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Abstract
Let X be an n-element point set in the k-dimensional unit cube [0, 1]k where
k ≥ 2. According to an old result of Bollobás and Meir (Oper Res Lett 11:19–
21, 1992) , there exists a cycle (tour) x1, x2, . . . , xn through the n points, such that
(∑n

i=1 |xi − xi+1|k
)1/k ≤ ck , where |x − y| is the Euclidean distance between x and

y, and ck is an absolute constant that depends only on k, where xn+1 ≡ x1. From the
other direction, for every k ≥ 2 and n ≥ 2, there exist n points in [0, 1]k , such that

their shortest tour satisfies
(∑n

i=1 |xi − xi+1|k
)1/k = 21/k ·√k. For the plane, the best

constant is c2 = 2 and this is the only exact value known. Bollobás and Meir showed

that one can take ck = 9
( 2
3

)1/k · √
k for every k ≥ 3 and conjectured that the best

constant is ck = 21/k · √
k, for every k ≥ 2. Here we significantly improve the upper

bound and show that one can take ck = 3
√
5

( 2
3

)1/k ·√k or ck = 2.91
√
k (1+ ok(1)).

Our bounds are constructive. We also show that c3 ≥ 27/6, which disproves the con-
jecture for k = 3. Connections to matching problems, power assignment problems,
related problems, including algorithms, are discussed in this context. A slightly revised
version of the Bollobás–Meir conjecture is proposed.
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Fig. 1 Tight examples with 4, 2, and 5 points: 1 + 1 + 1 + 1 = 2 + 2 = 1 + 1 + 1 + 1/2 + 1/2

1 Introduction

Given n points in the unit square, Newman [20, Problem 57] proved that there is a
closed polygonal Hamiltonian cycle (tour) H through the n points such that the sum of
the squares of its edge-lengths is at most 4. The upper bound of 4 cannot be improved:
Fig. 1 shows three different point sets whose optimal tours yield exact equality. More
importantly, the above upper bound is independent of n.

Meir [19] considered the extension of this problem to higher dimensions. For a
point x ∈ R

k , let |x | denote the Euclidean length of x ; namely, if x = (ξ1, ξ2, . . . , ξk),
then

|x | =
(

k∑

i=1

ξ2i

)1/2

.

For two points x, y ∈ R
k , let the weight of the edge e = xy, be |e| := |x − y|, i.e.,

the Euclidean distance between x and y.
Let X be an n-element point set in the unit cube [0, 1]k . For a graph G on vertex

set X , set

Sk(G) =
∑

e∈G
|e|k and sk(G) =

(
∑

e∈G
|e|k

)1/k

. (1)

We refer to Sk(G) and sk(G) as the unscaled and scaled costs, respectively. Denote by
SHCk (X), SSTk (X) and SHPk (X) (sHCk (X), sSTk (X) and sHPk (X)) the minimum over Sk(G)

(sk(G)) where G is a Hamiltonian cycle, respectively a spanning tree or Hamiltonian
Path with vertex set X . Further, let

sHCk (n) = sup{sHCk (X) : X ⊆ [0, 1]k, |X | = n},
sSTk (n) = sup{sSTk (X) : X ⊆ [0, 1]k, |X | = n},
sHPk (n) = sup{sHPk (X) : X ⊆ [0, 1]k, |X | = n},

sHCk = sup
n≥2

sHCk (n), sSTk = sup
n≥2

sSTk (n) and

sHPk = sup
n≥2

sHPk (n).
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It is clear that sHCk (n) ≥ sHCk (m), whenever n ≥ m (by clustering points and taking
the limit). In this notation, Newman’s result mentioned earlier reads sHC2 (n) = 2 for
every n ≥ 2. A more recent reference to this result can be found in [6, Problem 124].
Currently this is the only exact value known.Meir [19] askedwhether sk(n) is bounded
from above by a constant ck > 0 for every k. Soon after, Bollobás and Meir [7]

answered Meir’s question in the positive by proving that sHCk (n) ≤ 9
( 2
3

)1/k · √
k for

every k ≥ 3 and n ≥ 2 (and recall that c2 = 2). From the other direction, the 2-point
example consisting of two opposite vertices of {0, 1}k shows that sHCk (n) ≥ 21/k · √k
for every k ≥ 2 and n ≥ 2; see Fig. 1 (center). We record their result below.

Theorem 1.1 (Bollobás and Meir [7]). Let k ≥ 3 and n ≥ 2. Then,

21/k
√
k ≤ sHCk (n) ≤ 32−

1
k 21/k

√
k.

In the conclusion of their paper [7], the authors conjectured that sHCk (n) = 21/k ·√k
for every k ≥ 2 and n ≥ 2. Meir [19] also asked for an algorithm that computes a tour
whose cost is bounded by a constant depending on k. As we will see in more detail
in Sect. 2, Bollobás and Meir’s proof implicitly gives a positive answer to this latter
question. Similarly, our new bounds in Theorem 1.3 and Corollary 5.1 are constructive
too.
Background and related work.The traveling salesman problem (TSP) is perhaps the
most studied problem in the theory of combinatorial optimization. Its approximability
depends on the particular version of the problem. Specifically, TSP with Euclidean
distances admits a polynomial-time approximation scheme [3, 16]. If the distances
form a metric, then the problem isMaxSNP-hard [21] and the best approximation ratio
known is essentially 3/2 [8, 13].

Estimating the length of a shortest tour of n points in the unit square with respect to
Euclidean distances has been studied as early as 1940s and 1950s by Fejes Tóth [10],
Few [11], and Verblunsky [30], respectively. Few [11] proved that the (Euclidean)
length of a shortest cycle (tour) through n points in the unit square [0, 1]2 is at most√
2n + 7/4. The same upper bound holds for the minimum spanning tree [11]. Few’s

bound was rediscovered in 1983 by Supowit, Reingold, and Plaisted [26]. A slightly
better upper bound for the shortest cycle, 1.392

√
n+7/4, has been derived by Karloff

[14], who also emphasized the difficulty of the problem. The current best lower bound

for the length of such a cycle is due to Fejes Tóth [10] and Few [11]: it is
( 4
3

)1/4 √
n−

o(
√
n), where (4/3)1/4 = 1.075 . . .. For every dimension k ≥ 3, Few showed that

the maximum length of a shortest tour through n points in the unit cube is �(n1−1/k).
Moran [18] studied the length of the shortest traveling salesman tour through a set of
n points of unit diameter in R

k .
The length of a shortest tour through a random sample {X1, . . . , Xn} of n points in

the unit cube [0, 1]k was determined by Beardwood, Halton, and Hammersley. Let this
length be denoted by L(X1, . . . , Xn). If {Xi } is a sequence of independent random
variables with the uniform distribution on [0, 1]k , then there is a constant β(k) > 0
such that

L(X1, . . . , Xn)/n
1−1/k → β(k)
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with probability one [4]. Later, Rhee [22] proved that β(k)/
√
k → 1/

√
2πe, see

also [25]. The relevance of the cube diagonal,
√
k, in the above formulas, can be also

observed in our estimates for sk(n); see Theorem 1.3 (ii) and Conjecture 5.5.
Expressions for the cost of a Hamiltonian cycle of the kind in (1) have been con-

sidered in the context of power assignment problems in wireless networks. Let X be
an n-element point set in the unit cube [0, 1]k and α ≥ 1 be a real number. For a
Hamiltonian cycle H as above, one is interested in minimizing a cost of the form

cost(H) =
n∑

i=1

|xi − xi+1|α. (2)

Such costs typically reflect the energy costs along the edges that make the cycle [9,
15] in wireless network transmission. An illustrative example is that of a virtual token
floating through the network, where sensor nodes can attach or read data from the
token before sending it to the next node on the cycle. One can speak about finding a
traveling salesman tour (TSP tour) of minimum energy cost [12]. The fact that k is
the smallest value of α for which the cost in (2) is bounded from above by a constant
(depending on k but independent on n) should be noted [7, 15]; a fine grid section in
the cube proves this point.

As pointed out in several places in the literature [2, 5, 9, 12], simply computing a
short (even optimal) tour for the underlying Euclidean instance does not work, i.e.,
does not provide a good approximation with respect to the power costs in (2). Funke,
Laue, Lotker andNaujoks [12] showed that the cost of an optimal tour for theEuclidean
instance can be a factor of �(n) larger than that of optimal tour for the power costs (a
simple example can be constructed with equidistant points on a line or on a circle of
large radius).

In [12] a recursive algorithm was also presented, that given n points in R
2, it

constructs a TSP tour for edge costs |pq|α = |e|α , whose cost is at most 2 ·3α−1 times
that of a minimum spanning tree (MST) of the point set. Since the cost of anMST does
not exceed that of an optimal Euclidean TSP tour, their algorithm is 2 · 3α−1-factor
approximation for the TSP with power costs as in (2). The authors further show that
the approach extends to Rk with the same ratio:

Theorem 1.2 (Funke, Laue, Lotker, and Naujoks [12]). There exists a 2 · 3α−1-
approximation algorithm for the TSP inRk if the edge weights are Euclidean distances
to the power α.

If for some τ > 1 distances of a TSP instance satisfy

dist(x, z) ≤ τ (dist(x, y) + dist(y, z)) ,

for any three vertices x, y, z, we say that they satisfy the relaxed triangle inequality,
see [2, 5, 17]. It is important to note that the metric with Euclidean distances to the
power α satisfies the relaxed triangle inequality with τ = 2α−1; see [9, 12]. For α = 2
(i.e., TSP with squared distances), Theorem 1.2 yields a 6-approximation. De Berg,
van Nijnatten, Sitters, Woeginger and Wolff [9] obtained a 5-approximation.
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Our results. The upper bound sHCk (n) ≤ 9
( 2
3

)1/k · √
k, where k ≥ 3, has stood

unchanged for 30 years [7]. Here we obtain several improvements.

Theorem 1.3 The following bounds are in effect:

(i) There exists a 4-element point set in [0, 1]3 such that the cost of the shortest tour
is at least 27/6 = 2.24 . . .. Consequently, sHC3 (n) ≥ 27/6 = 2.24 . . ., for every
n ≥ 4.

(ii) Let X be an n-element point set in the k-dimensional unit cube [0, 1]k , k ≥ 3.
Then there exists a tour H = x1, x2, . . . , xn through the n points, such

that
(∑n

i=1 |xi − xi+1|k
)1/k ≤ 3

√
5

( 2
3

)1/k · √
k. Consequently, sHCk (n) ≤

3
√
5

( 2
3

)1/k · √
k = 6.708 . . . · ( 2

3

)1/k · √
k.

(iii) H can be computed in time proportional to that needed for computing a MST of
the points, in particular, in subquadratic time.

Several sharper bounds are obtained for sufficiently large k. We note that the con-
jectured optimal configuration consisting of a diameter pair of the cube as well as the
lower bound construction we will present for k = 3 in Theorem 1.3 (i) are subsets of
{0, 1}k . This raises the natural question if one can determine the maximum of sHCk (X)

if the point set X is in {0, 1}k . We answer this question.

Theorem 1.4 There exists an integer k0 such that for all k ≥ k0 the following holds.
If X is an arbitrary subset of vertices of {0, 1}k , then there exists a Hamiltonian cycle
H through X such that sk(H) ≤ 21/k

√
k.

The “sufficiently large” requirement for Theorem 1.4 is in fact quite modest. The
threshold k0 is below 30. Note that the bound in Theorem 1.4 is attained for |X | = 2.

Theorem 1.5 For the family of minimum spanning trees, we have

sSTk ≤ √
k (1 + ok(1)).

Apart from the error term, this bound is best possible.

By transforming a minimum spanning tree into a Hamiltonian cycle by using the
method of Sekanina [23] and Bollobás andMeir [7], we obtain sHCk ≤ 3

√
k (1+ok(1)).

A further refinement based on a two-phase algorithm and a new greedy algorithm that
maintains a collection of spanning paths allows us to obtain the following sharper
bound.

Theorem 1.6 For the family of Hamiltonian cycles, we have

sHCk ≤ 2.91
√
k (1 + ok(1)).

When the number of points n is bounded by a constant (independent of k), we can
obtain a better asymptotic bound, close to the conjectured value 21/k

√
k.
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Theorem 1.7 Let n ≥ 2 be fixed. For the family of Hamiltonian cycles, we have

sHCk (n) = 21/k
√
k (1 + ok(1)).

Note however, that in Theorem 1.7 we require n to be constant; it does not imply
sHCk = 21/k

√
k (1 + ok(1)).

The improved upper bounds in Theorem 1.3 and 1.6, have implications for the
existence of Hamiltonian paths and perfect matchings whose costs are bounded from
above by constants depending on k. These are discussed in Sect. 5.

2 Hamiltonian Cycles: Exact Upper and Lower Bounds

2.1 An Improved Lower Bound for k = 3

In this subsection we prove Theorem 1.3(i). Consider the four-element point set

X = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} ⊂ [0, 1]3.

X is in fact a binary code of length 3 with minimum Hamming distance 2; see, e.g.,
[29, Ch. 5]. As such, the corresponding Euclidean pairwise distances are at least

√
2.

Consequently, the unscaled cost of any TSP tour H is at least Sk(H) ≥ 4 · (
√
2)3 =

11.31 . . .. On the other hand, the conjectured [7] optimal unscaled cost was 2·(√3)3 =
10.39 . . ..

It is possible that the new lower bound gives the right value of sHC3 (n) for n ≥ 4,
see Conjecture 5.5 in Sect. 5.
Remark. Interestingly enough, for k = 4, there exist (at least) two different point sets,
one with n = 2 and the other with n = 8, whose shortest tours have the same cost
SHC4 (X) as the conjectured value, SHC4 (n) = 2 · (

√
4)4 = 32. The former set consists

of a pair of diagonally opposite vertices, say, {(0, 0, 0, 0), (1, 1, 1, 1)}. This is in fact
the point set that is behind the conjectured maximum cost for every k. The latter set
is a binary code of length 4 with minimum distance 2; for example, one can take the
eight binary vectors with an even number of ones:

X = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0),
(1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 1)}.

Then SHC4 (X) ≥ 8(
√
2)4 = 32 and this value can be attained; equivalently, sHC4 (X) ≥

25/4. We were not able to find two different sets X with sHCk (X) ≥ 21/k · √
k for any

other k ≥ 5.
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2.2 An Improved Upper Bound for Every k ≥ 3

In this section we prove the last two items in Theorem 1.3. Our proof is modeled by
that in [7]. It uses a ball packing argument based on the following lemma. (A similar
lemma, however, with smaller ball radii, can be found in [15].)

Lemma 2.1 (Bollobás and Meir [7]). Let T = (V , E) be a minimum spanning tree for
a finite point set X ⊂ R

k . For each edge e = xy ∈ E let Be be the open ball of radius
1
4 |x − y| centered at 1

2 (x + y). Then Be ∩ Be′ = ∅ whenever e and e′ are edges of T .
The factor 1

4 is as large as possible.

In addition, a suitable order of traversing the vertices of a minimum spanning
tree first developed by Sekanina [23, 24] is needed. The algorithm can be made to
run in linear time. A proof of this traversal result — in slightly different terms —
also appears in [7]. A few definitions and notations (from [7]) are as follows. The
h’th power Gh of a graph G = (V , E) is the graph with vertex set V and edge set
E(Gh) = {xy : x, y ∈ V , 1 ≤ d(x, y) ≤ h}. Here d(x, y) is the distance between x
and y in the graph. Let T be a tree and xy ∈ E(T h). An edge uv ∈ E(T ) is said to
be used by xy if the edge uv is on the unique path in T (of length at most h) from x
to y. If H is a subgraph of T h , then an edge of T is used t times by H if it is used by
t edges of H .

Lemma 2.2 (Sekanina [23], Bollobás and Meir [7]). Let x be a vertex of a tree T with
at least 3 vertices. Then T 3, the cube of T , contains a Hamiltonian cycle H such that
every edge of T is used exactly twice by H, and one of the edges of H incident to x is
an edge of T .

It implies the following lemma which is not stated explicitly in [7] but is used in
the proof of their Theorem 3. For completeness, we include their proof here.

Lemma 2.3 (Bollobás and Meir [7]). Let T be a spanning tree for a finite point set
X ⊂ R

k . Then there exists a Hamiltonian cycle H on X such that

Sk(H) ≤ 2

3
· 3k · Sk(T ).

Proof. Let e1, . . . , en be the edges of a Hamiltonian cycle H in T 3 guaranteed by
Lemma 2.2. Suppose that the edges of T used by ei have lengths di1 , . . . , di	 , where
	 ≤ 3. Set fi = di1 + . . . + di	 and f = ( fi )i∈[n] ∈ R

n . Then |ei | ≤ fi for every i ,
each fi is a sum of at most three d j ’s and each d j occurs in the representations of two
fi ’s.
Now, we can form three vectors v1, v2, v3 ∈ R

n such that f = v1 + v2 + v3, every
coordinate of vi is a d j or 0, and every d j occurs exactly twice as a coordinate in the
three vi ’s. Therefore,

∑3
i=1‖vi‖kk = 2

∑n−1
j=1 d

k
j . Hence, by the triangle-inequality and

Jensen’s inequality,

‖ f ‖k = ‖v1 + v2 + v3‖k ≤
3∑

i=1

‖vi‖k ≤ 3

(
1

3

3∑

i=1

‖vi‖kk
)1/k
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= 3

⎛

⎝2

3

n−1∑

j=1

dkj

⎞

⎠

1/k

= 3

(
2

3

)1/k

· sk(T ),

and thus

Sk(H) =
n∑

i=1

|ei |k ≤ ‖ f ‖kk ≤ 2

3
· 3k · Sk(T ).

For convenience, here we work with the unit cube U = [−1/2, 1/2]k centered
at the origin o = (0, . . . , 0). Assume that n ≥ 3, since it is clear otherwise that
sk(H) ≤ 21/k · √k. It was shown in [7] that ∪e∈T Be is contained in the ball of radius
0.75

√
k centered at the origin o. We next show that ∪e∈T Be is contained in the ball

of radius
√
5
4

√
k = 0.559 . . . · √

k centered at o. The idea for the improvement is that
centers of balls corresponding to long edges of T cannot be too far from the center of
the cube. The key step is the following.

Lemma 2.4 Let U = [−1/2, 1/2]k and u, v ∈ U. Then

|u + v|
2

+ |u − v|
4

≤
√
5

4

√
k. (3)

This inequality is the best possible.

Proof To start with, note that

|u|2 ≤
k∑

1

1

4
= k

4
, |v|2 ≤

k∑

1

1

4
= k

4
and |u − v| ≤ √

k.

The first two relations immediately yield

|u|2 + |v|2 ≤ k

2
. (4)

Recall the identities

|u + v|2 = |u|2 + |v|2 + 2uv, |u − v|2 = |u|2 + |v|2 − 2uv. (5)

Here uv is the dot product of u and v. We deduce that

|u − v|2 = 2(|u|2 + |v|2) − |u + v|2 ≤ 2(|u|2 + |v|2).

We can thus write |u − v| = λ
√|u|2 + |v|2, where 0 ≤ λ ≤ √

2, whence

|u − v|2 = λ2(|u|2 + |v|2).
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From the two equations in (5) we also obtain

|u + v| =
√
2(|u|2 + |v|2) − |u − v|2 =

√
(2 − λ2)(|u|2 + |v|2).

Substituting the expressions of |u + v| and |u − v| and using (4) yields

|u + v|
2

+ |u − v|
4

=
√

(2 − λ2)(|u|2 + |v|2)
2

+ λ
√|u|2 + |v|2

4

=
(√

2 − λ2

2
+ λ

4

)
√

|u|2 + |v|2

≤ 1

4

(
λ + 2

√
2 − λ2

) √
k

2
.

A standard calculation shows that the function f (λ) = λ + 2
√
2 − λ2, where

0 ≤ λ ≤ √
2, attains its maximum,

√
10, at λ =

√
2
5 . Consequently,

|u + v|
2

+ |u − v|
4

≤ 1

4

√
10

√
k

2
=

√
5

4

√
k.

This concludes the proof of the upper bound.
For a tight example, assume that k is a multiple of 5 and let u = u1, . . . , uk , and

v = v1, . . . , vk , where

ui =
{

+ 1
2 , for i = 1, . . . , 4k

5 ,

− 1
2 , for i = 4k

5 + 1, . . . , k.

vi = +1

2
, for i = 1, . . . , k.

It is now easily verified that

|u + v|
2

=
√
4k

5
· 1
4
,
|u − v|

4
=

√
k

5
· 1

16
, and

|u + v|
2

+ |u − v|
4

= 5

4
·
√
k

5
=

√
5

4

√
k,

as required.

Final argument in the proof of Theorem 1.3. Let u, v ∈ U such that e = uv is an
edge of the MST T . By the triangle inequality, the distance from the center of the cube
to any point in the ball Be is at most 12 |u+v|+ 1

4 |u−v|. By Lemma 2.4 this distance is

atmost
√
5
4

√
k, thus∪e∈T Be ⊂ B, where B is the ball of radius

√
5
4

√
k = 0.559 . . .·√k

centered at o.
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The ball packing argument in [7] yields Sk(T ) ≤ (3
√
k)k . Using Lemma 2.4 instead

improves this bound to Sk(T ) ≤ (
√
5k)k . By Lemma 2.3 we obtain a Hamiltonian

cycle H through P satisfying

Sk(H) ≤ 2

3
· 3k · Sk(T ) ≤ 2

3
· 3k · (5k)k/2. (6)

Taking the k-th root completes the proof of item (ii). Note that the only change in the
calculation is replacing a multiplicative factor of 3 by

√
5 (in Inequality (2) from [7]).

The improvement carries on proportionally and is reflected in the final bound.
Recall that the traversal of theMST T using the algorithmof Sekanina [23, 24] takes

linear time. As such, the running time for computing the TSP tour is determined by
the time to compute T . This proves item (iii) and completes the proof of Theorem 1.3.

An alternative way to verify the upper bound in (6) is by using Theorem 1.2. The
details are left to the reader.

3 Hamiltonian Cycles for Subsets of Cube Vertices

In this section we consider our problem (the study of extremal values for Hamiltonian
cycles and paths in [0, 1]k) when the input is restricted to subsets of cube vertices. Note
that this restriction is quite natural, since all known best constructions are attained or
matched by such subsets. We will use some results on binary codes.

3.1 Preparation: Binary Codes

First we prove an optimization result which will be used multiple times throughout
this paper.

Lemma 3.1 Let q1, q2, . . . , qm ∈ [0, 1]. Then,
∑

i< j

|qi − q j |2 ≤
⌊m
2

⌋
·
⌈m
2

⌉
.

Proof We prove this result by induction onm. The statement holds trivially form = 1
and m = 2. Let q1, q2, . . . , qm ∈ [0, 1] for some m ≥ 3. We can assume 0 = q1 ≤
q2 ≤ . . . ≤ qm = 1. By the induction assumption,

∑

1<i< j<m

|qi − q j |2 ≤
⌊
m − 2

2

⌋
·
⌈m − 2

2

⌉
.

Observe that the maximum of the quadratic function f (x) = x2 + (1 − x)2 over
the interval [0, 1] is obtained at x = 0 or x = 1. Thus, |q1 − q j |2 + |qm − q j |2 =
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q2j + (1 − q j )
2 ≤ 1 for j ∈ {2, . . . ,m − 1}. Therefore,

∑

i< j

|qi − q j |2 = |q1 − qm |2 +
∑

1< j<m

(|q1 − q j |2 + |qm − q j |2) +
∑

1<i< j<m

|qi − q j |2

≤ 1 + (m − 2) +
⌊
m − 2

2

⌋
·
⌈m − 2

2

⌉
=

⌊m
2

⌋
·
⌈m
2

⌉
,

completing the proof of this lemma.

Lemma 3.2 Let δ, γ > 0, and k1, k2 be non-negative integers. Let X ⊆ [0, δ]k1 ×
[0, γ ]k2 be a finite set of size |X | ≥ m ≥ 2. Then there exists two distinct points
p, q ∈ X such that

|p − q|2 ≤ �m
2 ��m

2 �
(m
2

) (δ2k1 + γ 2k2).

Proof Let p1, p2, . . . , pm be any m points from X . Given integers i and j , we denote
by pi j the j-th coordinate of pi . By applying Lemma 3.1 and scaling we obtain

∑

i<i ′
|pi j − pi ′ j |2 ≤

⌊m
2

⌋
·
⌈m
2

⌉
· δ2 for every j ∈ [k1], and (7)

∑

i<i ′
|pi j − pi ′ j |2 ≤

⌊m
2

⌋
·
⌈m
2

⌉
· γ 2 for every j ∈ [k1 + k2] \ [k1]. (8)

By summing up the inequalities (7) and (8), we obtain

∑

i<i ′
|pi − pi ′ |2 ≤

⌊m
2

⌋
·
⌈m
2

⌉
· (δ2k1 + γ 2k2).

Thus, by averaging over all pairs of points, the minimizing pair satisfies the claimed
inequality.

Applying Lemma 3.2 with δ = γ = 1, k1 = k and k2 = 0, immediately yields the
following symmetric version.

Lemma 3.3 Let X ⊆ [0, 1]k of size |X | ≥ m ≥ 3. Then there exist two distinct points
p, q ∈ X such that

|p − q|2 ≤ �m
2 � · �m

2 �
(m
2

) · k.

Let A(k, d) denote the maximum cardinality of a binary code of length k with
minimum distance d. We recall the following fact [28]:

Lemma 3.4 (Singleton bound). A(k, d) ≤ 2k−d+1.
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We need the following improvement.

Lemma 3.5 If d < 2
3k, then A(k, d) ≤ 2k− 3

2 d+2.

Proof Towards contradiction, assume that there exists X ⊆ {0, 1}k of size |X | >

2 · 2k− 3
2 d+1 such that |p − q|2 ≥ d for every p, q ∈ X . By the pigeonhole principle,

there exists p, q, r ∈ X which coincide on the first �k − 3
2d + 1� coordinates. By

Lemma 3.3, applied with m = 3 to the last � 3
2d� − 1 coordinates, we get that

min{|p − q|2, |p − r |2, |r − q|2} ≤ 2

3

(⌈3
2
d
⌉

− 1

)
< d,

a contradiction.

3.2 Building a Path Greedily

In the proofs of some of our results we will analyze a greedy algorithm which takes a
discrete point set X ⊆ [0, 1]k of size |X | = n as an input and creates a Hamiltonian
path F through X . It processes the point pairs in nondecreasing order of distance and
maintains a collection of paths.
Algorithm 1: Initially, set F0 to be the empty graph on X . For i ∈ [n − 1], let ei be
an edge of smallest weight among all edges e /∈ Fi−1 which satisfy that Fi−1 + e is a
vertex-disjoint union of paths. Set Fi := Fi−1+ei . Then, F := Fn−1 is a Hamiltonian
path.

Lemma 3.6 Let j ∈ [k]. The number of edges e ∈ F satisfying |e|2 ≥ j is less than
A(k, j).

Proof Let 	 be the smallest integer such that |e	|2 ≥ j . The number of edges e ∈ F
satisfying |e|2 ≥ j is less than the number of components in F	, which is n − 	. Let
P	 ⊆ X be a set containing one endpoint of each path in F	. The set P	 is a binary code
of length k with minimum distance j . Thus, the number of edges e ∈ F satisfying
|e|2 ≥ j is less than A(k, j).

Proof of Theorem 1.4. If |X | = 2, the statement holds trivially. Assume n := |X | ≥ 3.
Let F be the Hamiltonian path created by Algorithm 1. We partition the edges e ∈ F
into four classes.

1. short edges: |e|2 ≤ k
5 .

2. medium edges: k
5 < |e|2 ≤ 3k

5 .
3. long edges: 3k

5 < |e|2 ≤ 2k
3 .

4. very long edges: 2k
3 < |e|2.

Denote by Fs, Fm, Fl , f vl the subgraphs of F containing all short, medium, long and
very long edges, respectively. They partition F and thus Sk(F) = Sk(Fs)+ Sk(Fm)+
Sk(Fl)+ Sk(Fvl). We will provide upper bounds for the four contributions separately.
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Since n ≤ 2k , the number of short edges is trivially at most 2k . Thus,

Sk(F
s) ≤ 2k

(√
k

5

)k

.

Now, we estimate Sk(Fm). Let j be an integer satisfying k
5 < j ≤ 3k

5 . The number of

edges e ∈ F satisfying |e|2 ≥ j is less than A(k, j) ≤ 2k− 3
2 j+2 by Lemmas 3.5 and

3.6. Therefore,

Sk(F
m) ≤

⌊
3k
5

⌋

∑

j=
⌈

k
5

⌉
2k−

3
2 j+2

(√
j
)k

≤ 4 ·
(⌊

3k

5

⌋
−

⌈k
5

⌉)
·
(
0.842

√
k
)k

≤ 8k

5
·
(
0.842

√
k
)k

.

Here we used that the function f (x) = 21−3x/2√x , where x ≥ 0, is maximized for
x = 1

log(8) and thus 21−3x/2√x ≤ 0.842.

Next, we estimate Sk(Fl). The number of edges e ∈ F satisfying |e|2 > 3k
5 is less

than A(k, � 3k
5 � + 1) ≤ 4 by Lemma 3.3, applied with m = 5 and by Lemma 3.6.

Therefore,

Sk(F
l) ≤ 3 ·

(√
2

3
k

)k

.

Last, we estimate Sk(Fvl). The number of edges e ∈ F satisfying |e|2 > 2k
3 is

less than A(k, � 2k
3 � + 1) ≤ 2 by Lemma 3.3, applied with m = 3 and Lemma 3.6.

Thus, there is at most one very long edge e in F . This very long edge has length at
most |e| ≤ √

k − 1 by the following argument. Consider the last step of the greedy
algorithm, when the last two paths, call them P1 and P2, are being joined. Since
|X | ≥ 3, one of them, say P1, contains at least two vertices. An endpoint of the path
P2 has distance at most

√
k − 1 to one of the endpoints of P1, since not both endpoints

can be opposite on the cube. Thus, |e| ≤ √
k − 1. We get Sk(Fvl) ≤ √

k − 1
k
.

Adding up the four contributions to Sk(F) yields

Sk(F) = Sk(F
s) + Sk(F

m) + Sk(F
l) + Sk(F

vl)

≤ 2k
(√

k

5

)k

+ 8k

5
·
(
0.842

√
k
)k + 3 ·

(√
2

3
k

)k

+
(√

k − 1
)k
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=
(√

k
)k

⎛

⎝
(

2√
5

)k

+ 8k

5
· 0.842k + 3 ·

(√
2

3

)k

+
(√

k − 1

k

)k
⎞

⎠

<
(√

k
)k

, (9)

where the last inequality holds for k sufficiently large. We used the fact that

(√
k−1
k

)k

converges to e−1/2. Let H be the Hamiltonian cycle obtained from F by connecting
the two endpoints. Then

Sk(H) ≤ Sk(F) +
(√

k
)k ≤ 2

(√
k
)k

.

We remark that the proof of Theorem 1.4 works for k0 = 29. The last inequality in
(9) is strict. Thus, Theorem 1.4 is tight only for |X | = 2.

4 Hamiltonian Cycles: Asymptotic Upper Bounds

In this section we prove Theorems 1.5, 1.6 and 1.7.

4.1 Preparation

Lemma 4.1 Let 0 < α < 1 and Y ⊆ [0, 1]k such that |u − v| > α
√
k for every two

distinct points u, v ∈ Y . Let m ∈ N. Then,

|Y | ≤ 2m ·
⌈
√
1

2

(
1 + 1

2m − 1

)
α−1

⌉k
.

Proof Let β =
⌈√

1
2

(
1 + 1

2m−1

)
α−1

⌉
. Assume that |Y | > 2m ·βk . Partition the unit

box [0, 1]k into βk boxes B1, B2, . . . , Bβk as follows:We split up [0, 1] into β disjoint
consecutive intervals of length β−1 each. This gives βk boxes in total.

Since |Y | > 2m · βk , there exists a box Bj such that at least 2m points from Y are
contained in it. By Lemma 3.2, applied with γ = δ = β−1, k1 = k and k2 = 0, there

exist p, q ∈ Bj ∩ Y such that |p − q|2 ≤ 1
2

(
1 + 1

2m−1

)
β−2k. We conclude

α2k < |p − q|2 ≤ 1

2

(
1 + 1

2m − 1

)
β−2k, implying α <

√
1

2

(
1 + 1

2m − 1

)
β−1.

However, by the choice of β, we have α <

√
1
2

(
1 + 1

2m−1

)
β−1 ≤ α, a contradiction.
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The following lemma is a version of Lemma 4.1 which improves the bound in a
certain range of α.

Lemma 4.2 Let
√

100
1791 < α <

√
100
199 and Y ⊆ [0, 1]k such that |u − v| > α

√
k for

every two distinct points u, v ∈ Y . Then,

|Y | ≤ 600 · 39
8

(
1− 199

100α2
)
k
.

Proof. Let a = 9
8 (1 − 199

100α
2). Note that 0 < a < 1. Partition the unit box [0, 1]k

into 3�ak� boxes B1, B2, . . . , B3�ak� as follows: Let I = {1, 2, . . . , �ak�} ⊆ [k]. For
the coordinates in I , we split up [0, 1] into 3 disjoint consecutive [0, 1] = [0, 1

3 ) ∪
[ 13 , 2

3 ) ∪ [ 23 , 1] intervals of length 1
3 each. If |Y | > 200 · 3�ak�, then there exists a box

Bj such that at least 200 points from Y are contained in it. By Lemma 3.2, applied
with m = 200, δ = 1

3 , γ = 1, k1 = �ak� and k2 = k − k1, there exist p, q ∈ Bj ∩ Y
such that

|p − q|2
k

≤ 100

199

(
1

3

)2 �ak�
k

+ 100

199

k − �ak�
k

≤ 100

199
− 8

9

100

199
a = α2,

contradicting α2k < |p − q|2. We conclude that

|Y | ≤ 200 · 3�ak� ≤ 600 · 3ak = 600 · 39
8

(
1− 199

100α2
)
k
.

Lemma 4.3 There exists k0 such that for all integers k ≥ k0 the following holds. Let
0 < α < 0.99 and let Y ⊆ [0, 1]k such that |u − v| > α

√
k for every two distinct

points u, v ∈ Y . Then |Y |αk ≤ 0.999k .

Proof. Let k0 be sufficiently large for the followingproof to hold. First, assume
√

100
199 <

α < 0.99. Then |Y | ≤ 200 by Lemma 3.3, applied with m = 200. Thus,

|Y |αk ≤ 200αk ≤ 0.999k .

Next, assume 0.29 ≤ α ≤
√

100
199 . Then by Lemma 4.2,

|Y |αk ≤ 600 ·
(
3

9
8

(
1− 199

100α2
)

α

)k

≤ 0.999k .

Finally, assume 0 < α ≤ 0.29. Then by Lemma 4.1, applied with m = 100,

|Y |αk ≤ 200

⎛

⎝
⌈

√
1
2

(
1 + 1

199

)

α

⌉
α

⎞

⎠

k

≤ 200

(√
100

199
+ α

)k

≤ 0.999k .

123



Algorithmica

4.2 Proofs of Theorems 1.5, 1.6, and 1.7

First, we quickly demonstrate how Lemma 3.3 implies Theorem 1.7.

Proof of Theorem 1.7. Let X ⊆ [0, 1]k be a point set of size n. We run Algorithm 1
from Sect. 3.2. Let Fi be the collection of paths at the i-th step, let ei be the edge added
in the i-th step, and let F = Fn−1 be the final Hamiltonian path.

We claim that |ei | ≤
√

2
3k for i ≤ n − 2. Let ei = xy. The vertices x and y

are endpoints of two different paths in Fi−1. Since Fi−1 has at least n − (i − 1) ≥
n − (n − 2 − 1) = 3 components, there exists a component containing neither x , nor
y. Let z ∈ X be an endpoint of the path forming this component. Since ei = xy was
chosen in step i , but xz and yz were not, we have |xy| ≤ |xz| and |xy| ≤ |yz|. By
applying Lemma 3.3 to the set {x, y, z}, we get that |ei | = |xy| ≤

√
2
3k. Note that

|en−1| ≤ √
k trivially.

Now, let f = ab be the edge where a and b are the two endpoints of the final path
F . Set H = F+ f to be the Hamiltonian cycle when f is added to F . Since | f | ≤ √

k
trivially, we get

Sk(H) =
∑

e∈H
|e|k = | f |k + |en−1|k +

n−2∑

i=1

|ei |k ≤ 2
(√

k
)k + (n − 2)

(√
2

3
k

)k

.

Consequently,

sHCk (n) ≤ sk(H) ≤ 21/k
√
k (1 + ok(1)).

Proof of Theorem 1.5. Let k be sufficiently large and let X ⊆ [0, 1]k be a finite point
set. Set

	 :=
⌈
log1+ 1

k

(
0.9k

3
4

) ⌉
= O(k log k) and ai := (1 + 1

k )
i

k
3
4

for integers i , 0 ≤ i ≤ 	. Note that

ai+1

ai
= 1 + 1

k
for i ∈ {0, 1, . . . , 	 − 1}, and

a0 < a1 < a2 < · · · < a	−1 ≤ 0.9 ≤ a	.

Construct a minimum spanning tree T on vertex set X by successively joining points
from X at minimal distance from each other, given the new edge does not create a
cycle. For 0 ≤ i ≤ 	, let Fi be the forest with vertex set X and edges e ∈ T such that
|e| ≤ ai

√
k. Then, F0 ⊆ F1 ⊆ · · · ⊆ F	 ⊆ T since the sequence (ai ) is increasing. If

x, y ∈ X are in different components of Fi , then |x − y| > ai
√
k.

We have a0 = k−3/4. For an edge e = xy ∈ F0, let Be be the open ball of radius
|e|/4 and center 1

2 (x + y). Since F0 ⊆ T , by Lemma 2.1, the balls Be, e ∈ F0 are
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disjoint. Also, |e| ≤ a0
√
k = k−1/4. Denote by Vk for the volume of the k-dimensional

unit ball. It is well-known that

Vk =

⎧
⎪⎪⎨

⎪⎪⎩

πk/2

(k/2)! if k is even,

2k · π(k−1)/2 ((k − 1)/2)!
k! if k is odd.

By Stirling’s approximation, Vk ∼ 1√
kπ

( 2πek )k/2. Since
⋃

e∈F0 Be ⊆ [−k−1/4, 1+
k−1/4], we have

∑

e∈F0

( |e|
4

)k

Vk ≤ ((1 + 2k−1/4))k, and thus

∑

e∈F0
|e|k ≤ 4k(1 + 2k−1/4)k

Vk
≤ (0.97

√
k)k,

for k sufficiently large. Now, let i ∈ {0, 1, . . . , 	 − 1}. Let Y ⊆ X be a set of vertices
containing exactly one vertex from every component of Fi . Then |y − y′| > ai

√
k

for every pair y �= y′ ∈ Y , and |Fi+1\Fi | ≤ |Y | − 1. By Lemma 4.3 we have
aki |Y | ≤ 0.999k for i ≤ 	. Thus,

∑

e∈Fi+1\Fi
|e|k ≤ (ai+1

√
k)k |Y | = (ai

√
k)k |Y |

(
1 + 1

k

)k

≤ 3 · (0.999
√
k)k,

for i ≤ 	. Therefore,

∑

e∈F	

|e|k =
∑

e∈F0
|e|k +

	−1∑

i=0

∑

e∈Fi+1\Fi
|e|k ≤

(
0.97

√
k
)k + 3	 · (0.999

√
k)k,

for k sufficiently large. If the forest F	 consist of at least three components then three
points p, q, r ∈ X , from different components each, have pairwise distance at least

0.9
√
k ≥

√
2
3k. This contradicts Lemma 3.3. Therefore, F	 has at most 2 components

and thus there is at most one edge f in T which is not in F	. We conclude

∑

e∈T
|e|k =

∑

e∈F	

|e|k + | f |k ≤
(√

k
)k

(1 + ok(k
−1)),

which implies that for the family of minimum spanning trees, we have sSTk ≤ √
k (1+

ok(1)), completing the proof of Theorem 1.5.
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We remark that by applying Lemma 2.3 to T , there exists a Hamiltonian cycle H
on vertex set X satisfying

∑

e∈H
|e|k ≤ 2

3
· 3k

∑

e∈T
|e|k ≤

(
3
√
k
)k

(1 + ok(k
−1)),

implying that for the family of Hamiltonian cycles, we have sHCk ≤ 3
√
k (1 + ok(1)).

Proof of Theorem 1.6. Create a forest F by successively joining points from X at min-
imal distance from each other, given the new edge e does not create a cycle and
satisfies |e| ≤ k−1/4. This process stops when there is no such edge left. Let the
trees T1, . . . , TN be the components of F . Every two vertices from different Ti ’s have
pairwise distance at least k−1/4.

For an edge e = xy ∈ F , let Be be the open ball of radius |e|/4 and center
1
2 (x + y). By Lemma 2.1, the balls Be, e ∈ F are disjoint. Also, |e| ≤ k− 1

4 . We have⋃
e∈F Be ⊆ [−k−1/4, 1+k−1/4]. Writing Vk for the volume of the k-dimensional unit

ball, we have

∑

e∈F

( |e|
4

)k

Vk ≤ ((1 + 2k−1/4))k and thus

∑

e∈F
|e|k ≤ 4k(1 + 2k−1/4)k

Vk
≤ (0.97

√
k)k,

for k sufficiently large. Since the trees T1, . . . , TN decompose the edge set of the forest
F , we have

N∑

i=1

∑

e∈Ti
|e|k =

∑

e∈F
|e|k ≤ (0.97

√
k)k . (10)

By Lemma 2.3, for each i ∈ [N ], there exists a Hamiltonian cycle Hi on V (Ti ) such
that

∑

e∈Hi

|e|k ≤ 3k
∑

e∈Ti
|e|k . (11)

Let F0 be the collection of paths obtained by taking the union of all Hi , and removing
an edge from each cycle. Then, by using (10) and (11), we obtain

∑

e∈F0
|e|k ≤

N∑

i=1

∑

e∈Hi

|e|k ≤ 3k
N∑

i=1

∑

e∈Ti
|e|k ≤ (2.91

√
k)k . (12)

Now, run Algorithm 1 from Sect. 3.2 initialized with F0 (instead of the empty graph).
Recall that this algorithm adds edges of minimum weight such that in each step we
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maintain a collection of paths. Denote by Q the final path which is created by this
algorithm. Set

	 :=
⌈
log1+ 1

k

(
0.9k

3
4

) ⌉
= O(k log k) and ai := (1 + 1

k )
i

k
3
4

for integers i , 0 ≤ i ≤ 	. For 0 ≤ i ≤ 	, let Fi be the collection of paths with vertex
set X and edges e ∈ Q such that |e| ≤ ai

√
k. Then, F0 ⊆ F1 ⊆ · · · ⊆ F	 ⊆ Q

since the sequence (ai ) is increasing. If x, y ∈ X are in different components of Fi ,
then |x − y| > ai

√
k. Now, let i ∈ {0, 1, . . . , 	 − 1}. Let Y ⊆ X be a set of vertices

containing exactly one endpoint of each path of Fi . Then |y−y′| > ai
√
k for every pair

y �= y′ ∈ Y , and |Fi+1 \ Fi | ≤ |Y | − 1. By Lemma 4.3 we have aki |Y | ≤ 0.999k ≤ 1
for i ≤ 	. Thus,

∑

e∈Fi+1\Fi
|e|k ≤ (ai+1

√
k)k |Y | = (ai

√
k)k |Y |

(
1 + 1

k

)k

≤ 3 · √
k
k
, (13)

for i ≤ 	. Therefore, by combining (12) with (13), we obtain

∑

e∈F	

|e|k =
∑

e∈F0
|e|k +

	−1∑

i=0

∑

e∈Fi+1\Fi
|e|k ≤

(
2.91

√
k
)k + 3	 · √

k
k
, (14)

for k sufficiently large. Similarly, as in the proof of Theorem 1.5, F	 has at most 2
components. Thus, using (14), the path Q satisfies

∑

e∈Q
|e|k ≤

∑

e∈F	

|e|k + √
k
k ≤ (2.91

√
k)k(1 + ok(1)).

Adding one final edge f of weight at most | f | ≤ √
k to Q we obtain a Hamiltonian

cycle with the desired properties.

5 Concluding Remarks

The upper boundswe obtained on the lengths ofHamiltonian cycles have the following
implications for the existence of perfect matchings whose cost is bounded from above
by a constant (depending on k). For example, Theorems 1.3 and 1.4 have the following
implications. The proofs of Corollary 5.1 and that of Corollary 5.2 are analogous to
the proof of Corollary 5.4 below.

Corollary 5.1 Given n points in [0, 1]k , where k ≥ 3, and n is even, there exists a

perfect matching M of the n points such that
(∑

e∈M |e|k)1/k ≤ 3
√
5

( 1
3

)1/k ·√k. The
matching M can be computed in time proportional to that needed for computing a
MST of the points, in particular, in subquadratic time.
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Corollary 5.2 There exists an integer k0 such that for all k ≥ k0 the following holds.
If X is any even-size subset of vertices of {0, 1}k , then there exists a perfect matching
M of X such that sk(M) ≤ √

k. This bound is best possible.

Recall that a MST of n points in R
k (with respect to Euclidean distances) can be

computed in O
(
n2−

2
�k/2�+1+ε

)
time, for any ε > 0 [1]. We also deduce the following

related results (formulated here for the planar case, k = 2.)

Corollary 5.3 Let x1, . . . , xn be n ≥ 2 points in the unit square. Let di be the distance
between xi and its nearest point (other than xi ). Then the following inequality holds:∑n

i=1 d
2
i ≤ 4.

Proof Consider a Hamiltonian cycle, say x1, . . . , xn , whose cost S2(H) is at most 4.
The distance from xi to its nearest point is at most |xi − xi+1|, for i = 1, . . . , n. By
squaring the n inequalities and adding them up, the claimed inequality follows.

An alternative proof of Corollary 5.3 can be found in [27, Problem G.27].

Corollary 5.4 Let x1, . . . , xn be n ≥ 2 points in the unit square, where n is even. Then
there exists a perfect matching M such that

∑
e∈M |e|2 ≤ 2. This bound is the best

possible.

Proof Consider a Hamiltonian cycle, say H = x1, . . . , xn , whose cost S2(H) is at
most 4. H can be decomposed into two perfect matchings, one of which has a cost at
most 2, as required.

The lower bounds for n = 2 and n = 4 are immediate (see Fig. 1). For every even
n ≥ 6 and ε > 0, there are n points (in the neighborhoods of the four corners of the
square) such that

∑
e∈M |e|2 ≥ 2 − ε.

We have improved the upper bound of Bollobás and Meir [7] by more than 25
percent in the exact formulation and by more than 67 percent in the asymptotic formu-
lation. Apart from some doubt concerning the values of sHC3 (n) and sHC4 (n), we think
that their lower bound gives the right answer for every higher dimension. In view of
Theorem 1.3 (i) we adjust their conjecture as follows:

Conjecture 5.5 For Hamiltonian cycles, the following equalities hold:

sHCk =
{
27/6, for k = 3,

21/k · √
k, for k ≥ 4.

Hamiltonianpath. If onewas looking for aHamiltonian path, insteadof aHamiltonian
cycle, then the 2-point extremal lower bound example (given by a cube diagonal) loses
a factor of 2 (or with scaling 21/k); and so the question arises: is it still the best example,
or maybe only for large k? Analogous to the situation for Hamiltonian cycles, we think
that there is a threshold value for k after which the extremal examples stabilizes at
the 2-point example. The threshold values for cycles and paths seem to differ, see
Conjecture 5.6 below.
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The current upper bound proofs essentially remain the same as for Hamiltonian
cycles, with the change that the last edge is not needed. Some upper bounds remain
unchanged, and others do improve. In particular, sHP2 ≤ sHC2 = 2 remains unchanged,
whereas sHP2 ≥ √

3 is implied by the two extremal examples in Fig. 1 (left and right).
From the other direction, for small values of k consider once again a binary code

of length k with minimum distance 2 given by the set of all x ∈ {0, 1}k with an even
number of 1’s. It yields the values specified below.

Conjecture 5.6 For Hamiltonian paths, the following equalities hold:

sHPk =

⎧
⎪⎨

⎪⎩

√
3, for k = 2,

(
2k−1 − 1

)1/k · √
2, for k = 3, 4, 5, 6,√

k, for k ≥ 7.

Further improvement. One might wonder where the next possible improvement is?
We feel that it is in Lemma 2.2: It states that there is a Hamiltonian cycle such that
each edge of the cycle is using at most 3 tree edges, yet the average usage is slightly
less than 2. If it was true that every tree edge is used at most twice, then we would
get a 2/3 factor improvement in the upper bound. However, the example of a tree with
edges ab, bc, cd, de, c f , f g shows that this is not the case. Still, it is likely that there
is a way to gain more in a tree to cycle or path conversion.

A different version. We conclude with yet another version of the problem. Instead
of the unit cube [0, 1]k ⊂ R

k , let the diameter of the point set be at most 1: That is,
diam(X) ≤ 1, where X ⊂ R

k and |X | = n. What are the extremal values of the (say,
unscaled) costs of a shortest Hamiltonian cycle (and path) for n points in R

k under
this constraint? Are they given by the vertices of a unit simplex in R

k (k + 1 and k,
respectively)?

6 Appendix

Container Shapes with a Tight BoundWhen k = 2

A key fact in deriving the tight bound, when k = 2, for the cycle of n points in the
unit square is the following tight bound in a right triangle [20]; see also [6].

Lemma 6.1 [20] Let X be a set of n ≥ 2 points in a right triangle � whose sides are
a ≤ b ≤ c. Then there is an extended path connecting the endpoints of c that visits all
points in X and for which

∑ |e|2 ≤ c2. In particular, X admits a Hamiltonian path
P for which

∑
e∈P |e|2 ≤ c2. This bound is the best possible.

This result relies on a repeated application of the following simple corollary of the
Cosine Law. It allows one to make shortcuts in a path or cycle at vertices where the
two adjacent edges make an acute angle.

Lemma 6.2 [20] Let � be an triangle whose sides are a ≤ b ≤ c, and let γ be the
interior angle opposite to c. If γ ≤ 90◦, then c2 ≤ a2 + b2.
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Fig. 2 Left: Lemma 6.3. Right: Lemma 6.6

We now exhibit two other container shapes for which we can deduce a tight bound.
Lemma 6.3 below is an extension of Lemma 6.1.

Lemma 6.3 Let X be a set of n ≥ 2 points in a non-obtuse triangle � whose sides are
a ≤ b ≤ c. Then there is an extended path connecting the endpoints of c that visits all
points in � and for which

∑ |e|2 ≤ a2 + b2. In particular, X admits a Hamiltonian
path P for which

∑
e∈P |e|2 ≤ a2 + b2. This bound is the best possible.

Proof Let the altitude corresponding to c divide � into two right triangles. Consider
the path obtained by concatenating the extended paths for the two right triangles.
Further shortcut the path at the concatenation vertex by using Lemma 6.2 to obtain
a Hamiltonian path P for which

∑
e∈P |e|2 ≤ a2 + b2, see Fig. 2 (left). The three

vertices of � provide a tight example.

Lemma 6.4 Let X be a set of n ≥ 2 points in a non-obtuse triangle � whose sides are
a ≤ b ≤ c. Then X admits aHamiltonian cycle H forwhich

∑
e∈H |e|2 ≤ a2+b2+c2.

This bound is the best possible.

Proof ByLemma 6.3, X admits a Hamiltonian path P for which
∑

e∈P |e|2 ≤ a2+b2.
Connecting the endpoints of this path (via an edge of length at most c) yields a
Hamiltonian cycle H for which

∑
e∈H |e|2 ≤ a2 + b2 + c2.

By Lemma 6.3 and 6.4, we obtain the following corollary.

Corollary 6.5 Let X be a finite point set in in a non-obtuse triangle � whose sides are
a ≤ b ≤ c ≤ 1. Then

1. X admits a Hamiltonian path P for which
∑

e∈P |e|2 ≤ 2.
2. X admits a Hamiltonian cycle H for which

∑
e∈H |e|2 ≤ 3.

Lemma 6.6 Let U be a unit square centered at o and let ab be one of its four sides.
Let X be a set of n ≥ 2 points in V := U\�oab (V as a closed set). Then X admits
a Hamiltonian path P for which

∑
e∈P |e|2 ≤ 3. This bound is the best possible.

Proof Subdivide V into two right triangles as shown in Fig. 2 (right). Consider the
path obtained by concatenating the extended paths for the two right triangles. Further
shortcut the path by using Lemma 6.2 to obtain a Hamiltonian path P for which∑

e∈P |e|2 ≤ 12 + (
√
2)2 = 3. The 4- and 5-point examples in Fig. 1 show that this

bound is tight.
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A Different Version Of Theorem 1.7

We remark that the proof of Theorem 1.7 can be extended for point sets of size n, when
n is slowly growing in k, to obtain an upper bound sharper than that in Theorem 1.6.

Theorem 6.7 The following bounds are in effect:

(i) If n ≤ 2k + 2, then there exists a Hamiltonian cycle H such that

Sk(H) ≤
(

2 +
(
8

3

)k/2
)

kk/2.

Consequently, sHCk (n) ≤ 1.64
√
k, for k sufficiently large.

(ii) If n ≤ 2k , then there exists a Hamiltonian cycle H such that

Sk(H) ≤
(
200 + 2.01k/2

)
kk/2.

Consequently, sHCk (n) ≤ 1.42
√
k, for k sufficiently large.

Proof Let X ⊆ [0, 1]k be a point set of size n. We run Algorithm 1 from Sect. 3.2. Let
Fi be the collection of paths at the i-th step, let ei be the edge added in the i-th step,
and let F = Fn−1 be the final Hamiltonian path.

(i) We know that |ei | ≤
√

2
3k for i ≤ n − 2. Note that |en−1| ≤ √

k trivially. Now,
let f = ab be the edge where a and b are the two endpoints of the final path F . Set
H = F + f to be the Hamiltonian cycle when f is added to F . Since | f | ≤ √

k
trivially, we get

Sk(H) =
∑

e∈H
|e|k = | f |k + |en−1|k +

n−2∑

i=1

|ei |k ≤ 2
(√

k
)k + (n − 2)

(√
2

3
k

)k

≤
(

2 + 2k ·
(
2

3

)k/2
)

· kk/2 =
(

2 +
(
8

3

)k/2
)

kk/2.

Consequently, sHCk (n) ≤ sk(H) ≤ 1.64
√
k, for k sufficiently large.

(ii) We classify the edges e ∈ F into two types.

1. short edges: |e|2 ≤ 100k
199 .

2. long edges: 100k
199 < |e|2.

The number of short edges e ∈ F is at most n ≤ 2k , trivially. The number of long
edges e ∈ F is at most 199 by Lemma 3.3 applied with m = 200. Now, let f = ab
be the edge where a and b are the two endpoints of the final path F . Set H = F + f
to be the Hamiltonian cycle when f is added to F . Since | f | ≤ √

k trivially, we get

Sk(H) ≤
(

200 + 2k ·
(
100

199

)k/2
)

· kk/2 ≤
(
200 + 2.01k/2

)
kk/2.
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Consequently, sHCk (n) ≤ sk(H) ≤ 1.42
√
k, for k sufficiently large.
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