustering based on dA
(HCdA) contained 10 and 15 branches at levels Il to Il and resulted
in 20 distinct assemblages over four levels and classes. Two assem-
blages were not partitioned further below level Il in HC , (Figure 4).
The number of samples per assemblage ranged from 6 to 152 for
HCg (Mean: 82+91.5) and 3 to 163 for HC,, (Mean: 106.1+119.9),
respectively. For HCy, the number of observed species per assem-
blage ranged from 12 to 54. For HC,,, one assemblage contained
only four species, whereas two assemblages encompassed 53
species.

The cophenetic correlation coefficients were 0.492 and 0.442
for HCy. and HC,, respectively. The obtained adjusted Rand index
of 0.317 suggests a modest level of similarity between the cluster-
ing results. Average distances within clusters ranged from 0.671
to 0.875 and 0.196 to 0.49 for HCy. and HC,, respectively. Mean

Index n Min Max Mean?®
BC 1059 0.627 0.998 0.789 (+0.099)
dA 0.225 0.87 0.383(+0.147)

Abbreviations: CV%, Coefficient of variation; Var., Variance.
#Means are denoted with standard deviation in parenthesis.

distance between clusters was 0.789 for HC,. and 0.384 for HC,.
WSS values of HC,. amounted to 344.13 and 112.92 for HC,.

3.2.1 | Evaluation of cluster hierarchies

To evaluate the performance of BC and dA for clustering, we com-
pared the resulting classes, groups, and assemblages considering
internal metrics of the partitioning process. A total of 77 and 68 in-
dicator species were listed for all partitions based on BC and dA,
respectively. For a characterization based on indicators and respec-
tive frequencies, only highly significant (p <.001) species with total
frequencies 250% were considered, unless indicated otherwise.
Indicator species for both partitions were A.nordmanniana, A.cap-
padocicum, A.glutinosa, C.betulus, Carpinus orientalis Mill., C.sativa,
F.orientalis, P.orientalis, Q. petraea subsp. polycarpa (Schur) Raus, and
Tilia rubra subsp. caucasica (Rupr.) V. Engl. In addition, Fraxinus excel-
sior L. is an indicator for HC . The total number of indicators with
frequencies of 100% was 24 and 8 for HC;. and HC ,, respectively.
Class 1 of HC,. is characterized by a high frequency of F.orientalis
(99%), whereas for HC,,, F.orientalis and C.betulus are listed with
frequencies of 93% and 75%, respectively. In class 2, the highest fre-
quencies are observed for Q. petrea (87%) and C. betulus (82%). P.ori-
entalis (68%), F.orientalis (57%), and A.nordmanniana (53%) are the
most frequent indicator species in class 3, whereas for class 4, these
are A.glutinosa (87%) and Castanea sativa Mill. (61%). In HC,,, highly
significant indicators in class 1 are F.orientalis (93%) and C.betu-
lus (75%), whereas in class 2, these are Q.petrea (84%), C.orienta-
lis (61%), and Fraxinus excelsior L. (50%). In classes 3 and 4 of HC,,
P.orientalis (79%), A.nordmanniana (64%), A.glutinosa (92%), and
C.sativa (59%) represent highly significant indicators in classes 3 and
4, respectively. Based on these characteristics, we labeled the four
main classes according to predominant relative BA and are referring
to these for ease of readability henceforward as follows: class 1 is
characterized by a dominance of Fagus, class 2 is Carpinus-Quercus
dominated, and classes 3 and 4 are Pinaceae and Alnus-Castanea
dominated, respectively. Synoptic tables of both cluster hierarchies
(Figures S3 and S4, respectively) and a detailed description of indica-
tor distributions per partition below level | for HC,, (Appendix S1)
are provided as appendices.

3.2.2 | Elevation and spatial distribution

To evaluate the correspondence of assemblages to existing biogeo-

graphic units, we compared the distribution of sample elevations

TABLE 3 Summary statistics of

Var. CV% . T

mean pairwise dissimilarities between
0.01 12.55 samples based on Bray-Curtis (BC) and
0.022 38.38 Discriminating Avalanche (dA) of the

National Forest Inventory data of Georgia.
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FIGURE 4 Resulting cluster hierarchy
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from the isopam partitioning (dendrogram)
and pairwise dissimilarities of 1059
samples from the National Forest
Inventory data of Georgia. Dissimilarities
are based on the Bray-Curtis (a) and
discriminating avalanche (b) index. The
cell grid is colored according to the
dissimilarity values between samples
(rows and columns). In total, 23 and 20
assemblages were discriminated for
Bray-Curtis and discriminating avalanche,
respectively. At level Il of the hierarchical
clustering based on the discriminating
avalanche index, 10 subgroups distributed
over four classes were labeled according
to dominance of relative basal area.
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2¢ Quercus spp.

Subgroup / Dominance
1a Carpinus betulus - Fagus orientalis
1b Fagus orientalis

2a Quercus petrea - Carpinus spp.
2b Carpinus orientalis - Quercus spp.

2d Juniperus spp. - Pistacia atlantica

3a Abies nord, and Picea ori
3b Pinus sylvestris and Picea orientalis

4a Castanea sativa - Alnus glutinosa
4b Alnus glutinosa

within assemblages. Within the four classes in both hierarchies, sam-
ple elevations are distributed similarly. Samples within the Fagus-
dominated group (class 1) cover a wide elevational range (<750m
to >2000m asl), however, in HCy, 81% of all samples are located
between >1000 and 2000m asl, whereas in HC,,, most samples
(77%) are located within the lower range of >750 and 1750m asl.
Samples with Carpinus-Quercus dominance are predominantly lo-
cated at elevations <1250m in both hierarchies. The majority of
Pinaceae-dominated samples lie above 1250m asl, whereas all of

Alnus-Castanea-dominated samples are situated below 1250m asl,
with the majority (70%) positioned below 750m asl for HCy. and
HC,,, respectively. Overall classes, except for the Fagus-dominated
group, agglomerations of sample elevation values are more pro-
nounced within assemblages of HC,, than of HCy.. The applied
Kruskal-Wallis test revealed highly significant differences (p<.001)
between assemblages for both hierarchies (Figure 5).

Spatial distributions of discriminated assemblages show

a general alignment along biogeographical units. Alnus
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FIGURE 5 Sample elevations [m asl] from the National Forest Inventory in Georgia per resulting cluster for Bray-Curtis (a) and
discriminating avalanche (b). The boxes represent interquartile ranges and respective median values (solid line) of sample elevations within

each clustered assemblage (colored dots). Resulting p values of the X2

Kruskal-Wallis

test are p=2.899e-113 and p=1.674e-115, with confidence

intervals between 0.544, 1 and 0.538, and 1 for assemblages in the hierarchical clustering based on BC and dA, respectively (n=1059).

glutinosa-dominated assemblages agglomerate in the humid Alder
carrs of Eastern Georgia (Nakhutsrishvili, 2013), whereas the
Pinaceae-dominated assemblages are predominantly located in
montane to subalpine areas of the Lesser and Greater Caucasus.
Assemblages dominated by mixed Quercus spp., Carpinus spp., and
F.orientalis are situated at intermediate ranges. Those with high
shares of BA of Quercus spp. are limited to lower and drier areas,
while F.orientalis-dominated assemblages are located at higher
elevations. Interestingly, the five samples assigned to Juniperus-
Pistacia woodland have been clearly discriminated within HC,
that are located in the semi-arid areas of the southwest of the
country (Nakhutsrishvili et al., 2021).

To visually evaluate the spatial distribution of discriminated as-
semblages, we cut HC,, at level Il because 70% of the partitions
are not partitioned further below level Il, resulting in 10 clustered
assemblages (Figure 4). Based on characteristic indicator species,
relative BA distributions, and occupied elevational zones, we labeled
each assemblage accordingly and mapped the respective sample lo-
cation in relation to areas of forest vegetation-type classifications
according to Bohn et al. (2007) (Figure 6).

4 | DISCUSSION

Parting from the assumption that genetic variation of co-inhabiting
species provides a signal that reflects site-specific environmental
determinants, we contrast the performance of a species-neutral dis-
similarity index (BC) with an index that considers interspecies ge-
netic variation (dA) when used in unsupervised classification. Our

findings indicate that incorporating interspecies phylogenetic dis-
tances in the quantification of dissimilarities results in more coher-
ent and ecologically meaningful classifications of large-scale forest
inventory data with high p-diversity.

The Mantel statistics indicate a significant positive correlation
between the dissimilarity matrices obtained for each index (r=.613,
with p=.0004), implying that essential patterns of variation among
samples are maintained in the respective quantifications. However,
frequency distributions and visual inspection of dissimilarities
(Figure 4) show overall higher dissimilarity values based on BC, re-
flecting its' sensitivity to species turnover. Whereas the resulting
cluster hierarchies maintain a certain level of agreement (cophenetic
correlation=.511), the fact that a correlation of one signifies com-
plete similarity suggests that the dissimilarity signal resulting from
dAis not redundant. Clustering based on dA performs slightly better
in preserving the original dissimilarities according to the respective
cophenetic correlation coefficients of .492 and .442 for HC,. and
HC,,, respectively. Dendrogram topologies, cluster validation met-
rics (i.e., WSS of 344.123 and 112.917 for HC,. and HC,, respec-
tively), and distributions of relative BA among assemblages indicate a
higher degree of compactness, separation, and yield, generally more
conceivable clustering results based on dA. Overall, HC , provided
enhanced general interpretability and succeeded in discriminating
clearly distinguished assemblages regarding compositional charac-
teristics, that is, the P.atlantica and Juniperus woodlands of the semi-
arid lowlands of Southeastern Georgia. These results support the
concept that an extension of variables considered for quantification
of dissimilarity leads to a refined conception for diversity classifica-
tion if genetic variation is considered and are in line with the findings
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Forest Formations (adapted from Bohn et al., 2007)

I Colchic tall sedge reeds

I Colchic alder carrs

I Colchic Oriental beech forest with evergreen undergrowth

[ Hardwood alluvial forests

[ Hornbeam-chestnut-oak forests with A. velutinum

B Hygrophylous mixed oak forests

I Thermophilous mixed hornbeam-oak forests with Q. iberica and C. orientalis
[ Meso- to hygrophilous mixed hornbeam-chestnut-oak-beech forests with evergreen undergrowth
[ Montane deciduous forests with £ orientalis

[ High montane coniferous forests

[T High montane coniferous forests with evergreen understory

Assemblages

Mixed Carpinus betulus - Fagus orientalis forests (Low elevational zone)

Fagus orientalis dominated (Submontane to Alpine zone)

Mixed Quercus petrea - Carpinus forests (Low elevational zone)

Mixed C. orientalis - Quercus forests (Low elevational zone)

Quercus forests (Low elevational zone)

Juniperus - Pistacia atlantica woodland

Abies nordmanniana and Picea orientalis forests (Montane to Alpine zone)

Pinus sylvestris and Picea orientalis forests (Montane to Alpine)

Mixed Castanea sativa - Alnus glutinosa forests (Low elevational to Montane zone)
Alnus gluti forests (Low elevational zone)

00200000008

] Montane to altimontane pine forests with P. sylvestris var. hamata

] Western Caucasian pine forests

[ Shrub- and open woodlands with Betula and A. heldreichii subsp. trautvetteri

[] Shrub- and open woodlands with Q. pontica, Rh. ungernii, Rh. caucasicum

[] Shrub- and open woodlands with Rhododendrum caucasicum

[ Southern lowland-colline dwarf sub-shrub deserts with S. ericoides and S. nodulosa
[ Southern lowland-colline dwarf sub-shrub deserts with wormwood and 4. fragrans
[ Subalpine scrub and shrub forests

[ Subalpine shrub vegetation with Q. pontica

[ Juniper open woodlands

A No forest 0 100 km

FIGURE 6 Schematic overview of spatial distributions of discriminated assemblages and main forest formations adapted from the
vegetation-type classification by Bohn et al. (2007). Assemblages are colored according to the respective palette of the four main classes
of the cluster hierarchy (blue, beige, red/orange, and green for dominance of Fagus, Carpinus-Quercus, Pinaceae, and Alnus-Castanea,

respectively).

of Hao, Ganeshaiah, et al. (2019) and other authors (Capelo, 2020;
Pavoine & Ricotta, 2014; Ricotta & Pavoine, 2015).

In

As BC represents a “species-neutral” diversity index sensu Chao
et al. (2010), which assumes that all observed species contribute
equally to overall diversity, and species turnover constitutes the
predominant signal for discrimination, reflected by the significantly
higher number of indicator species with frequencies of 100% (24
and 8 for HCy. and HC,,, respectively). Conversely, as dA dissim-
ilarity considers species as phylogenetic units, a complete species
turnover does not necessarily result in maximum dissimilarity values
between two sites because differences in abundance are weighted
by the genetic proximity between species. Assuming that the ge-
netic signal of co-occurring species reflects niche occupation within
given ecogeographical areas (Hawkins et al., 2014), the thus refined
dissimilarity signal appears to respond to biogeographical gradients
in a more interpretable manner.

The validity of the presented approach relies on precise mea-
surements of tree diameters and accurate species identification
in the field. While traditional forest science prioritized genus-
level information, growing emphasis on diversity-related issues

prompted forestry experts to be increasingly trained to provide
accurate species identification. The related uncertainties are not
design-based issues but apply to all ecological surveys requiring
botanical expert knowledge to ensure taxon detection and vali-
date observations on species level (Lam & Kleinn, 2008; Roswell
et al., 2021). Overall, only 2% of all cluster plot observations in-
cluded individuals that were not identified to species level and had
to be excluded. By considering only cluster plot observations of
equal sample size (m=3, 64% of all cluster plots) and the exclusion
of subplots overlapping with the forest boundary (16%), our anal-
yses are based on a subsample of the NFI data, representing 60%
of all cluster plot observations. Hence, conclusions drawn from
the presented results should consider, for example, that species
exclusively occurring at forest boundaries are excluded. Potential
limitations to validity arise from field sampling protocols, as over-
all subplot size, or sampling effects due to the nested subplot
structure (with respective target DBH as inclusion criteria), may
introduce bias to the quantification of dissimilarity (de Caceres,
Martin-Alcén, et al.,, 2019). Accordingly, observed numbers of
species should be regarded as proxies of true species richness,
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especially if nested sample plot designs are applied that are based
on specific diameter thresholds (Lin et al., 2020). Overall species
richness can be assumed to be higher with the contributions of
smaller-diameter trees being neglected (Corona et al.,, 2017).
Aggregations to cluster plot level could potentially translate to
generalization effects and the loss of information on site-specific
environmental factors on smaller scales. The resulting magnitude
of impact on the presented results, however, is likely to vary ac-
cording to forest type, topographical condition, and management
regime (McRoberts et al., 2009).

With continuing advances in whole-genome phylogenetics
and functional genomics, information on phylogenetic diversity
is continuously improving (Kling et al., 2018). Access to compre-
hensive and standardized phylogenetic mega trees to quantify
species genetic relationships is readily available and their appli-
cation to investigate variation in community compositions is be-
coming increasingly more common (Gilbert & Parker, 2022; Jin &
Qian, 2022).

Our results are of relevance for a wide range of classifications
of ecological entities according to conservation value, mapping of
ecological communities, or other discriminative objectives. The
method aligns standard canopy layer data from forest invento-
ries with natural vegetation types according to Bohn et al. (2007),
but harmonization with existing forest typologies is limited due
to methodological differences, such as the structural vegetation
layers considered and the abundance units recorded (e.g., Chytry
et al., 2020; Mucina et al., 2016). Investigating the degree to which
the resulting clusters can be aligned with defined syntaxonomical
units is an interesting area for future research, especially for the
identification of diagnostic species from the shrub and herb layers
to refine classifications and the development of practical assess-
ment procedures.

The integration of genetic signals of forest communities during
characterization has wide implications for respective approaches
to classification. As a proxy indicative of the relationship between
species composition and site conditions, interspecies genetic vari-
ation extends the scope of forest diversity mapping, management,
and monitoring to account for alterations inconceivable by conven-
tional compositional variables. Beyond the potential advantage of
streamlining processes by applying unsupervised classification to
large datasets, our approach is straightforward and can be readily
replicated with comparable data, provided entities are assessed in
a systematic manner. Ecological studies are frequently less system-
atic and constrained by temporal and spatial scales due to the dy-
namic nature of communities over time and space. This holds true
to a lesser degree for assessments of woody species communities
within the context of national forest monitoring systems, which are
resampled in fixed intervals. Hence, from a practical point of view,
the resulting network of observational studies provides a valuable
framework for a systematic and recurring collection of ecological
data, as additional costs and efforts can be embedded into existing
structures. Extending the scope of study objectives to systematic
assessments of a wider range of botanical and potentially zoological

taxa could provide powerful and statistically robust data for analy-
ses of organisms, structural components, and the interrelationships

between them.

5 | CONCLUSIONS

We present an approach to discriminate species diversity from
NFI data of forest communities with high p-diversity and species
turnover. The novelty of the method lies in considering interspe-
cies genetic variability for the quantification of diversity and sub-
sequent classification using an unsupervised clustering algorithm
on a country-wide scale. We demonstrate that large-scale forest in-
ventory data can be classified in an ecologically meaningful manner
based on mean basal area estimates per species and consideration of
phylogenetic dissimilarity between samples. The thus obtained dis-
crimination of species assemblages provides a differentiated picture
of existing diversity patterns along expected biogeographical gra-
dients without the need for additional assessments. This approach
aligns with a biodiversity concept considering genetic diversity and
could potentially be standardized for application to similar datasets,
provided systematic data assessment is granted. The presented re-
sults should be considered as a step in evaluating to which extent
large-area forest inventory data could provide a backbone for ex-
tended biodiversity monitoring systems, as discrimination of woody
species assemblages allows for systematic delineation of forest eco-

systems if genetic variation is considered.
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