KIT | KIT-Bibliothek | Impressum | Datenschutz

Quantifying the intensity of high-frequency mechanical impact treatment

Schubnell, Jan; Hanji, Takeshi; Tateishi, Kazuo; Gkatzogiannis, Stefanos 1; Ummenhofer, Thomas 2; Farajian, Majid
1 Karlsruher Institut für Technologie (KIT)
2 Versuchsanstalt für Stahl, Holz und Steine (VAKA), Karlsruher Institut für Technologie (KIT)

Abstract:

High-frequency mechanical impact (HFMI) is a user-friendly and efficient mechanical post-weld treatment method, and the achieved fatigue life improvement is statistically proved and is attributed to HFMI-induced compressive residual stresses amongst other effects. Several studies have shown in the past that the process parameters (treatment time and working speed) have an influence on the stress state introduced by the HFMI treatment. Thus far, however, only device-specific quantitative recommendation for the HFMI treatment exists based on the instructions of each HFMI device manufacturer. It is not clear if a certain treatment time for a given intensity leads to optimum results regarding the enhanced fatigue life and the treatment parameters of the several HFMI devices cannot be directly compared with each other. For these reasons, a universal and simple definition of the HFMI treatment’s intensity based on the kinetic energy of the HFMI pin was used to quantitatively correlate the HFMI-induced compressive residual stress with the HFMI-process parameters for two different HFMI devices: pneumatical impact treatment (PIT) and high-frequency impact treatment (HiFIT). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000172993
Veröffentlicht am 22.08.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Versuchsanstalt für Stahl, Holz und Steine (VAKA)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0043-2288, 1878-6669
KITopen-ID: 1000172993
Erschienen in Welding in the World
Verlag Springer
Vorab online veröffentlicht am 19.07.2024
Schlagwörter High frequency mechanical impact, Treatment intensity, Kinetic energy, Residual stresses, Groove profile
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page