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A B S T R A C T

Process model comprehension is essential for a variety of technical and managerial tasks. To facilitate
comprehension, process models are often divided into subprocesses when they reach a certain size. However,
depending on the task type this can either support or impede comprehension. To investigate this hypothesis, we
conduct a comprehensive eye-tracking study, where we test two different types of comprehension tasks. These
are local tasks focusing on a single subprocess, thereby benefiting from abstraction (i.e., irrelevant information
is hidden), and global tasks comprising multiple subprocesses, thereby also benefiting from abstraction but
impeded by fragmentation (i.e., relevant information is distributed across multiple fragments). Our subsequent
analysis at task (coarse-grained) and phase (fine-grained) levels confirms the opposing effects of abstraction
and fragmentation. For global tasks, we observe lower task comprehension, higher cognitive load, as well as
more complex search and inference behaviors, when compared to local ones. An additional qualitative analysis
of search and inference phases, based on process maps and time series, provides additional insights into the
evolution of information processing and confirms the differences between the two task types. The fine-grained
analysis at the phase level is based on a novel research method, allowing to clearly separate information search
from information inference. We provide an extensive validation of this research method. The outcome of this
work provides a more thorough understanding of the effects of fragmentation, in the context of modularized
process models, at a coarse-grained level as well as at a fine-grained level, allowing for the development of
task- and user-centric support, and opening up future research opportunities to further investigate information
processing during process comprehension.
1. Introduction

Understanding process models is fundamental for carrying out many
technical and managerial tasks [1,2]. On the technical side, activi-
ties focused on the maintenance, refinement, and re-engineering of
process models all depend on one’s ability to comprehend the model
at hand and use adequate methods and tools to adapt or extend its
functionalities [2]. As for the managerial side, process comprehension
plays a crucial role in supporting requirement elicitation as well as
in fostering effective communication between domain experts and IT
specialists [1,3]. To be able to react to continuously evolving require-
ments, process modelers need initially to understand the current state
of a process model before they can adapt it. Here, comprehension
can be crucial to increase performance and productivity. Furthermore,
even though process models can be generated automatically using
process mining [4] or generative machine learning [5] techniques,
understanding the generated models remains an essential task.
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However, predominant research efforts and tool development within
the Business Process Management (BPM) domain concentrate on the
inherent characteristics of model artifacts, specifically the graphical
representation of processes. This focus has resulted in a limited ex-
ploration of the task-oriented perspective [6], which encompasses the
types of tasks a process model aims to facilitate. Understanding this
perspective is pivotal for discerning the required information and
support in a given context. This study addresses this gap by examining
two recurrent tasks frequently encountered in practical applications:
local and global tasks. Local tasks focus only on a single part of
the model, i.e., a single sub-process, while global tasks encompass
global aspects and require an overview of multiple parts of the model,
i.e., several sub-processes. Such tasks are for example commonly en-
countered in software engineering, where software developers need
to understand how to deploy and maintain single microservices (lo-
cal task), while they also need to understand the interdependencies
between microservices (global task) [7]. Similarly, in logistics, tasks
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can relate to single sub-processes (e.g., unloading cargo from a ship) or
to multiple sub-processes (e.g., storing the cargo, which encompasses
multiple sub-processes, such as registration, storage assignment, and
storage) [8].

In both cases a large system is decomposed into smaller interlinked
modules, which is commonly referred to as modularization. In this
study we envision modularization in the context of information systems
configuration, which is commonly used to facilitate the comprehension
of these systems. This assumption is however challenged by the existing
research on process model comprehension, which shows that modu-
larization does not consistently facilitate the performance of different
comprehension tasks [2,9,10]. One potential explanation for this is
related to the two opposing effects of abstraction and fragmentation [2].
Modularization facilitates abstraction by supporting information hiding
and pattern recognition, yet simultaneously induces fragmentation by
necessitating users to distribute their attention across diverse fragments
to locate pertinent information. Consequently, local tasks, confined
to a single module, could benefit from abstraction, thereby becoming
easier to solve. On the other hand, global tasks, involving multiple
modules, may also benefit from abstraction but encounter impediments
due to fragmentation, rendering them more challenging to perform. The
apparent relationship between modularization, task type, and the cog-
nitive aspects of model comprehension is however not well investigated
and requires further empirical validation [2,9,11,12].

Moreover, there is a need to look into the process of comprehending
process models to better understand how the processing of information
unfolds in different task types [6,13,14]. While there exists evidence
that the task type has a significant impact on information search
and processing [15–17], this has so far not been investigated in the
context of process model comprehension [1,6,13]. Investigating the
cognitive processing steps in local and global tasks does not only
help to better understand the effects of fragmentation and abstraction,
but also to potentially provide better context-driven support during
task performance. In this regard, we will look at two key processing
steps during comprehension tasks: search and inference [6,13,18]. While
search denotes the identification and separation of relevant from non-
relevant information [19], inference refers to the creative cognitive
process of inferring new insights after the recognition of relevant
information [18]. Knowing the task-dependent characteristics of these
two processing steps would potentially allow to dynamically high-
light relevant information [12,16], to provide context-driven search
assistance [15,17], to give better instructions and guidance during
process modeling workshops [14], or to better adjust visual modeling
notations [13].

For this reason, this paper extends our previous work [20] by
providing a more thorough and detailed examination of how the task
type (local or global) impacts process model comprehension during
information search and inference phases. Accordingly, the presented
analysis in this paper is split into a coarse-grained and a fine-grained
analysis (cf. Fig. 1). The coarse-grained analysis is conducted at a task
level and compares the task types based on the differences observed
during the overall task execution. The fine-grained analysis is con-
ducted at a phase level and compares the task types based on the
differences observed during the two distinct comprehension phases:
information search and information inference. We consider these par-
ticular comprehension phases since they appear to exhibit significant
differences in information processing [1,6,13]. Since the coarse-grained
analysis is extensively covered by our previous work [20], we will only
provide an overview of these results. The main focus of this paper is the
fine-grained analysis, which extends our previous research by providing
more detailed insights into the differences between task types when
comprehending a modularized process model. The overall goal of our
study is thereby to better understand how local and global tasks are
affected by abstraction and fragmentation in the context of modularized
process models.
2

The ensuing research questions can be summarized as follows:
RQ1 How do users’ comprehension and cognitive load differ between
local and global tasks?
RQ2 How do users’ search and inference behavior differ between local
and global tasks?

While RQ1 was extensively addressed in our previous study [20],
RQ2 was so far only considered at a coarse-grained task level. Our
previous analysis [20] shows that in global tasks, information search
is more complex, and it requires more cognitive effort to integrate
the information when compared to local tasks. However, this does
not consider how search and inference behavior unfolds over time,
depending on the task type. Building on these gained insights, we
further deepen our analysis by showing that we can indeed observe
a difference between the search and inference phases and that these
phases significantly differ based on the task type. Furthermore, we
provide a qualitative analysis, showing the differences in information
processing based on process maps (depicting structural differences in
visual behavior) and a time-series analysis (depicting how the visual
behavior evolves). Overall, our study shows how local and global tasks
impact comprehension and overall cognitive load, but also provides
new insights into the implications of task locality on process model
comprehension at a level of granularity that has been, so far, unex-
plored in the literature. Besides a better understanding of the effects
of local and global tasks, the new insights allow for more targeted user
support based on comprehension phase and task type, e.g., by providing
context specific information or guiding the attention of a user to the
relevant information.

Our empirical and qualitative investigations are based on eye-
tracking. We design an eye-tracking experiment, consisting of a mod-
ularized process model, based on the fragment-based modeling ap-
proach [21], and a set of local and global comprehension tasks. Based
on the experiment we assess the impact of the task locality on users’
task comprehension, overall cognitive load, search behavior, and in-
ference behavior. We cover conventional model comprehension and
subjective cognitive load metrics as outlined in existing literature [1,2].
Additionally, we integrate advanced objective cognitive load metrics
derived from eye-tracking. This comprehensive set of measures enables
a multi-perspective empirical analysis, enhancing the robustness of our
conclusions. Finally, the empirical observations are supported by our
qualitative analysis of the visual behavior.

Our results demonstrate the importance of the task type, underscor-
ing its significant influence at the coarse-grained, as well as fine-grained
level. The coarse-grained analysis reveals that global tasks, in com-
parison to local tasks, yield lower model comprehension and higher
cognitive load, due to the fragmentation effect. This observation is sup-
ported by the fine-grained analysis, which shows that in global tasks,
both search and inference phase are longer and characterized by more
complex visual behavior. Additionally, the fragmentation effect is more
pronounced during inference, than during search. These observations
are also supported by our qualitative analysis based on process maps
and time series.

Overall, this study provides empirical validation for the cognitive
and behavioral effects of global and local tasks at both coarse-grained
and fine-grained levels. Furthermore, our applied research model serves
as a framework for examining users’ comprehension, cognitive load,
search complexity, and inference complexity for process model com-
prehension tasks, using a wide array of measures. We additionally
introduce and validate a novel research method, which allows for
the segmentation of search and inference phases during information
processing, thereby opening up opportunities for future research. The
findings of our study emphasize the relevance of the task perspective for
the analysis of process model comprehension. Based on the fine-grained
analysis we also provide new insights regarding the task-dependent
information processing during process model comprehension. In this re-
gard, we propose several strategies to mitigate negative effects of global
tasks, to especially facilitate process model comprehension concerning

information search and inference.
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Fig. 1. Overview of the coarse- and fine-grained analysis.
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In the remainder, Sections 2 and 3 provide the background and
related work respectively. Section 4 explains our research method. Sec-
tions 5 and 6 present the findings and discuss them. Finally, Section 7
concludes the paper and delineates future work.

2. Related work

This section presents the related work on studies investigating pro-
cess model comprehension (cf. Section 2.1) and information processing
(cf. Section 2.2).

2.1. Process model comprehension from a task perspective

Over the past decades, a number of factors challenging the compre-
hension of process models have been identified in the literature [1,22].
Notably, the task type has received increased attention.

The cognitive fit theory of Vessey [23] posits that a good fit between
the task at hand and the problem representation (i.e., the artifact pre-
sented to the user e.g., process model) facilitates the problem-solving
procedure [23,24]. Accordingly, several authors investigated the cog-
nitive fit between different types of tasks and representations. Vessey
and Galletta [25], for instance, differentiated symbolic tasks targeting
specific data objects and spatial tasks focusing on relationships between
data objects. Then, the authors investigated the cognitive fit between
these tasks and different tabular and graphical representations. Simi-
larly, Ritchi et al. [26] defined schema tasks that are based uniquely on
the process model and non-schema tasks requiring knowledge beyond
the process model. Then, the authors examined the extent to which
textual and graphical representations support better cognitive fit with
these tasks.

Closely related to our work, Dunn and Grabski [24] differentiated
local tasks, where attention is assumed to be directed to a small area,
and global tasks where attention is expected to split over several areas.
Then, the authors investigated the cognitive fit between these tasks
and accounting models (i.e., Debit–Credit-Account, Resources-Events-
Agents) represented as Entity Relationship (ER) diagrams, tables, and
text. The authors found that cognitive fit is influenced by the locality of
information relevant for solving the task. In our study, users’ cognitive
fit will likely be influenced by the locality of the given tasks when
engaging with fragmented process models. Indeed, when solving a local
task requiring information within a single fragment users could expe-
rience better cognitive fit as they would benefit from the abstraction
support of modularization. Conversely, when solving a global task in
which the relevant information is distributed over several fragments,
the cognitive fit will be limited due to the effect of fragmentation.
Such a limitation is likely to impede the problem-solving procedure,
hence challenging the users, raising their cognitive load, and eventually
affecting their comprehension of the model at hand.

The impact of task locality on modularization was suggested by
Reijers and Mendling [9] as a result of some inconclusive findings
about modularization. Following that, it was investigated in the con-
text of vertical modularization with a limited set of cognitive load
measures by Zugal [2]. Beyond the use of a different modularization
approach, this study did not use eye-tracking, and also only conducted
a coarse-grained analysis. More recently, a research model based on
a multi-modal measurement of cognitive load was suggested for mod-
ularized declarative process models [27]. Based on the theoretical
3

background presented in this section together with the insights of the
existing literature, in our work, we further substantiate and validate the
impact of task locality on horizontal modularization using the cognitive
load measures introduced in Section 3.4.

2.2. Information processing in process model comprehension

In the literature users’ behavior has been investigated in the context
of studies on model creation [28–32]1 and studies on model comprehen-
sion [13,36–41]. Our work relates to the latter set of studies. Therein,
the conducted behavioral analyses yielded several insights. For in-
stance, using eye-tracking, Petrusal and Mendling [36] found that
the task-relevant parts of imperative process models (in BPMN2) re-
ceive more attention during comprehension tasks than the non-relevant
ones. Haisjackl et al. [40] used think-aloud data and observed that
the reading of declarative process models (in Declare [42]) involves
typically two strategies. The first is based on the execution order
of the model activities while the second relies on the orientation of
the model layout. In the same context of declarative process models
(in DCR [43]), following an eye-tracking analysis of users’ behavior,
Abbad-Andaloussi et al. [41] suggested that users follow either an ex-
ploratory or goal-oriented strategy when reading these process models.
While the aforementioned articles investigated users’ behavior during
comprehension tasks, they did not specifically focus on the identifi-
cation of specific behavioral phases in users’ data. This contribution
was, in turn, made by other studies. Kim et al. [37], for instance,
showed that in comprehension tasks involving multiple interlinked di-
agrams, users first engage in a search process, then develop hypotheses
about the target system. These two phases were named perceptual and
conceptual integration. The study did, however, not include an eye-
tracking analysis and was exclusively based on verbal data analysis.
A similar approach was chosen by Shanks et al. [39]. They also used
verbal protocols to identify specific phases during task comprehension.
As a result, they identified five different behavioral categories, which
they termed: preparing, identifying, understanding, articulating, and
evaluating. The most common observed sequence of behavior was task
understanding followed by identifying the relevant area of the model
or preparing the solution before conducting a final evaluation. We
could also identify two studies [13,38] using eye-tracking to detect
specific phases during comprehension tasks on process models. In [13],
Bera et al. identified two relevant cognitive processes, which have
a significant impact on process model comprehension performance:
Attention (paid to specific model parts) and cognitive integration. To
detect attention, fixation count and fixation duration were used. For the
detection of cognitive integration, a combination of eye-tracking and
verbal protocol analyses were used. In a similar way, Wang et al. [22]
show that the searching and integration of process model informa-
tion can be facilitated by providing additional external information.
The conducted eye-tracking study considers three types of information
embedding: rule linking (interlinking elements of a process model),

1 While the listed studies focus on the creation of process models, there also
xist some studies focusing on the creation of other conceptual models [33–
5].

2 https://www.omg.org/spec/BPMN/2.0/ (Accessed: 26 March 2024).
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Fig. 2. Comparison between a local and global task based on a modularized process model consisting of three fragments. While both task types benefit from abstraction, the
global task is additionally impeded by fragmentation, since the two relevant activities ‘‘A’’ and ‘‘B’’ are distributed among two fragments.
text, and diagrammatic embedding within the model. A recent study
by Winter et al. [38] investigated how different gaze patterns occur
during comprehension tasks. The study used process models of different
complexity and mappings, i.e., representations of the process model el-
ements. Based on heat maps, focus maps, and scan paths analyses, three
different reoccurring gaze patterns were identified: orientation pattern,
comprehension pattern, and congruence pattern. Our study aligns with
studies aiming at investigating behavioral phases in users’ eye-tracking
data [13,38], with a particular focus on search and inference phases.

3. Background

This section elaborates on the theoretical background relevant to
our study. Section 3.1 presents the theories underlying abstraction
and fragmentation. Sections 3.2 and 3.3 introduce foundations on pro-
cess model modularization and fragment-based process modeling. Sec-
tions 3.4 and 3.5 provide additional theoretical background on compre-
hension and cognitive load, as well as search and inference behavior.

3.1. The effects of abstraction and fragmentation in modularized process
models

The effect of modularization on the comprehension of business
process models is a well-researched subject (for an overview see the
work by Zugal [2]). Yet, existing empirical work does not provide
conclusive results on whether modularization has a positive or negative
impact on model comprehension [1,2]. A potential explanation for
the inconsistent results obtained in existing studies is the opposing
effects of abstraction and fragmentation [2,9,44], caused by the spatial
separation of modules.

Abstraction arises in modularization from the division of a process
model into sub-components (or fragments), allowing users to focus
their attention on task-relevant fragments, while irrelevant ones are
concealed. This can lead to improved performance in comprehension
tasks [45] and support the recognition of patterns, which might be
less apparent when looking at the entirety of a larger model [46].
For this reason process modeling guidelines commonly recommend to
decompose large process models into smaller sub-components, when
they reach a certain size [46]. The guidelines thereby rely on the as-
sumption that abstraction fosters model comprehension and alleviates
users’ cognitive load. Fragmentation, on the other hand, can hinder the
positive effect of modularization to some extent, especially when the
task-relevant information is distributed among multiple fragments. In
this case, a user needs to shift the attention among the spatially sepa-
rated sub-components, which can lead to the split attention effect [2,47].
The users’ attention thereby gets diverted by the separated locations
and is exposed to distraction. Indeed, when users need to keep a piece
of information in their mind while looking for another one to integrate
with, it is likely that their memory will decay after reaching its tem-
poral limits, resulting in increased difficulty in recalling the relevant
information that was fixed previously. Consequently, fragmentation can
4

make model comprehension more difficult and cause higher cogni-
tive effort. This is also potentially reflected in the users’ search and
inference behavior, due to the spatial separation of information.

The two opposing effects of abstraction and fragmentation are well
reflected by the distinction of local and global tasks. While local tasks
benefit from abstraction and do not suffer from fragmentation, since
they require only information within a single fragment, global tasks
also benefit from abstraction, but suffer from fragmentation, since
they require information, distributed among multiple fragments (cf.
Fig. 2). Accordingly, solving global tasks is expected to pose greater
challenges to users compared to local tasks. This conjecture aligns with
the cognitive fit theory [23], which asserts that the fit between the
task and the problem representation (e.g., a modularized process model
presented to the user) influences the problem-solving process [23,24].
Since the task-model fit is lower for global tasks than for local ones (due
to fragmentation), the problem-solving process is expected to be more
intricate, potentially affecting model comprehension, users’ cognitive
load, and visual behavior.

Our research contributes to the current body of knowledge con-
cerning the effects of abstraction and fragmentation [2,9,11,12] by (1)
investigating the effects in the light of horizontal rather than vertical
modularization, (2) employing a diverse set of measures to analyze the
effects with respect to users’ comprehension and cognitive load, and (3)
studying users’ information processing based on search and inference
behavior, when facing local and global tasks. The three subsequent sec-
tions introduce the concepts and measures used to analyze the effects
of task locality on task and phase levels in the context of modularized
process models.

3.2. Modularization in process modeling

Modularization refers to the systematic decomposition of a system
into interconnected modules, each possessing self-contained proper-
ties [48]. Within the literature on process modeling [10,49], three
types of modularization have been identified: vertical, horizontal, and
orthogonal. Vertical modularization involves decomposing the process
into sub-processes using a hierarchical structure [10,49]. Conversely,
horizontal modularization seeks to partition the process into inter-
connected fragments. The fragments can be connected in multiple
ways, such that they can be executed hierarchically, sequentially, or
concurrently [10,24]. Finally, orthogonal modularization partitions a
process based on cross-cutting concerns, such as privacy and security,
affecting multiple fragments of the model [10,24]. For example, a user
could be asked to confirm her identity at multiple stages of a process,
for security reasons. In orthogonal modularization, such cross-cutting
concerns are depicted in separate modules.

Given that horizontal modularization allows for the separation of
process modules without imposing hierarchical relationships or con-
cerns about cross-cutting issues, this approach emerges as more uni-
versally applicable. Consequently, it is well-suited for an in-depth
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exploration of the impacts of task locality on users’ comprehension and
cognitive load. Although a generally positive influence of horizontal
modularization on model comprehension is postulated based on prior
research [10], our investigation delves into the specific question of how
horizontal modularization influences comprehension tasks, distinguish-
ing between those centered on single modules (local) and those focused
on multiple modules (global). To facilitate this exploration, we adopt
the fragment-based approach outlined by Hewelt and Weske [21] (cf.,
Section 3.3) as a representative for this form of modularization.

3.3. Fragment-based process modeling approach

The fragment-based modeling approach poses an extension to the
commonly used Business Process Modeling and Notation (BPMN) [21].
Based on this extension it is possible to adapt the case-based modeling
paradigm, allowing for flexible process execution [8,50]. The different
process fragments are thereby connected based on data constraints,
defining input and output conditions for the different process activities.
In this way, the order of the fragments is not necessarily bound by any
hierarchical constraints and can therefore be considered a horizontal
modularization type (cf. Section 3.2). At run time, the fragments can
be executed independently from each other, as long as the defined
data constraints are fulfilled. These constraints refer to data objects,
which are defined by a data type and state. A data object can change
its state throughout the process execution, which is in addition to the
process model fragments, depicted in a labeled transition system called
lifecycle.

Fig. 3 provides an example of the fragment-based modeling ap-
proach, as it was used in our experiment. The two fragments
‘‘F1_Offload_Container’’ and ‘‘F1_Scan_Container’’ are connected based
on the data object ‘‘Container’’. As soon as the activity ‘‘Load container
onto the forklift truck’’ in the first fragment is executed the state of the
container changes to ‘‘lifted’ and the second fragment can be executed.
It is important to notice that the second fragment depends on two
different data objects, i.e., ‘‘Container’’ and ‘‘ERP file’’. The container
lifecycle ‘‘C1_Container’’ additionally shows that the containers’ final
state is reached when it is ‘‘loaded’’.

In addition to the fragment-based approach, there also exist other
modeling techniques, following the case-based modeling paradigm.
This includes techniques, linking process fragments based on events
instead of data objects (cf. overview by Krumeich et al. [51]), as
well as extensions of other modeling languages such as (colored)
Petri nets [52]. However, our decision to use the fragment-based
approach [21] is based on the popularity of the BPMN language
and its clear execution semantic, which can be easily assimilated by
readers, even without previous modeling experience. The introduction
of the data objects to interlink the fragments, further increases the
expressiveness of BPMN, allowing to model real-world behavior in a
more precise manner.

3.4. Comprehension and cognitive load

For the coarse-grained analyses (cf. Fig. 1), we focus on the differ-
ence between local and global tasks in terms of comprehension and
cognitive load.
Comprehension. Comprehension refers to the cognitive process of inter-
preting an artifact, such as a text or a process model, and constructing
a mental representation thereof [53]. In research, there exist many
different types of comprehension measures, that are used to investigate
the impact of different process model representation factors (e.g., pre-
sentation medium, model complexity, nomenclature of activities, task
type) on the ability of a user to grasp the information carried by a
model (see overview by Figl [1]). We will apply two common measures
thereof, which are comprehension accuracy and comprehension efficiency.
ognitive Load. The cognitive load theory postulates that when in-
ividuals approach the maximal capacity of their working memory,
5
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hey experience a task at hand to be more difficult, leading to a
etrimental impact on task performance and an increased susceptibility
o errors or erroneous decision-making [54,55]. In terms of process
odel comprehension, it would make the comprehension of a depicted
rocess more difficult and would lead to a higher risk of misinterpreting
he modeled process behavior. Thus, cognitive load can be assessed
ubjectively, through introspection, or objectively, through observable
hanges in behavior and cognitive states [54,56,57]. One common
easure to distinguish between varying levels of cognitive load is

he subjective evaluation of perceived difficulty, e.g., based on a 5-
oint Likert scale [58]. Additionally to this subjective measure, we
se measures derived from eye-tracking in our study to also capture
ognitive load objectively.

Eye-tracking thereby allows to detect visual and behavioral pat-
erns, which might otherwise, not be clear based on verbal proto-
ols [56]. A key concept in eye-tracking is fixations. Fixations constitute
time interval with eye movements of very low velocity, implying that

he pupil is fixated on a specific position within the visual field [56].
or the investigation of cognitive load at a task level, we will use
he average fixations duration, which computes the average duration
f fixations within a time window [56]. This measure is known to be
ower when screening and scanning information, than when conducting
ntensive mental processing [56].

In addition to average fixation duration, we will also use a physiolog-
cal measure to investigate cognitive load at a task level. Physiological
easures can capture humans’ reactions in the human body, depending

n the cognitive load, required by a given task. Such reactions are
riggered by the sympathetic and parasympathetic divisions of the auto-
omic nervous system, which are responsible for bodily functions [57,
9]. The sympathetic division triggers bodily activation in response
o heightened mental or physical demands, while the parasympathetic
ivision induces relaxation during decreased demand levels. These
ccurrences precipitate biological responses such as pupil dilation.
esearch has shown, that the pupil dilation derived from the low/high
ndex of pupil activity (LHIPA) has proven to be a reliable indicator of
ognitive load [60]. This index segregates pupil oscillations into low
nd high frequencies, yielding a measure that is negatively correlated
ith cognitive load (i.e., a low value corresponds to a high cognitive

oad) [60].

.5. Search and inference phases

For the fine-grained analyses (cf. Fig. 1), we focus on the difference
etween local and global tasks in terms of search and inference phases,
o capture the information processing during task execution.
Search. Information search involves the identification and separa-

ion of relevant from non-relevant information [19]. In the context
f process model comprehension tasks, this equates to the distinction
etween task-relevant and task-irrelevant process model activities [36].
ow the search is conducted depends on the task type and the applied

earch strategy [61–63]. Since the search always involves costly re-
ources, such as time and cognitive effort, users will stop search once
hey assume to have gathered sufficient information [61]. Sufficiency
hereby refers to the completeness and correctness of information. In
process model comprehension task, this would imply that a person
ould stop looking for relevant information in a process model after all

ask-relevant process activities are found. This of course requires that
he task-relevant activities can be clearly recognized [61]. According
o Browne et al. [62], to evaluate the sufficiency of information during
he search, users apply cognitive stopping rules [61]. Notably, for well-
tructured and decomposable tasks, users often rely on a particular
topping rule called mental lists. Following this rule, a person has a
ental checklist of items that must be found before stopping the search
rocess [62]. In the context of process model comprehension, this
topping rule might be applied, when asked to explain how a set of
odel activities relate to each other. Therein, during the search phase,
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Fig. 3. Example of a horizontally modularized process model following the fragment-based approach. A better resolution is available at https://github.com/promilab/
InfoSysTaskType.git.
the user is likely to have a mental checklist of relevant activities that
must be found in the model before ending this phase.
Inference. Cognitive inference refers to the creative process of inferring
new insights after the recognition of some relevant information [18].
Inference is mostly associated with reasoning [37]. Therein, the integra-
tion of the information extracted from the artifact with one’s existing
knowledge plays a primary role [37]. Inference has been studied as
part of many cognitive frameworks. Kim et al. [37] for instance, iden-
tified two processes underlying the comprehension of diagrammatic
representations (e.g., graphical models): perceptual and conceptual pro-
cesses. While the former was associated with search and recognition of
relevant information, the latter was linked to reasoning and inferring
insights from the given diagram. Similarly, the multimedia learning
theory [64] suggests that following the selection of the task-relevant
information during a search phase, requires the organization of this
information and its integration with existing knowledge, which would
take place within the inference phase.
Eye-tracking measures to investigate search and inference. Our study aims
at investigating the characteristics of search and inference phases dur-
ing process model comprehension using visual behavior, captured by
eye-tracking measures (cf. Fig. 4). For the analysis of search and infer-
ence, fixations can provide important insights. It is common practice
to consider short fixations (with a duration of < 250 ms), separately
from long fixations (with a duration of >= 500 ms) [65], allowing
to differentiate between superficial processing, likely to occur during
6

information search, and deep mental processing, likely to occur during
information inference. In addition to fixations, saccades can provide
insights into the cognitive state. Opposite to fixations, saccades denote
eye movements of high velocity implying that the pupil is moving
from one location (i.e., fixation) to another [56]. The average saccade
amplitude computes the average distance traveled by saccades over
a time window [56]. This measure is known to shorten when users
are involved in an intensive search process or engaged in a careful
inspection of an artifact [56].

A further important concept for the analysis of information process-
ing is scan-paths. Scan-paths denote a sequence of fixations, reflecting
the visual path followed by the user when engaging with an arti-
fact [56]. For the analysis of a scan-path it is often of interest, whether
this path includes different areas of interest (AOIs). AOIs thereby
define regions in a stimulus that a researcher is interested in to in-
vestigate [56], e.g., in the context of process model comprehension,
AOIs can correspond to the different elements of a process model.
A scan-path includes all first-time visits to an AOI, as well as all re-
turned visits to an AOI. Building on the scan-path, scan-path precision
is an important measure to separate search and inference phases. This
measure computes the ratio of fixations on the task-relevant areas
(e.g., process model activities) to the total number of fixations on the
artifact (e.g., process model) [36]. Doing so, the scan-path precision
can tell about the extent to which users are particularly focused on
the process activities relevant to solving a task. When conducting

https://github.com/promilab/InfoSysTaskType.git
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Fig. 4. Distinction between search and inference phase. The blue dots and arrows depict a scan-path during search and the green dots and arrows depict a scan-path during
inference. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
search, users are looking for the task-relevant activities among a set
of other non-relevant activities. This behavior would, in turn, translate
into a low scan-path precision since users’ fixations can land on any
relevant or irrelevant activity in the model. Conversely, once all the
relevant activities are identified, users would limit their attention to
these activities to infer a solution to the given task. Herein, the scan-
path precision value would get substantially higher. A further relevant
metric for the analysis of information processing based on the scan-
paths is the entropy of observed fixations [56]. Entropy is a measure
of the uncertainty regarding the occurrence of a fixation. E.g., when a
scan-path only consists of fixations on one single AOI, the entropy value
will reach its lowest possible value, which is zero. High entropy values
are thereby associated with exploratory behavior (i.e., search), while
low values indicate fixations on a restricted area [56]. Finally, scan
paths can also be depicted in the form of process maps [66,67]. Process
maps provide a graphical representation of the scan-paths, allowing
to visualize the order of fixations on different AOIs, thereby allowing
to identify scan-path patterns. For example, when a user is scanning
information, a process map is expected to show linear reading patterns,
while during information inference, the process map is likely to show
more intricate reading patterns, involving multiple loops between AOIs.

4. Research method

To investigate the effects of abstraction and fragmentation, we
have conducted an eye-tracking study following the empirical standard
guidelines for experiments.3 Sections 4.1 –4.3 provide an overview of
the study design, the study execution, and the data analysis procedures
respectively.

4.1. Study design

4.1.1. Research model
Based on the theoretical background introduced in Section 3, our

empirical study aims to investigate the impact of abstraction and frag-
mentation in modularized process models on users’ comprehension and

3 https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/
Experiments.md (Accessed: 26 March 2024).
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cognitive load at a task level (coarse-grained analysis), as well as search
and inference complexity at a phase level (fine-grained analysis). Our
research model is depicted in Fig. 5. As independent variable, we manip-
ulate the level of fragmentation based on the locality of the task, which
we separate into two-factor levels with local tasks addressing control-
flow aspects located within a single process fragment, and global tasks
addressing control-flow aspects located within two process fragments.
As explained in Section 3.1, due to the nature of modularized process
models both local and global tasks benefit from abstraction, but only
global tasks are impeded by fragmentation. The task locality factor is
expected to impact the comprehension, cognitive load, search complexity,
and inference complexity, which denote the dependent variables. As
shown in Fig. 5, we operationalize these theoretical constructs using
the measures introduced in Sections 3.4 and 3.5. Following our research
model, we formulate the following hypotheses:

Coarse-grained.
∙ H1: Global tasks yield lower task comprehension than local tasks.
∙ H2: Global tasks yield higher cognitive load than local tasks.

Fine-grained.
∙ H3: Global tasks yield more complex search behavior than local tasks.
∙ H4: Global tasks yield more complex inference behavior than local
tasks.

4.1.2. Material
The experiment comprises a set of model fragments that capture

a logistics process and a set of comprehension tasks, prompting the
participants to identify relationships between activities within the pro-
cess model based on the control-flow. These tasks could either refer
to a single process fragment (local task) or to two different process
fragments (global task).

Following the fragment-based modeling approach (cf. Section 3.3),
the logistics process is divided into 6 process model fragments, in-
terconnected using 3 data objects for which the state changes are
represented in their respective life cycles (the complete model is de-
picted in the Appendix A). The process model fragments are designed
following existing process modeling guidelines [46,68] ensuring a care-
fully aligned layout and a reasonable number of activities and gateways
within each model (i.e., from 6 to 8 activities and from 2 to 4 exclusive
or parallel gateways). To mitigate the effect of domain knowledge,

https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/Experiments.md
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/Experiments.md
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Fig. 5. Research model for hypothesis testing. 𝑇 — Theoretical construct, O — Operationalization of construct.
ayman’s terms were used in the naming of activities. Overall the
rocess model consists of 41 activities and 46 data-object inputs and
utputs. It also covers the most commonly used BPMN constructs,
.e., start and end events, task, sequence flow, parallel gateway, and
ata-based XOR [69]. The high number of elements combined with the
ifferent BPMN constructs results in a relatively high model complexity
ompared to process models in similar studies [2,70].

The experiment includes 8 tasks, designed to prompt the partici-
ants on the relationship (i.e., sequence flow, exclusiveness, repetition, or
oncurrency) between activities located within the same process model
ragment (i.e., referred to as local tasks) or in different process model
ragments (i.e., referred to as global tasks). This ensures that the used
asks cover different workflow patterns at both local and global levels,
eflecting, in turn, real-world comprehension tasks.

The tasks were formulated as statements following the template
hown in Fig. 6. Depending on the semantics of the process model
ragments, the participants were asked to evaluate the given statements
s correct or incorrect. Throughout the design and execution of our
tudy, we formulate our tasks in such a way that the task-relevant
nformation can be clearly recognized in the process models (cf. Fig. 6).
urthermore, we instruct our participants to continue with search until
hey have found all task-relevant information, to foster the mental list
topping rule [62]. A search phase thereby lasts from the beginning of
task until the two task-relevant activities are found. The following

nference phase lasts until the end of the task (cf. Fig. 4). These
esign decisions are meant to facilitate the separation between search
nd inference behavioral phases in the users’ data as will be further
xplained in Sections 4.2 and 4.3.2.

Additionally, to avoid any learning effect, the individual tasks cov-
red distinct aspects of the used fragments. The material deployed in
ur experiment is available online.4

The experiment was conducted within the data collection and em-
irical investigation framework EyeMind [71]. Fig. 7 depicts a screen-
hot of the EyeMind user interface used during the experiment to
avigate through the tasks. The process fragments and life cycles are
rovided in different files, which can be accessed through the file
xplorer shown on the left side of the screen. Note that only a single
ile can be viewed at a time. The question is shown at the very top of
he screen.

4 https://github.com/promilab/InfoSysTaskType.git
8

4.1.3. Participants
Table 1 provides an overview of the participants’ demographics.

46 participants were recruited for this experiment. 22 participants
come from the University of St. Gallen, 17 participants from Karl-
sruhe Institute of Technology, 4 participants from the research institute
Forschungszentrum für Informatik FZI in Karlsruhe, and 3 participants
from Promatis an IT company located at Karlsruhe. The participants
were aged between 20 and 50 years old with 63% in the range of
[20–30]. The participants had different backgrounds. 22 participants
were conducting research in academia, 17 participants were students at
different levels of bachelor and master educations and 7 were working
in the IT industry. On a familiarity scale ([1: unfamiliar, 7: very
familiar], 48% of the participants affirmed to be highly familiar with
BPMN (in range of [5–7]), while 42% had a low familiarity with BPMN
[in range of [1–3]]. To ensure the participants’ ability to take the
experiment, they were all uniformly familiarized with the used BPMN
concepts and how to interpret process models designed following the
fragment-based approach. Additionally, a set of test tasks similar to
those of the experiment were used to evaluate the participants’ skills
after the familiarization phase.

4.2. Experiment procedure

The experiment took place in individual eye-tracking sessions with
an average duration of 1 h. As depicted in Fig. 8, the sessions started
with a familiarization phase where the participants were introduced
to the BPMN concepts used in the model fragments and key notions
about the fragment-based modeling approach [21]. Afterwards, they
were given a quiz to ensure that the participants have a sufficient
understanding of the fragment-based modeling approach, and to rectify
the BPMN concepts, that challenged the participant’s understanding.
Based on the quiz, which was conducted orally, none of the participants
were deemed unsuitable to continue with the experiment, i.e., every
participant could solve all provided tasks correctly, given that they
could ask additional questions regarding the fragment-based modeling
approach. Then, screening and demographic forms were administrated
to the participants to verify their physical ability to join the eye-
tracking study as well as to collect basic demographic information
(e.g., gender, age range, familiarity with the investigated concepts).
Prior to the data collection, the participants were seated in front of an
eye-tracking device and instructed about the data collection procedure
before starting the calibration of the device to accurately capture
their gazes on the screen. As part of the instructions, the participants

were asked to avoid head movements. Also, since the same process

https://github.com/promilab/InfoSysTaskType.git
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Fig. 6. Four different control-flow patterns and how they are modeled for global tasks based on the fragment-based modeling approach.
Fig. 7. User interface with an example of an experiment question.
model fragments, were repeated in all the tasks, the participants were
instructed to avoid developing an overreaching understanding of the
process (including its six fragments and the three life-cycles) from the
first task but rather read every task separately, look for the relevant
activities and then try to understand how they relate to each other.
By doing so, we have also promoted the mental list stopping rule
during the search phase (cf. Section 3.5). Consequently, we expect that
the participants would first identify all the relevant activities during
the search phase, then proceed to infer their relationships during the
inference phase. At the data collection, the participants were given a
series of tasks displayed in a randomized order. Following each task,
the participants were asked to justify their answers and fill out a self-
assessment questionnaire of perceived difficulty. For the current study,
only the eye-tracking data collected during the task execution, the task
solutions, and the self-assessments are used. The verbal explanations
will be considered for future research.

4.3. Data analysis

The data analysis encompasses the coarse-grained analysis at a task
level, as well as the fine-grained analysis at a phase level. The multi-
9

level analysis is documented through the Python notebooks available
online.5

4.3.1. Coarse-grained analysis at task level
For the coarse-grained analysis, the comprehension and cognitive

load measures introduced in Section 3.4 are calculated at task level.
From 46 participants, we obtained 184 data points per factor level
(i.e., local tasks or global tasks). To avoid interdependence between the
data points coming from each individual, a mean value was calculated
for the four tasks capturing each factor level for each participant. This
resulted in 46 paired data samples. Due to technical issues with the
eye-tracker, the data was further reduced to 44 paired data samples
for the fixation-based measures and to 43 paired data samples for the
pupil-based ones. In the first two cases the brightness in the room was
too high, such that the eye-tracker could not detect the participants’
gazes correctly. In the third case, the participant kept moving their
head which affected the measurement of their pupil dilation. The
remaining data was used to compute the descriptive and inferential

5 https://github.com/promilab/InfoSysTaskType.git

https://github.com/promilab/InfoSysTaskType.git
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Fig. 8. The different steps during each experiment session.
Table 1
Demographic data of the participants.

Demographics Groups Count Percentage (%)

Education

Business Informatics 15 0.33
Cognitive Science 1 0.02
Computer Science 25 0.54
Industrial Engineering 4 0.09
Mechatronics 1 0.02

Profession

Research 22 0.48
Student 17 0.37
Industry 5 0.11
IT-Admin 2 0.04

Experience with BPM

0 month 18 0.39
≤ 1 year 12 0.26
≤ 2 years 2 0.04
≤ 5 years 7 0.15
> 5 years 7 0.15

Familiarity with BPMN

1 (strongly disagree) 9 0.2
2 7 0.15
3 3 0.07
4 (neutral) 5 0.11
5 8 0.17
6 9 0.2
7 (strongly agree) 5 0.11

statistics to investigate our hypotheses (cf. Table 2). We used the non-
parametric Wilcoxon Signed-Rank test (single-tailed) for the inferential
statistics since it is adequate for comparing paired data samples and
does not require the data to be normally distributed. Additionally, we
calculated the effect size estimates 𝑟2 for the Wilcoxon Signed-Rank test
as proposed by Fritz et al. [72]. The effect size 𝑟2 indicates how much
of the variance in the observed dependent variable is explained by the
independent variable, i.e., the locality of the task.

4.3.2. Fine-grained analysis at phase level
The fine-grained analysis involves three steps. First, we provide a

validation of our proposed phase segmentation approach, which allows
to separate search from inference phases in our experiment. Second, we
conduct a statistical analysis to show that the two phases show different
characteristics in terms of cognitive complexity, when comparing local
and global tasks. Finally, we conduct a qualitative analysis based on
process maps and time series, to support the statistical findings.
Phase separation and validation. The approach followed to infer
users’ behavior during search and inference phases is summarized in
Fig. 9. It shows how the eye-tracking data is segmented into the two
phases, followed by a validation of the segmentation. 1⃝At first, the
eye-tracking data, collected from the participants, is grouped into trials.
Each trial, in turn, refers to the data of an individual participant
conducting a single task (e.g., participant P1 conducting task T1,
participant P2 conducting task T1). 2⃝In the next step, a cut-mark is
assigned to each trial at the point in time where the participant fixated
the two relevant activities for solving the task. Hence, the search phase
10
ends and the inference phase starts exactly after the second relevant
activity has been fixated (cf. Fig. 4). 3⃝Accordingly, the trial is divided
into two phases: a phase prior to the cut-mark (i.e., Phase 1) and a
phase after the cut-mark (i.e., Phase 2). Fig. 4 provides an example of
the separation of the phases based on the fixations observed during the
execution of a local task.

After the segmentation, we conduct an analysis, on whether the
phases show indeed differences in terms of cognitive processing. 4⃝For
this reason several eye-tracking measures are associated with search
and inference behavior, as introduced in Section 3.5, are calculated at
the level of each phase. As shown in Fig. 9, when comparing Phase
1 and Phase 2, the participants exhibited shorter average fixation
duration, smaller average saccade amplitude, smaller scan-path pre-
cision, larger proportion of short fixations (< 250 ms), and smaller
proportion of long fixations (≥ 500 ms) in Phase 1 than in Phase
2. 5⃝Following the results of the Wilcoxon paired test (i.e., used for
pairwise data comparison with no strict assumptions of the normality
of the data), all the differences between the measures in Phase 1 and
Phase 2 are statistically significant. Considering the trends of these
eye-tracking measures, which align with the theoretical underpinnings
presented in Section 3.5, and the way the participants were instructed
(cf. Section 4.2), Phase 1 is plausibly reflecting search behavior while
Phase 2 is plausibly reflecting inference behavior.
Hypotheses Testing. For the fine-grained analysis, the visual behavior
measures introduced in Section 3.4 are calculated at phase level. The
procedure to select the data for the calculation of the descriptive and
inferential statistics at the phase level is identical to the analysis at
the task level, resulting in 44 paired data samples to calculate the
respective phase duration and entropy for local and global tasks. This
time we only needed to remove the two cases from the data, where the
gazes were not detected correctly. Again we use the non-parametric
Wilcoxon Signed-Rank test (single-tailed) and the effect size estimates
𝑟2 for the inferential statistics.
Process Maps and Time Series. In addition to the hypotheses test-
ing we also apply a qualitative analysis at the phase level to gain
more detailed insights on the temporal evolution of the information
processing during task execution. The qualitative analysis encompasses
process maps and time series graphs, which we derive from a repre-
sentative participant and task. The process maps are discovered based
on PM4Py [73]. To make the structural properties of the process
maps more visible the fixations on the different AOIs (represented
as rectangles) are encoded numerically. The time series diagrams are
derived based on two metrics: first-time visits and entropy. First-time
visits track the number of fixations landing on a new AOI, which has not
been visited before. Every time a new AOI is fixated, the first-time visits
value increases by one. Otherwise, it remains constant. To measure the
temporal evolution of entropy we apply a windowing approach [74]
with a window size of 30 (fixations). This means the entropy value is
calculated after 30 fixations occurred and gets continuously updated
each time a new one occurs, while the window moves one step forward,
i.e., the window size always remains the same. As a time scale for
first-time visits and entropy, we use the number of fixations over time.
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Fig. 9. Approach for the segmentation and validation of the search and inference phases.
Table 2
Descriptive and inferential statistics related to the coarse-grained analysis investigating the impact of local and global tasks on users’ performance
and cognitive load. N: number of observations, M: calculated mean, SD: calculated standard deviation. Units: Phase duration in seconds, Average
fixation duration in milliseconds. A p-value< .05 means that the pairwise comparison results are significant, 𝑟2 thereby indicates the effect size
of the independent variable.
Hypothesis/Construct Measure Descriptive Inferential

N Local M (SD) Global M (SD) 𝑝-value 𝑟2

𝐻1/Comprehension Accuracy 46 0.978 (0.071) 0.739 (0.247) < .001 0.575
Efficiency 46 54.097 (16.829) 117.593 (41.5) < .001 0.730

𝐻2/Cognitive load Perceived difficulty 46 0.62 (0.521) 1.891 (0.772) < .001 0.754
Avg. fix. duration 44 194.323 (25.526) 200.966 (25.421) < .001 0.290
LHIPA 43 1.185 (0.298) 0.815 (0.216) < .001 0.668
5. Findings

This section presents the findings of our empirical study. Section 5.1
reports the results of the coarse-grained analysis addressing RQ1.
Section 5.2 reports the results of the fine-grained analysis addressing
RQ2 (cf. Section 1).
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5.1. Coarse-grained analysis at task level

This section presents the results of the coarse-grained analysis inves-
tigating the impact of local and global tasks on users’ comprehension
and cognitive load (addressing RQ1).

Based on the descriptive statistics shown in Table 2, in terms of
users’ comprehension, comprehension accuracy (measured in the range
[0:incorrect, 1:correct]) was significantly (cf. 𝑝−value in Table 2) lower
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Table 3
Descriptive and inferential statistics on the fine-grained analysis investigating how users’ search and inference phases differ between local and
global tasks in terms of phase duration, cognitive load and scan-path variability. N: number of observations (cf. Section 4.3), M: calculated
mean, SD: calculated standard deviation. Units: Phase duration in seconds, Average fixation duration in milliseconds. A p-value< .05 means that
the pairwise comparison results are significant, 𝑟2 thereby indicates the effect size of the independent variable.
Hypothesis/Construct Measure Descriptive Inferential

N Local M (SD) Global M (SD) 𝑝-value 𝑟2

𝐻3∕Search Search phase duration 44 28.075 (21.918) 45.084 (24.983) < .001 0.607
Entropy 44 3.94 (0.686) 4.65 (0.473) < .001 0.567

𝐻4∕Inference Inference phase duration 44 24.856 (19.636) 77.837 (59.236) < .001 0.755
Entropy 44 3.154 (0.446) 4.709 (0.626) < .001 0.731
for global tasks than for local tasks. Similarly, comprehension efficiency
(measured in seconds) was significantly lower for global than for
local tasks. As for the cognitive load, the subjective assessment of
perceived difficulty (measured in the range [0: ‘‘very easy’’, 4: ‘‘very
difficult’’]) was significantly higher for global tasks compared to local
tasks. Similarly, the average fixation duration (measured in milliseconds)
was significantly higher for global compared to local tasks. Finally,
the LHIPA score was significantly lower for global than for local tasks.
These order relations between the task types are consistent among a
vast majority of the participants, independent from their demographic
background (an overview on the number of expected and deviating
order relations can be found in Appendix B).

Based on the background presented in Section 3.4, our findings
support the two formulated hypotheses 𝐻1 and 𝐻2, indicating that
global tasks yield lower task comprehension (𝐻1) and higher cognitive
load (𝐻2) than local tasks, therefore indicating a significant effect of
the task locality on comprehension and cognitive load at a task level.

5.2. Fine-grained analysis at phase level

This section reports the results of the fine-grained analysis investi-
gating how users’ search and inference behavior differ between local
and global tasks in terms of phase duration and entropy (addressing
RQ2).

The results in Table 3 summarize the comparison of search and
inference behavior between local and global tasks. For the search
phase, the phase duration (measured in seconds) in global tasks was
significantly longer for global tasks than for local tasks. Concerning
users’ scan-path variability, the entropy measure was higher in global
tasks than in local tasks. These order relations between the task types
are consistent among a vast majority of the participants, independent
from their demographic background (an overview on the number of
expected and deviating order relations can be found in Appendix B).

For the inference phase, the phase duration in global tasks is also
significantly higher than in local tasks. When it comes to scan-path
variability, the entropy measure was higher for global tasks than for
local ones.

Based on the background presented in Section 3.4, our findings
support the two formulated hypotheses 𝐻3 and 𝐻4, indicating that
global tasks yield more complex search behavior (𝐻3) and more com-
plex inference behavior (𝐻4) than local tasks, therefore indicating a
significant effect of the task locality on search and inference complexity
at phase level. These findings are further discussed in Section 6.

To complement the inferential statistics, we also conduct some
qualitative analysis based on process maps and time series. The process
maps show the differences in the scan-paths of a reader, during search
(Fig. 10) and inference phase (Fig. 11), when solving a local and a
global task. The circles depict the process start and process end, and
rectangles refer to the visited AOIs within the process model, following
a numerical encoding. The edges indicate the respective transitions be-
tween the AOIs. The number in brackets within the rectangles, as well
as the one next to the transitions, respectively indicate the frequency of
the visits to the AOI and of the transitions, which is also supported by
12

the coloring of the rectangles and the edge thickness. For both phases
the process maps show that in the local task the scan-path involves a
lower number of visits to process model tasks, as well as less intricate
reading patterns, when compared to the global task.

Similarly, Fig. 12 depicts differences between the search and in-
ference phases for the local and global task type, when comparing
the evolution of AOI first-time visits and entropy relative to the total
number of fixations over time. The comparison of the phases of the local
task (left diagrams) with the ones of the global task (right diagrams),
shows that search and inference in the global task require a higher
number of overall fixations, as well as a higher number of AOI first-
time visits. Thus, indicating that both phases involve higher cognitive
complexity in global tasks, similar to the findings of the statistical
analysis. One can further observe differences between the search and
inference phases in terms of increase in the number of first-time visits
and change in entropy, relative to the overall number of fixations over
time. The entropy seems to particularly decrease after the search phase
terminates, therefore indicating behavioral changes. These observations
also support the statistical analysis conducted in Section 4.3.2. Hence,
providing additional validation, that the two distinct phases can be
associated with search and inference. Finally, one can also observe
alternating short intervals of high and low entropy during the search,
and during the inference phases. This might indicate additional distinc-
tive behavior during these phases, such as information validation or
reconciliation [32].

6. Discussion

In this section we discuss the results derived from the coarse-grained
as well as fine-grained analysis, followed by several implications from
a research and application perspective. Finally, we discuss the main
limitations of this study concerning its internal and external validity.

Drawing on the findings from the coarse-grained analysis detailed
in Section 5, our study shows that the nature of the task significantly
influences users’ comprehension and cognitive load when interacting
with horizontally modularized process models. This substantiates pre-
vailing hypotheses in the literature [2,9], suggesting that global tasks,
impeded by fragmentation, require more cognitive load than local
tasks, which benefit from abstraction. Since horizontal modularization
facilitates a highly adaptable decomposition of process models into
modules, independent of hierarchical dependencies and cross-cutting
concerns, it is reasonable to extrapolate that the findings are gener-
ally applicable to other modularization approaches, even though they
involve more stringent decomposition constraints.

Our fine-grained analysis based on search and inference phases
further suggests, that there also exist significant differences regarding
phase duration and scan-path entropy when comparing local and global
tasks. Inference phases in global tasks seem to particularly increase
in complexity due to fragmentation. This is indicated by the entropy,
i.e., the uncertainty regarding the occurrence of a fixation (cf. 3.5),
which is higher for the inference phase compared to the search phase,
when solving global tasks, while for local tasks it is the opposite.
Additionally, the inference phase duration is three times higher in
global tasks, when compared to local ones.

The gained insights carry several implications for future research

and for process comprehension in practice. First, we suggest that future
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Fig. 10. Two process maps depicting the search phase for a local task (left) and for a global task (right). To improve readability, a similar proportion of visits to AOIs are omitted

in both maps, indicated by three dots. The complete maps are available at https://github.com/promilab/InfoSysTaskType.git.
research should consider task type, as well as information processing
phases as essential components for the analysis of process model com-
prehension. While the relationship between task type and cognitive
processing has already been investigated in other research areas [15–
13
17], this is not the case in the literature on process model comprehen-
sion. The potential for this kind of research was already identified by
Mandelburger and Mendling [6] based on their proposition for a the-
oretical cognitive framework of task performance with diagrams. Our

https://github.com/promilab/InfoSysTaskType.git
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Fig. 11. Two process maps depicting the inference phase for a local task (left) and for a global task (right). A better resolution is available at https://github.com/promilab/

InfoSysTaskType.git.
coarse-grained and fine-grained analysis provides some initial empirical
work in this direction.

For future empirical work we present a novel research method to in-
vestigate information processing during process model comprehension.
In Section 4.3.2 we could show that based on our experiment design it
is possible to separate information search from information inference
phases, thereby allowing for a more fine-grained analysis of the cog-
nitive aspects in process model comprehension. The proposed method
14
could, for example, be used in future research to further investigate
the variability of scan-path entropy during both search and inference
phases, as shown by the time series in Fig. 12. Here, a promising
approach would be to extend the eye-tracking analysis by the think-out-
loud method [75] to make the cognitive processes during the phases
even more explicit.

From a more practical point of view, our gained insights could help
to better evaluate the difficulties an individual is facing when solving a

https://github.com/promilab/InfoSysTaskType.git
https://github.com/promilab/InfoSysTaskType.git
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Fig. 12. Qualitative analysis based on time series. The two diagrams on the left side depict the evolution of the first-time visits and the entropy for a selected participant solving
a local task, the two diagrams on the right side depict the same metrics for a selected participant solving a global task. The time scale for all diagrams are the total number of
fixations over time.
task, i.e., whether the difficulty is related to finding relevant informa-
tion, inferring the right conclusions, or both. Based on eye-tracking it is
possible to provide customized and real-time support, e.g., by providing
additional information when an individual faces comprehension issues
at a phase level. This could for example be helpful in an e-learning set-
ting [76], teaching about modularized models. Similarly, such support
could be provided to practitioners working with modularized models,
e.g., in software development [7], or in logistics [8].

The identification of task-specific model comprehension issues al-
lows to support a user in two different ways. The comprehension task
itself can be adjusted in such a way that it becomes easier to solve,
e.g., by splitting a large (global) task covering multiple modules into
smaller (local) tasks. While this approach is not always necessarily
applicable in practice, especially in the case of cross-cutting concerns,
another approach to facilitate comprehension is to provide better user
support in process modeling tools. Global tasks could for example be
better supported by interlinking modules to enhance navigation. Even
though, empirical evidence is missing to which extent the interlinking
supports model comprehension [77]. Alternatively, information search
and inference across multiple modules can also be supported based on
chatbots, which are capable of communicating dependencies between
different parts of a model upon request [78]. In a similar way it
can already help to provide a comprehensive overview of modules,
i.e., model landscape, to support process model comprehension [79].
Finally, a further possibility to omit comprehension issues based on
fragmentation, is the application of simulation to analyze interdepen-
dencies between modules [80]. Based on simulation it is for example
possible to test the executability of a process model, or the reachability
of different process modules, while potentially avoiding the need for
information search and inference [2].
15
Threats to Validity. The following potential threats to the validity of
our work should be considered. While all experiment sessions are con-
ducted according to a thoroughly defined protocol and in a controlled
environment, one cannot entirely rule out the existence of confounding
factors. Several measures are taken to ensure the internal validity of our
study. To avoid learning effects, each participant received the different
comprehension tasks in a different order. Additionally, all tasks refer to
a unique combination of two activities, which are equally distributed
among six fragments. In this way, each of the fragments is only relevant
for two out of eight tasks. Furthermore, the relatively high number
of participants (46) further strengthens the validity of our study. To
avoid misinterpretations of the depicted process models and to ensure
a similar basic knowledge among the participants, everybody received
a uniform introduction to BPMN with a detailed explanation of the
fragment-based modeling approach.

To avoid any confounding factors regarding the experimental set-
ting, all local and global tasks were phrased in an identical manner,
always referring to exactly two activities, and covering the same set of
control-flow patterns (cf. Section 4.1). Additionally, each task referred
to the same modularized process model, consisting of six equally com-
plex fragments (cf. Appendix A). However, there remains some risk,
that the fragments contain some unforeseen cognitive complexity for
the participants, which would bias the comparison of the task types.
Besides the thorough design of the process model and the tasks, this
risk is additionally mitigated due to the high number of collected data
points (184) per factor level (cf. Section 4.1).

Regarding our applied segmentation method to distinguish between
search and inference, there remains some uncertainty, whether a partic-
ipant repeats to search for information after conducting some inference.
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This risk is mitigated by the implied stopping rule in the comprehen-
sion tasks of our experiment, i.e., the instruction to search for the
two stated activities in each task and then to infer their relationship.
Furthermore, our statistical analysis in Section 4.3.2 provides compre-
hensive validation of the segmentation. The statistical analysis based on
average fixation duration, saccade amplitude, scan-path precision, and
proportion of short and long fixations, provides strong evidence that
the search and inference phases are clearly distinct from one another.
Thereby leading to the conclusion that the participants indeed followed
the stopping rule.

The validity of the applied constructs is supported by existing
research studies (cf. Section 3). Comprehension accuracy and compre-
hension efficiency are widely used to capture comprehension [1]. Also,
perceived difficulty, average fixation duration, and LHIPA are well-
established measures to capture cognitive load [54,56]. Furthermore,
also the applied eye-tracking measures to investigate search and infer-
ence are well established in the literature to support these concepts [36,
56,65]. Applying all these different measures helps in particularly to
avoid a mono-method bias. Our results are further supported by the
qualitative data analysis based on the process maps and the depicted
time series (cf. Section 5.2). All our observations are in line with
similar research experiments [2,9,38], even though these experiments
do not provide such detailed insights on the effects of abstraction and
fragmentation as in our study.

Finally, there remains some uncertainty, regarding the external
validity of our findings. To ensure the applicability of the findings
to other process modeling languages, we addressed different control-
flow patterns in the comprehension tasks to avoid the dependency on
a particular model structure (cf. Fig. 6). These control-flow patterns
are commonly found in process models, independent of the modeling
language.

It can further be questioned, to which extent the designed compre-
hension tasks in our research setting resemble comprehension tasks in
the real world. There are three main aspects to consider in this regard.
Firstly, the contained control-flow patterns in the comprehension ques-
tions are commonly used in process models [69]. Secondly, local and
global tasks are also commonly encountered in practice [7,8]. Finally,
the implied stopping rules in the comprehension tasks imitate search
strategies, which might also occur in a different context [61,62]. Even
though, in a more complex task setting it might not always be the
case, that a clear distinction between search and inference is possible.
Although we are not aware of any studies, which have investigated
search strategies in the context of process model comprehension.

Furthermore, the heterogeneity of the participants in our study,
regarding their process model experience (cf. Section 4.1.3), indicates
that our results are somewhat valid, independently from a person’s
background. To ensure that every participant had the same minimal
necessary knowledge of the fragment-based modeling approach, as
well as the relevant BPMN components, everyone first completed a
familiarization phase and a quiz before the experiment (cf. Section 4.2).
In this way, we could ensure, that every participant was able to solve
the comprehension tasks, independent from the personal background.
While not all participants were familiar with process models, all of them
had an educational background in information systems. This reflects
well the target group of our study since process models are commonly
applied to represent information systems [1–3]. Furthermore, the ex-
periment follows a within-subject design, which implies that every
participant is equally exposed to every treatment, providing additional
robustness toward heterogeneous subjects.

7. Conclusion and future work

This study provides an analysis of the effects of abstraction and
fragmentation in modularized process models at task (coarse-grained
analysis) and at phase (fine-grained analysis) levels. At both levels, the
study confirms the negative impact of fragmentation in modularized
16
process models. This results in lower task comprehension, higher cogni-
tive load, as well as more complex search and inference phases in global
tasks, when compared to local ones. To gain these insights we proposed
a novel research method, which allows to separate search from infer-
ence phases. We additionally conducted an extensive validation of this
method, providing future research opportunities.

Based on the gained insights on process model comprehension, we
plan to extend our research at the coarse-grained, as well as the fine-
grained level. One important aspect, we have not yet considered at the
coarse-grained level, is the effect of process model complexity. In this
regard, it will be interesting to analyze how the size and connected-
ness [81] of a process model influence the effects of abstraction and
fragmentation. Generally, we would expect that search and inference
become more complex and time-consuming with increasing size and
connectedness, while global tasks are more negatively affected than
local tasks. Although this remains to be investigated.

In a similar vein, we would further like to investigate, how differ-
ent process model perspectives might be affected by abstraction and
fragmentation. In the context of fragment-based modeling, it would
be especially interesting to compare our results with comprehension
questions regarding the data perspective.

A further research direction, we intend to follow, is the exploration
of the information processing during process model comprehension,
focusing on even more fine-grained comprehension phases. The gained
insights can further be used to develop predictive models based on ma-
chine learning, allowing for online support during process model com-
prehension. Lastly, we can additionally extend our fine-grained analysis
by also considering differences in terms of control-flow patterns.
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Appendix A. Experiment material: process model and comprehension tasks
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Type Control-flow Task

Local Ordering The activity ‘‘Enter container information from documents’’ needs to be executed before the
activity ‘‘Create new erp system entry’’?

Concurrency The activity ‘‘Inform customs about temporary storage’’ can be executed in parallel with the
activity ‘‘Inform shipping company about temporary storage’’?

Exclusiveness The activities ‘‘Send detailed information on final destination’’ and ‘‘Load container onto
train’’ are mutually exclusive?

Repetition The activities ‘‘Request independent analysis of damage’’ and ‘‘Investigate cause of shake’’
can be executed several times?

Global Ordering The activity ‘‘Drive container to scanning platform’’ needs to be executed before the activity
‘‘Attach accelerometer sensor’’?

Concurrency The activity ‘‘Document sensor id and container id’’ can be executed in parallel with the
activity ‘‘Calibrate sensor’’?

Exclusiveness The activities ‘‘Request container deletion’’ and ‘‘Schedule transportation from temporary
storage’’ are mutually exclusive?

Repetition The activities ‘‘Document results of scan in erp file’’ and ‘‘Log into erp system’’ can be
executed several times?

Appendix B. Descriptive statistics on order relations

Table B.4
An overview of the number of participants, where the measures on the left reflect the expected order relation between the local and global tasks, equality between the two task
types, or the opposite of the expected order relation. Based on the formulated hypotheses in Section 4.1.1, in comparison to local tasks, global tasks are expected to yield lower
accuracy, longer response time, higher perceived difficulty, longer average fixation duration, lower LHIPA, longer search duration, longer inference duration, higher search entropy,
and higher inference entropy.

Expected
order relation

Equality
order relation

Opposite
order relation

Accuracy 29 17 0
Response time 44 0 2
Perceived difficulty 43 3 0
Average fixation duration 33 0 11
LHIPA 38 0 5

Search duration 41 0 3
Inference duration 43 0 1
Search entropy 37 0 7
Inference entropy 43 0 1
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