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This study presents an innovative direct numerical simulation approach for complex particle systems with 
irregular shapes and large numbers. Using partially saturated methods, it accurately models arbitrary shapes, 
albeit at considerable computational cost when integrating a compatible contact model. The introduction of a 
novel parallelization strategy significantly improves the performance of the contact model, enabling efficient 
four-way coupled simulations. Through hindered settling studies, the criticality of the explicit contact model for 
maintaining simulation accuracy is highlighted, especially at high particle volume fractions and low Archimedes 
numbers. The feasibility of simulating thousands of arbitrarily shaped convex particles is demonstrated with up 
to 1934 surface-resolved particles. The study also confirms the grid independence and linear convergence of the 
method. It shows for the first time that cube swarms settle 13 to 26% slower than swarms of volume-equivalent 
spheres across different Archimedes numbers (500 to 2000) and particle volume fractions (10 to 30%). These 
findings emphasize the shape dependence of particle systems and suggest avenues for exploring their nuanced 
dynamics.
1. Introduction

Understanding the dynamics of suspensions, which consist of solid 
particles dispersed in a liquid [1], plays a pivotal role in revealing 
significant phenomena that arise from the intricate interplay between 
fluid-particle and particle-particle interactions. These studies are par-
ticularly important in the context of industrial processes, as they have 
the potential to advance equipment design, improve operational prac-
tices, and lead to improvements in efficiency, throughput, and product 
quality. Examples include improving separation efficiencies and reduc-
ing damage to the particular phase, which is highly important in food 
processing.

The study of suspension dynamics is of tremendous importance, but 
associated with inherent challenges. This is exemplified by hindered 
settling in a viscous fluid, a seemingly straightforward process involv-
ing the settling of multiple particles under the influence of gravity. 
However, the interaction between these particles results in terminal ve-
locities that differ from those observed in single particle sedimentation 
[2–9] and clustering [10–12], indicating high complexity.

✩ The review of this paper was arranged by Prof. Andrew Hazel.
* Corresponding author at: Lattice Boltzmann Research Group, Karlsruhe Institute of Technology, Straße am Forum 8, Karlsruhe, 76131, Germany.

All of the above studies focused on spherical particles, whereas 
the characterization of non-spherical or irregular particles has received 
less attention. Yet, when examined, the influence of particle shape on 
the average settling velocity has been found to be significant, as was 
demonstrated by studies on cubes [13], rod-like particles [14], sand 
grains [15], and fibers [16]. Unfortunately, experimental studies present 
significant challenges in terms of control, evaluation, and determination 
of specific parameters, such as particle shape. Consequently, numerical 
studies are needed to obtain additional data and a deeper understanding 
of the underlying dynamics. Such studies require the use of sophisti-
cated models capable of accurately accounting for the complex interplay 
between fluids and particles, as well as the emergence of solid-solid in-
teractions as the particle volume fraction increases [17]. However, when 
considering complex particle shapes, the above remains a formidable 
challenge, as discussed below.

Several approaches to study complex particle systems exist. A com-
monly used option is the discrete element method (DEM). In DEM, arbi-
trary particle shapes are often achieved by combining spheres [18,19]. 
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However, the multi-sphere approach can lead to inaccuracies when us-
ing a limited number of spheres or can become computationally expen-
sive, as the number of spheres increases. An alternative is to use other 
convex shapes [20–22] or level-set DEM [23–25]. However, this signif-
icantly increases the complexity, while the coupling with the surround-
ing viscous fluid remains challenging. An approach to fluid-particle 
coupling uses simple spherical geometries [26,27], which leads to in-
accuracies. Another approach omits the back-coupling to the fluid [28], 
which, however, is essential especially at high particle volume fractions 
[17].

The immersed boundary method (IBM) is a widely used and promis-
ing approach to studying complex particle systems. In IBM, the particle 
surface is represented by Lagrangian points [29]. This method offers 
high flexibility, as it can be coupled with different fluid solvers, includ-
ing the finite element method and the lattice Boltzmann method (LBM). 
IBM also exhibits a high degree of accuracy, as the interaction between 
these Lagrangian points and the fluid grid is independent. Four-way cou-
pled simulations are also feasible, since a contact model suitable for 
arbitrary shapes exists [30]. However, disadvantages of IBM are the fre-
quent and computationally expensive interpolations.

An alternative LBM-based approach is the partially saturated method 
(PSM) proposed by Noble and Torczynski [31]. Its derivatives were 
used extensively in the investigation of particle flows [32,33]. A no-
table derivative of PSM is the homogenized lattice Boltzmann method 
(HLBM) introduced by Krause et al. [34], which has been successfully 
used to study different particle shapes [35–39]. Particularly noteworthy 
are studies on the shape-dependent sedimentation behavior of single 
particles [40]. With the recent development of a compatible contact 
model [41], similar investigations of shape-dependent hindered settling 
have become possible. However, the discrete contact model proposed is 
associated with a major computational burden due to frequent distance 
calculations, which limits its application to systems with a few particles 
rather than systems with hundreds or thousands of particles. Despite 
the introduction of an improved particle decomposition scheme [42], 
the contact treatment remains the bottleneck in terms of computational 
efficiency. Therefore, improving its parallel performance is crucial to en-
abling simulations with large particle numbers at high particle volume 
fractions.

While parallelization strategies for the simulation of particulate 
flows have been proposed in literature [43–45], they at best inade-
quately consider particle surface intersections with subdomains within 
the domain decomposition, which is important for direct numerical 
simulations (DNS) as it would otherwise lead to inaccurate capture of 
fluid-solid and solid-solid interactions. In addition, they typically con-
sider only simple regular shapes, such as spheres. Therefore, a new and 
efficient parallelization approach for DNS that can handle the increased 
complexity due to a large number of surface resolved particles with com-
plex shapes is important.

The primary goal of this work is to enable DNS of arbitrarily shaped 
convex particle collectives. To this end, we propose a novel and im-
proved parallelization strategy for the discrete contact model. This ad-
vancement is crucial to overcoming the computational limitations asso-
ciated with the discrete contact model in the simulation of large-scale 
systems. Furthermore, this paper seeks to address the challenge of incor-
porating periodic boundaries into the discrete contact model and it aims 
to demonstrate the necessity of an explicit contact model when using 
PSMs, particularly at high particle volume fractions. As a demonstra-
tion of the new possibilities, we numerically study the hindered settling 
of spheres and cubes, leading to new insights into their swarm settling 
behavior.

The subsequent sections of this paper are structured as follows. Sec-
tion 2 presents the models employed to describe the fluid and particle 
behavior, while Section 3 discusses the numerical techniques utilized 
to solve the model system. In Section 4, we outline the proposed paral-
2

lelization strategy, which is then applied to investigate hindered settling 
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in Section 5. Lastly, Section 6 summarizes the key findings and conclu-
sions drawn from this study.

2. Modeling

To account for the fluids, particles, and interactions between and 
within the components, we use the same models as in previous related 
works [41,42]. The following sections give a brief overview of these 
models.

2.1. Fluid

Throughout this work, we consider incompressible fluids. Therefore, 
the Navier–Stokes equations are given by

𝜕𝒖f

𝜕𝑡
+
(
𝒖f ⋅∇

)
𝒖f −

𝜂

𝜌f
Δ𝒖f +

1
𝜌f
∇𝑝 =

𝑭 f

𝜌f
,

∇ ⋅ 𝒖f = 0,
(1)

where 𝑝 represents pressure, 𝑡 denotes time, 𝑭 f signifies the total of all 
forces acting on the fluid, and 𝒖f, 𝜌f, 𝜂 represent the fluid’s velocity, 
density, and dynamic viscosity, respectively.

2.2. Particle

Newton’s second law of motion is the basis for our consideration of 
particles. Hence, translation is governed by

𝑚p

𝜕𝒖p

𝜕𝑡
= 𝑭 p, (2)

while rotation is described by

𝑰p

𝜕𝝎p

𝜕𝑡
+𝝎p × (𝑰p ⋅𝝎p) = 𝑻 p. (3)

In these equations, 𝑚p, 𝑰p, 𝒖p, and 𝝎p represent the mass, moment of 
inertia, velocity, and angular velocity of the particle, respectively. The 
parameters 𝑭 p and 𝑻 p correspond to the total force and torque acting 
on it. Finally, the subscript p indicates that above variables refer to the 
particle’s center of mass.

2.3. Contact

To account for interactions of even complex geometries, we employ a 
model introduced by Nassauer and Kuna [46]. Here, the normal contact 
force is given by

𝑭 c,n =
4
3𝜋

𝒏c𝐸
∗√𝑉c𝑑

(
1 + 𝑐𝑑̇n

)
, (4)

where 𝐸∗ represents the effective Young’s modulus, 𝑉c denotes the over-
lap volume, 𝑑 represents the indentation depth, 𝑐 is a damping factor, 
and 𝑑̇n is the magnitude of the relative velocity between two bodies in 
contact along the contact normal 𝒏c.

The effective Young’s modulus, 𝐸∗, is given by

𝐸∗ =

(
1 − 𝜈2

A

𝐸A
+

1 − 𝜈2B
𝐸B

)−1

, (5)

where 𝐸A and 𝜈A represent the Young’s modulus and Poisson’s ratio of 
an object A, while 𝐸B and 𝜈B denote the Young’s modulus and Pois-
son’s ratio of another object B. To correlate the damping factor 𝑐 to the 
coefficient of restitution 𝑒, we follow Carvalho and Martins [47] and use

𝑐 =

{
1.5 (1−𝑒)(11−𝑒)

(1+9𝑒)𝑢0
for 𝑢0 > 0

0 for 𝑢0 ≤ 0
, (6)

where 𝑢0 is the magnitude of the relative velocity at the initial contact 

[37].
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Tangential forces arise as a result of friction, which is typically in-
fluenced by the normal force, along with the coefficients of static and 
kinetic friction, denoted as 𝜇s and 𝜇k, respectively. Following a similar 
rationale, Nassauer and Kuna [46] describe the tangential force using 
the equation

𝑭 c,t = −
𝒖AB,t(𝒙c)||𝒖AB,t(𝒙c)||

((
2𝜇∗

s − 𝜇k

) 𝑎2

𝑎4 + 1
+ 𝜇k −

𝜇k

𝑎2 + 1

)||𝑭 c,n||, (7)

with

𝜇∗
s = 𝜇s

(
1 − 0.09

(
𝜇k

𝜇s

)4
)
, (8)

and

𝑎 =
||𝒖AB,t(𝒙c)||

𝑢𝑘
. (9)

𝒖AB,t represents the relative tangential velocity at the contact point 𝒙c

between objects A and B and 𝑢𝑘 is a model parameter that defines the 
velocity at which the transition from static to kinetic friction occurs. In 
this work, we use 𝑢𝑘 = 0.001m∕s.

Note that the tangential force model neglects stiction, and thus in 
cases where it plays a significant role, more sophisticated frictional force 
models become imperative [48].

3. Numerical methods

The following section introduces the numerical methods used to 
solve the applied models. It is important to emphasize that all quan-
tities discussed in Sections 3.1 and 3.2 are given in lattice units.

3.1. Lattice Boltzmann method

To solve the incompressible Navier–Stokes equations, the lattice 
Boltzmann method (LBM) [49–51] is an established and powerful op-
tion. LBM is a mesoscopic approach that discretizes both space and time 
by representing fluid flow in terms of particle distributions. Therefore, 
when we refer to particles in the remainder of this section, we are refer-
ring to fluid particles. These particle distributions, denoted as 𝑓𝑖(𝒙, 𝑡), 
represent the probability of finding particles with the discrete velocity 
𝒄𝑖 at a position 𝒙 and time 𝑡. A variety of velocity sets have been pro-
posed and discussed in literature [49,50]. In this paper, we specifically 
adopt the D3Q19 velocity set, considering 19 velocities in 3 spatial di-
mensions.

The LBM algorithm provides a numerical solution for the underlying 
fluid flow by iteratively updating the particle distributions in two steps. 
First, the collision step accounts for the local interparticular interactions 
and reads

𝑓 ∗
𝑖
(𝒙, 𝑡) = 𝑓𝑖(𝒙, 𝑡) + Ω𝑖(𝒙, 𝑡) +𝑆𝑖(𝒙, 𝑡), (10)

where 𝑓 ∗
𝑖

is the post-collision distribution, Ω𝑖 is the collision operator, 
and 𝑆𝑖 is an optional source term. Second, the propagation step ensures 
the distribution of particles to neighboring lattice nodes and is given by

𝑓𝑖(𝒙+ 𝒄𝑖, 𝑡+ 1) = 𝑓 ∗
𝑖
(𝒙, 𝑡), (11)

for Δ𝑡 = Δ𝑥 = 1, which refer to the time step size and the grid spacing, 
respectively.

In this work, we use the Bhatnagar–Gross–Krook (BGK) collision op-
erator [52]

Ω𝑖(𝒙, 𝑡) = −1
𝜏
(𝑓𝑖(𝒙, 𝑡) − 𝑓

eq
𝑖
(𝜌f,𝒖f)), (12)

with the relaxation time 𝜏 = 3(𝜂∕𝜌f) + 0.5 to relax the particle distribu-
tions towards an equilibrium 𝑓 eq

𝑖
. This equilibrium is quantified by the 
3

Maxwell–Boltzmann distribution and reads
Computer Physics Communications 304 (2024) 109321

𝑓
eq
𝑖
(𝜌f,𝒖f) =𝑤𝑖𝜌f

(
1 +

𝒄𝑖 ⋅ 𝒖f

𝑐2
𝑠

+
(𝒄𝑖 ⋅ 𝒖f)2

2𝑐4
𝑠

−
𝒖f ⋅ 𝒖f

2𝑐2
𝑠

)
, (13)

with the weights 𝑤𝑖 that are derived from a Gauss-Hermite quadrature 
rule. These weights remain constant for the selected velocity set. The 
lattice speed of sound 𝑐𝑠 is also constant and depends on the chosen 
velocity set.

Using the particle distributions mentioned above, it is also possi-
ble to derive macroscopic quantities, such as the fluid density 𝜌f(𝒙, 𝑡) =∑

𝑖 𝑓𝑖(𝒙, 𝑡) and momentum 𝜌f𝒖f(𝒙, 𝑡) =
∑

𝑖 𝒄𝑖𝑓𝑖(𝒙, 𝑡).
All studies in this paper were performed using the LBM implemented 

in the open source software OpenLB [53,54].

3.2. Homogenized lattice Boltzmann method

The proposed scheme can be applied to various methods, including 
PSM. However, in this work we focus specifically on its application to 
the HLBM introduced by Krause et al. [34]. To allow coupling between 
components, a continuous model parameter, a confined permeability, 
𝐵(𝒙, 𝑡) ∈ [0, 1] is mapped to the entire computational domain [32,40,
55]. The signed distance to the particle surface is used as a parameter 
to integrate any shape in this level set function [42].

To account for the influence of the particles on the fluid, we use an 
exact difference method (EDM) introduced by Kupershtokh et al. [56], 
as its adaptation has been reported to be superior [40]. It introduces the 
following source term in Eq. (10)

𝑆𝑖(𝒙, 𝑡) = 𝑓
eq
𝑖
(𝜌f,𝒖f +Δ𝒖f) − 𝑓

eq
𝑖
(𝜌f,𝒖f). (14)

The required velocity difference Δ𝒖f(𝒙, 𝑡) is computed by a convex com-
bination of the fluid and particle velocities [40]

Δ𝒖f(𝒙, 𝑡) = (𝐵(𝒙, 𝑡) − 1)
(
𝒖p(𝒙, 𝑡) − 𝒖f(𝒙, 𝑡)

)
. (15)

To account for the influence of the fluid on the particles, the hydro-
dynamic force is calculated using the momentum exchange algorithm 
(MEA) of Wen et al. [57]. The local force is then

𝑭 h(𝒙, 𝑡) =
∑
𝑖

(𝒄𝑖 − 𝒖p(𝒙, 𝑡))𝑓𝑖(𝒙+ 𝒄𝑖, 𝑡) + (𝒄𝑖 + 𝒖p(𝒙, 𝑡))𝑓𝑖(𝒙, 𝑡). (16)

The sum of all local forces of nodes inside the particle, denoted by the 
position 𝒙b, gives the total hydrodynamic force

𝑭 p(𝑡) =
∑
𝒙b

𝑭 h(𝒙b, 𝑡). (17)

Similarly, the torque is defined as the sum of the cross products between 
the displacement vectors and the local hydrodynamic forces

𝑻 p(𝑡) =
∑
𝒙b

(𝒙b −𝑿p) × 𝑭 h(𝒙b, 𝑡). (18)

While 𝒙b resides within the particle, the formulation in Eq. (16) repre-
sents momentum exchange with the surrounding nodes. Consequently, 
this approach inherently accounts for the influence of the immediate 
fluid layer surrounding the particle, which is essential to accurately cap-
ture fluid-particle interactions.

3.3. Discrete contacts

The original discrete contact model [41] consists of three simple 
mesh-based steps: rough contact detection, its correction, and the cal-
culation of the resulting forces. These steps are briefly explained in 
Section 3.3.1, while Section 3.3.2 introduces a method for considering 
periodic boundaries.

3.3.1. Overview

During the coupling of the particles to the fluid, a rough contact de-

tection is conducted. At each lattice node, the signed distance of the 
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particles is evaluated. If the signed distance of two particles at the node 
is less than half the diagonal of a cell (𝑑s <

√
0.75Δ𝑥), these particles 

are considered to overlap at that particular node. This initial evalua-
tion forms an approximate cuboid that encloses the contact region, a 
bounding box. This bounding box defines the domain over which itera-
tive calculations are performed to determine, for example, the overlap 
volume, indentation depth, and contact normal.

However, due to the relatively large lattice spacing, the overlap is not 
adequately resolved, resulting in an imprecise bounding box. To address 
this, a subsequent correction step is performed to refine the bounding 
box and bring it closer to the actual overlap. This correction process 
involves iterating over the surface of the initial approximation using a 
predefined number of points in each spatial direction. The number of 
points is called the contact resolution 𝑁c. At each point, the distance 
to the actual contact is calculated in discrete directions and this new 
information is used to improve the accuracy of the bounding box.

In the final step, the contact resolution 𝑁c is used again. Now, it is 
applied to iterate over the entire overlap region to determine the overlap 
volume, the contact point, the contact normal, the indentation depth, 
and the contact force.

For further details on the algorithm, the interested reader is referred 
to the corresponding publication [41].

3.3.2. Periodic boundaries

Typically, a particle is duplicated at periodic particle boundaries, so 
that it exists on either side of the periodic boundary [40,58]. However, 
only the parts that actually intersect the computational domain on each 
side must be considered.

For contact treatment, we use a similar approach and duplicate par-
ticles that intersect the periodic boundary to detect contacts on either 
side. In case of a contact spanning both sides of the periodic boundary, 
however, the bounding box would encompass nearly the entire domain, 
which would lead to inaccurate results. We therefore fix the contact 
to one side of the periodic boundary. In this work, we define that the 
contact is always on the side where the center of mass of the particle 
with the lower ID intersects the domain, which will hereinafter serve 
as the reference point. Consequently, the contact detection on this side 
remains unchanged, while it is shifted towards this reference on the op-
posite side.

These adjustments affect the rough contact detection and the treat-
ment of particle-particle interactions. For the former, the minimum and 
maximum coordinates of the contact bounding box are fixed to a sin-
gle side of the periodic boundaries, as described above. If the center of 
mass of the particle with the higher ID is on the opposite side, it has 
to be moved to the side of the particle with the lower ID when treating 
particle-particle interactions. After the contact forces are determined, 
the particle is moved back to its original position.

It is important to note that the specific definition of the reference 
point is used in the context of this work. It may be defined differently, 
of course.

4. Parallelization strategy

Given the computational expense associated with the bounding box 
correction and contact force calculation introduced in Section 3.3.1, we 
propose a parallelization strategy to efficiently distribute the workload. 
This allows to increase the performance and, thus, the applicability of 
the discrete contact model.

All of the methods presented are readily available through the open 
source software OpenLB, starting with version 1.7.0 [53], and in the 
public repository.1
4
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4.1. Definitions

For clarity and consistency, we provide the following definitions that 
will be utilized throughout the sections below [42]:

Responsibility The concept of responsibility entails a block or its associ-
ated processing unit (PU) assumes the task of managing a particle. This 
responsibility includes solving the equations of motion and potentially 
reassigning the particle to another block or PU.

Neighborhood The neighborhood consists of blocks around the block of 
interest and is defined by a maximum distance from the latter. In this 
work, the maximum distance corresponds to the largest circumferential 
radius of all particles in the simulation. The neighboring processes are 
responsible for the blocks within this neighborhood.

4.2. Background

A fundamental aspect of optimizing LBM simulations is the effective 
distribution of computational tasks across multiple processing units. In 
practice, a block-based approach is used to achieve this [49,59]. Here, 
the computational domain is decomposed into a collection of distinct 
blocks. Each block is assigned to a specific processing unit to enable si-
multaneous execution of computations. A key feature of this approach 
is that the processing units operate primarily on local data and data 
exchange is limited to the boundaries of adjacent blocks, where informa-
tion is selectively shared to ensure coherent execution of the simulation.

Marquardt et al. [42] propose a similar scheme for the decomposition 
of surface resolved particles. In this scheme, the assignment of a parti-
cle to a particular processing unit is intricately linked to the position of 
the center of mass of the particle. The processing unit responsible for 
the block containing the center of mass assumes responsibility for the 
particle. In the likely scenario that the particle’s surface overlaps an-
other block, however, the responsible process has no access to the fluid 
data required for coupling. To consider such scenarios, the processing 
unit responsible for the neighboring block that intersects the particle 
surface calculates the partial surface force and communicates it to the 
processing unit responsible for the particle in question, where the sum 
of all partial surface forces is used to solve the equations of motion. 
To account for the dynamic nature of simulations, particle assignment 
is revised after the particle’s position has been updated. This updated 
assignment is communicated, along with the particle’s data, to all pro-
cessing units responsible for blocks in the particle’s vicinity.

The previous parallelization strategy of the discrete contact model is 
incompatible with the particle decomposition scheme. This incompati-
bility stems from the requirement that each PU must have information 
about all particles in order to solve each contact independently. This 
highlights another problem with the previous approach: it becomes very 
inefficient as the number of contacts grows, which in turn makes the 
studies targeted in this work infeasible.

4.3. Distribution of contacts

In order to distribute the computational effort of the contact treat-
ment, we propose a simple assignment of contacts to processes in a 
communication-ideal strategy [59].

For particle-wall contacts, identifying the responsible PU is trivial, 
because the non-moving walls are known to all PUs. The unit responsible 
for the particle is also responsible for the contact treatment, which limits 
the number of communications.

However, particle-particle contacts are more complex due to their 
dynamic nature and the local storage of data. Therefore, we categorize 
the contacts based on the available data. For this we refer to Fig. 1. 
Each of these figures shows four distinct blocks, each corresponding to 

a different PU, as indicated by the numbers in the corners. In addition, 

https://gitlab.com/openlb/release


Computer Physics Communications 304 (2024) 109321J.E. Marquardt, N. Hafen and M.J. Krause

Fig. 1. Illustration of three types of particle-particle contacts: The centers of mass of both particles are in the same block (a), the centers of mass of both particles 
are in different blocks, but both particles are known to at least one of the responsible PUs (b), and none of the responsible PUs knows both particles, only a third PU 
knows all data (c).
each figure shows the surface of two particles as solid lines along with 
their respective centers of mass as pluses.

For simplicity, we assume that the PUs only know the particle data 
when the surface intersects the corresponding block. As the particle 
decomposition scheme [42] aims to avoid unnecessary complexity, how-
ever, the actual algorithm does not check for intersections and commu-
nicates the particle data to all neighbors instead.

In Fig. 1(a), we illustrate contacts between particles that share the 
same responsible PU, identified by the number 1 in the example. In this 
scenario, the unit assumes responsibility for handling the contact and 
no intermediate communication is required. Moving on to Fig. 1(b), we 
see that the particles involved have different responsible PUs, but at 
least one of these units stores the data of both particles, as their surfaces 
intersect the corresponding block. If both particles are known to both re-
sponsible PUs, the unit with the lower ID is designated to be responsible 
for processing the contact. In this example, PU 1 would assume respon-
sibility. Finally, as shown in Fig. 1(c), none of the PUs responsible for 
the particles has information about both particles. In this scenario, we 
assign responsibility for handling the contact to the PU with the low-
est ID that has access to the most recent data for both particles. In the 
example shown, this would be PU 3.

Given the types described above, we identify four additional steps as 
outlined below.

4.3.1. Determination of the responsible processing units

For all processes involving potential interactions between two parti-
cles or between a particle and a wall, sufficient information is available 
to determine the responsible PU, as described above. This information 
includes the knowledge of the exact position of the particle and of the 
block it is located in as well as the maximum circumferential radius of 
the entire particle collective. Consequently, the task of identifying the 
responsible PU is performed within the local context of the given pro-
cess, following the algorithm shown in Fig. 2.

4.3.2. Communication of the detected contacts

Rough on-lattice contact detection, as described in [41], serves to 
consolidate all contact components. We deliberately refrain from per-
forming the rough contact detection for already established contacts in 
order to prevent its errors from being reintroduced.

However, we still communicate these pre-existing contacts to ensure 
that responsible processes remain informed of any contacts that may 
have gone undetected on their side. To accomplish this, each process 
having knowledge of an ongoing contact sends the relevant data to pro-
cesses responsible for managing at least one particle or handling the 
contact. Neighboring processes not involved in particle or contact man-
agement receive empty requests.

The data is only communicated if the objects still overlap, see Fig. 3, 
5

and includes critical details such as global particle IDs or global particle 
Fig. 2. Visualization of the algorithm to determine a contact responsible PU.

and wall IDs, the minimum and maximum bounding box coordinates, 
the damping factor, and the pre-evaluated responsible PU.

The receiving PU integrates the transmitted data with any existing 
data to ensure that the collective sub-bounding boxes accurately define 
the bounding box that encompasses the entire contact. This integra-
tion involves determining the combined bounding box by selecting the 
minimum coordinates from all of the sub-bounding boxes for the lower 
boundaries, as well as the maximum coordinates. The damping factor 
initially has an invalid negative value. Consequently, the contacts ei-
ther have identical values or have positive and negative discrepancies. 
During the merge, the valid positive value takes precedence.

4.3.3. Communication of the contact force and torque

As described above, the PU that determines the contact force and the 
corresponding torque may not be responsible for solving the equations 
of motion, but the data are required for solving these equations. The PU 
responsible for the contact sends the resulting force and torque, along 
with the global particle ID, to each PU responsible for at least one of the 
particles in contact. Other processes in the neighborhood that do not 

meet these conditions receive an empty request.
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Fig. 3. Basic procedure for communicating detected contacts. Note that this 
step takes place after the determination of the contact responsible PU (cf. Sec-
tion 4.3.1), during which the destination PUs for this step may be determined 
to save computational resources.

Fig. 4. Visualization of the steps required to communicate the results of the 
contact treatment.

To reduce the computational effort, this step is combined with the 
contact force and torque calculation as shown in Fig. 4, which gives 
6

details of the underlying procedure.
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The PUs responsible for solving the particles receive the results of 
the contact treatment and add them to the existing forces and torques 
so that the sum can be used to solve the equations of motion.

4.3.4. Communication of the contacts after the contact treatment

Awareness of an existing contact and its latest data is limited to the 
responsible PU. In the case of particle-particle contacts, it is therefore 
imperative that the PU communicates contact information to all pro-
cesses that hold data of both particles. For particle-wall contacts, data 
must be shared with all processes that have access to the involved par-
ticle’s data. If neighboring blocks do not fulfill the above criteria, they 
receive an empty request. When the latest data is received, it overrides 
any outdated data that may still be present. Fig. 5 provides a structured 
overview of the process.

This ensures that no data is lost and that a consistent damping fac-
tor is maintained for the duration of the contact. The contact data 
mentioned above should include either the two global particle IDs (for 
particle-particle contacts) or a global particle ID and a global wall ID 
(for particle-wall contacts). It also includes the damping factor calcu-
lated from the initial relative velocity as described in Eq. (6).

We choose to also communicate the updated minimum and maxi-
mum coordinates of the contact’s bounding box. This information helps 
to achieve higher accuracy by minimizing the effects of the rough con-
tact detection. When considering that the particle positions change only 
slightly between successive time steps, it is inevitable that the bounding 
box changes only slightly as well. Subsequent application of the bound-
ing box correction yields improved results without reintroducing errors 
from rough contact detection.

4.4. Time step algorithm

To give a structured overview, Algorithm 1 outlines the basic pro-
cedure. It is worth noting that it includes sub time steps with constant 
hydrodynamic forces [41]. For the sake of simplicity and to keep per-
formance comparable with and without the contact model, we omit sub 
time steps in the following sections.

Algorithm 1: Basic LBM time step algorithm using PSM with 
the particle and contact decomposition scheme.

for all time steps do

Couple fluid to particles; ⊳ Using the MEA
Communicate surface forces and torques; ⊳ See [42]
for all sub time steps do

Compute contact forces; ⊳ See [41]
Communicate contact forces; ⊳ See 4.3.3
Apply external forces; ⊳ Such as gravity
Solve equations of motion;
Communicate post-treatment contacts; ⊳ See 4.3.4
Evaluate particle assignment; ⊳ See [42]
Communicate data and assignment; ⊳ See [42]
Couple particles to fluid with contact detection; ⊳ See [41]
Determine responsible PUs; ⊳ See 4.3.1
Communicate detected contacts; ⊳ See 4.3.2
Apply periodic boundary to contacts (optional); ⊳ See 3.3.2

end

Perform collision and streaming;
Increase time step;

end

5. Application to hindered settling

As the hindered settling of spherical particles has been studied ex-
tensively and many correlations are known, we use these to evaluate the 

proposed method.
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Fig. 5. Illustration of the communication of contacts after the contact treatment.
Most correlations describe the ratio of the average settling velocity 
of the bulk 𝑢̄p and the single particle settling velocity 𝑢∗ using a power 
law approach [60]

𝑢̄p

𝑢∗
= 𝑘(1 − 𝜙p)𝑛. (19)

Here, 𝑘 is a prefactor, 𝑛 is the expansion index, and 𝜙p is the particle 
volume fraction. The single particle velocity reads

𝑢∗ =

√
4𝑔𝐷s

3𝐶d

(
𝜌p − 𝜌f

𝜌f

)
, (20)

with the standard gravity 𝑔 = 9.80665 m s−2, the diameter of the spher-
ical particle 𝐷s, the drag coefficient 𝐶d, and the fluid and particle den-
sities 𝜌f and 𝜌p. In this study, we use the well-known drag coefficient 
correlation by Schiller and Neumann [61]

𝐶d =
24
Re

(
1 + 0.15Re0.687

)
, (21)

which is valid for Re = 𝑢∗𝐷𝑠∕𝜈 < 800.
Early studies neglected the prefactor 𝑘, i.e. 𝑘 = 1, and focused on the 

expansion index 𝑛. Richardson and Zaki [3] propose

𝑛 =

⎧⎪⎪⎨⎪⎪⎩
4.65 for Re < 0.2
4.35Re−0.03 for 0.2 ≤ Re < 1
4.45Re−0.1 for 1 ≤ Re < 500
2.39 for 500 ≤ Re

. (22)

Using a power law-based approach, Garside and Al-Dibouni [6] sug-
7

gest
𝑛 = 5.1 + 0.27Re0.9

1 + 0.1Re0.9
. (23)

For the latter correlation, superior accuracy has been reported [60]. 
Note that Richardson and Zaki [3] use a Reynolds number that depends 
on the velocity of a single particle in an infinite fluid, while Garside 
and Al-Dibouni [6] consider the single particle settling velocity in the 
domain under consideration. Due to the chosen simulation setup, how-
ever, these originally different Reynolds numbers coincide in the present 
work.

Later studies [7,8,13] suggest including a prefactor 𝑘 ∈ [0.8, 0.9]. Yao 
et al. [12] use numerical experiments to derive an Archimedes number-
dependent equation with a reported coefficient of determination of 0.86
for Ar ∈ [21, 2360], which reads

𝑘 = 0.89exp
(
− Ar

105

)
, (24)

where the Archimedes number is defined as

Ar =
𝑔𝐷3

s 𝜌f(𝜌p − 𝜌f)
𝜂2

. (25)

5.1. Simulation setup

To perform a numerical study of the scenario described above, we 
use spherical particles with a diameter of 𝐷s = 1.5 mm, randomly dis-
tributed within a cubic domain with an edge length of 𝐿 on either side. 
The domain has periodic boundaries in all directions and is completely 
occupied by a fluid characterized by a density of 𝜌f = 1000 kgm−3. An 
illustration of an example setup at a particle volume fraction of about 

30% is provided in Fig. 6.
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Fig. 6. Simulation domain with spherical particles on their preassigned initial 
positions using a resolution of 𝑁 = 27 cells per sphere diameter and particle 
volume fraction of about 30%.

Initially, the particles rest, but they experience an acceleration in the 
𝑧-direction due to the force 𝐹𝑔 = (𝜌f − 𝜌p)𝑉p𝑔, where 𝑉p represents the 
volume of a single particle. Following previous studies [9,11,60,62], a 
pressure gradient is applied to prevent unbounded acceleration and infi-
nite velocities so that the suspension has a net volume flow of zero. The 
Archimedes number takes values between 500 and 2000 and the den-
sity ratio is fixed to 3.3, since its influence was found to be negligible 
[12]. The particle volume fraction ranges from 10% to 30%. In addition, 
we maintain a consistent lattice relaxation time 𝜏 = 0.55 across all sim-
ulations, with variations in the number of cells 𝑁 used to resolve the 
sphere’s diameter in the subsequent simulations.

As suggested by previous studies [41], we use a contact resolution 
of 8 and increase the particle size during the contact treatment to im-
prove the accuracy in viscous fluids. Therefore, we enlarge the particles 
by Δ𝑥∕5. Additionally, we use a coefficient of restitution 𝑒 = 0.926 and 
coefficient of kinetic friction 𝜇𝑘 = 0.16 [63]. The coefficient of static 
friction is set to 0.32. Similar to studies in literature [11,62], we sig-
nificantly reduce the Young’s modulus to 𝐸 = 5 kPa to ensure stable 
simulations. This adjustment is necessary, because LBM simulations are 
constrained by a minimum lattice relaxation time 𝜏 > 0.5 [49], which in 
turn limits the smallest feasible time steps Δ𝑡 for the chosen resolution. 
However, the proposed configuration becomes increasingly susceptible 
to instabilities for 𝜏 < 0.55. This tendency is likely due to the emergence 
of small channels between particles, potentially leading to increased lo-
cal velocities and a decrease in the maximum permissible local lattice 
8

velocity for 𝜏 < 0.55 [49]. Fortunately, the findings presented in Sec-

Fig. 7. Normalized average settling velocity versus the normalized time 𝑡∗. (For inte
of this article.)
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tion 5.3 suggest that the effect of the softening is sufficiently small, as a 
good agreement with the correlations is visible.

The simulations cover a time of 400𝑡∗ , with the normalized time 
𝑡∗ = 𝑡𝐷s𝑔(𝜌p − 𝜌f)∕(18𝜂). In all simulations, averaging begins after 50𝑡∗ . 
The data of simulations using 𝐿 = 12𝐷𝑠 and 𝑁 = 18 shown in Fig. 7
illustrate that this is sufficient. Fig. 7 shows the normalized average 
settling velocity 𝑢̄p∕𝑢∗ over the normalized time 𝑡∗ for the minimum 
and maximum Archimedes number 𝐴𝑟 ∈ {500, 1000} as well as mini-
mum and maximum particle volume fraction 𝜙p ∈ {0.1, 0.3} considered. 
Lower ratios are obtained when dealing with higher particle volume 
fractions and lower Archimedes numbers. Additionally, the ratios fluc-
tuate, which is more pronounced for smaller Archimedes numbers and 
particle volume fractions. For all cases, the average value is reached 
well before 𝑡∗ = 50. Afterwards, only oscillations around that value oc-
cur. Thus, the aforementioned averaging start time is adequate for the 
extreme cases and for all intermediate parameters.

5.2. Grid independence study

We perform a grid independence study by considering a parti-
cle volume fraction of 15% at an Archimedes number of 1000 in a 
domain with an edge length of 𝐿 = 12𝐷𝑠 and the resolutions 𝑁 ∈
{5, 7, 9, 12, 15, 18, 27}. To confirm grid independence, we compare the 
above resolutions with the baseline resolution of 𝑁 = 27. The results 
are shown in Fig. 8. This figure shows the relative error, calculated us-
ing the 𝐿2 norm as described in [49], plotted against the different grid 
resolutions used. Results without the contact model are indicated by or-
ange pluses, while results with the contact model are marked by blue 
crosses. The figure also includes lines representing the experimental or-
ders of convergence (EOC) with values of both 1 and 2.

In Fig. 8, the error decreases in both cases as the resolution increases. 
It is remarkable that for most resolutions, the relative errors with and 
without explicit contact treatment have similar values, except for the 
𝑁 values of 5 and 15. These outliers make it more difficult to assess 
which EOC line the relative errors without contact modeling adhere to, 
but their evolution appears to be closest to an EOC of 1. In contrast to 
this, the relative errors with contact treatment clearly follow the line of 
EOC = 1. This suggests that in both cases, the error is roughly halved 
when the resolution is doubled. It is important to note that in both sce-
narios, the relative error falls below 3% for 𝑁 ≥ 12. For 𝑁 = 18 it is 
close to 1%. For this reason and because of the small time steps needed 
for the contact treatment, we choose 𝑁 ≥ 18 for the following studies.

5.3. Validation

The following validation consists of two parts. First, we aim to 
verify the used setup by employing various simulations with different 
Archimedes numbers Ar, edge lengths 𝐿, and initial particle positions. 

Fig. 9 shows the explicit parameters of the different setups and plots the 

rpretation of the colors in the figure(s), the reader is referred to the web version 
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Fig. 8. Relative error with and without the contact model in 𝐿2 norm versus the 
resolution of the sphere’s diameter 𝑁 . The references use the resolution 𝑁 = 27.

ratio of average settling velocity and single particle settling velocity ver-
sus particle volume fraction. On the left, an explicit contact treatment 
is used, on the right, it is not. The top plots correspond to simulations 
conducted with Ar = 500, the middle plots with Ar = 1000, and the bot-
9

tom plots with Ar = 2000. This figure also displays the range with a 5% 

Fig. 9. Visualization of the domain dependence of the results by plotting the norm
different domain sizes. On the left, the simulations were performed with an explici
middle plots Ar = 1000, and the bottom plots Ar = 2000.
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deviation from the mean at each particle volume fraction as a light gray 
area.

In Fig. 9, all data points lie in the highlighted area, indicating that 
the difference from the mean is less than 5% in all simulations. For the 
simulations without explicit contact treatment and at 𝐴𝑟 = 500, how-
ever, there is one outlier at a particle volume fraction of 25% and an 
edge length of 𝐿 = 10𝐷𝑠. Furthermore, we see that for low Archimedes 
numbers the data points for similar particle volume fractions are further 
apart than for higher Ar. This is particularly significant when an explicit 
contact treatment is used. A similar trend is seen when looking at the re-
sults obtained with a contact treatment and increasing particle volume 
fractions. The higher the particle volume fractions are, the narrower are 
the data. Without an explicit contact model, the size of the data range 
at each particle volume fraction appears to remain approximately the 
same.

The differences in the trend over particle volume fraction are likely 
due to the considerably higher error at high particle volume fractions 
without an explicit model for particle-particle contacts. This implies that 
the contact model is necessary at high particle volume fractions. Further-
more, the above observations suggest that in the range of edge lengths 
considered, their effect is sufficiently small. Similarly, the effect of the 
initial random positions is negligible. However, an outlier is present at 

𝐿 = 10𝐷𝑠 and since a higher number of particles is of interest to later 

alized mean sedimentation velocity versus the particle volume fraction 𝜙p for 
t contact model and on the right without. The top plots consider Ar = 500, the 
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Fig. 10. Comparison of simulation results with and without the use of an explicit 
contact model with correlations from literature. (a) 𝐴𝑟 = 500, (b) 𝐴𝑟 = 1000, and 
(c) 𝐴𝑟 = 2000.

performance evaluations, we only consider edge lengths 𝐿 ≥ 12𝐷𝑠 from 
now on.

The second part of the validation focuses on comparing the results of 
simulations using 𝐿 = 12𝐷𝑠 with the above correlations. For visual com-
parison, we plot the ratio of the average settling velocity and the single 
particle settling velocity against the particle volume fraction in Fig. 10. 
The results with and without an explicit contact model are shown as 
blue crosses and orange pluses, respectively. We also add the original 
correlation of Richardson and Zaki [3], i.e. Eq. (19) with Eq. (22) and 
𝑘 = 1 as a dashed green line. The red solid line shows the results for 
the correlation of Garside and Al-Dibouni [6] using the prefactor 𝑘 as 
suggested by Yao et al. [12], i.e. Eq. (19) with Eq. (23) and Eq. (24). 
The top plot corresponds to Ar = 500, the middle to Ar = 1000, and the 
bottom to Ar = 2000.

In all of these plots, we see that the average bulk settling velocity de-
creases with increasing particle volume fraction for all simulations and 
correlations. Eq. (19) with Eq. (23) and Eq. (24) (solid red line), how-
ever, predicts lower velocities than Eq. (19) with Eq. (22) and 𝑘 = 1
(dashed green line). While the simulation results are close to the former 
for low particle volume fractions, the simulation discrepancy increases 
10

for higher volume fractions. Thus, the simulations with a contact treat-
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ment are close to the predictions of Richardson and Zaki [3], while 
the simulations without an explicit contact treatment exhibit a notable 
overestimation. This overestimation is stronger for lower Archimedes 
numbers and higher particle volume fractions. The latter also has a sig-
nificant effect on the difference between the simulated average settling 
velocities with and without the contact model, as they are very similar 
at low volume fractions and then diverge as they increase.

The increase in the difference between the simulation results is ex-
plained by the fact that at low particle volume fractions there are far 
less contacts and therefore they have a smaller and even negligible in-
fluence. However, as the particle volume fraction increases, there are 
more and longer contacts, which increases their influence. When these 
contacts are not modeled, a clear error is observed. This error becomes 
smaller for higher Archimedes numbers, probably due to the increased 
importance of hydrodynamic forces in these scenarios.

The trend of the simulation results with the explicit contact model 
also indicates an overestimation at large particle volume fractions. There 
are three main reasons. First, we have adjusted the Young’s modulus to 
obtain more stable simulations and, thus, introduced an error especially 
at large particle volume fractions, although this error is limited and a 
good agreement is obtained. Second, the enlargement of the particles 
during the contact treatment is likely to introduce an error. Replacing 
it with a dedicated lubrication force model may improve the results. 
Third, although the settling velocities are lower than for single particle 
settling, the fluid velocities increase at large particle volume fractions, 
especially in the small channels. This potentially leads to high local lat-
tice velocities exceeding the 0.01 and 0.04 accuracy limits observed in 
previous studies using HLBM [40].

5.4. Performance

The goal of this section is to delve deeper into the performance 
analysis to quantitatively evaluate the feasibility and the impact of the 
contact treatment versus no treatment, by comparing the million lattice 
site updates per second (MLUPs). We exclude the former parallelization 
strategy from our analysis due to its limitations, described in Section 4.2, 
which make the simulations infeasible. For the numerical experiments, 
we use Intel Xeon Platinum 8368 CPUs, and each node is equipped with 
76 CPU cores.

Fig. 11 shows a compact overview of 288 separate simulations in 
four different performance plots of MLUPs versus the number of utilized 
nodes in a range from 1 to 12. In the top plots, the simulation domain 
has an edge length of 𝐿 = 12𝐷𝑠 and in the bottom plots of 𝐿 = 15𝐷𝑠. 
The left plots use a resolution of 𝑁 = 18 and the right plots use 𝑁 = 27. 
In all cases, three different particle volume fractions, i.e. 10%, 20%, 
and 30%, are considered with (solid lines) and without (dashed lines) 
consideration of contacts. Note that 𝐿 = 15𝐷𝑠 and 𝜙p ≈ 0.3 give a total 
of 1934 particles, which is the maximum number of particles considered. 
Conversely, the minimum number of particles is 191, which occurs when 
𝐿 = 12𝐷𝑠 and 𝜙p ≈ 0.1.

The following observations result: First, the more particles are con-
sidered, the lower are the MLUPs. Second, smaller resolutions contribute 
to a reduction in MLUPs. Third, as the domain size decreases, the MLUPs 
tend to decrease as well. Finally, considering contacts during the simu-
lation further reduces the MLUPs. For the latter, note that at low reso-
lutions and problem sizes, see Fig. 11(a), the impact is quite significant, 
as the MLUPs can decrease by a factor of about 3. However, increasing 
the resolution, see Fig. 11(b), or the domain size, see Fig. 11(c), de-
creases the impact of the contact treatment. It is almost negligible for 
large problem sizes, especially for small particle volume fractions, see 
Fig. 11(d).

The above observations reveal a noticeable impact of the contact 
treatment on the computational performance. As mentioned above, 
however, this trade-off is necessary, especially at high particle volume 
fractions, to correctly capture the physics of particle flows. Furthermore, 

the performance of the four-way coupled simulations shows that it is 
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Fig. 11. Comparison of the MLUPs versus the number of nodes used for simulations with and without explicit contact treatment for different particle volume fractions. 
At the top, the simulations with an edge length of 𝐿 = 12𝐷𝑠 are shown. At the bottom, the edge length is 𝐿 = 15𝐷𝑠. On the left, a resolution of 𝑁 = 18 and on the 
right of 𝑁 = 27 is used.
now feasible to consider thousands of surface resolved particles thanks 
to the proposed parallelization strategy.

5.5. Spheres versus cubes

This section compares the average settling velocities of spheres and 
cubes. These results are of preliminary character and are intended to 
demonstrate the application to complex shapes. In particular, we con-
sider cubes, because they introduce complexity in addition to being 
non-spherical in terms of edges and corners. The simulation setup for 
the volume-equivalent cubes follows that of the spheres described in 
Section 5.1. Note that the initial positions of the particles are also the 
same, as shown for a single parameter set in Fig. 6 and Fig. 12.

Fig. 13 visualizes the fluid velocity field and particles for Ar = 2000
and 𝜙p ≈ 0.3 at different times considering spheres (left) and cubes 
(right). In both cases, fluid velocities tend to be higher in regions of 
lower particle counts, i.e., in larger channels that form between clus-
ters. However, we notice that the maximum velocities are higher when 
considering spheres, but the fluid velocity is more evenly distributed 
when considering cubes.

Table 1 compares the hindered settling behavior of a collective of 
spheres and cubes by displaying the average settling velocity of the 
spheres 𝑢̄p,spheres and cubes 𝑢̄p,cubes along with their absolute and rel-
ative differences and the corresponding particle volume fraction 𝜙p and 
Archimedes number Ar. For both geometries, the single sphere settling 
velocity is used for normalization 𝑢∗ to ensure comparability.

Table 1 shows that the average settling velocity is higher for spher-
ical particles in every case. Furthermore, the absolute difference seems 
to be approximately the same when the Archimedes number Ar remains 
constant. For Ar = 500, the absolute difference in the average settling 
velocities is the largest. As Ar increases, the absolute and relative dif-
11

ference becomes smaller. The relative difference decreases only slightly 
Fig. 12. Simulation domain with 991 cubic particles at their preassigned initial 
positions using a resolution of 𝑁 = 27 cells per volume-equivalent sphere diam-
eter and particle volume fraction 𝜙p ≈ 0.3.

as Ar increases, but it is significantly smaller for low particle volume 
fractions.

The observed differences between the shapes are probably due to 
the fact that the cross-sectional area of the cubes changes with rota-
tion, while the cross-sectional area of the spheres remains constant. The 
cubes have a higher drag coefficient, because they are rarely perfectly 
aligned. Also, the rotation of the cubes disturbs the fluid, which cannot 
flow around them as easily as it does around the rotationally invari-

ant spheres. This seems to distribute the cubes more evenly, increasing 
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Fig. 13. Velocity field around the particles at different normalized times 𝑡∗ for Ar = 2000 and 𝜙p ≈ 0.3.
the relative velocity between the fluid and the particles. In contrast to 
this, the spheres tend to form clusters more easily, occasionally allowing 
larger channels for the fluid to pass through.

The observation that the difference in the average settling velocity 
decreases with increasing Ar, which corresponds to increasing Re, sup-
ports the above assumption that cubes cause far more disturbance than 
spheres. As Re increases, so do the irregularity and chaos within the 
fluid. Therefore, the effect of more complex shapes becomes less impor-
tant. We thus hypothesize that the geometry of the particle is irrelevant 
to turbulent flows.

The observation of a lower average settling velocity for cubes than 
for spheres is qualitatively consistent with literature. Similar findings 
have been made experimentally for cubes [13], rod-like particles [14], 
sand grains [15], and fibers [16]. This leads to the assumption that non-
12

spherical particles generally experience greater hindered settling effects.
6. Summary and conclusions

In the present study, we introduce and verify a novel parallelization 
strategy tailored to the discrete contact model as outlined in the work 
of Marquardt et al. [41], along with a method to simultaneously handle 
periodic boundaries for four-way coupled surface resolved particles. For 
evaluation purposes, we use it together with HLBM, but it can also be 
used with any other PSM.

Our primary goal is to facilitate four-way coupled surface resolved 
particle simulations at high particle volume fractions using HLBM or 
other PSMs, while allowing arbitrary convex particle shapes. To confirm 
this, we perform extensive investigations of hindered settling of up to 
1934 particles. Simulation predictions are compared quantitatively with 
established correlations for spherical particle collectives. In addition, 

we evaluate the computational cost of using this approach compared to 
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Table 1

Comparison of simulation results considering spheres and cubes at var-
ious Archimedes numbers Ar and particle volume fractions 𝜙p. The 
values in the table have been rounded. Discrepancies between calcu-
lated and rounded differences may occur due to rounding.

Ar 𝜙p
𝑢̄p,spheres

𝑢∗

𝑢̄p,cubes

𝑢∗

𝑢̄p,spheres

𝑢∗
− 𝑢̄p,cubes

𝑢∗

(
𝑢̄p,spheres∕𝑢∗−𝑢̄p,cubes∕𝑢∗

)(
𝑢̄p,cubes∕𝑢∗

)

500

0.10 0.321 0.279 0.042 0.130
0.15 0.277 0.226 0.050 0.182
0.20 0.234 0.182 0.052 0.224
0.25 0.196 0.147 0.049 0.250
0.30 0.161 0.118 0.042 0.264

1000

0.10 0.274 0.236 0.038 0.140
0.15 0.235 0.196 0.038 0.164
0.20 0.202 0.161 0.041 0.202
0.25 0.171 0.132 0.040 0.231
0.30 0.144 0.106 0.038 0.264

2000

0.10 0.227 0.195 0.032 0.141
0.15 0.193 0.164 0.029 0.151
0.20 0.169 0.136 0.033 0.194
0.25 0.145 0.113 0.032 0.220
0.30 0.123 0.093 0.029 0.238

simulations using the same HLBM implementation, but without contact 
handling. These results highlight the need for an explicit contact model, 
especially when dealing with high particle volume fractions, while main-
taining efficient performance.

Furthermore, we perform preliminary hindered settling studies on 
cubes to demonstrate the applicability. The investigations carried out 
show a clear influence of the particle geometry on the bulk settling be-
havior. Swarms of cubes settle 13% slower at lower particle volume 
fractions and up to 26% slower at higher particle volume fractions com-
pared to swarms of spheres. As Ar increases, however, the influence of 
the particle shape decreases slightly.

The aforementioned results emphasize the importance of the pro-
posed model, since it is now possible to perform numerical experiments 
of particle flows at high particle volume fractions considering thousands 
of surface resolved arbitrarily shaped convex particles. This enables 
more accurate numerical simulations of real-world processes like filtra-
tion and thickening.

Nomenclature

Acronyms

BGK Bhatnagar–Gross–Krook
DEM discrete element method
DNS direct numerical simulation
EDM exact difference method
EOC experimental order of convergence
HLBM homogenized lattice Boltzmann method
IBM immersed boundary method
LBM lattice Boltzmann method
MEA momentum exchange algorithm
MLUPs million lattice site updates per second
PSM partially saturated method
PU processing unit

Roman symbols

Ar Archimedes number
𝐵 weighting factor
𝐶d drag coefficient
𝒄 discrete velocity
𝑐 damping factor
𝑐𝑠 lattice speed of sound
13

𝐷 diameter
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𝑑 indentation depth
𝑑̇ temporal change of indentation depth
𝑑s signed distance
𝐸 Young’s modulus
𝐸∗ effective Young’s modulus
𝑒 coefficient of restitution
𝑭 force
𝐹𝑔 combination of weight and buoyancy
𝑓 particle population
𝑓 ∗ post-collision particle population
𝑔 standard gravity
𝑰 moment of inertia
𝑘 prefactor in hindered settling correlations
𝐿 edge length of periodic simulation domain
𝑚 mass
𝑁 resolution
𝑛 expansion index
𝒏𝑐 contact normal
𝑝 pressure
Re Reynolds number
𝑆 source term
𝑻 torque
𝑡 time
𝒖 velocity
𝑢∗ reference settling velocity of a single sphere
𝑢0 initial relative velocity of two objects in contact
𝑢k velocity for transition from static to kinetic friction
𝑉 volume
𝑤 weight for the equilibrium distribution calculation
𝑿 center of mass
𝒙 position

Greek symbols

Δ𝑡 time step size
Δ𝑥 grid spacing
𝜂 dynamic viscosity
𝜇k coefficient of kinetic friction
𝜇s coefficient of static friction
𝜈 Poisson’s ratio
𝜌 density
𝜏 relaxation time
𝜙 volume fraction
Ω collision operator
𝝎 angular velocity

Subscripts

A refers to an object A
B refers to an object B
b refers to positions inside a particle’s boundary
c refers to a particle-particle or particle-wall interaction
f refers to the fluid
h refers to the hydrodynamic force
𝑖 refers to the corresponding discrete velocity
n refers to the normal direction
p refers to the particle’s center of mass
s refers to a sphere
t refers to the tangential direction
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