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Abstract

We present a suite of models of the coherent magnetic field of the Galaxy based on new divergence-free parametric
functions describing the global structure of the field. The model parameters are fit to the latest full-sky Faraday
rotation measures (RMs) of extragalactic sources and polarized synchrotron intensity (PI) maps from the Wilkinson
Microwave Anisotropy Probe and Planck. We employ multiple models for the density of thermal and cosmic-ray
electrons in the Galaxy, needed to predict the sky maps of RMs and PI for a given Galactic magnetic field (GMF)
model. The robustness of the inferred properties of the GMF is gauged by studying many combinations of
parametric field models and electron density models. We determine the pitch angle of the local magnetic field
(11° ± 1°), explore the evidence for a grand-design spiral coherent magnetic field (inconclusive), determine the
strength of the toroidal and poloidal magnetic halo fields below and above the disk (magnitudes the same for both
hemispheres within ≈10%), set constraints on the half-height of the cosmic-ray diffusion volume (�2.9 kpc),
investigate the compatibility of RM- and PI-derived magnetic field strengths (compatible under certain
assumptions), and check if the toroidal halo field could be created by the shear of the poloidal halo field due to the
differential rotation of the Galaxy (possibly). A set of eight models is identified to help quantify the present
uncertainties in the coherent GMF spanning different functional forms, data products, and auxiliary input. We
present the corresponding sky maps of rates for axion–photon conversion in the Galaxy and deflections of
ultrahigh-energy cosmic rays.

Unified Astronomy Thesaurus concepts: Milky Way magnetic fields (1057); Galaxy magnetic fields (604); Milky
Way Galaxy physics (1056); Cosmic rays (329); Cosmic ray astronomy (324)

1. Introduction

Spiral galaxies are known to be permeated by large-scale
magnetic fields with energy densities comparable to the
turbulent and thermal energy densities of the interstellar
medium; see, e.g., Beck (2016) for a recent review. A good
knowledge of the global structure of these fields is important
for understanding their origin, inferring their effect on galactic
dynamics, estimating the properties of the diffuse motion of
low-energy Galactic cosmic rays, and studying the impact of
magnetic deflections on the arrival directions of extragalactic
ultrahigh-energy cosmic rays. The Galactic magnetic field
(GMF) is also important for new physics studies, for instance,
axion–photon conversion in the GMF or the interpretation of
possible signatures of astrophysical dark matter annihilation.

The determination of the large-scale structure of the
magnetic field of our Galaxy is particularly challenging since
one must infer it from the vantage point of Earth, located inside
the field. Previous attempts to model the GMF are summarized
by Jaffe (2019). In this paper, we focus on the coherent
magnetic field of the Galaxy, leaving the study of its turbulent
component to the near future. Following Jansson & Farrar
(2012a; hereafter JF12), we derive the GMF by fitting suitably
general parametric models of its structure to the two
astrophysical data sets that are the most constraining of the
coherent magnetic fields: the rotation measures (RMs) of
extragalactic polarized radio sources and the polarized intensity

of the synchrotron emission of cosmic-ray electrons in the
Galaxy.
The relation of these two astrophysical observables to the

magnetic field is detailed in Section 2, followed by a
description of the RM and PI data in Section 3. The
interpretation of these data relies on the knowledge of the
three-dimensional density of thermal electrons and cosmic-ray
electrons in the Galaxy. We discuss these auxiliary models in
Section 4. The parametric models of the GMF investigated in
this paper are introduced in Section 5, and the model
optimization is described in Section 6.
The combination of different data sets, auxiliary models, and

parametric functions yields an ensemble of GMF models that
reflect the uncertainties and degeneracies inherent in the inference
of the global field structure from the limited information provided
by the RM and PI data. In Section 7, we narrow down these
model variants to a few benchmark models that encompass the
largest differences within the ensemble.
A typical application of the global magnetic field models is

the inference of the arrival direction of cosmic rays at the edge
of the Galaxy and the determination of the conversion
probability of axions in the magnetic field of the Galaxy. In
Section 8, we briefly comment on the implications of our study
on these topics.
We conclude this paper by giving a brief summary of our

findings in Section 9 and addressing the question: what is known
and not known about the coherent magnetic field of the Galaxy?

2. Observables

In this work, we derive the global structure of the GMF from
two astrophysical observations, Faraday RMs and PI. These
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two quantities provide complementary information on the
parallel and perpendicular components of the coherent magn-
etic field along the line of sight from the observer at Earth
through the Galaxy.

The RM relates the Faraday-rotated polarization angle χ of
an astrophysical source observed at a wavelength λ to its
intrinsic polarization angle χ0 after passing through the
magnetized plasma of the Galaxy via

c l c l= + RM . 10
2( ) ( )

We follow the IAU convention based on Manchester (1972; see
also Ferrière et al. 2021) in which the RM is positive for a
photon traveling in the same direction as the magnetic field
points through an ambient medium with free electrons. In our
notation, taking the observer to be at the origin and the positive
unit vector ur pointing away from the observer, RM is given by

ò= -
¥

x B x uC n r r drRM ,rRM
0

e ( ( )) ( ( ))

where the position x at a distance r from an observer located at
x0 is x(r)= x0+ ur r,

4 ne denotes the density of the thermal
electron plasma in the interstellar medium (ISM), and =b CRM[ ]

e pe m c8 e
3

0
2 2 3( ) ≈ 0.8119 (rad m−2) (cm3 pc–1 μG) (e.g.,

Bradt 2008). Thus, RM is negative for a magnetic field oriented
away from the observer.

The interpretation of RM becomes more complicated if one
considers the possibility of a small-scale correlation or
anticorrelation of magnetic fields and thermal electrons. An
anticorrelation could arise if the magnetic field is in pressure
equilibrium with the thermal electron plasma. In this case, the
local Faraday rotation would be systematically diminished, and
interpreting the RM assuming no anticorrelation would under-
estimate the magnitude of the integrated line-of-sight magnetic
field. A positive correlation could be caused by compression
enhancing both the magnetic field and electron density. These
effects were studied by Beck et al. (2003; see also Seta &
Federrath 2021), who provide the following approximate
relation between the RM for the uncorrelated case, RM0, and
the general case with a correlation coefficient κ,
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where B denotes the coherent field and 〈b2〉 is the mean squared
field strength of the turbulent magnetic field. In one of our
model variants, we will allow for a nonzero κ.

The polarized synchrotron intensity (PI) originates from
cosmic-ray electrons and positrons spiraling in the coherent
magnetic field of the Galaxy. The observed PI depends on the
cosmic-ray electron-density-weighted incoherent superposition
of synchrotron emission along the line of sight. For long
wavelengths, the effect of Faraday rotation along the path
between emission and observation needs to be taken into
account. At the magnetic field strengths and frequencies
relevant for this analysis (a few μG and 30 GHz), the typical

cosmic-ray energy responsible for synchrotron emission is of
the order of tens of GeV (e.g., Longair 2011), and the Faraday
depolarization is not significant.
The relationship between the synchrotron volume emissivity

and the magnetic field strength is particularly simple for the
case of electrons with an energy distribution following a power
law, = -n E n E p

cre 0( ) :

n nµ =n
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where in the last step, the approximation of p≈ 3 was used,
which is applicable for a canonical E−2 spectrum at the source
softened to E−3 due to energy losses from synchrotron cooling
and inverse Compton scattering.
However, the cosmic-ray electron spectrum is not expected

to be an exact power law (e.g., Orlando & Strong 2013). To
obtain the local volume emissivity at the position x, we
therefore integrate the single-electron emissivity over energy,

ò=n

¥

^x x xj j E B n E dE, , , 4
0

cre( ) ( ( )) ( ) ( )

where the emissivity j(E) of an electron of energy E is given in
Equations (8.56) and (8.57) of Longair (2011) and can be
conveniently evaluated using the synchrotron functions
provided by the GSL library.5 The integral over the emissivities
along the line of sight given the three-dimensional distribution
of xn E,cre ( ) and B⊥(x) yields the Stokes parameters Q and U
of the PI. Q and U add up quadratically to the total PI6 via

= +Q UPI , 52 2 2 ( )

and their ratio defines the observed polarization angle,

y = U Q
1

2
arctan . 6PA ( ) ( )/

ψPA is perpendicular to the line-of-sight average of the
ncre-weighted magnetic field angle in the plane of the sky,

y y pá ñ = + 2; 7mag PA ( )

i.e., the analysis of Q and U is sensitive to both the strength and
the orientation of the perpendicular projection of the magnetic
field along the line of sight.
Isotropic random magnetic fields do not contribute to the PI,

but an anisotropic random field results in a net PI, because Q
and U define only the plane of polarization and are thus
invariant under a 180° rotation of the magnetic field.
Anisotropic random magnetic fields can originate from
magnetohydrodynamic turbulence (Goldreich & Sridhar 1995)
or from the stretching or compression of a flux-frozen isotropic
random magnetic field (Laing 1980). The latter can lead to
basically one-dimensional fluctuations along a preferred
orientation, termed “ordered random” by Jaffe et al. (2010)
or “striated” by Jansson & Farrar (2012a). A striated random
field does not make a net contribution to the RM since the
contributions of opposite-sign regions cancel out. However, it
does contribute to the polarized synchrotron emission since that
depends only on the orientation and not the direction of the4 Throughout this work, we assume an observer at x0 = xe = (−re, 0, ze) in

a right-handed Galactic coordinate system. The vertical distance of the Sun
from the Galactic plane ze is somewhere between 0.006 ± 0.001 kpc (Joshi
et al. 2016) and 0.026 ± 0.003 kpc (Majaess et al. 2009) and can thus be
neglected for the purpose of this work; i.e., we set ze → 0. For the distance of
the Sun to the Galactic center, we adopt the precise measurement of the
GRAVITY collaboration, re = 8.178 ± 0.025 kpc (Abuter et al. 2019).

5 https://www.gnu.org/software/gsl/doc/html/specfunc.html#synchrotron-
functions
6 Note that instrumental noise on Q and U leads to a positive bias in PI when
estimated via Equation (5) (e.g., Wardle & Kronberg 1974). Since we will fit
the measured Q and U data, but not PI, the bias is not important for this work.
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field. Jansson & Farrar (2012a) considered different values of
the striation factor for different components of the field but
found them to be all the same. Here we model the possible
striation via a simple spatially independent multiplicative factor
to the coherent field,

x¢ = +B B1 . 8( ) ( )

The striation factor ξ is related to the striation factor β used
in JF12, for which a cosmic-ray electron energy spectrum with
a spectral index of p= 3 was assumed, via x b+ = +1 1( ) .

3. Data Products

3.1. RMs

We assemble a sky map of extragalactic RMs based on
individual measurements from various catalogs and surveys as
illustrated in Figure 1. Most of the currently known
extragalactic RMs were derived by Taylor et al. (2009) from
the two-band polarization data of the NVSS survey (Condon
et al. 1998) leading to 37,543 RMs with a decl. of >−40°.
Since only two frequencies are available in this data set, the
derived RMs are susceptible to nπ ambiguities in Equation (1)
for high values of |RM|. We replace the values of 20 of these
high-RM sources with the ones obtained by the broadband
follow-up observations of Ma et al. (2019); three are discarded
based on these reobservations.

For measurements predating the year 2014, we use the
catalog of 4553 high-quality RMs curated by Xu & Han
(2014). Notable surveys with NRM> 100 collected in this
catalog are from Simard-Normandin et al. (1981), Broten et al.
(1988), Brown et al. (2003, 2007), Klein et al. (2003),
Broderick et al. (2007), Feain et al. (2009), Heald et al.
(2009), Mao et al. (2010, 2012a, 2012b), and Van Eck et al.
(2011).

A total of 3220 RMs in the southern equatorial hemisphere
are taken from the S-PASS/ATCA wide-band radio polari-
metry survey (version 0.9) of Schnitzeler et al. (2019; applying
the quality cuts given in Section 4 of that paper and requiring

emission at a single Faraday depth as well as model fits with
χ2/ndf< 10). This survey is of particular significance, since it
complements the sky coverage of the NVSS survey. GMF
model fits predating the S-PASS/ATCA release, e.g., JF12,
were constrained by only a very small number of RMs in the
18% southernmost equatorial sky.
A further 5999 RMs published in the years 2014–2022 are

taken from the data compilation of Van Eck et al. (2023; v1.1.0
at Van Eck et al. 2022). Notable surveys with NRM> 100 in
this compilation are from Farnes et al. (2014), Anderson et al.
(2015), Kaczmarek et al. (2017), O’Sullivan et al. (2017), Betti
et al. (2019), Ma et al. (2020), Riseley et al. (2020), and Van
Eck et al. (2021). In addition, we include the 2461 recent
extragalactic RMs of O’Sullivan et al. (2023).
In this data set of 53,773 RMs, we identify obvious multiple

measurements of the same extragalactic object if their
coordinates correspond to the same pixel ID on a high-
resolution Hierarchical, Equal Area, and iso-Latitude Pixelation
of the sphere (HEALPIX) sky map with Nside= 2048 (angular
pixel width of 1 7).7 All duplicate RMs but the measurement
with the best frequency coverage are dropped, leaving 47,054
RMs of unique extragalactic objects.
In the next step of data selection, we apply a two-pass

algorithm to reject outliers caused by either a large source-
intrinsic RM or a wrong resolution of the nπ ambiguity. The
procedure is similar in spirit but different in detail to that used
for the data set of JF12. For each RM measurement, we
accumulate surrounding measurements within an angular
collection radius starting at 1°. The collection radius is
increased until a sample of at least 10 independent surrounding
RM measurements are found that differ by less than three
median absolute deviations from the median RM of that

Figure 1. Overview of the RM data used in this analysis. Measurements are shown in Galactic coordinates using a cylindrical projection that visually preserves the
point density per solid angle. RMs published before 2012 (and thus available for the JF12 analysis) are shown as gray and black circles.

7 The HEALPIX package is used to subdivide the sky into
equal-area pixels (Górski et al. 2005). The resolution Nside of a HEALPIX
map is related to the number of pixels via =N b N12pix side

2[ ] . For a map
with Nside = 16, the standard resolution used in this paper, the number of

pixels is Npix = 3072 with an angular width of approximately q »b[ ]
p p p =  = N N4 180 3 60 3 . 66pix side/ / / /
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sample. In the second pass, these sources are then used to
calculate the mean and standard deviation of the RM in the
region surrounding each object. We keep objects if their RM
value is closer than three standard deviations from the
surrounding mean.

The remaining 44,857 RMs are displayed in Figure 2(a). For
this figure, we show the average of RMs in an Nside= 32
HEALPIX map.8 For the purpose of this figure, 1524 pixels
(12%) without a measurement were inpainted with the average
of their surrounding pixels. At this somewhat higher resolution
than the one used for the analysis (see below), both the large-
and small-scale features of the extragalactic RMs are visible.
The most salient large-scale features of the RM sky have been
known since the early advent of RM catalogs; see, e.g., the
discussion in Andreasyan & Makarov (1988) and Han et al.
(1997). For the inner Galaxy (longitudes between −90° and
90°), there is an antisymmetry in both the longitude and latitude
of the sign of the average RMs, whereas in the outer Galaxy
(longitudes from 90° to 270°), the average RMs have the same
sign above and below the plane, as summarized by the
following schematic of an RM sky map,

ð9Þ

In addition, many small-scale features can be identified, some
of which can be attributed to foreground objects. We remove
some of the most obvious regions, indicated by circles in
Figure 2(b). First, we discard lines of sight if they pass through
magnetized objects with a large angular size, i.e., M31, the
Small and Large Magellanic Clouds, Centaurus A (core and
lobes), and the Galactic center. The excluded regions around
these objects are shown in red in Figure 2(b). Second, we
deselect RMs if the thermal electron density along the line of
sight is dominated by a single object. Such local overdensities
in the diffuse warm ionized medium (WIM) are caused by the
ultraviolet light of young massive stars ionizing the ISM
around them, creating an H II region. RMs in lines of sight
passing through H II regions are often dominated by the
product neB∥Δ inside the region of thickness Δ; see, e.g.,

Heiles et al. (1981) and Harvey-Smith et al. (2011). These RMs
are thus not representative of the large-scale GMF. Regions of
locally enhanced thermal electron density can, e.g., be
identified by the emission measure, ò=

¥
n dlEM

0 e , which is
displayed in Figure 2(b) based on the composite of Hα surveys
(VTSS, SHASSA, and WHAM) from Finkbeiner (2003). More
than 8000 Galactic H II regions are known in the Galaxy
(Anderson et al. 2014), but most of them are far away, and thus
of small angular extent, and/or at low Galactic latitudes, where
the overall RM integral through the plane is large enough that it
is not overshadowed by the contribution of a single H II region.
We therefore deselect only the lines of sight that overlap with
an H II region if it is either of large angular extent (r> 10°) or
at high latitudes, |b|> 5°. These regions are displayed in blue
in Figure 2(b) if their size is >0°.5.
The final 41,686 RMs are then binned in 3072 angular pixels

of an Nside= 16 HEALPIX map with an angular diameter of
∼3°.7. For each pixel, we calculate the mean and unbiased
sample variance to be used in the model optimization (see
Equation (48) below). If the number of RMs within 1 pixel is
<10, then the variance (but not the mean) is calculated using
the 10 RMs with the closest angular distance to the center
direction of the pixel. This leads to 2838 pixels with RM data,
where 46 pixels are excluded because no data were observed in
this direction and another 188 pixels are excluded by the masks
displayed in Figure 2. The final masked and binned RM data
are shown in Figure 10(b) in Section 7.

3.2. Polarized Synchrotron Emission

The polarized synchrotron emission from the Galaxy is best
observed at high frequencies, where the depolarization of the
signal due to Faraday rotation is negligible. At Faraday depths
typical for the Galaxy, the change in polarization angle
becomes negligible in the tens of GHz range; see
Equation (1). The received PI in units of Rayleigh–Jeans
antenna temperature, T= c2/(2ν2kB)PI, decreases as nbs with
frequency. Here the synchrotron spectral index βs≈−3 for a
cosmic-ray electron spectrum with index p= 3; see
Equation (3). Another source of polarized emission from the
Galaxy originates from thermal dust with a spectral index of
βd≈+1.6 (Ade et al. 2015). Empirically, the crossover
between the two components is at around 100 GHz.
The “sweet spot” for the observation of synchrotron

emission is therefore at high enough frequencies such that
Faraday depolarization is negligible, but not too high, such that

Figure 2. Sky map of RMs (left) and masked regions (right). (a) Sky map of extragalactic RMs (44,857 RMs averaged over Nside = 32 HEALPIX pixels). The color
scale is saturated at |RM| � 150 rad m−2. (b) Masked region for the RM analysis. Selected astrophysical objects (red) and H II regions (blue). The gray-scale
background shows the sky map of emission measures.

8 This and subsequent maps shown in this paper are area-preserving
Mollweide projections of the sky in Galactic coordinates with the Galactic
center at the origin. The longitude increases toward the left from 0° at the
center to +180° and decreases toward the right from +360° at the center to
+180° (or, equivalently, from 0° to −180°).
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the signal is not dominated by polarized dust emission. The
Wilkinson Microwave Anisotropy Probe (WMAP) and Planck
satellites operated in this frequency regime, with a frequency
threshold of 20 and 30 GHz, respectively.

From WMAP, we use the final 9 yr results (DR5) on the
polarized synchrotron emission at 22.5 GHz provided at a
HEALPIX resolution of Nside= 64 (Bennett et al. 2013). Four
variants of Q and U sky maps are available, differing mainly by
the constraints placed on βs during analysis. These four variants
of the derived PI are in good agreement outside of the Galactic
plane, which is masked in our analysis (see below). We use the
“base” model, which is the most data-driven variant in which
the synchrotron spectral index was allowed to float freely in
each sky pixel. We inpaint the pixels that are flagged as having
an erroneous component separation (2.7%) with the Q and U
averages of their eight surrounding neighbor pixels.

From Planck, we use the third release (R3.0) of the polarized
synchrotron foreground at 30 GHz derived from component
separation using the COMMANDER software (Akrami et al.
2020). These sky maps are provided at a high resolution of
Nside= 2048, and we average the Q and U values to obtain
maps with Nside= 64 to match the resolution of WMAP.
During this averaging, spurious outliers in the high-resolution
maps are identified and discarded if the value is more than 5σ
away from the median of the values within the low-resolution
pixel. This procedure removes 0.18% of the high-resolution
data points.

We then combine the Q and U sky maps from WMAP and
Planck into a lower-resolution map at Nside= 16 by taking the
simple arithmetic average of all 32 measurements in each pixel
(16 from each experiment). WMAP intensities are extrapolated
to the Planck frequency with a spatially constant synchrotron
spectral index of βs=−3.15 based on the mean value predicted
by our simulations described in Section 4.2. Note that due to
the proximity of the WMAP and Planck frequencies, even a
large difference between the actual and assumed value of
Δβs= 0.2 would introduce a variation in extrapolated intensity
of only - = bD1 22.5 GHz 30 GHz 6%s( ) . The variance of
the 32 data points per pixel is used to calculate the weights in
the χ2 minimization as discussed in Section 6.

The Stokes parameters derived by the WMAP and Planck
collaborations exhibit systematic large-scale differences; see
Figure 22 in Appendix A. These differences could be attributed
either to large-scale spatial variation of the synchrotron spectral
index or to residual calibration uncertainties in one or both
of the data sets. A combined analysis of WMAP and
Planck data was recently presented by the COSMOGLOBE
Collaboration (Watts et al. 2023, 2024), performing the
component separation and the calibration of the data sets
simultaneously. We will use the COSMOGLOBE results as an
alternative to our average and study the effect on the
parameters of GMF models in Section 7.

Our combined maps of Stokes Q and U and the PI of the
Galactic synchrotron emission at 30 GHz are shown in
Figure 3. As can be seen, both Q and U exhibit large-scale
features, which we will interpret in the following as imprints of
the large-scale features of the GMF. However, care must be
taken not to include regions with strong local features that
could bias our fits. We therefore mask out some regions of the
sky in fitting to the GMF parameters.

The elements of our mask when fitting the PI data are shown
in Figure 4. Red indicates the mask used in the original WMAP

analysis. It excludes regions of high PI along the Galactic plane
and the north polar spur and pixels containing strong
extragalactic sources such as the radio lobes of Centaurus A.
The blue region depicts the additional PI mask introduced by
Jansson & Farrar (2012a) mainly to remove a presumably local,
high-latitude polarized emission at 90° < ℓ< 180°. Finally, we
also mask the green regions as an attempt to remove further
large circular arcs (called loops, spurs, or filaments) visible in
PI. Here we exclude data in the direction of loops I–IV, as
defined by Berkhuijsen et al. (1971), and further filaments
identified by Vidal et al. (2015). The union of the above leads
to our final PI mask. The cumulative application of these three
masks leaves 73.1% (WMAP), 63.4% (WMAP + JF12), and
57.8% (WMAP + JF12 + loops) of the sky for analysis.
It is worthwhile to note that the exact attribution of features

in the polarized radio sky to local or global phenomena in the
Galaxy is still under debate; see, e.g., Lallement (2023). Some
of the loops and filaments could be caused by local supernova
remnants expanding into the surrounding ambient magnetic
field (Spoelstra 1973), whereas others might be related to large-
scale magnetized outflow from the Galactic center (Carretti
et al. 2013), related to the so-called “Fermi bubbles” observed
in gamma rays (Ackermann et al. 2014) and surrounded by
“eROSITA bubbles” in X-rays (Predehl et al. 2020). These are
shown as violet and orange regions in Figure 4, demonstrating
that our mask retains some directions that contain contributions
from the Fermi and eROSITA bubbles.

4. Auxiliary Models

4.1. Thermal Electrons

The magnetized plasma responsible for the Faraday rotation
of extragalactic radio sources resides mostly in the WIM of the
Galaxy (e.g., Ryden & Pogge 2021). To interpret the RMs, a
three-dimensional model of the density, ne(x), of these free
thermal electrons is needed. Here we use two models of ne:
NE2001 of Cordes & Lazio (2002) and YMW16 of Yao et al.
(2017). Both models were tuned to describe the dispersion
measure (DM) of Galactic pulsars, which is given by the line-
of-sight integral from Earth to the pulsar at a distance d,

ò= xn r drDM
d

0 e ( ( )) . More than 3000 pulsars with measured
DMs are listed in the current version (1.70) of the ATNF pulsar
catalog (Manchester et al. 2005), but only for a few is the
distance d well known: NE2001 was tuned to the DMs of 112
pulsars, and YMW16 used 189. Given the large number of
parameters of these models (e.g., the YMW16 model has 82
fixed parameters and 32 fitted parameters) and the scarcity of
data, they rely, to a large extent, on astrophysical priors for the
geometrical topology of the thermal electron density.
Particularly important for the modeling of the large-scale

structure of the GMF is the vertical structure of the Galactic
WIM, which is relatively well constrained by the DMs of
pulsars in high-latitude globular clusters (Gaensler et al. 2008).
Since the fit of NE2001 predates most of these data, we replace
the original value of the exponential scale height of the diffuse
WIM of =h 0.95 kpcWIM with = h 1.3 0.2 kpcWIM as
derived by Schnitzeler (2012) for this model. A larger value
of = h 1.67 0.05 kpcWIM was inferred by Yao et al. (2017)
for their YMW16 model.
An illustration of the thermal electron densities of YMW16

and NE2001 is shown in Figure 5. As can be seen, the two
models differ substantially, especially regarding the positions
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and widths of the spiral arms, the density in the molecular ring
at r≈ 5 kpc and in the Galactic center, and the scale height of
the thick disk of the WIM. Whereas YMW16 can predict pulsar
DMs with a somewhat higher fidelity than NE2001, the latter
model remains a viable alternative to describe the large-scale
features of the WIM (e.g., Price et al. 2021). By using both
models in our GMF fits, we can study the systematic effects
arising from different assumptions on the thermal electron
density.

4.2. Cosmic-Ray Electrons

Calculating Galactic synchrotron emission requires not only
a model of the GMF but also a model of the three-dimensional
density distribution and energy spectrum of cosmic-ray
electrons in the Galaxy, xn E,cre ( ).

In contrast to the purely phenomenological thermal electron
models discussed in the previous section, predictions of ncre are
based on detailed modeling of the production and propagation
of electrons and positrons in the Galaxy (e.g., Moskalenko &
Strong 1998) to obtain a steady-state solution of the diffusion
equation of cosmic rays in the Galaxy (Ginzburg & Syrovats-
kii 1964). In its simplest version (sometimes referred to as
“plain diffusion”), the defining quantity of the model is the
diffusion coefficient of charged particles in the ISM. Most
calculations assume a homogeneous and isotropic Galactic

diffusion coefficient D within a “diffusion volume” approxi-
mated as a cylinder of half-height hD.
The normalization and rigidity9 dependence of D is

determined from measurements of the fluxes of secondary
and primary cosmic-ray nuclei at Earth. The most precise
estimates (in terms of the uncertainty of both cosmic-ray
flux and nuclear cross sections) are derived from the ratio of the
flux of secondary boron nuclei and (mostly) primary carbon
nuclei. However, secondary-to-primary ratios can only con-
strain the ratio, D/hD (e.g., Maurin et al. 2001). Estimates of
D/hD in a plain diffusion scenario range from 0.03 kpcMyr−1

(Yuan et al. 2017; Génolini et al. 2019) to 0.10 kpcMyr−1

(Cummings et al. 2016) at a reference rigidity of 10 GV.
The degeneracy between hD and D can in principle be

broken by data on “cosmic clocks” (e.g., 10Be/9Be or Be/C),
but due to the poor quality of the current data and uncertainties
in the spallation cross sections, only mild constraints on the
halo height can be derived, and the current estimates of hD are
in the range 2–10 kpc (e.g., Evoli et al. 2020; Weinrich et al.
2020; Maurin et al. 2022). We therefore consider diffusion
volumes having hD= 2, 4, 6, 8, and 10 kpc and derive the
corresponding ncre for each to allow us to assess the uncertainty
in the GMF due to the present uncertainty in hD. For each of the
five different values of the height of the diffusion volume, hD,
we solve the cosmic-ray diffusion equation with the DRAGON
program (Evoli et al. 2008).10

For each value of hD, we obtain the diffusion coefficient at
10 GV from D/hD= 0.046 kpcMyr−1, and we take the rigidity
dependence of D( ) to be the one derived for the “PD2”model of
Cummings et al. (2016). At high rigidities ( 5 GV ), the
diffusion coefficient scales as µ b D 0.578 0.073[ ] , i.e., compa-
tible with the power-law scaling b 1 2[ ] / , typical for a turbulent
magnetohydrodynamical cascade (Iroshnikov 1964; Kraichnan
1965). The spatial distribution of Galactic cosmic-ray sources is
taken to follow the radial distribution of pulsars in the
Galaxy (Lorimer et al. 2006), used as a proxy for the distribution
of supernova remnants, and we use the JF12 magnetic field model
to calculate the cooling of cosmic-ray electrons due to synchrotron
radiation. The maximum Galactocentric radius of the diffusion
volume was set to =R 18 kpcmax .

Figure 3. Stokes Q (top panel) and U (middle panel) parameters and PI (bottom
panel) from the averaged synchrotron maps of Planck and WMAP at 30 GHz.

Figure 4. Polarized synchrotron mask used in this analysis. Masked regions are
shown in red, blue, and green (see text). For comparison, the outlines of the
Fermi and eROSITA bubbles are shown in violet and orange.

9 The rigidity of a particle with charge Ze and momentum p (energy E)
is  = pc Ze E Ze( ) ( ).
10 We choose DRAGON over the other widely used solver GALPROP (Strong &
Moskalenko 1998) because at the time of setting up our analysis chain, only
DRAGON supported spatially varying diffusion coefficients. In this paper,
however, we investigate only homogeneous diffusion.
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We constrain the solutions of the diffusion equations by the
measurements of cosmic-ray proton and lepton fluxes in the
local ISM from the Voyager I satellite (Cummings et al. 2016)
and inside the heliosphere from AMS-02 orbiting Earth on the
International Space Station (Aguilar et al. 2014, 2015, 2019).
We first find the proton spectrum at the source; this then fixes
the contribution to the lepton flux at Earth coming from proton
interactions with cosmic rays and the ISM (pCR+ pISM),
accounting for a small adjustment due to contributions from
nuclei. We then attribute the remaining lepton flux to the
injected lepton spectrum. Thus, in this simplified ansatz, the
well-known “positron anomaly” (Adriani et al. 2009), i.e., the
excess of positron flux beyond expectations from secondary
production at energies 10 GeV, is attributed to the injected
lepton spectrum. Such an ansatz is plausible if the astrophysical
sources of primary positrons have a similar spatial distribution
as the sources of primary electrons, e.g., if pulsars are the
sources of the “anomalous” positrons and electrons (Hooper
et al. 2009) and the bulk of the electrons are accelerated in
supernova remnants. Then, if the interest is only in the sum of
electrons and positrons, as it is in our case, the two sources can
be lumped together into a single source class. Due to the fast
cooling time of electrons and positrons at high energies, the
high-energy flux at Earth might be dominated by a local source
and thus not representative of the average lepton flux in the
Galaxy (e.g., Di Mauro et al. 2014; Joshi & Razzaque 2017;
Mertsch 2018). However, these effects are expected to play a
role only above 100 GeV and are thus not important for the
synchrotron frequencies of interest in this study. An example of
our fit of the cosmic-ray lepton flux is shown in the left panel of
Figure 6.

As a further systematic check, we also interpret the
synchrotron data using the z10LMPDE cosmic-ray electron
model, a GALPROP calculation of Orlando & Strong (2013,

hereafter OS13) used in Adam et al. (2016) for GMF
modeling (T. R. Jaffe 2017, private communication). This
model assumes a half-cylinder height of hD= 10 kpc, a
maximum radius of =R 20 kpcmax , and the source distribution
from Strong & Moskalenko (1998) with a radial cutoff at
15 kpc. Further differences to our fiducial GALPROP calculation
include a different magnetic field (Sun & Reich 2010) for
electron cooling and a different value of D/hD= 0.031 at
10 GV. We normalized this model to match the flux of
electrons and positrons at 35 GV measured by the Alpha
Magnetic Spectrometer.
The vertical and radial distribution of the cosmic-ray lepton

density at 10 GV for different values of hD and the OS13 model
are shown in the middle and right panels of Figure 6. As
expected, a larger half-height of the diffusion volume leads to a
larger cosmic-ray occupation in the halo, while the density in
the disk is approximately constant due to the normalization at
Earth. The different source distribution assumed for the OS13
results is mainly responsible for the very different radial
distribution of cosmic-ray leptons.
Of course, further variations beyond the scale height are

possible, and we studied the effect on synchrotron maps of
several other type of variations, as described below. However,
only the variation of hD makes a significant change in the PI
predictions outside of the mask we use, so we only include the
six ncre models outlined above in our GMF model fitting.11 A
spiral distribution of sources can affect the PI up to 25% in the
Galactic plane but has negligible effects outside of the
polarization mask used in this work. Using the Planck tune
of the JF12 random field (Adam et al. 2016) for synchrotron

Figure 5. Left: thermal electron density, ne, for the YMW16 and NE2001 models. The top panel shows the midplane density at z = 0, and the bottom panel gives an
edge-on view of the density at y = 0 in the x–z plane. Structures visible at around the position of the Sun (≈(−8.2, 0, 0) kpc) are due to the modeled under- and
overdensities of the local ISM. Right: thermal electron density along the Galactic x-axis at z = y = 0 (top) and along the z-axis at x = −6 kpc and y = 0.

11 Note that in the framework of a tunable striation parameter, an overall factor
in the PI does not affect the derived coherent magnetic field, but only the
striation factor.
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cooling instead of the original model (Jansson & Farrar 2012b)
affects the intensity by up to 16% in the outer Galaxy (where a
spiral arm with a large random field is present in the original
model to describe the intensity from the “fan region”), but the
differences are again negligible outside the masked region used
in this paper. The same holds for ncre models using a three-
dimensional model of the interstellar radiation field from Porter
et al. (2017). Moreover, in this study, we did not iteratively
readjust the magnetic field used for the synchrotron energy
losses in the ncre calculations. But the resulting refitted coherent
fields are of the same order of magnitude as the ones of JF12;
therefore, the electron cooling is dominated by the sum of the
contributions from the random magnetic field and inverse
Compton scattering. Finally, it was shown by Orlando (2018)
that the cosmic-ray electron spectrum above a few GeV is
insensitive to the inclusion of reacceleration and/or convection
in the diffusion equation; therefore, we do not consider it here.

The six models shown in Figure 6 will be used in this paper
to study the systematic effect of the three-dimensional model of
ncre on the derived structure of the GMF.

We note that future systematic studies should include
an investigation of the effects of a more realistic particle
propagation with an inhomogeneous and/or anisotropic diffu-
sion coefficient (e.g., Di Bernardo et al. 2013; Merten et al.
2017; Giacinti et al. 2018; AL-Zetoun & Achterberg 2018),
ideally with a self-consistent description of the relation between
the magnetic field and the diffusion coefficient (e.g., Kuhlen
et al. 2022; Blasi 2023).

5. Magnetic Field Models

5.1. General Considerations

The goal of this work is provide the best possible analytic
approximation to the large-scale coherent GMF, given the
limitations of the present data and other required input. To this
end, we describe the field as a superposition of functions that
are general enough to capture the main large-scale features of
its structure.

Inspired by previous models of the coherent GMF
(e.g., Stanev 1997; Prouza & Šmída 2003; Sun et al. 2008;

Pshirkov et al. 2011; Jansson & Farrar 2012a), we describe the
global structure of the GMF as a superposition of a large-scale halo
field and a logarithmic spiral field in the Galactic disk beyond a
minimum radius. The halo field is composed of a toroidal and a
poloidal field as introduced by Jansson & Farrar (2012a). The need
for each of these components to describe large-scale features of the
RM and PI sky is discussed in Section 7. In this section, we give a
brief overview of the different parametric descriptions investigated
in this paper and note ways in which the actual coherent GMF is
simpler than the most general case.

5.2. Disk Field

5.2.1. General Features

The observations discussed above of synchrotron polariza-
tion patterns in face-on external spiral galaxies, as well as the
RMs of Galactic pulsars, suggest that the coherent field of the
Milky Way follows a spiral pattern close to the disk, outside a
few kpc from the Galactic center. A logarithmic spiral is
inherently divergence-free, making it an attractive func-
tional form.
In several previous GMF models, the magnetic field was

assumed to be organized in “arms” with a predefined geometry
with the pitch angle α fixed to a value motivated by that of the
spiral matter density of the Milky Way (see, e.g., Brown et al.
2007; Jaffe et al. 2010; Jansson & Farrar 2012a; Han et al.
2018). The magnitude and sign within each arm were adjusted
to match the data, with the total radial flux being constrained to
be zero. Within a given arm, the field was approximated to be
azimuthally constant, leading to strong discontinuities at the
boundaries of the arms.
For a fixed-thickness disk with logarithmic spiral arms, flux

conservation implies the field ∼r−1, leading to an unphysical
singularity at the origin. Therefore, the field in such models was
assumed to vanish or transition to a purely toroidal configura-
tion at some inner radius.
It should be noted that although the total radial flux vanishes

for both the outer logarithmic spiral and inner toroidal regions,
the radial flux does not vanish locally in the spiral arm region,
whereas it does vanish locally in the inner region. Therefore,

Figure 6. Left: flux of cosmic-ray electrons and positrons at Earth. Black points show the measurements. The calculated flux in the local ISM (LISM) for the hD = 6
kpc case is shown as a blue band, and the contribution from secondary production (pCR + pISM interactions) is indicated by a dashed line; the solar-modulated flux at
Earth is shown as a red line. The additional x-axis at the top of the figure shows the magnetic field strength needed to obtain a synchrotron peak at νc = 30 GHz (i.e.,
the frequency for which the Planck collaboration reports the polarized synchrotron emission used here) for the electron energy given in the x-axis at the bottom of the
figure. Middle: density of 10 GV cosmic-ray electrons at a Galactocentric radius r = 4 kpc as a function of Galactic height z and (right) as a function of radius r at the
midplane (z = 0). Different choices of the half-height hD of the diffusion volume are shown as lines with different colors. The dashed line is the result of Orlando &
Strong (2013) for hD = 10 kpc.
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the flux lines must be microscopically reorganized in some
transition region at the boundary. This structure is physically
plausible due to the mechanical action of the Galactic bar,
which extends several kpc from the Galactic center and rotates
significantly faster than the disk. The turbulence in the plasma
due to the stirring of the bar entangles field lines that, at a larger
radius, are ordered. In the inner, stirred region, these field lines
either contribute to Brand or reconnect, converting magnetic
energy to thermal energy.

Global radial flux conservation is compatible with a nonzero
toroidal coherent field in the inner zone, but in the picture
above, the toroidal field strength would be small apart from
fluctuations amplified by dynamo action. We allowed for a
possible toroidal disk field in the inner Galaxy and found it to
be consistent with zero (consistent with previous fits by
Jansson & Farrar 2012a), so we dropped it from the modeling.
In the next subsections, we describe our two basic models for
the disk field and the variants we also investigated.

5.2.2. Fourier Spiral

Here we introduce a new description of the spiral arms of the
disk field that provides flexibility to fit the geometry of the
magnetic arms and also avoids discontinuities between them.
To specify the spiral disk field, we need fix the pitch angle α,
the width and angle of each arm at some reference radius, and
the strength of each arm. For this purpose, we decompose the
magnetic field strength at a reference radius r0= 5 kpc, as a
function of angle f0, into n modes of strength Bm and phase fm:

åf f f= -
=

B r B m, cos . 10
m

n

m m0 0
1

0( ) ( ( )) ( )

The magnetic field in cylindrical coordinates at position (r, f,
z) is given by

a a f=B
r

r
B r h z g rsin , cos , 0 , , 11d

0
0 0 d d( ) ( ) ( ) ( ) ( )

where the f0 corresponding to the given (r, f) is found by
following the field line along the logarithmic spiral from (r, f)
to the reference radius r0, the relation being

f f a= - r rln tan . 120 0( ) ( )

Due to the expansion of B(r0, f0) being in terms of a cosine
series, we refer to this model of the disk field as “Fourier
spiral” in the following. The solenoidality of this field model
for gd(r)= 1 is assured because for each mode in
Equation (10), the same amount of flux enters and exits along
the circle at r0, and, due to the r

r
0 factor in Equation (11), the

magnetic flux in each arm is constant as a function of radius.12

Independently of gd(r), the total radial flux in this disk field
model vanishes for every radius.

The functions hd(z) and gd(r) describe the fade-in and fade-
out of the field in the vertical and radial direction, respectively.

We choose the ansatz
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where σ(x) denotes the logistic sigmoid function,

s =
+ -

x
e

1

1
, 15

x
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such that the disk field is suppressed to half of its value at zd, r1,
and r2, and the suppression rate is given by the corresponding
transition widths. The additional factor - -e1 r2( ) is needed to
assure that the factor gd(r)/r in Equation (11) goes to 0 at r= 0.
Note that mathematically, gd(r) violates the solenoidality of

the field and is thus to be understood as an effective modeling
of the behavior of the disk field at small and large radii. At
large radii, we expect that the coherent magnetic flux gradually
spreads out as the plasma confining it to the disk merges into
the circumgalactic medium. At some point, the field is so weak
and the electron densities so low that our observables are not
sensitive to it. We represent this by an effective outer distance
r2. In the inner Galaxy, within a radius designated r1, we expect
that the coherent log spiral structure is replaced by a region of
low coherent field or possibly a weak toroidal field, as
discussed in the previous subsection.13

For consistency with the outer radius of the molecular ring in
the YMW16 model, in this analysis, we set r1 to 5 kpc; we
fixed r2 to 20 kpc having checked that the fit is insensitive to
the exact choice. For the transition widths, we adopt
w1=w2= 0.5 kpc. Whether the details of the inner transition
can be constrained by the data is left for future work. Without
loss of generality, we set the reference radius to r0= 5 kpc,
such that the coefficients Bm in Equation (10) denote the
amplitude of the modes in the inner Galaxy.
An example of a Fourier spiral disk field is shown in the

right panel of Figure 7, and for comparison, a fixed-arm spiral
field is displayed in the left panel. Apart from obvious
differences in the arm topologies and field strengths, which are
mostly due to the different data sets used to fit these models, it
can be seen that the Fourier spiral results in a smooth disk field
without the discontinuities inherent in the previous fixed-arm
models.

5.2.3. Spiral Spur

As an alternative model to the grand-design magnetic spiral
implied by the Fourier spiral, we investigate if a localized spiral
segment can describe the data equally well. Such an isolated
magnetic “spiral spur” in the disk is seen, e.g., in Figure 2 of
the cosmological simulation of Pakmor et al. (2014), due
predominantly to a local compression of field lines.

12 Inclusion of an axisymmetric component of the m = 0 component implies a
net inward or outward flux of the disk field. This excess flux would necessarily
flow into the halo and imply a net vertical flux, but we do not find evidence of
that in the data; see Section 7.6. Moreover, including the component does not
improve the fit significantly (Δχ2 = −2.9).

13 Further possibilities include that the magnetic flux of the disk field exits
vertically in the inner Galaxy (Ferrière & Terral 2014; but see footnote 12) or
that the inward- and outward-going field lines of the disk field connect at r1 and
r2 as investigated by Kleimann et al. (2019). Both of these configurations entail
regions of very high coherent field, which would be energetically disfavored,
so we did not pursue them.
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We model a spur as a Gaussian of width wS at a reference
radius r0,

⎛
⎝

⎞
⎠

f f f= - -B r B w, exp
1

2
, 160 0 1 0 1 S

2( ) (( ) ) ( )

where f1 denotes the center of the spur and the angle f0
follows again from the logarithmic spiral via Equation (12).
The field of the spur in cylindrical coordinates is, similar to
Equation (11), given by

a a f f=B
r

r
B r h z gsin , cos , 0 , , 17S

0
0 0 d S( ) ( ) ( ) ( ) ( )

where instead of using the radial attenuation gd(r), the size of
the spur is determined from its angular center fC and angular
half-length Lc. We attenuate the magnetic field at f= fc± Lc
with
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In the following, we use a fixed attenuation width of wc= 5°
and, without loss of generality, r0= 8.2 kpc, such that the
parameter B0,S is close to the magnetic field strength at the
center of the spur if it is located in the proximity of the solar
radius, which is the main focus of the spiral spur model. The
superficial lack of flux conservation is understood as a
transition between a locally compressed and a more complex,
broadly distributed flux distribution not captured in the global
model function.

5.2.4. Further Considerations Regarding the Disk Field

Further variations to the Fourier spiral and spiral spur models
were studied but not included in the fiducial models presented
in this paper. We investigated a circular “ring field” at small
Galactocentric radii. Such a field was introduced in JF12 at
3 kpc< r< 5 kpc with an estimated field strength of
0.1± 0.1 μG. Here we confirmed that a ring field does not

significantly improve our fits; therefore, we did not include it in
our fiducial models.
We also investigated the sensitivity of the data to the

particular choice of hd(z) and found no significant changes
when replacing the logistic sigmoid with a Gaussian
(Δχ2=−3) and a slightly worse description when using an
exponential (Δχ2=+30).
Furthermore, we studied a flaring disk field, i.e., an increase

of the vertical extent of the disk with Galactocentric radius as,
e.g., observed for the atomic hydrogen of the disk (Kalberla &
Kerp 2009). We also added the Galactic warp as determined by
Levine et al. (2006) to the disk field model. Neither of the two
variations improved our preliminary fits reported in Unger &
Farrar (2019), and we therefore do not include them in this
analysis.
A model variant we did not explore here is to allow a net

inward or outward flux in the disk that is balanced by flux
entering the disk due to an imbalance in the north–south halo
fields; this was checked by D. Khurana (2016, private
communication) for the JF12 model, and the flux transfer
was found to be consistent with zero, compatible with our
findings on the symmetry of the halo field as reported in
Section 7.6 below.

5.3. Halo Field

Our knowledge of the global structure of the magnetic halo
of Milky Way–like galaxies relies on a combination of edge-on
observations of external galaxies and high-latitude RMs
and radio emission (for a review, see, e.g., Haverkorn &
Heesen 2012).
The large-scale antisymmetric features of extragalactic RMs,

see Equation (9) and Figure 2, follow naturally from a
large-scale toroidal14 field of opposite sign above and below
the plane, leading to the observed pattern in RM when

Figure 7. Left: fixed-arm spiral disk field of the JF12 model. Right: Fourier spiral of the “neCL” model; see Section 7. The position of the Sun is indicated with a star.

14 Here we use the term toroidal field synonymously with a purely azimuthal
field, B = (0, Bj, 0), while the term poloidal field denotes a vector field with a
vertical but not an azimuthal j-component, B = (Br, 0, Bz).
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superimposed with the local spiral arm of the disk field,
schematically

ð19Þ

In addition, the large-scale patterns of the Q and U parameters,
in particular the tilted nature of the corresponding polarization
vectors, can be explained by the presence of an additional
poloidal halo component, as suggested by Jansson & Farrar
(2012a), who introduced a coherent “X-field” halo component
inspired by the X-shaped radio polarization halos observed in
edge-on spiral galaxies (e.g., Krause et al. 2020).

Here we will model the magnetic halo of the Galaxy either
by the superposition of a separate toroidal and poloidal field or
by a unified halo model, as described below.

5.3.1. Toroidal Halo

For the toroidal field, we adopt the logistic-exponential
ansatz (“s expr z”) of JF12. It is a purely azimuthal field,

= fB B0, , 0 , 20t ( ) ( )

in cylindrical coordinates, with
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where zt is the exponential scale height of the toroidal field and
the radial cutoff of the toroidal halo is modeled by a logistic
sigmoid function with a transition at rt and a width wt. The
maximum field strength above and below the Galactic plane
is given by BN and BS, respectively. hd is defined in
Equation (13); i.e., the toroidal halo field is phased in by the
complement of the function that phases out the disk field.

Whereas in JF12, the radial extent of the northern and
southern halos was allowed to be different, we use only one
value rt, since our preliminary fits showed only a minor
deterioration of the fit quality when enforcing a symmetric
toroidal (Unger & Farrar 2018). We also checked whether the
data are fit better with independent functions hd(z) for the disk
and the halo separately but found similar transition heights for

the disk and halo, even if they were allowed to take on different
values.

5.3.2. Poloidal Halo

Jansson & Farrar (2012a) introduced a coherent “X-field”
model that is purely vertical at r= 0 and becomes increasingly
tilted with increasing radius until reaching a constant
asymptotic angle with respect to the Galactic plane, θX∼ 50°,
at a radius of rX∼ 5 kpc. With this model, a good description of
the polarized synchrotron data could be achieved. However,
this X-field parameterization has three types of discontinuities:
one in the inner Galaxy, one at the Galactic plane at z= 0, and
one at r= rX, as can be seen in the left panel of Figure 8. These
discontinuities are avoided by the improved X-field models
described in the following.
(A) Power-function X-field—Ferrière & Terral (2014)

employed a useful method to construct poloidal field models
using Euler potentials. Given the equation of field lines in the
form of r= f (a, z) starting midplane at a radius a (i.e.,
f−1(r= a)= 0), the divergence-free cylindrical components of
the poloidal field (Bf= 0) are given by

= -
¶
¶

B
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r
B a
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z
22r 0( ) ( )

and
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r
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where any function B0(a) of the radial dependence of the z-
component of the field at z= 0 will preserve the solenoidality
of the field.
We extend their parabolic “model C” for the z-evolution of

the field lines to arbitrary powers p,

= +r a z z1 , 24p
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corresponding to a midplane radius of
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Figure 8. X-field models: JF12 (left), power-function (middle), and coasting X-field (right).
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Using Equations (22) and (23), the radial and vertical field
components are

= -B p
z a

r z
z z B a 26r

p
3
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2 p
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0∣ ∣ ( ) ( )/

and
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2
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for p� 1. In Section 7, we will study several possibilities for
the radial midplane dependence of the field strength,

=B a B f a , 280 p X( ) ( ) ( )

with normalization constant Bp and one of the following radial
functions:

= -f a e• exp: , 29X
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where sech denotes the hyperbolic secant, =xsech( )
= + -x e e1 cosh 2 ,x x( ) ( ) and σ is the logistic sigmoid

function defined in Equation (15).
An example of a power-function X-field is shown in the

middle panel of Figure 8 (for p= 2.2 and an exponential radial
dependence with rp= 2.8 kpc). As can be seen, the
discontinuities present in the original JF12 X-field are avoided,
but it differs qualitatively from the JF12 X-field in that the field
lines become more and more parallel to the Galactic plane as
the radius increases rather than reaching an asymptotic angle.

(B) Coasting X-field—A “coasting X-field” with parallel
field lines beyond a certain reference radius ac can be achieved
by choosing the field line equation
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and (23), the radial and vertical field components are obtained
as
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In this paper, we study X-fields for the special case p= n, for
which Equation (33) becomes
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and Equations (35) and (36) simplify accordingly. The new
parameter zp is given by =z a

cp p
c

1 . For large values of the
coasting radius ac (a= ac), this three-parameter function
simplifies further to the two-parameter equation
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An example of a coasting X-field with p= n= 2.2 and
ac= 7 kpc is shown in the right panel of Figure 8.

5.3.3. Unified Halo Model

A toroidal halo field with different directions in the northern
and southern hemispheres can be the result of differential
rotation of a poloidal halo field (e.g., Andreasyan & Makarov
1988; Men & Han 2003). Farrar (2014) pointed out that—given
the sign of the dipolar field discovered by Jansson & Farrar
(2012a)—the differential rotation of the Galaxy would create
toroidal halo fields with the observed directions in the northern
and southern hemispheres. However, the question of whether
differential rotation can explain the observed toroidal field
strength quantitatively, including its vertical and radial profiles,
was not addressed. Here, we show that the toroidal field is in
fact remarkably well described by the simplest possible model
based on the observed differential rotation. The success of this
initial simple treatment gives encouragement that a more fully
developed treatment of the effects that limit the buildup of the
toroidal field can eventually enable a physics-based model of
the halo field to replace the ad hoc fitting approach that has
been required up to now.
Consider a poloidal field that is dragged along with the

rotation of the Galaxy and evolves via the induction equation,
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where the “frozen-in condition” applies for perfect conductiv-
ity, σ→∞, for which the magnetic diffusivity vanishes, η ∝
1/σ→ 0 (e.g., Parker 1979). Under these conditions and for a
purely azimuthal rotation velocity v, the induction equation
simplifies to
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Thus, for a magnetic field that is poloidal and azimuthally
symmetric at t= 0 (∂fBr= ∂fBz= 0), the poloidal components
are constant, and only Bf evolves with time,

w= ¶ + ¶fB t B v rB t, 41z z r r( ) ( ) ( )

where we introduced the angular velocity w = v

r
and used the

solenoidality of the poloidal field.

15 Note that + -x k x2 is of low numerical accuracy if k= x. Instead, we use
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+ + + +
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x k x

2
2

2 2
( ) in our numerical implementation.
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Equation (41) can be applied to evolve any type of poloidal
field analytically, and it describes the linear increase of Bf due
to the differential motion of the plasma the magnetic field is
embedded in. The large-scale motion of the plasma in the
Galaxy follows the Galactic rotation curve, which we take to
approximately factorize as

=v r z v f r g z, . 420( ) ( ) ( ) ( )

Using

= - º-f r e f1 , 43r r
r

v( ) ( )

we adjust v0 and rv to match the velocities of high-mass star-
forming regions with parallax measurements from Reid et al.
(2014), leading to v0=−240 km s−1 (negative because the
Galaxy rotates clockwise) and rv= 1.6 kpc. For the vertical
velocity gradient, we use

= + ºg z e g2 1 , 44z z
z

2 v( ) ( ) ( )∣ ∣

with zv= 10 kpc, to reproduce ∂zv= (−22± 6) (km s−1) kpc−1

as measured within 100 pc of the Galactic midplane by Levine
et al. (2008).16

With this particular choice of fr and gz, the evolution of the
azimuthal field via Equation (41) is

= D + DfB t B B t, 45z z r r( ) ( ) ( )

with the two shear terms
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An example of a unified halo field is shown in Figure 9
starting at t= 0 with a poloidal coasting X-field with Bp> 0
and a logistic sigmoid cutoff at r= 8 kpc. Due to the radial and

vertical shear of the rotation curve, Equation (42), an azimuthal
field is created at t> 0 that has a different sign in the northern
and southern hemispheres to which both terms in Equation (41)
contribute constructively. Obviously, this process cannot
continue in this naive form over the lifetime of the Galaxy or
it would overproduce the observed azimuthal field strength. A
steady-state azimuthal field could be obtained by including a
suitable dissipative term in the induction equation and possibly
a source term from the α-effect of dynamo theory (e.g.,
Brandenburg & Ntormousi 2023), but for the purpose of this
paper, we interpret the best-fit twisting time as an effective
parameter of this simplest version of a unified halo model.
In summary, in this section, we introduced two variants of

the disk field (grand spiral or spiral spur), two variants of the
poloidal field (power-function or coasting), and two variants for
the toroidal halo (explicit or from twisting). These magnetic
field submodels as well as their parameters are listed in Table 1,
together with a few other model parameters.

6. Model Optimization

The parameters p of a GMF model are optimized by
minimizing the sum of the variance-weighted squared differ-
ence between the modeled m and measured d observables,

å åc
s

=
-

= =

pd m
, 48

i Q U j

N
ij ij

ij

2

RM, , 1

2

2

i ( ( ))
( )

where the second sum runs over the Nj lines of sight available
for the RM and synchrotron data. Each line-of-sight datum dij
is obtained by averaging available measurements over a finite
solid angle around the line-of-sight direction. These angular
pixels are defined by the HEALPIX resolution of the data. The
predicted values mij of a GMF model, B(x; p), are given by the
numerical evaluation of the line-of-sight integrals for RM, Q
and U. Even for a perfect GMF model, the differences dij−mij

are expected to be distributed with a variance of sij
2, since the

data are subject to experimental uncertainties and the model
prediction does not include “Galactic variance” originating
from random magnetic fields and from fluctuations of the
densities of thermal electrons and cosmic-ray electrons. In
general, Galactic variance will introduce correlations between
adjacent pixels if the size of the perturbations is larger than the
angular size of 1 pixel. In that case, the full covariance matrix

Figure 9. Illustration of the unified halo model at different times t = 0, 25, and 50 Myr.

16 The toroidal field in the unified model is relatively insensitive to the
uncertainty in g(z), since the radial and vertical gradients contribute with the
same sign to the twisting, contrary to the result reported in Men & Han (2003).
Terral & Ferrière (2017) explored a twisted halo model introducing a generic
“winding function” gf(r, z) of the field lines. Their Equation (27) is equivalent
to Equation (41) for the choice gf = t v(r, z)/r. However, they did not
investigate this explicit connection of the winding function to the velocity field
v(r, z) of the Galaxy but used an ad hoc parametric winding function.
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needs to be included in the calculation of the χ2. It is, however,
nontrivial to calculate the coefficients of the matrix, because
one needs to know the spatial distribution of the turbulence and
coherence length for the magnetic field and the thermal and
cosmic-ray densities. Different approximations have been
applied in previous analyses. Jaffe et al. (2010) and Adam
et al. (2016) used a model of the three-dimensional random
field strength with a constant coherence length and unperturbed
electron densities to calculate the diagonal elements of the
covariance matrix. In a more data-driven approach, one can
measure the subpixel variance s2ˆ of the measurements within
1 pixel and use it as a weight in the fit. Naively, the average

over N observations within 1 pixel would then reduce the
fluctuations of the mean by a factor of 1/N, but due to the
aforementioned coherent effects, the effective variance will
typically be larger. Based on a toy model of coherent cells
along the line of sight, Pshirkov et al. (2011) suggested using
s d2 2ˆ as the pixel variance, with δ≈ 3, but the exact value of δ
depends on the integration distance in units of coherence length
over which the GMF contributes to the observations (see
also Terral & Ferrière 2017). Here we follow the procedure
of JF12 and simply use s2ˆ itself to weight the data points.
In this paper, the χ2 as defined in Equation (48) is used to

optimize the parameters of a given model and to assess the
relative quality of different models. The interpretation of the χ2

value in terms of goodness of fit is less meaningful. A robust
understanding of the statistical fluctuations in the data and their
correlations is needed for that purpose. These can only be
assessed after the random field and its coherence length have
been determined, which will be the subject of near-future work.
As an illustration, we apply Equation (48) to simulated data
generated with the coherent base model derived in this paper
and realizations of a turbulent magnetic field generated with the
algorithm of Giacalone & Jokipii (1999) for the field strength
of the JF12b model from Adam et al. (2016). For this case, the
comparison of simulated sky maps dij to the undisturbed model
predictions mij, together with the “measured” pixelwise
standard deviation σij, yields reduced χ2 values of 0.8, 1.5,
and 2.4 for a random field with a coherence length of 20, 40,
and 80 pc, respectively.
The best set of n model parameters p are found performing a

multidimensional optimization of Equation (48) with the
MINUIT program (James & Roos 1975) using its MIGRAD
method that implements a variable metric gradient descent
(Fletcher & Powell 1963; Fletcher 1970). Deterministic
gradient methods like MIGRAD descend quickly to a local
minimum, which may not always coincide with the global
minimum. To find this global optimum, we use the heuristic
multistart method; i.e., we perform a number of gradient-
descent minimization runs starting at different positions pstart
distributed uniformly in the n-dimensional hypercube of the
parameter space. The run with the smallest local χ2 is then
considered to be the global minimum. For the model fits
performed in this paper, we typically run  100( ) minimiza-
tions. The fact that many runs from very different starting
positions usually converge to the same minimum local χ2

increases our confidence that the n-dimensional likelihood
contour of the optimization problem at hand is well behaved
and that we have indeed identified the global minimum of each
model variation investigated. The main advantage of this
simple multistart method is that such a repeated gradient
descent can be trivially parallelized on a computing cluster;
thus, it provides an efficient method to search for the global
minimum of a model, since each gradient search is very fast.17

For each minimization run, a good first approximation of the
covariance matrix of the best-fit parameters can be obtained by
the parabolic estimates derived from the Hessian matrix of the
second derivatives of the χ2 with respect to the parameters at
the minimum. For the final fiducial models presented in

Table 1
List of Parameter Names of Different Model Components

Name Explanation Unit Value

Disk Field
Common Parameters

α Pitch angle deg Free
zd Transition height kpc Free
wd Vertical transition width kpc Free

(a) Grand-design spiral, Equations (10) and (11)
Bm Magnetic field strength of mode m μG Free
fm Phase of mode m deg Free
r0 Reference radius kpc 5
r1 Inner radius kpc 5
w1 Inner radial transition width kpc 0.5
r2 Outer radius kpc 20
w2 Outer radial transition width kpc 0.5

(b) Spiral spur, Equation (16)
B1 Magnetic field strength at r0 μG Free
f1 Azimuth at r0 deg Free
wS Gaussian width deg Free
fc Central azimuth deg Free
Lc Half angular length deg Free
r0 Reference radius kpc 8.2
wc Transition width deg. 5

Toroidal Halo
(a) Explicit, Equation (21)

BN Northern magnetic field strength μG Free
BS Southern magnetic field strength μG Free
zt Vertical scale height kpc Free
rt Transition radius kpc Free
wt Radial transition width kpc Free

(b) Twisted, Equation (41)
t Twisting time Myr Free
v0 Galactic rotation velocity km s−1 −240
rv Scale radius of rotation curve kpc 1.6
zv Scale height of rotation curve kpc 10

Poloidal Halo
Common Parameters

Bp Magnetic field strength μG Free
p Field line exponent L Free
zp Scale height kpc Free
rp Radial scale or transition radius kpc Free
wp Transition width kpc Free

(a) Power-function, Equations (22) and (23)
(b) Coasting, Equations (35) and (36)
ac Coasting radius kpc Free

Other Model Parameters
κ ne–B correlation coefficient, Equation (2) L Free
ξ Magnetic striation factor, Equation (8) L Free

17 The optimization of the 20-parameter base model discussed in Section 7
needs, on average, 4000 χ2 evaluations to converge. Each evaluation takes 4 s
on an Intel® Xeon® E5 processor at 2.4 GHz. For each evaluation, B, ne, ncre,
and jν are calculated at 106( ) positions throughout the Galaxy to calculate the
adaptive line-of-sight integrals of RM, Q, and U.
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Section 7, more precise confidence intervals of the parameters
at the minimum are derived with the profile likelihood method,
i.e., by finding for each parameter the two values pup/low at
which c c= +p m2

up low min
2( ) , while marginalizing over

the other n− 1 parameters. These estimates are obtained using
the MINOS algorithm of MINUIT, and each evaluation of one
pup/low pair is about as computationally expensive as the
overall minimization itself. Unless stated otherwise, we quote
the 68% (“1σ”) intervals obtained for m= 1. More information
on the uncertainties and parameter correlations can be found in
Appendix C.

It is worth noting that our approach differs from that of
previous GMF studies, which used Markov Chain Monte Carlo
(MCMC) to explore the model parameters (e.g., Jansson et al.
2009; Jaffe et al. 2010; Jansson & Farrar 2012a; Terral &
Ferrière 2017). MCMC is the preferred method to sample the
posterior distribution of a model given the data, but it is not an
efficient optimizer (e.g., Hogg & Foreman-Mackey 2018).
Moreover, for most applications, the approximate covariance
matrix and the confidence intervals derived with the profile
likelihood method provide information equivalent to the
MCMC samples; see, e.g., Ade et al. (2014) for a comparison
of the two methods in the context of cosmological parameter
estimation. Most importantly, the ability to efficiently optimize
the parameters of many different models is of paramount
importance for the GMF inference, since, as will be shown in
Section 7, the systematic differences resulting from different
model assumptions are typically much larger than the precision
estimated for the parameter uncertainties of a particular model.

7. Results

7.1. Base Model

For the results presented in the following, we have optimized
the parameters of more than 200 combinations of magnetic
field models and auxiliary models to obtain an overview of the
range of GMF models attainable in the full set of possible
combinations.18 Many of these model variations are performed
with respect to our fiducial “base” model, which consists of a
three-mode grand-design spiral disk field, an explicit toroidal
halo, and a coasting X-field with a logistic sigmoid radial
dependence; there is no correlation between ne and B, and the
striation is a free parameter. The sky maps of RM, Q, and U
resulting from this model are calculated with the YMW16
thermal electron model and a cosmic-ray electron density
derived for hD= 6 kpc. The model parameters are adjusted to
fit the data, yielding an optimum with an acceptable goodness
of fit of χ2/ndf= 7923/6500= 1.22, where ndf denotes the
number of degrees of freedom, i.e., the number of data points
minus the number of free parameters, which is npar= 20 in this
case. The contribution from RM pixels to the χ2 is 4354
(nRM= 2838), and from the Q and U pixels, it is 3569
(nQ+ nU= 3682); i.e., the model describes the polarized
synchrotron data slightly better than the RMs.

The contributions of each model component (i.e., disk field
and toroidal and poloidal halo) to RM, Q, and U are shown
separately in the three top rows of Figure 10, and the predicted
sky maps for the sum of all components are displayed in the

fourth row. Here it is interesting to see how the interplay of
different model components creates the large-scale features
observed in the data. As pointed out above, the sum of the disk
and toroidal field produces the large-scale structure of RMs; see
Equation (19). The PI, on the other hand, is mostly generated
by the toroidal and poloidal halo. And, whereas the overall RM
can be obtained by summing the RM of each component
(   µ = å = åB B BRM i i( ) ), the sky pattern of the Stokes
parameters of the full model is not the sum of its components
since, e.g., µ = å ¹ å^ ^ ^B B BQ U, i i

2 2 2(( ) ) ( ) .
The masked model, data, and “pull” are shown in the three

bottom rows. The pull is the difference between the data and
model in units of standard deviation of the data, and the sum of
all squared pulls yields the χ2, Equation (48). For a perfect
match of data and model, the pull should fluctuate randomly
around zero with a standard-normal distribution, but here
several large regions exist in which the pull has consistently
negative or positive values beyond ±1σ. Some of these are
close to masked regions, e.g., at the edges of the masks for the
north polar spur and loop III for Q and U and close to the mask
for the Gum nebula for RM, implying a certain amount of
leakage of these features beyond the mask. Others, like the
large region of negative pull for RM below the Galactic plane
at longitudes of 60° < ℓ< 150°, could indicate deficiencies in
the modeling of the global structure of the GMF, e.g., an
azimuthal variation of the scale height of the toroidal field. It is,
however, plausible that most regions with large-scale devia-
tions can be attributed to local perturbations that appear as
structures of large angular scale due to their proximity.
Excluding pixels with a large pull from the fit changes the
values of the fit parameters, but the differences are of similar
magnitude or smaller than the differences between the model
variations explored below; see Appendix B for further details.
Apart from these potentially local structures, the base

model successfully describes all the large-scale features of the
data, in particular the antisymmetric structures of the RM sky
and the tilted large-scale “lobes” of negative and positive Q and
U. The parameters of the base model can be found in the first
column of Table 2. The correlation matrix of the parameters is
discussed in Appendix C.

7.2. Thermal and Cosmic-Ray Electrons

To study the dependence of the inferred GMF on the
auxiliary models of the thermal and cosmic-ray electron
density, we repeat our fits for the model variations discussed in
Section 4. The best-fit χ2 values for different half-heights of the
cosmic-ray diffusion volume, hD, and for the NE2001 and
YMW16 models are shown in Figure 11(a). Here the functional
forms for the GMF model are identical to the one used for the
base model. As can be seen, the fit quality deteriorates rapidly
for small values of the height of the diffusion volume, and it
reaches a near-constant value at hD 4 kpc. For small values of
hD, the decreasing vertical extent of the cosmic-ray electron
halo cannot be compensated for by a larger magnetic halo.19

Interpolating between the fit results at discrete values of hD, we
estimate a 5σ lower limit on the size of the diffusion volume of

h 2.9 and 3.5 kpc, 49D ( )

18 The combination of two disk field models, eight poloidal field models, two
toroidal field models, two thermal electron models, two synchrotron products,
six cosmic-ray electron models, and including an ne–B correlation or not results
in 1536 possible model variations.

19 For illustration, assume an exponential height dependence of ncre and B with
scale heights zcre and zB. Then, using Equation (3), the height dependence of
the synchrotron emissivity is µn

-j e z zsyn∣ ∣ with = +z z z z1 2 Bsyn cre cre( ). It
follows that for a given zsyn of the data, zcre has to be at least �zsyn (zB → ∞).
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where the two values correspond to the fits with NE2001 and
YMW16, respectively. This lower limit is, however, only
indicative, since in this analysis, there is no feedback between
the derived magnetic field and the propagation of cosmic-ray
electrons; see Section 4.2.

The interplay of diffusion height and derived magnetic field
parameters can be seen in Figure 12, where the GMF model
parameters of the different fits for hD� 4 kpc are displayed.

Especially the fitted scale height zt of the toroidal field depends
strongly on hD. For hD= 4 kpc, only a lower limit on zt can
be estimated. In the following, we will therefore only
investigate GMF models derived for ncre densities within
6� hD/kpc� 10, for which the best-fit values of zt are finite
and compatible with current estimates of the size of the
diffusive halo estimated from the analysis of unstable
secondary cosmic-ray nuclei.

Figure 10. Data and base model prediction for RM, Q, and U. The predictions from the individual model components are shown in the top rows, followed by the full
model prediction. The bottom three rows show the masked model, the data, and the pull, i.e., the difference between model and data in units of the standard deviation
of the data.
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Concerning the models of the density of thermal electrons in
the Galaxy, it can be seen in Figure 11 that the fits with the old
NE2001 model result in a consistently better fit quality than the
ones performed with the recent YMW16 model. Even though
the difference is statistically significant (Δχ2=−167 at
hD= 6), we consider both models in our analysis, since the
latter ne model gives a better description of Galactic pulsar
DMs than the former. Switching between these two models has
a larger systematic impact on the values of most GMF
parameters than a change in hD; see Figure 12.

7.3. Striation or Correlation?

It is well known that the magnetic field strength derived
from the observed RMs is smaller than the one derived from
the observed Galactic polarized synchrotron emission. One
way to reconcile the two observables is to postulate the
existence of an anisotropic or striated random field that
fluctuates along the coherent field lines, which leads to an
increase in PI without changing the RMs. For our base
model, the best-fit value of the striation factor ξ, see

Figure 11. Goodness of fit, Equation (48), for two different models of the thermal electron density, NE2001 (red) and YMW16 (blue), and as a function of hD (left)
and κ (right).

Table 2
Preselection of Model Variations

ID Disk Halo ne ncre QU χ2/ndf Model
Toroidal Poloidal Model κ Model h Name

Parametric Models
a GD Explicit CX-sigm YMW16 0 DPD 6 (W+P)/2 7923/6500 = 1.22 base
b GD Twisted CX-sigm YMW16 0 DPD 6 (W+P)/2 8324/6504 = 1.28 L
c GD Explicit CX-Gauss YMW16 0 DPD 6 (W+P)/2 8298/6500 = 1.28 L
d GD Explicit CX-sech2 YMW16 0 DPD 6 (W+P)/2 8381/6500 = 1.29 L
e GD Explicit CX-expo YMW16 0 DPD 6 (W+P)/2 8431/6500 = 1.30 expX
f GD Explicit PF-sigm YMW16 0 DPD 6 (W+P)/2 7926/6500 = 1.22 L
g LS Explicit CX-sigm YMW16 0 DPD 6 (W+P)/2 7991/6501 = 1.23 spur
Thermal Electrons
h GD Explicit CX-sigm NE2001 0 DPD 6 (W+P)/2 7759/6500 = 1.19 neCL

i GD Twisted CX-sigm NE2001 0 DPD 6 (W+P)/2 8221/6504 = 1.26 twistX
j GD Explicit CX-Gauss NE2001 0 DPD 6 (W+P)/2 8079/6500 = 1.24 L
k GD Explicit CX-sigm YMW16 −0.4 DPD 6 (W+P)/2 7905/6500 = 1.22 nebCor
Cosmic-Ray Electrons
l GD Explicit CX-sigm YMW16 0 DPD 8 (W+P)/2 7940/6500 = 1.22 L
m GD Explicit CX-sigm YMW16 0 DPD 10 (W+P)/2 7939/6500 = 1.22 cre10

n GD Explicit CX-sigm YMW16 0 OS13 10 (W+P)/2 7965/6500 = 1.23 L
Synchrotron Data Product
o GD Explicit CX-sigm YMW16 0 DPD 6 P 11,013/6500 = 1.69 L
p GD Explicit CX-sigm YMW16 0 DPD 6 W 8845/6500 = 1.36 L
q GD Explicit CX-sigm YMW16 0 DPD 6 CG 9758/6500 = 1.50 synCG

r GD Explicit CX-sigm NE2001 0 DPD 6 CG 9551/6500 = 1.47

Note. GD: grand-design spiral; LS: local spur; CX: coasting X-field; PF: power function; OS13, Orlando & Strong (2013); DPD: Dragon plain diffusion; W: WMAP;
P: Planck, CG: COSMOGLOBE. The last column gives the name assigned to the eight members of the final GMF ensemble, introduced in Section 7.8.
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Equation (8), is

x = 0.35 0.03, 50( )base

implying that the energy density in the coherent and striated
field components is almost equal (energy density uB∝ B2,

x¢ = +B B1( ) , x= + = ¢u u 1 1.8 0.1B B
2( ) ).

Another reason for the mismatch between magnetic fields
inferred from RM and PI observations could be an antic-
orrelation of the thermal electrons and the magnetic field,
leading to smaller Faraday rotation than in the uncorrelated
case. Here we perform, to our knowledge for the first time, an
analysis of RM and PI allowing for a modified RM due to an
ne–B correlation with coefficient κ, as derived by Beck et al.
(2003; see Section 2). Here we use the random field b derived
from the total synchrotron intensity measured by Planck (JF12b
model of Adam et al. 2016) to evaluate Equation (2) for a fixed
value of b but a coherent field B that is allowed to float freely
during the fit.

The fits are performed for different values of κ, and the
resulting dependence of the fit quality on the correlation
coefficient is displayed in Figure 11(b). As can be seen, a large
anticorrelation of ne and B is disfavored, and the 5σ lower limit
is found to be

k - -0.52 and 0.49, 51( )
where the two values correspond to the fits using the NE2001
and YMW16 models of ne, respectively. The optimal fit to the
data is at κ≈−0.4, but the χ2 minimum is very broad, and all
fits above this value fit the data similarly well. The reason for
this degeneracy can be understood by examining the change of
fit parameters with κ, as shown in Figure 13. Given the 2
degrees of freedom of rescaling the magnetic field strengths of
each model component and the striation factor, it is always
possible to match the RM and PI data as long as ξ> 0. In the
following, we will not further investigate the fits with κ> 0,
since our fiducial fits with κ= 0 already exhibit a large degree
of striation close to equipartition with the coherent field (see
above). Instead, we will concentrate on the best fit at κ=−0.4,
where the striation parameter is 0, as an alternative to the

fiducial model. At this value of κ, the magnetic field scale is set
by the PI data, whereas at κ= 0, the scale is set by the RM
data. In this extreme scenario, where no striated random fields
contribute to the PI and the Faraday rotation is diminished by
the anticorrelation of B and ne, the fitted magnetic field
strengths (Bm, BN/S, and Bp) are about a factor of 1.4 larger
than in the fiducial case.

7.4. Synchrotron Data Products

The choice of data product for the Stokes Q and U
parameters affects the GMF fit due to the differences in the
large-scale structure of derived sky maps; see discussion in
Section 3.2 and the comparisons shown in Figure 22 in
Appendix A. Moreover, and perhaps more importantly, since
these differences are relatively small, different products differ
by the variance of Q and U within a pixel over which we
average these values. Since we use these variances as a weight
of the data when optimizing Equation (48), they also affect the
outcome of the fit.
For our simple arithmetic average of the Q and U values of

Planck and WMAP, the variance is calculated for all data
points before averaging; therefore, we expect it to be the
arithmetic average of the Planck and WMAP variances plus an
additional contribution from the systematic difference between
the two products. On average, the variance derived from the
Planck and COSMOGLOBE maps is about a factor 0.8 smaller
than the one of our default synchrotron map and about the same
for the WMAP data. Keeping in mind that WMAP could
measure at lower frequencies, where the synchrotron intensity
is larger by a factor of (22.5 GHz/30 GHz)−3.1= 2.4, it is not
clear to us to which extent the smaller variance of Planck (and
by extension COSMOGLOBE) is actually due to an improved
measurement of the synchrotron radiation or due to the use of
more aggressive foreground smoothing priors in the analysis.
As a consequence of smaller variances, the fits using Planck

and COSMOGLOBE have a χ2 that is worse than the one of the
base model by a factor of 1.4 and 1.2, respectively. We have
checked that the worse fit is indeed mostly due to the different
variances (and not the different values of Q and U) by

Figure 12. Best-fit parameter values of the disk, toroidal, and poloidal GMF components for different values of the half-height hD of the cosmic-ray diffusion volume
and for two different models of the thermal electron density, NE2001 (red) and YMW16 (blue). See Table 1 for a short explanation of each parameter. Some parameter
values have been multiplied by a scale factor, as indicated in the axis labels, to fit in one panel with a single y-axis. 1σ uncertainties are shown as error bars, and arrows
indicate the 84% CL lower limits on the parameters.
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performing a fit of the Planck data with our default variances,
in which case the fit quality was only worse by a factor of 1.03.

The GMF models obtained with alternative data products are
qualitatively similar, but the parameters obtained in these fits
differ from the one of the base model. The differences are
mostly not driven by the systematic differences between the
sky maps but rather caused by the larger relative “pull” on the
χ2 of Q and U data with respect to RM data. The sensitivity of
the parameter values on the data-driven weights is intrinsic to
the method used in this analysis and needs to be considered
when estimating the GMF model uncertainties; see Section 7.8
below.

7.5. Disk Field

7.5.1. Grand-design Spiral

Many of the previous attempts to model the global structure
of the disk field enforced a certain number of “magnetic arms,”
often following the inferred large-scale structure of matter
density in the Galaxy. Due to our more flexible decomposition
of the spiral field into azimuthal Fourier modes, we can let the
data decide how much spiral structure is needed. We have fit
the RM and PI data using a different number of Fourier modes
ranging from one to five. As expected, the fit quality
continuously improves with the number of modes nmode, since
each adds two more free parameters (amplitude and phase) to
the fit. Using the Wilks theorem (Wilks 1938), we find that the
improvements of the fit quality of the base model are
significant up to nmode= 3, with aΔχ2= 153.2 going from two
to three modes and Δχ2= 12.7 from three to four modes. The
same conclusion is reached using the Bayesian information
criterion, c= + n nBIC ln2

par data( ) (Schwarz 1978), which is
minimal at nmode= 3. We have also tested that the required
number of modes remains three when changing the height of
the diffusion volume, hD, used to calculate ncre and when using
a twisted X-field.

Three azimuthal modes correspond to six “magnetic arms”
of alternating polarity. The grand-design configuration of our
neCL fit variant (using the NE2001 thermal electron model)
has already been shown above in the right panel of Figure 7.

The best-fit disk field of the base model is displayed in the left
panel of Figure 14, where we also show the location of tracers
of the spiral structure of the matter density of the Milky Way,
given here by the measurements of trigonometric parallaxes of
high-mass star-forming regions from Reid et al. (2019). As can
be seen, we find a remarkable alignment of the fitted magnetic
spiral structure and these tracers. Large coherent field strengths
are present in the interarm regions, but the coherent field
strength is close to zero at the location of the spiral matter
segments derived by Reid et al. (2019), shown as lines in
Figure 14. This result is similar to what is observed in external
galaxies, where the strongest ordered fields are detected in the
interarm regions (Beck 2016).
The fitted pitch angle, α, of the disk field is found to be

nearly independent of the assumed cosmic-ray halo size, ne–B
correlation coefficient (κ�−0.4), and functional form of the
magnetic halo. However, the fits with different models of the
thermal electron density result in pitch angles that are
systematically different with respect to each other by ±1°; see
Figure 12. The average of the value obtained using the NE2001
and YMW16 thermal electron models is

a =   11.0 0.3 stat. 1.0 n . 52e( ( ) ( )) ( )

This value is in good agreement with the pitch angle of the
local (Orion–Cygnus) spiral arm of (11°.4± 1°.9) (Reid et al.
2019) and the pitch angles of α= (9°.87, ..., 11°.43) of the
grand-design logarithmic spiral model fitted by Hou & Han
(2014) using H II regions as spiral tracers. Thus, the pitch
angles of the spiral structure of the magnetic field and the
matter density in the Milky Way are about equal, similar to
what is observed for external spiral galaxies (Van Eck et al.
2015).

7.5.2. Local Spur

What drives the fit of the grand-design spiral disk field? Is it
the RM values at longitudes where the line of sight is tangential
to a spiral arm? These magnetic tangents are clearly visible in
the predicted RMs in the top left plot of Figure 10, but they are

Figure 13. Best-fit parameter values of the disk, toroidal, and poloidal GMF components for different values of the correlation coefficient between the magnetic field
and thermal electron density κ and for two different models of the thermal electron density, NE2001 (red) and YMW16 (blue). See Table 1 for a short explanation of
each parameter. Some parameter values have been multiplied by a scale factor, as indicated in the axis labels, to fit in one panel with a single y-axis. No parameter
uncertainties are shown here; see Figure 12.
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not so obvious in the RM of the data, possibly due to the large
variance present in the data at low latitudes. Alternatively, the
fit of the disk field might be mostly determined by the large-
scale “butterfly pattern” of RMs, see Equation (19), and
therefore mostly from the disk field in the vicinity of the Sun.

To test this possibility, we fit the data without a grand-design
magnetic pattern but include only one local magnetic spur, as
introduced in Section 5.2.3. The fitted pitch angle of the local
spur is (12°.1± 0°.6) and does not depend on the thermal
electron model used. The best-fit local spur is displayed in the
right panel of Figure 14. It is located at the edge of the local
Orion–Cygnus spur and has a magnetic field strength of
4.30 μG at the reference radius of 8.2 kpc. The quality of this fit
is found to be slightly worse than the one of the base model
(7991 instead of 7923) but close enough to conclude that both
models are approximately equivalent.

For a closer look at the differences between the spur and
base models, we show the RM values in bands of latitude for
the data and the two models in Figure 15. As can be seen, both
models give the same overall good description of the longitude-
dependence of the RM of the data. The base model (shown as
red open circles) exhibits distinct RM features at low latitudes,
shown in the middle panel for |b|< 5°, but none of these are
visible in the data.

The near-equivalence of these two radically different disk
field models is a consequence of the fact that the extragalactic
RMs used in the fit constrain only the integrated Faraday
rotation to the edge of the Galaxy. The model degeneracy
could, in principle, be broken by including RMs from Galactic
pulsars into the fit to provide cumulative RMs at different
distances. However, pulsar RMs are currently of limited use,
since the distances to most pulsars are not known with
sufficient precision. Some previous GMF studies used the “DM

distance” (i.e., the distance d at which ò¢ = xn r drDM
d

0 e ( ( ))
equals the observed DM) to calculate the model RMs, but this
introduces an additional dependence on thermal electron
density models that is difficult to account for in the GMF
model optimization. Notwithstanding these caveats, it is
interesting to note that Han et al. (2018) derived a six-arm
grand-design spiral model from the RMs of pulsars and
extragalactic sources, which is qualitatively very similar to the
disk field of our base model. More studies are needed,
however, to unequivocally prove the existence of a grand-
design magnetic spiral in our Galaxy. Until then, a conservative
approach is to consider the two models introduced in this
section as extreme possibilities for the coherent magnetic field
in the disk of the Milky Way.

7.6. Poloidal Field

We begin by reassessing the need for a poloidal component
to describe the data, performing a fit without including such a
component. The resulting fit quality deteriorates tremendously,
by Δχ2>+2100 with respect to the base model, irrespective
of the thermal electron model used in the fit. As can be seen in
Figure 10, the poloidal component contributes only a little to
the RMs. However it would be incorrect to conclude that the fit
cannot determine whether the X-field is coherent or striated,
since the Stokes parameters of the model components do not
add up linearly (see discussion in Section 7.1). In fact, if a
striated X-field were equivalent to a coherent one, then the fit
quality would only depend on the orientation and not the
direction of the coherent X-field, but the Δχ2 is +8679 when
reversing the direction of the X-field.
We also tried to fit the data with a north–south reflection-

symmetric X-field (characteristic of an S1 dynamo) instead of a

Figure 14. Magnetic field of the disk component for the grand-design spiral (left) and spiral spur (right) GMF model. The horizontal magnetic field strength in the x–y
plane at z = 0 is displayed with colors ranging from blue (counterclockwise field) to red (clockwise field). Superimposed points with distance error bars are the
locations of tracers of the spiral structure of the matter density of the Milky Way (high-mass star-forming regions with parallax distances), and the curved colored lines
are the inferred location of spiral arm segments, both from Reid et al. (2019).
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dipolar one (A0 dynamo); however, the fit is much worse
(Δχ2>+1700). Furthermore, we checked for the base model
if different strengths of the magnetic field normalization Bp in
the northern and southern hemisphere are preferred by the data.
A different value in the two hemispheres would be required by
flux conservation if there were a net inward or outward flux in
the disk in an m= 0 mode. We find that any such asymmetry
must be small, since the difference of the fitted values for the
two hemispheres is ΔBp= (0.12± 0.07) μG.

Inspecting the pixel-by-pixel contributions to the χ2, we find
that the poloidal fit is mainly driven by the Q and U data at
longitudes |ℓ|< 60°. Unless a very peculiar foreground is
responsible for these large-scale features in Q and U (see
discussion in Appendix B), we confirm the conclusions of
Jansson & Farrar (2012a) that the PI cannot be described
without the presence of a dipolar X-field in the Galaxy.

We find that the data are described equally well by a power
function and a coasting X-field (χ2= 7926 and 7923,
respectively), since the major differences between the field
lines of the two models are at large radii, where the field is
small; see Figure 8. There is, however, a clear preference
regarding the choice of the radial dependence of the midplane
vertical field, Equations (29) and (30). The best fit to the data is
obtained for the logistic sigmoid function, i.e., for a vertical

field strength that is constant with galactocentric radius and
then vanishes to zero at a certain radius rp with a transition
width wp. The tested alternatives of a Gaussian, hyperbolic
secant, or exponential radial dependence result in fits that are
worse by Δχ2=+370, +452, and +508. This clear preference
for a logistic radial cutoff remains for all model variations
tested (power-function or coasting X-field, twisted X-field, and
using different thermal electron models).
The improvement of χ2 when using a logistic instead of

an exponential function originates mostly from the RM
( cD = 315RM

2 ) and Q data ( cD = 155Q
2 ) and only to a lesser

extent from the U data ( cD = 36U
2 ). Much of the improvement

in cRM
2 is concentrated in one swath of the RM sky located at

ℓ≈ (−30° ± 15°) and 90° < b< 150°, and most of the decrease
in cQ

2 is due to a better description of the data at 15° < ℓ< 30°
and b> 0°. Since we cannot be certain that these features at
intermediate angular scales are global, we conservatively keep
the exponential radial function as an extreme variation in our
model ensemble.
The best-fit midplane poloidal magnetic field strengths,

derived for different radial functions, are shown in Figure 16.
The largest differences of B0(a) are at small radii, a 4 kpc,
where the fit of the poloidal field strength is unconstrained due

Figure 15. Comparison of data (black points with error bars) and models (red open circles: base model with a grand-design spiral disk field; blue open squares: spiral
spur model) in five latitude slices around the Galactic plane. Every point is the RM value detected/predicted in one HEALPIX pixel (Nside = 16). Gray bands are drawn
at the longitudes of tangent points of the spiral arms of the Galaxy. The width indicates the range of tangent positions in different observables cataloged by
Vallée (2022).

21

The Astrophysical Journal, 970:95 (32pp), 2024 July 20 Unger & Farrar



to the large number of Q and U pixels masked at |ℓ|< 30°. The
logistic model used in our base model has a midplane vertical
field strength of Bp= (0.98± 0.03) μG and cuts off inside the
solar circle at rp= (7.29± 0.06) kpc with a transition width of
wp= (0.112± 0.029) kpc. In the case of the twisted X-field
model, the transition is fitted to be at a somewhat large radius,
and the transition is broader (rp∼ 7.9 kpc, wp∼ 0.3 kpc). The
expX model leads to a large vertical magnetic field at the
Galactic center, Bp= (5.8± 0.4) μG, that falls off exponen-
tially with a scale length of rp= (2.5± 0.1) kpc. For compar-
ison, the poloidal field of the JF12 model is of similar strength,
with Bp= (4.6± 0.3) μG and rp= (2.9± 0.1) kpc.

Thus, the expX and base models bracket the possible range
of the radial dependence of the strength of the poloidal field.
The corresponding uncertainty of the GMF, quantified here for
the first time, must be taken into account when interpreting the
arrival directions of ultrahigh-energy cosmic rays and when
discussing the radial dependence of cosmic-ray energy spectra
derived from gamma-ray observations (e.g., Gabici et al. 2019).
A better understanding of the polarized foregrounds is needed
to be able to further constrain the GMF fits by including PI data
toward the Galactic center.

7.7. Toroidal Field

Fitting for an “explicit” toroidal halo field, we obtain a radial
extent of rt= (10.2± 0.2) kpc and a vertical scale height of
zt= (4.0± 0.7) kpc within our base model. The estimate of
the radial extent of the halo is very stable with respect to any of
the model variations we have studied. The vertical scale is less
certain, ranging from 2.9 to 6.1 kpc, where the lowest value is
obtained assuming a large cosmic-ray diffusion volume with
hD= 10 kpc.

The magnitude of azimuthal field strength in the northern
and southern hemispheres was found to vary between about 2
and 5 μG, depending on the model variation under study. For

the base model, the best-fit values are BN= 3.3± 0.3 μG and
BS=−3.1± 0.3 μG. In all the studied variations, the
magnitude of the northern and southern magnetic field strength
is found to be compatible within the estimated uncertainties,

= -B B , 53N S ( )

which strongly suggests a common origin of the toroidal field
in the two hemispheres.
Our unified halo model (twistX) naturally explains the

relationship in Equation (53), since the magnetic field in both
hemispheres originates from the shearing caused by the same
velocity field. Furthermore, the unified halo model has the
practical virtue that its built-in connection between the radial
extent of the poloidal and toroidal components should make it
less prone to overfitting local structures in the data. This
suggests that a fitted common radial scale with a large
transition width (see the dashed–dotted blue line in
Figure 16) might prove to be a more accurate description of
the global structure of the GMF.
While the fit quality of the twisted X-field is considerably

worse than that of a fit with a separate toroidal and poloidal
halo field (Δχ2=+401 for model a versus b and Δχ2=+462
for model h versus i), there are only six free parameters for the
halo, instead of the 10 parameters needed for the base model.
On a technical level, the better χ2 of the base model can be
due to the freedom of two different radial cutoff values, rp and
rt, for the toroidal and poloidal components that are available in
the fit with an explicit toroidal halo. A future implementation of
the unified halo model, in which a physically motivated model
limits the buildup of the toroidal field, could introduce
additional radial and vertical dependencies to the amount of
twist and hence result in a potentially even better description of
the halo field.
In summary, the unified halo model describes the data well

using only six free parameters for the halo, instead of the 10
parameters needed for the base model. This is the first
quantitative demonstration of earlier conjectures that the
toroidal halo of the Milky Way likely arose dynamically from
differential rotation.

7.8. Model Ensemble

Based on the results presented in the previous sections, we
compiled a list of viable GMF variations in Table 2. Here we
already preselected models with hD� 6 kpc, see Section 7.2,
and used only the most extreme ne–B anticorrelation of
κ=−0.4; see Section 7.3. This leads to 18 GMF models
consisting of seven variations of the parametric models, three
variations using NE2001 rather than YMW16, one variation
including an ne–B anticorrelation, three fits with different
cosmic-ray electron models, and four fits with different
synchrotron products.
How different are these 18 GMF models from each other?

One possible way to measure the model differences is to study
the motion of charged particles in the respective models and
calculate the space-angle difference in their direction after
traversing the Galaxy. We performed such comparisons for
many particles (rigidity  = 1019 V) starting in different
directions from Earth and determined the average deflection
difference, its 90% quantile, and the maximum difference for
each model combination. The result is shown in Figure 17.
Based on these model-to-model comparisons, we can further
narrow down the most important variations that encompass the

Figure 16. Best-fit radial dependence of the z-component of the poloidal
magnetic field at z = 0, B0(a); see Equations (22) and (23). Different radial
functions are shown in different colors; see Equations (29) and (30). Variations
in the thermal electron density and toroidal field type used during the fit are
shown with different line styles, as indicated in the figure legend.
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GMF uncertainties. For instance, it can be seen that of the four
models with different synchrotron products, (a, o, p, q), the
COSMOGLOBE model (q) differs the most from the base
model (a). The difference is similar when comparing the
combination of NE2001 and COSMOGLOBE (q) to NE2001
with default synchrotron (h).

Similar comparisons lead us to select the set of eight GMF
models identified by the model acronym name in the last
column of Table 2. The parameters of the eight members of this
final GMF model ensemble are given in Table 3, and their
properties can be summarized as follows.

1. base is tuned to the data using the YMW16 thermal
electron model and a cosmic-ray electron model calcu-
lated for a diffusion volume with a half-height of 6 kpc.
The parametric model of the GMF is the sum of a spiral
disk field, an explicit toroidal halo, and a coasting
poloidal X-field.

2. expX uses an exponential dependence of the midplane
vertical poloidal field instead of the default logistic radial
cutoff.

3. spur reduces the grand-design spiral disk field to a
single local spur (Orion arm).

4. neCL replaces thermal electron model YMW16 with
NE2001 of Cordes & Lazio (2002).

5. twistX has a “twisted X-field” resulting from a unified
model of the toroidal and poloidal halos.

6. nebCor assumes an anticorrelation between the thermal
electron density and the magnetic field strength.

7. cre10 uses a cosmic-ray electron model in which the
half-height of the diffusion halo is increased to 10 kpc.

8. synCG swaps the default synchrotron product for the
estimate from the COSMOGLOBE analysis.

The total energy of the coherent magnetic field within a
20 kpc radius in these eight models, respectively, is {1.3, 1.5,
1.2, 1.2, 0.6, 2.3, 1.2, 1.0} 1055 erg. For the base model, for
instance, the disk, poloidal, and toroidal components contribute
{0.28, 0.26, 0.75} 1055 erg to the total.

8. Applications

Each of the eight GMF model variations introduced in the
previous section can be considered a viable estimate of the
GMF given the current RM, Q, and U data, and the differences
between the models can be regarded as an estimate of the lower
limit on the uncertainty of our knowledge of the magnetic field
of the Galaxy.

In this section, we discuss two applications in which we
propagate the uncertainties of the GMF to uncertainties in the
deflection of ultrahigh-energy cosmic rays and the conversion
probability of axions in the GMF.

8.1. Cosmic-Ray Deflections

Given the arrival direction v of an ultrahigh-energy cosmic-
ray particle at Earth, the knowledge of the GMF can be used to
infer its arrival direction at the edge of the Galaxy u. In
Figure 18, we show sky maps of the deflection angle
q = uvarccosdef ( ) for each of the eight models and the JF12
model at a particle rigidity of 20 EV (1 EV= 1018 V). These
were obtained by numerically integrating (Cash & Karp 1990;
Argiro et al. 2007) the equation of motion of a negatively20

charged particle in the GMF until it leaves the Galaxy at a
Galactocentric radius of =r 30 kpcmax . The magnitude of the
deflection angle is indicated by colors at each of the starting
directions v on a HEALPIX grid with Nside= 64, and the
direction of the deflection is indicated by an arrow for a subset
of directions on an Nside= 16 grid if θdef> 1°. As can be seen,
all eight models exhibit qualitatively similar deflection patterns
but with quantitative differences, as is to be expected from the
results presented in the last section. For instance, the nebCor
model has the largest deflections because in this model, the
magnetic field scale is set by the polarized synchrotron data,
not by the RMs. And as expected, the expX model has the
largest deflections for trajectories close to the Galactic center,
where it has a 6 times larger poloidal field strength than the
base model. All models exhibit a left–right asymmetry with
deflections being larger if the particle is backtracked toward
positive longitudes and smaller for negative longitudes. This is
the consequence of the twisted nature of the halo field.
For a closer look at the differences between the models, we

show the backtracked directions u in Figure 19 for a small set
of arrival directions v. The particle rigidity is again 20 EV, and
u and v are connected by lines interpolating the backtracked
directions at higher rigidities. This figure illustrates the
similarity of the models, since in many directions all of them
roughly agree on the overall direction of the deflection, but also
shows the model uncertainties, visible as a scatter in predicted
directions for the ensemble of models. It is worth noting that
the deflections predicted by the widely used JF12 model are
generally within the range of deflections predicted for the GMF
models derived in this work. This is not the case for the

Figure 17. Comparison of models i = a–r and j = a–r (see Table 3) using the space angle q = u uarccos ,ijk ik jk( ) between the direction of charged particles
( = ´1 1019 V) backtracked to the edge of the Galaxy analyzed for sky maps of arrival directions k at Earth with a resolution of Nside = 32. Left: average θ; middle:
90th percentile of θ distribution; right: maximum θ.

20 Backtracking a negatively charged test particle yields the forward trajectory
of a positively charged cosmic ray.
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deflections calculated with the GMF model of Pshirkov et al.
(2011), due to the absence of a poloidal component in that
model (see Section 7.6).

Current studies of the anisotropies of ultrahigh-energy
cosmic rays indicate the presence of “hot spots” of cosmic-
ray clusters at intermediate angular scales of 20° (Abbasi et al.
2014; Abreu et al. 2022). For the identification of extragalactic
sources related to these overdensities, a precision in back-
tracking through the GMF at least as good as their angular size,
qmax, is needed. Figure 20 aims to illustrate this requirement. In
the left panel, we show the minimum rigidity such that the
deflection for a cosmic ray arriving in the given direction is less
than q = 20max in all eight models. Requiring that the
deflections in half of the sky are less than q = 20max ,
according to all of these models, requires the rigidity to be
greater than or equal to =R 2050

nocorr EV.
The minimum rigidity requirement improves considerably if

the arrival directions are corrected for their expected deflection
in the GMF. The limit on the precision with which we infer the
source position arises from the difference between the models
and not the overall magnitude of the deflection. The differences
of the predicted deflections within the model ensemble are
smaller than the deflections themselves. Therefore, as shown in
the right panel of Figure 20, the required minimum rigidity is
lower when the deflections are corrected for. With corrections,
the rigidity quantile at which half of the sky can be observed at
q = 20max or better decreases to  = 1150

corr EV, giving a

much greater observational reach. Note that this discussion is
indicative only, since the minimal rigidity requirement may
change when random fields are included in the analysis.

8.2. Axions

Another important application of the model ensemble
presented in this paper is the prediction of the conversion of
astrophysical axion-like particles (e.g., Jaeckel & Ringwald 2010)
to photons in the GMF. The general expression for axion–photon
conversion in a plasma was derived by Raffelt & Stodolsky
(1988). In the limit of small conversion probability, applicable
due to known constraints, we can use the expression given in
Equation (S5) of Dessert et al. (2020) for the axion-to-photon
conversion probability between the source, located at rsrc, and the
observer, located at the origin,
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The integral is along the line of sight from source to observer,
and the subscripts i= 1, 2 refer to the transverse components
of the magnetic field relative to the line of sight. Current

Table 3
Parameter Values and Uncertainties for the Eight GMF Model Variations

Name base expX spur neCL twistX nebCor synCG cre10 Unit

Disk Field
α 10.11 ± 0.13 10.03 ± 0.13 12.1 ± 0.6 11.9 ± 0.4 12.1 ± 0.4 10.15 ± 0.14 9.90 ± 0.13 10.16 ± 0.13 deg
zd 0.794 ± 0.032 0.715 ± 0.024 0.750 ± 0.027 0.674 ± 0.018 0.94 ± 0.05 0.812 ± 0.027 0.622 ± 0.018 0.808 ± 0.033 kpc
wd 0.107 ± 0.026 0.099 ± 0.023 0.123 ± 0.024 0.061 ± 0.020 0.15 ± 0.07 0.119 ± 0.025 0.067 ± 0.018 0.108 ± 0.025 kpc
B1 1.09 ± 0.14 0.99 ± 0.15 −4.30 ± 0.18 1.43 ± 0.26 1.37 ± 0.17 1.41 ± 0.19 0.81 ± 0.12 1.20 ± 0.14 μG
B2 2.66 ± 0.21 2.18 ± 0.22 L 1.4 ± 0.4 2.01 ± 0.30 3.53 ± 0.27 2.06 ± 0.20 2.75 ± 0.21 μG
B3 3.12 ± 0.15 3.12 ± 0.16 L 3.44 ± 0.34 1.52 ± 0.26 4.13 ± 0.21 2.94 ± 0.14 3.21 ± 0.15 μG
f1 263 ± 9 247 ± 10 155.9 ± 1.4 200 ± 11 236 ± 11 264 ± 8 230 ± 13 265 ± 8 deg
f2 97.8 ± 2.8 98.6 ± 3.2 L 135 ± 12 102 ± 10 97.6 ± 3.2 97.4 ± 3.3 98.2 ± 2.8 deg
f3 35.1 ± 2.2 34.9 ± 2.4 L 65 ± 4 56 ± 6 36.4 ± 2.5 32.9 ± 2.4 35.9 ± 2.2 deg
wS L L 10.3 ± 0.6 L L L L L deg
fc L L 157.2 ± 3.0 L L L L L deg
Lc L L 31.8 ± 3.0 L L L L L deg
Toroidal Halo
BN 3.26 ± 0.31 2.71 ± 0.19 2.93 ± 0.23 2.63 ± 0.17 L 4.6 ± 0.4 2.40 ± 0.12 3.7 ± 0.4 μG
BS −3.09 ± 0.30 −2.57 ± 0.18 −2.60 ± 0.21 −2.57 ± 0.17 L −4.5 ± 0.4 −2.09 ± 0.11 −3.50 ± 0.35 μG
zt 4.0 ± 0.7 5.5 ± 0.9 6.1 ± 1.4 4.6 ± 0.8 L 3.6 ± 0.6 5.6 ± 0.8 2.9 ± 0.4 kpc
rt 10.19 ± 0.17 10.13 ± 0.19 9.75 ± 0.13 10.13 ± 0.20 L 10.21 ± 0.17 9.42 ± 0.08 10.41 ± 0.20 kpc
wt 1.7 ± 0.4 2.1 ± 0.6 1.42 ± 0.30 1.15 ± 0.29 L 1.7 ± 0.4 0.92 ± 0.16 1.7 ± 0.4 kpc
t L L L L 54.7 ± 1.1 L L L Myr
Poloidal Halo
Bp 0.978 ± 0.033 5.8 ± 0.4 0.99 ± 0.04 0.984 ± 0.031 0.628 ± 0.020 1.35 ± 0.04 0.809 ± 0.024 0.969 ± 0.034 μG
p 1.43 ± 0.09 1.95 ± 0.14 1.40 ± 0.09 1.68 ± 0.11 2.33 ± 0.10 1.34 ± 0.10 1.58 ± 0.09 1.42 ± 0.09 L
zp 4.5 ± 0.4 2.37 ± 0.22 4.5 ± 0.4 3.65 ± 0.28 2.63 ± 0.10 4.8 ± 0.5 3.53 ± 0.24 4.6 ± 0.4 kpc
rp 7.29 ± 0.06 2.50 ± 0.07 7.20 ± 0.06 7.41 ± 0.05 7.92 ± 0.04 7.25 ± 0.07 7.46 ± 0.05 7.30 ± 0.06 kpc
wp 0.112 ± 0.029 L 0.123 ± 0.034 0.142 ± 0.030 0.291 ± 0.035 0.143 ± 0.033 0.150 ± 0.022 0.109 ± 0.027 kpc
ac L 6.2 ± 0.8 L L L L L L kpc

Other Model Parameters
κ 0 0 0 0 0 −0.4 0 0 L
ξ 0.346 ± 0.034 0.51 ± 0.04 0.330 ± 0.033 0.336 ± 0.029 0.78 ± 0.04 0 0.63 ± 0.04 0.250 ± 0.033 L

Note. See Table 1 for a description of the parameters and Table 2 for the definition of each model variation.
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limits on the axion–photon coupling strength are
gaγγ few× 10−12 GeV−1 in the low-axion-mass regime
(ma 10−6 eV; Workman et al. 2022). The effective
wavenumbers entering the phase shift are D º -m E2a a

2 ( )
and wD ¢ º -r r E2p

2( ) ( ) ( )∣∣ , where the plasma frequency
w » ´ - - - -n3.7 10 10 cmp

12
e

2 3 1 2( ) eV. Thus, in the limit of
large axion energies and low axion mass, the conversion
probability simplifies to the last expression that depends only
on the coupling constant and the line-of-sight integral of the
traverse magnetic field as given in the second line of
Equation (54). We checked the validity range of this
approximation by comparing it to the conversion probabilities

in the JF12 magnetic field calculated with the gammaALPs
package (Meyer et al. 2022) and found good agreement for
Ea 1 TeV and ma 10−8 eV.
The effects of the new magnetic field models derived in this

paper on the predicted axion–photon conversion probabilities are
shown in Figure 21, where we assumed gaγγ= 5× 10−12 GeV−1.
These figures look qualitatively very similar to the ones for the
cosmic-ray deflections, Figure 18, since both the conversion
probability and the deflection depend on the perpendicular
component of the magnetic field. The reason for the asymmetry
of the conversion probability in longitude is again the twisted
nature of the Galactic halo field. For a given extragalactic axion
source candidate, the uncertainty of conversion probability can be

Figure 18. Angular deflections of ultrahigh-energy cosmic rays in the JF12 model (top) and the eight model variations derived in this paper. Colors and arrows denote
the size and direction of the deflection in the GMF following the particles from Earth to the edge of the Galaxy. Positions on the sky map denote arrival directions at
Earth. The rigidity is 2 × 1019 V.
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estimated by finding the maximum and minimum prediction in the
model ensemble in the direction of the source.

9. Summary

In this paper, we have developed new, improved models of
the coherent magnetic field of the Milky Way with better
functional descriptions of the disk and poloidal fields of the
Galaxy, as well as the first step toward a unified model for the
toroidal and poloidal magnetic halo. We improve on previous
analyses by using more and better variants of auxiliary models
for the thermal and cosmic-ray electron densities. The
parameters of these new models are constrained with the latest
RM and PI data, which we have subjected to detailed scrutiny
to resolve or reveal discrepancies.

Equipped with these improvements and with a fast optimization
framework that made it computationally feasible to investigate
many model variations, we can infer the following insights about
the coherent magnetic field of the Milky Way.

1. The local pitch angle of the disk field is (11° ± 1°).
2. A magnetic field arranged as a grand-design spiral in the

Galactic disk fits the data well; interestingly, the inferred
field reversals occur at the position of tracers of the spiral
arms of the matter density. However, a grand-design

spiral is not needed: a model with only a coherent local
spur describes the RM and PI data equally well.

3. Within the 10% statistical precision of the data, the
magnitude of the toroidal halo field is the same below and
above the disk.

4. The vertical scale height of the inferred toroidal halo is
anticorrelated to the assumed half-height of the cosmic-
ray diffusion volume, with a lower 5σ limit of
hD� 2.9 kpc.

5. Compatibility of the magnetic field strengths inferred
from the RM and PI data can be achieved either through a
striated random field having about the same energy
density as the coherent field or through an anticorrelation
between the thermal electrons and magnetic field strength
with a coefficient of −0.4.

6. The new data corroborate the existence of the poloidal
halo field introduced in JF12 with high significance. The
strength of the poloidal field in the inner Galaxy is
currently not well constrained due to the need for
masking local structures.

7. A simple unified halo model, in which the toroidal field is
generated by the shearing of the poloidal field due to the
Galactic rotation, fits the data well with only six instead
of the usual 10 free halo parameters.

Figure 19. Angular deflections of ultrahigh-energy cosmic rays in the eight model variations derived in this paper and JF12. The cosmic-ray rigidity is 20 EV
(2 × 1019 V). Filled circles denote a grid of arrival directions, and the open symbols are the backtracked directions at the edge of the Galaxy.

Figure 20. Left: rigidity threshold such that the angular deflection in the given direction is �20° in all models. Right: rigidity threshold such that the model predictions
of the angular deflection differ by �20° (1 EV = 1018 V).
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We selected an ensemble of eight model variations21 that
encompass a large range of assumptions that are compatible
with the data; see Table 3. As a first application, we employed
these variations to study the deflections of ultrahigh-energy

cosmic rays in the GMF. We find that the deflections predicted
by the widely used JF12 model are close to the ones from the
new model ensemble. An important conclusion of our work is
that the UHECR deflection uncertainties derived from the
model ensemble are smaller than the deflection itself for most
of the sky at ultrahigh energies, and we can localize the regions
of greatest uncertainty.

Figure 21. Axion–photon conversion probabilities, paγ, for the JF12 model (top) and the eight model variations derived in this paper (gaγγ = 5 × 10−12 GeV−1,
Ea  1 TeV, and ma  10−8 eV).

21 A C++ implementation of these GMF models can be found in Unger &
Farrar (2024).

27

The Astrophysical Journal, 970:95 (32pp), 2024 July 20 Unger & Farrar



The comprehensive study presented here significantly
improves our knowledge of the global structure of the coherent
magnetic field of the Milky Way and for the first time provides
a range of model possibilities to explore the impact of GMF
uncertainties on GMF-sensitive science. However, it is just a
step in the journey to achieving accurate knowledge of the
magnetic field of the Galaxy. Directions for future improve-
ments of the GMF modeling have been noted throughout this
paper. These include a better understanding of Galactic
foregrounds, an investigation of a possible position dependence
of the striation factor, and a self-consistent modeling of the
diffusion of cosmic-ray electrons in the GMF.
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Appendix A
Comparison of Synchrotron Data Products

Sky maps of the Stokes Q and U parameters of the polarized
synchrotron emission are shown in the subpanels along the
diagonal of Figure 22. The values are from the 9 yr WMAP

Figure 22. Values (diagonal) and differences (off-diagonal) of Stokes parameters at 30 GHz in μK of WMAP (W), Planck (P), our arithmetic average of WMAP and
Planck (WP), and the WMAP–Planck combination of the COSMOGLOBE collaboration (CG). Stokes Q parameters are shown as an upper triangular matrix of plots at
the top, and Stokes U parameters are displayed as a lower triangular matrix of plots at the bottom. Values are given in μK.
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“base” model (Bennett et al. 2013), the third Planck data
release (DR3.0; Akrami et al. 2020), our simple arithmetic
average of WMAP and Planck, and the COSMOGLOBE results
derived from a combined analysis of WMAP and Planck
data (Watts et al. 2023). The difference between each data set is
shown as sky maps in the off-diagonal panels. As can be seen,
the WMAP and Planck maps exhibit large differences in the
Galactic plane that could be related to different levels of
temperature-to-polarization leakage in the two data
sets (Svalheim et al. 2023). This region of the sky is, however,
not relevant for our analysis, as it is masked in the fit.
Moreover, there are large-scale systematic differences between
the Q and U parameters derived by the two collaborations. Our
arithmetic average is by construction in between the two data
products, and the values from the global reanalysis from
COSMOGLOBE show yet another large-scale distribution of Q
and U differences.

Appendix B
Foreground Contamination

An important challenge for the inference of the global
structure of the large scale of the GMF is the contamination of
the observables with foreground structures (e.g., Section 5.2 in
Jaffe 2019). If these structures are sufficiently close to the
observer, they can appear as features of large angular extent
and could either be mistaken for large-scale global features of
the GMF and/or bias the fitted parameters.

A foreground of particular importance is the known loops
and spurs of nearby supernova remnants. We performed a few
initial tests with a magnetic field compressed at the edge of a
local foreground bubble (e.g., Ferriere et al. 1991) using a
simple spherical model with magnetic flux conservation but
could not find a configuration that described the data. More
systematic studies are needed to definitively exclude this
possibility, e.g., including the known loops in the PI. It should,
however, be noted that we have masked the edges of the
classical loops I–IV from our fit, see Section 3.2, also
excluding the possible imprint of local filamentary magnetic
structures suggested by West et al. (2021). Furthermore, given
the angular positions of the loops, it is not obvious how they
could conspire to create a foreground that appears as a north–
south symmetric poloidal field with ΔBp= (0.12± 0.07) μG;
see Section 7.6.

A similar argument can be brought forward regarding the
possibility that the butterfly pattern of the RMs, Equation (9), is
the imprint of the local environment as, e.g., suggested by the
identification of visually similar features identified in RM sky

maps derived from simulated galaxies (e.g., Pakmor et al. 2018;
Reissl et al. 2023). Our finding that for all model variations the
magnitudes of the northern and southern magnetic field
strength of the toroidal component are compatible within a
few tenths of μG (see Table 3) is difficult to reconcile with an
origin of ordered fields on scales of 1–2 kpc.
For a data-driven test of the influence of unmodeled local

structures on the model parameters, we repeat the fit of the
base model excluding pixels with a large deviation of the data
from the model. We exclude pixels if the magnitude of the
“pull” = ((data – model)/uncertainty) exceeds 1.5; see
Figure 10. The resulting masks for the RMs and PI are
displayed in Figure 23, where the additionally masked pixels
are shown in blue. As can be seen, the new mask excludes the
pixels below the fan region with large RM residuals centered at
(ℓ, b)∼ (120°, −30°) and pixels around the already-masked
Gum nebula centered at (ℓ, b)∼ (105°, −9°). The additionally
masked pixels in PI are mainly at the edge of the existing mask
close to the north polar spur (or loop I) and at the northern edge
of loop III centered at (ℓ, b)∼ (124°, 15°). Excluding these
pixels removes 1320 data points from the fit, i.e., a reduction of
about 20%. After reoptimizing the parameters, we find a
drastically changed fit quality that improves from a reduced χ2

of 1.20 for the default fit to 0.47. Note that a reduced χ2 as low
as this value would usually be considered suspicious (“too
good”) and could indicate that the pull cut is too tight,
removing too many pixels. On the other hand, it could result
from a small coherence length of the magnetic turbulence, as
indicated by our analysis of simulated sky maps discussed in
Section 6.
The parameters from the fit with the data-driven mask are

compared to the default ones in Figure 24. As can be seen, even
after the removal of 20% of the data points, the fit parameters
are qualitatively similar. The parameters of the poloidal field
are impacted the least by the change of the data set, and also the
field strengths and the pitch angle of the disk field component
change very little. The most significant changes are observed
for the toroidal field for which the magnitudes of the northern
and southern field strengths are reduced by about 0.6 μG. We
verified that this change is driven by the RM pixels below the
fan region. Since similarly low values of the toroidal field
strengths were obtained for the synCG model, these changes
can be considered to be within the overall modeling
uncertainties bracketed by the model ensemble presented in
this paper.
These studies with a more restrictive mask make it plausible

that our modeling is not largely driven by local features.

Figure 23. Pixel masks in Galactic coordinates. Left: RM. Right: PI (Stokes Q and U parameters). The gray pixels are masked in the standard analysis (see
Sections 3.1 and 3.2), and the additionally masked pixels based on the “pull” are shown in blue (see text).
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However, the changes of the model parameters in Figure 24
also demonstrate the gain in precision that could be achieved
after including a description of the local magnetized environ-
ment to the fit, in particular modeling the Local Bubble and
loops along the lines of, e.g., Alves et al. (2018) andMertsch &
Sarkar (2013).

Appendix C
Parameter Correlations

We estimate the covariance matrix V of the best-fit
parameters p̂ from the second derivatives of the χ2 at the
minimum,
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(e.g., Frodesen et al. 1979). We evaluate Equation (C1) using
central differences with one Richardson extrapolation (e.g., Press
et al. 2002) because for our 20-parameter fits, MINUITʼs HESSE

algorithm often resulted in numerically unsatisfactory results. The
step size for our numerical differentiation is Δxi=ασi, where σi
denotes the uncertainty of parameter i estimated with MINOS (see
Section 6). The common scale parameter α is decreased until the
differences ||V(αk+1)−V(αk)|| between iterations k increase,
indicating the onset of numerical noise, typically α= 0.05.

As an example, we show the correlation matrix
(r = V V Vij ij ii jj ) of the parameters of the base model in
Figure 25. As can be seen, most parameters have low
correlation coefficients indicating, e.g., a good factorization
of the shape of the toroidal GMF from the other components of
the model. However, some parameters are highly (anti)
correlated. The two-dimensional profile likelihood contour of
the eight parameter combinations with the highest (anti)
correlation is shown in Figure 26. Here we also superimposed
the approximation derived from Equation (C1) demonstrating
good agreement with the numerical scan.

Particularly interesting is the large anticorrelation of the field
strengths of the toroidal halo, BN and BS. This anticorrelation is
introduced by the common scale height zt. We tested a fit of
separate scale heights in the north and south but found only a

minor improvement in fit quality when leaving them separately
free in the fit (δχ2=−22).
In addition to being a valuable diagnostic for the correlation

of fit parameters, the covariance matrix is essential to propagate
the uncertainties of the parameters. For numerical applications,
the simplest method for the error propagation is to draw
samples p̃ of the parameter vector p that are distributed
according to the covariance matrix. This can, for instance, be
achieved via

= +p p Ln, C2˜ ˆ ( )

where L is the lower triangular matrix of the Cholesky
decomposition of the covariance matrix, V= LLT, and n
denotes a vector of standard-normally distributed random
numbers.
How these samples can be used for error propagation is

illustrated in Figure 27. Here we show the backtracked
directions of particles starting on a grid of arrival directions
at Earth similar to Figure 19. For each grid point, we
backtracked 100 particles, each through a different version of
the base model using a different draw of the parameter vector.
The point density is a direct measure of the probability of a
particular direction given the covariance of the fitted
parameters. For most of the grid points, the standard deviation
of the points is smaller than the difference between models in
Figure 19, showing that the systematic differences between
models dominate over the parameter uncertainties. The
sampling of the parameters from the covariance matrix can
nevertheless be useful, for instance, if instead of a discrete
eightfold uncertainty, mapping a smoother distribution is
needed, which may be obtained by sampling the parameters
of all eight model variants. The numerical values of the
elements of V for the eight GMF models as well as an example
for the sampling according to Equation (C2) are available in
Unger & Farrar (2024).

Figure 24. Fit parameters of the base model obtained with the standard pixel
mask (red points with uncertainties) and with the conservative “pull” mask
shown in Figure 23.

Figure 25. Visualization of the correlation matrix of the 20 parameters of the
base model.
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