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In this paper, we focus on scattering of non-periodic incident fields in three-
dimensional bi-periodic structures, as they can not be solved by the classical
methods used for the quasi-periodic scattering problems. To solve such non-
periodic scattering problems, the Floquet–Bloch transform, which decomposes
the unbounded problem into a family of periodic problems in a bounded unit
cell, has been applied together with a numerical method by Lechleiter and
Zhang (2017). However, its theoretical result indicates that the computational
order is too low. Hence, our aim is to propose a high-order numerical approach
by using the Floquet–Bloch transform. To this end, the first crucial part is to
analyze the regularity of the transformed solution with respect to the Floquet
parameter. The second challenging part is to propose a high-order tailor-made
quadrature method adapted to singularities of the transformed solution formed
by a finite number of circular arcs. Afterwards, we obtain the error estimation of
the proposed numerical approach. Eventually, the accuracy and efficiency of the
mentioned approach are revealed by several numerical examples.

1 INTRODUCTION

Scattering problems in periodic structures play a substantial role in modern mathematical physics. They are particularly
important in thin solar cell design, photonic crystal band gap engineering, and surface structure optimization for organic
light-emitting diodes [1, 2]. The classical periodic scattering problem that a periodic or quasi-periodic incident field such
as a plane wave is scattered by a periodic structure, can be directly reduced to a problem posed on a unit cell of the
periodic domain [3, 4]. Afterwards, the reduced problem can be solved numerically for example by the finite element [5,
6] or integral equation methods [7]. However, when the incident field is non-periodic, this approach no longer works.
Therefore, novel numerical schemes are necessary to efficiently solve these challenging problems.
One way to tackle such problems is the use of the Floquet–Bloch transform. It has been applied most often in two-

dimensional scattering problems (e.g., see numerical results in refs. [8–11] and theoretical results in refs. [12, 13]). This
is also the approach that will be used in this paper, where we consider a three-dimensional geometry, extending similar
approaches from refs. [14–16]. Another possibility is a numerical approach based on the extension of the Robin-to-Robin
map by using a recursive doubling procedure, as described in refs. [17, 18].Moreover, in refs. [19–21], operator equations are
solved to construct the Dirichlet-to-Neumann (DtN) map. It is worth noting that the non-periodic scattering problems in
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three dimension have been studied by the Floquet–Bloch transform only in refs. [14, 16]. However, the convergence rate
of the techniques in these references is rather low.
In this paper, we propose a high-order numerical scheme to solve scattering problems in three-dimensional bi-periodic

structures. We first apply the Floquet–Bloch transform to decompose the original scattering problem, involving non-
periodic fields and posed in an unbounded but periodic domain, into a family of problems involving only periodic fields
and posed on just a single bounded cell of periodicity. In this procedure, the numerical error is the combination of two
components: the error in the approximation of the transformed total field due to the employed numerical method and the
error due to the approximation of the inverse Floquet–Bloch transform. To approximate the transformed field, we use the
finite element method whose error estimation is given by classical results. Hence, the main goal of this paper is to derive a
highly accurate and efficient scheme for the inversion of the Floquet–Bloch transform. This, in particular, requires to prove
regularity properties of the transformed field with respect to the Floquet parameter: the inverse Floquet–Bloch transform
essentially consists of a double integral of the transformed field over a bounded domain, but the integrand has got a par-
ticular structure of singularities. Based on the regularity results we establish, we propose a tailor-made quadrature rule to
numerically obtain the total field of the original non-periodic scattering problem.
It should be pointed out that the regularity of the transformed field for the two-dimensional scattering problem in

ref. [22] is not similar to the three-dimensional case. In ref. [22], it is proved that the transformed field is analytic except
for at most two singular points. However, in the three-dimensional case, the singularities of the transformed field no
longer consist of a finite number of points; they form a set that is the union of a finite number of circular arcs. Hence, the
extension of the high-order numerical methods used for the two-dimensional case in refs. [22, 23] is not appropriate for
the three-dimensional case.
The framework of this paper is as follows: Section 2 is devoted to a review of themathematical formulation of scattering

problems in unbounded bi-periodic domains. In Section 3, we introduce the Floquet–Bloch transform and state some of
its properties that we require in the later analysis. Furthermore, we apply the Floquet–Bloch transform to the variational
formulation of the original scattering problem to derive a family of periodic problems that may be reduced to just a single
bounded cell of periodicity. Afterwards, we analyze the regularity of the transformed field with respect to the Floquet
parameter. Our first main result in Theorem 5 is a local representation of the transformed field exactly mirroring the
expected structure of singularities. This significantly extends similar representations found in refs. [14, 15]. Moreover, we
obtain a globally valid representation in Theorem 7. In Section 4, we construct a quadrature rule exactly adapted to the
singularity structure of the transformed field. This allows a rigorous analysis of the quadrature error bases on the regularity
results established earlier in Corollary 17 and of the overall numerical method in Theorem 20. Some numerical examples
illustrating the performance of the proposed scheme are presented in Section 5.

2 MATHEMATICALMODEL OF SCATTERING PROBLEMS

We consider acoustic wave propagation in an unbounded domainΩwhich is bounded from below by a bi-periodic surface
Γ given as the graph of a bounded function 𝜉, that is,

Ω =
{
(𝒙, 𝑥3) ∶ 𝒙 ∈ ℝ2, 𝑥3 > 𝜉(𝒙)

}
, Γ =

{
(𝒙, 𝜉(𝒙)) ∶ 𝒙 ∈ ℝ2

}
.

The function 𝜉 is assumed to be 2𝜋-periodic with respect to both variables. A given, non-periodic incident field 𝑢𝑖 prop-
agating in Ω is scattered by Γ and generates a scattered field 𝑢𝑠 that is to be determined (see Figure 1a). The total field
𝑢 = 𝑢𝑖 + 𝑢𝑠 satisfies the Helmholtz equation with the wave number 𝜅 > 0

Δ𝑢 + 𝜅2𝑢 = 0 in Ω ⊂ ℝ3, (1)

and it is assumed to satisfy a Dirichlet boundary condition

𝑢 = 0 on Γ . (2)

The formulation of the scattering problem is not complete without an appropriate radiation condition. This condition
physically guarantees that the scattered field𝑢𝑠 is propagating upwards fromΓ and,mathematically, itmakes the scattering
problem well-posed. Before stating this condition, we need to introduce some definitions.
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F IGURE 1 A sketch of the presented unbounded domains.

We assumeH > ‖𝜉‖∞ and let ΓH ∶= ℝ2 ×
{
H
}
. ByΩH, we denote the unbounded domain between Γ and ΓH. Figure 1b

shows a sketch of these domains.
We will use the standard Sobolev spaces 𝐻𝑠(ΩH) and 𝐻𝑠

loc
(ΩH) for any 𝑠 ∈ ℝ defined in ref. [24]. For 𝑠, 𝑟 ∈ ℝ, the

weighted Sobolev spaces𝐻𝑠
𝑟(ΩH) and𝐻𝑠

𝑟(ΓH) are defined by

𝐻𝑠
𝑟(ΩH) =

{
𝜙 ∈ 𝐻𝑠

loc
(ΩH) ∶ (1 + |𝒙|2)𝑟∕2𝜙 ∈ 𝐻𝑠(ΩH)

}
,

𝐻𝑠
𝑟(ΓH) =

{
𝜙 ∈ 𝐻𝑠

loc
(ΓH) ∶ (1 + |𝒙|2)𝑟∕2𝜙 ∈ 𝐻𝑠(ΓH)

}
.

The corresponding spaces of functions satisfying a homogeneous Dirichlet boundary condition on Γ in the trace sense
will be denoted with a tilde, that is,

�̃�𝑠
𝑟(ΩH) =

{
𝜙 ∈ 𝐻𝑠

𝑟(ΩH) ∶ 𝜙||Γ = 0
}
.

Wewill assume that the incident field satisfies 𝑢𝑖 ∈ 𝐻1
𝑟 (ΩH) and look for the total field in �̃�𝑠

𝑟(ΩH). In addition, tomake the
scattering problem physically meaningful, the scattered field 𝑢𝑠 will be assumed to satisfy the radiation condition [24, 25],

𝑢𝑠 ( �̃�, 𝑥3) =
1

2𝜋 ∫
ℝ2
ei�̃�⋅𝜻 +i

√
𝜅2−|𝜻 |2 ( 𝑥3−H)�̂�𝑠 ( 𝜻 , H)d𝜻 , 𝑥3 > 𝐻, (3)

where 𝑢𝑠(𝜻 , H) denotes the Fourier transform of 𝑢𝑠 restricted to ΓH, that is,

𝑢𝑠(𝜻 , H) ∶=
1

2𝜋 ∫
ℝ2
e−i�̃� ⋅𝜻 𝑢𝑠(�̃�, H) d�̃�.

In ref. [24], it is shown that 𝑢𝑠(⋅, H) ∈ 𝐻
1∕2
𝑟 (ℝ2) and it is elaborated why the integral on the right-hand side of (3) exists

for 𝑢𝑠 ∈ 𝐻1
𝑟 (ΩH), |𝑟| < 1.

The radiation condition (3) can be equivalently formulated as the transparent boundary condition

𝜕𝑢

𝜕𝑥3
(𝒙,H) −

(
𝑇+𝑢|ΓH) = 𝜕𝑢𝑖

𝜕𝑥3
(𝒙,H) −

(
𝑇+𝑢𝑖|ΓH) =∶ 𝑓, on ΓH, (4)

where the DtN map 𝑇+ is defined by

(
𝑇+𝜓|ΓH) ( �̃�, H) = i

2𝜋 ∫
ℝ2

√
𝜅2 − |𝜻 |2ei�̃�⋅𝜻 �̂� ( 𝜻 , H)d𝜻 .

In refs. [24, 25], it is proved that 𝑇+ ∶ 𝐻1∕2
𝑟 (ΓH) → 𝐻

−1∕2
𝑟 (ΓH) is well-defined and continuous for |𝑟| < 1.

Now, the problem (1)–(2) can be reduced to a boundary value problem in ΩH together with the transparent boundary
condition (4) on ΓH. The variational formulation of this boundary value problem with 𝑓 ∈ 𝐻

−1∕2
𝑟 (ΓH) for |𝑟| < 1 is to find
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F IGURE 2 The three-dimensional bounded unit cell Ω2𝜋
H .

𝑢 ∈ �̃�1
𝑟 (ΩH) such that it satisfies

∫
ΩH

(
∇𝑢 ⋅ ∇𝑣 − 𝜅2 𝑢 𝑣

)
d𝒙 − ∫

ΓH

(
𝑇+𝑢|ΓH)𝑣 d𝑠 = ∫

ΓH

𝑓 𝑣 d𝑠, for all 𝑣 ∈ �̃�1(ΩH). (5)

Existence and uniqueness of solution for the variational problem (5) has been proved in ref. [24].
From a numerical point of view, the variational problem (5) is not yet adequate as it is still posed on an unbounded

domain. In the next section, by applying the Floquet–Bloch transform, we hence present a decomposed formulation of (5)
consisting of a family of periodic problems posed on a single bounded unit cell of the periodic domain.

3 THE FLOQUET–BLOCH TRANSFORM

Consider the square lattice
{
2𝜋𝒋 ∶ 𝒋 ∈ ℤ2

}
with the primitive cell V =

{
2𝜋𝜼 ∶ 𝜼 ∈ ℝ2, −1∕2 < 𝜼1,2 ≤ 1∕2

}
. We define

the three-dimensional bounded unit cell by restricting the domainΩH to 𝒙 in the considered primitive cell, that is,Ω2𝜋
H =

{𝒙 ∈ ΩH ∶ 𝒙 ∈ V} as depicted in Figure 2.

Definition 1 [12, 16]. For 𝜑 ∈ 𝐶∞0 (ΩH), the Floquet–Bloch transform  𝜑 is defined by
( 𝜑) ( 𝜶, 𝒙) = ∑

𝒋∈ℤ2

𝜑 ( �̃� + 2𝜋𝒋, 𝑥3)e
−i𝜶⋅( �̃�+2𝜋𝒋), (6)

where 𝒙 = (𝑥1, 𝑥2, 𝑥3)
⊤, 𝒙 = (𝑥1, 𝑥2)

⊤ ∈ ℝ2 and 𝜶 ∈ ℝ2 denotes the Floquet parameter.

Note that  𝜑 is bi-periodic with respect to 𝒙 with period 2𝜋 in each coordinate direction. Moreover, for every 𝒙 the
function ei𝜶⋅𝒙( 𝜑)(𝜶, 𝒙) is bi-periodic with respect to 𝜶 with period 1 in each coordinate direction. The fundamental cell
of periodicity of  𝜑 thus is V∗ × Ω2𝜋

H where V∗ ∶= [−1∕2, 1∕2]2. To investigate more properties of the Floquet–Bloch
transform, we introduce the Sobolev space of bi-periodic functions

�̃�𝑠
per(Ω

2𝜋
H ) =

{
𝜙 ∈ 𝐻𝑠(Ω2𝜋

H ) ∶ 𝜙(𝒙 + 2𝜋𝒋, 𝑥3) = 𝜙(𝒙), 𝒋 ∈ ℤ2 , 𝜙|Γ2𝜋 = 0
}
,

and the space 𝐻𝑟(V∗; �̃�𝑠
per(Ω

2𝜋
H )) with norm

‖𝜙‖𝐻𝑟(V∗;�̃�𝑠
per(Ω

2𝜋
H )) =

( ∑
𝑚∈ℕ2∶|𝑚|≤𝑟 ∫V∗ ‖𝜕𝑚𝜶 𝜙(𝜶)‖‖2�̃�𝑠

per(Ω
2𝜋
H )

d𝜶

)1∕2

.

For 𝜓 ∈ 𝐻𝑟(V∗; �̃�𝑠
per(Ω

2𝜋
H )) we will write 𝜓(𝜶) ∈ �̃�𝑠

per(Ω
2𝜋
H ), but continue using 𝜓(𝜶, 𝒙) instead of 𝜓(𝜶)(𝒙). The next

theorem states the mapping properties of the Floquet–Bloch transform in the framework of these spaces.
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Theorem 2 Theorem 1, [16]. The Floquet–Bloch transform  extends to an isomorphism between �̃�𝑠
𝑟(ΩH) and

𝐻𝑟(V∗; �̃�𝑠
per(Ω

2𝜋
H )) for all 𝑠, 𝑟 ∈ ℝ. Moreover, the inverse Floquet–Bloch transform is obtained by

( −1𝜓) ( �̃� + 2𝜋𝒋, 𝑥3) = ∫
V∗
𝜓 ( 𝜶, 𝒙)ei𝜶⋅( �̃�+2𝜋𝒋)d𝜶, 𝒙 ∈ Ω2𝜋

H , 𝒋 ∈ ℤ2. (7)

According to ref. [12], the mapping properties of the Floquet–Bloch transform when operating on functions defined on
ΓH or Γ are analogous.
Wenowuse the Floquet–Bloch transform to decompose the scattering problem in the unbounded domainΩH to a family

of periodic problems in the unit cell Ω2𝜋
H . Let the Floquet–Bloch transform of the total field 𝑢 be denoted by 𝑤 ∶=  𝑢.

By applying the Floquet–Bloch transform to the Helmholtz equation inΩH and to the boundary conditions (2) and (4), it
turns out that for every 𝜶 ∈ V∗, 𝑤(𝜶) ∈ �̃�1

per(Ω
2𝜋
H ) is a weak solution to the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δ𝒙𝑤(𝜶) + 2i 𝜶 ⋅ ∇̃𝒙𝑤(𝜶) +
(
𝜅2 − |𝜶|2)𝑤(𝜶) = 0 in Ω2𝜋

H , (8)

𝑤(𝜶) = 0 on Γ2𝜋, (9)

𝜕𝑤(𝜶)

𝜕𝑥3
− 𝑇′𝜶𝑤(𝜶) = (𝜶) on Γ2𝜋H , (10)

where  denotes the Floquet–Bloch transform of 𝑓 defined in (4). This means (8) is understood in the distributional
sense and (9), (10) in the trace sense and ∇̃𝒙𝑤(𝜶) = (𝜕𝑤(𝜶)∕𝜕𝑥1, 𝜕𝑤(𝜶)∕𝜕𝑥2)

⊤. The periodic DtN map 𝑇′

𝜶 ∶ 𝐻
1∕2
per (Γ

2𝜋
H ) →

𝐻
−1∕2
per (Γ2𝜋H ) is defined by

( 𝑇′𝜶Ψ) ( �̃�) = i
∑
𝒋∈ℤ2

√
𝜅2 − |𝜶 − 𝒋|2Ψ̂ ( 𝒋)ei�̃�⋅𝒋forΨ =

∑
𝒋∈ℤ2

Ψ̂ ( 𝒋)ei�̃�⋅𝒋.

Theorem 3 Theorem 2, [16]. Let |𝑟| < 1 and 𝑢𝑖 ∈ 𝐻1
𝑟 (ΩH). A function 𝑢 ∈ �̃�1

𝑟 (ΩH) satisfies (5) if and only if 𝑤 ∈

𝐻𝑟(V∗; �̃�1
per(Ω

2𝜋
H )) is a solution to the variational problem

∫
V∗
𝑎𝜶(𝑤(𝜶), 𝜓(𝜶)) d𝜶 −

∑
𝒋∈ℤ2

∫
V∗

√
𝜅2 − |𝜶 − 𝒋|2 𝑏𝒋(𝑤(𝜶), 𝜓(𝜶)) d𝜶

= ∫
V∗

∫
Γ2𝜋H

(𝜶, 𝒙) 𝜓(𝜶, 𝒙) d𝑠 d𝜶 for all 𝜓 ∈ 𝐻−𝑟(V∗; �̃�1
per(Ω

2𝜋
H )) . (11)

Moreover, if 𝜶 ↦ (𝜶) is continuous, then 𝜶 ↦ 𝑤(𝜶) is also continuous, and for every 𝜶 ∈ V∗,

𝑎𝜶(𝑤(𝜶), 𝜁) −
∑
𝒋∈ℤ2

√
𝜅2 − |𝜶 − 𝒋|2 𝑏𝒋(𝑤(𝜶), 𝜁) = ∫

Γ2𝜋H

(𝜶) 𝜁 d𝑠 , (12)

for all 𝜁 ∈ �̃�1
per(Ω

2𝜋
H ). Here,

𝑎𝜶(𝑣, 𝜁) = ∫
Ω2𝜋H

(
∇𝑣 ⋅ ∇𝜁 − 2i 𝜶 ⋅ ∇̃𝑣 𝜁 − (𝜅2 − |𝜶|2) 𝑣 𝜁) d𝒙 ,

𝑏𝒋(𝑣, 𝜁) = i∫
Γ2𝜋H

𝜁(𝒙) 𝑣(𝒋) ei𝒙⋅𝒋 d𝑠 = 4i𝜋2 𝑣(𝒋) 𝜁(𝒋) .

Unique solvability of the variational problem (12) in �̃�1
per(Ω

2𝜋
H ) has been proved in ref. [26] for any arbitrary, but fixed

𝜶 ∈ V∗. We can thus compute numerical approximations to the transformed field 𝑤(𝜶) for every 𝜶 ∈ V∗ by using some
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6 of 21 ARENS et al.

F IGURE 3 Structure of  for different values of 𝜅 on V∗ = [−0.5, 0.5]2.

numerical method of choice. In the second step, the inverse Floquet–Bloch transform (7) must be computed to obtain an
approximation to the solution of (11). This essentially amounts to the evaluation of a double integral of𝑤 over the domain
V∗. The accuracy of the numerical solution of (11) depends not only on the selected numerical method for solving (12),
but also on the accuracy of the numerical integration method employed for this double integral. In order to construct a
high-order numerical scheme, requiring few quadrature points for high accuracy, it is necessary to precisely know the
regularity of the transformed field with respect to the Floquet parameter.
Let us heuristically motivate the results that we shall make rigorous in Theorem 5. In the variational formulation (12),

all terms depend analytically on 𝜶 except for the square root functions. Hence, we may expect the transformed field 𝑤 to
depend analytically on 𝜶, except for points where (the derivatives of) these functions have singularities, that is, except for
points located in the set

 =
{
𝜶 ∈ V∗ ∶ |𝜶 − 𝒋| = 𝜅 for some 𝒋 ∈ ℤ2

}
.

The set  is a union of circular arcs formed by the intersection of V∗ and circles with center 𝒋 and radius 𝜅, and we will
also refer to this set as the curves of singular points. Figure 3 illustrates possible structures of  for different wave numbers
𝜅 on V∗. Any high-order method for approximately inverting the Floquet–Bloch transform will need to take into account
the structure of  that becomes more and more complex as 𝜅 increases.
For any 𝜶 ∈  , we also define

𝐉(𝜶) = {𝒋 ∈ ℤ2 ∶ |𝜶 − 𝒋| = 𝜅}, (13)

a finite set with cardinality #𝐉(𝜶).

Remark 4. When 𝜅 < 0.5, for all 𝜶 ∈  , #𝐉(𝜶) = 1. When 𝜅 ≥ 0.5, there exist finite number of 𝜶 ∈  with #𝐉(𝜶) > 1.

For the later analysis of the numerical inversion of the Floquet–Bloch transform, we require a particular regularity of
both the transformed incident and the transformed total fields. To formulate these requirements, we make the following
definitions: For some open set 𝑈 ⊆ ℝ2 and Hilbert space 𝑌, we denote by 𝜔(𝑈;𝑌) the space of functions from 𝑈 to 𝑌
that depend analytically on 𝜶 ∈ 𝑈. For a Hilbert space 𝑌, let

(𝑌) = {𝑔 ∶ V∗ → 𝑌 ∶ 𝑔 satisfies (C1) and (C2) } , (14)

where

(C1) for every open subdomain 𝑈 ⊆ V∗ ⧵  , 𝑔 ∈ 𝜔(𝑈;𝑌),
(C2) for any 𝜶0 ∈  , there exists a neighborhood 𝑈0 of 𝜶0 such that

𝑔(𝜶) =
∑

⊆𝐉(𝜶0)
∏
𝒋∈

√
𝜅2 − |𝜶 − 𝒋|2 𝑔(𝜶) , (15)

where 𝑔 ∈ 𝜔(𝑈0; 𝑌) for every  ⊆ 𝐉(𝜶0).
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ARENS et al. 7 of 21

Theorem 5. Let 𝑢𝑖 ∈ 𝐻1
𝑟 (ΩH) for some |𝑟| < 1 and additionally  ∈ (𝐻−1∕2

per (Γ2𝜋H )). Then, the transformed total field 𝑤
that solves (11) satisfies 𝑤 ∈ (�̃�1

per(Ω
2𝜋
H )).

Proof. Let 𝜶0 ∈ V∗. Using the Riesz representation theorem, we may define the operators(𝜶) and (𝒋) by
⟨(𝒋)𝑣, 𝜁⟩Γ2𝜋H = 𝑏𝒋(𝑣, 𝜁) ,

⟨(𝜶)𝑣, 𝜁⟩Ω2𝜋H = 𝑎𝜶(𝑣, 𝜁) −
∑

𝒋∈ℤ2⧵𝐉(𝜶0)

√
𝜅2 − |𝜶 − 𝒋|2⟨(𝒋)𝑣, 𝜁⟩Γ2𝜋H .

Note that in a neighborhood of 𝜶0, (𝜶) depends analytically on 𝜶. Using these operators, and also the antilinear form̂(𝜶) induced by the right-hand side of (12), (12) can be reformulated as[
(𝜶) − ∑

𝒋∈𝐉(𝜶0)

√
𝜅2 − |𝜶 − 𝒋|2(𝒋)]𝑤(𝜶) = ̂(𝜶) . (16)

If 𝜶0 ∉  , then 𝐉(𝜶0) = ∅ and as  satisfies (C1) with 𝑌 = 𝐻
−1∕2
per (Γ2𝜋H ), so does 𝑤 with 𝑌 = 𝐻1

per(Ω
2𝜋
H ).

We now assume 𝜶0 ∈  . Moreover, let 𝐵(𝜶0, 𝛿) denote an open ball centred at 𝜶0 with radius 𝛿. Note that for any 𝒋 ∈
𝐉(𝜶0), ‖√𝜅2 − |𝜶 − 𝒋|2(𝒋)‖ → 0 as |𝜶 − 𝜶0| → 0. In ref. [1], it has been shown that the operator on the left-hand side
of (16) is boundedly invertible. Hence, for small enough 𝛿, the operator(𝜶) is boundedly invertible for all 𝜶 ∈ 𝐵(𝜶0, 𝛿).
Setting ̃(𝒋) = ((𝜶))−1(𝒋), we can write the solution 𝑤 as the Neumann series

𝑤(𝜶) =

∞∑
𝑛=0

( ∑
𝒋∈𝐉(𝜶0)

√
𝜅2 − |𝜶 − 𝒋|2 ̃(𝒋)

)𝑛

((𝜶))−1̂ .

Let 𝐉(𝜶0) = {𝒋1, … , 𝒋𝑚}. Applying the multinomial theorem leads to

𝑤(𝜶) =

∞∑
𝑛=0

⎛⎜⎜⎜⎝
∑

K1+K2+⋯+K𝑚=𝑛,
K1,…,K𝑚≥0

𝑛

K1!K2! … K𝑚!

𝑚∏
𝜇=1

(√
𝜅2 − |𝜶 − 𝒋𝜇|2 ̃(𝒋𝜇))K𝜇

⎞⎟⎟⎟⎠ ((𝜶))
−1̂ .

Note that all even powers of the square root functions are analytic. Insertion (15) for ̂ and combining all analytic terms
appropriately into functions 𝑤 for  ⊆ 𝐉(𝜶0), gives that 𝑤 satisfies (C2) with 𝑌 = 𝐻1

per(Ω
2𝜋
H ). □

Following up on the previous result, the next theorem guarantees that we can make use of (15) for 𝑤 with the same
center of expansion in small balls contained in a neighborhood of  .
Theorem 6. There exist open balls 𝐵𝓁 = 𝐵(𝜶𝓁, 𝜌𝓁) with center points 𝜶𝓁 ∈  and radii 𝜌𝓁, 𝓁 = 1,… , 𝐿, such that  ⊆⋃𝐿

𝓁=1 𝐵𝓁 and the representation (15) holds for 𝑤 on 𝐵𝓁 with 𝜶0 = 𝜶𝓁. Moreover, there exist 𝑟, 𝛿 > 0 such that

̃ ∶= {𝜶′ ∈ V∗ ∶ dist(𝜶′,) < 𝑟} ⊆

𝐿⋃
𝓁=1

𝐵𝓁 ,

and that for every 𝜶 ∈ ̃ there exists 𝓁 with 𝐵(𝜶, 𝛿) ⊆ 𝐵𝓁.

Proof. For every 𝜶0 ∈  , we choose 𝜌(𝜶0) > 0 such that the representation (15) holds for 𝑤 on 𝐵(𝜶0, 𝜌(𝜶0)). Then,  ⊆⋃
𝜶0∈ 𝐵(𝜶0, 𝜌(𝜶0)). Since  is a compact set, we select a finite number of points 𝜶𝓁 and radii 𝜌𝓁 = 𝜌(𝜶𝓁), 𝓁 = 1,… , 𝐿,

such that  ⊆
⋃𝐿

𝓁=1 𝐵(𝜶𝓁, 𝜌𝓁). This yields the first part of the theorem.
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8 of 21 ARENS et al.

F IGURE 4 Structure of ̃ for different values of 𝜅 on V∗ = [−0.5, 0.5]2.

Choose 𝑞 ∈ (0, 1) such that still  ⊆
⋃𝐿

𝓁=1 𝐵(𝜶𝓁, 𝑞𝜌𝓁). Choose 𝑟 such that ̃ ⊆
⋃𝐿

𝓁=1 𝐵(𝜶𝓁, 𝑞𝜌𝓁) and set 𝛿 = (1 −

𝑞) min
𝓁=1,…,𝐿

𝜌𝓁. Now, let 𝜶 ∈ ̃ and �̂� such that |𝜶 − 𝜶�̂�| < 𝑞 𝜌�̂�. Then, for any 𝜶
′ ∈ 𝐵(𝜶, 𝛿), we have

|𝜶′ − 𝜶�̂�| < 𝑞 𝜌�̂� + 𝛿 = 𝑞 𝜌�̂� + (1 − 𝑞) min
𝓁=1,…,𝐿

𝜌𝓁 ≤ 𝜌�̂� .

This completes the proof. □

The structure of ̃ for different values of the wave number 𝜅 is depicted in Figure 4. For any point 𝜶 in ̃ , we may use
the local representation (15) for the transformed field also on a small neighborhood of that point. In our later analysis, we
also require a globally valid representation of 𝑤 which is provided by the next theorem.

Theorem 7. Let 𝜶𝓁, 𝓁 = 1,… , 𝐿, denote the points in Theorem 6 and set 𝐉 =
⋃𝐿

𝓁=1 𝐉(𝜶𝓁). Then there exist 𝑣 ∈
𝐶∞(V∗; �̃�1

per(Ω
2𝜋
H )) such that

𝑤(𝜶) =
∑
⊂𝐉

∏
𝒋∈

√
𝜅2 − |𝜶 − 𝒋|2 𝑣(𝜶) , 𝜶 ∈ V∗ . (17)

Moreover, for any 𝜇 ∈ ℕ0, there exist a constant 𝐶𝜇 such that

‖‖‖‖‖𝜕
𝜇𝑣(𝜶)
𝜕𝛼

𝜇
𝜈

‖‖‖‖‖�̃�1
per(Ω

2𝜋
H )

≤ 𝐶𝜇

dist(𝜶, ̃)𝜇 ,  ⊆ 𝐉 , 𝜈 = 1, 2 , 𝜶 ∈ V∗ . (18)

Proof. Recall the covering of  by the open balls 𝐵(𝜶𝓁, 𝛿𝓁), 𝓁 = 1,… , 𝐿, from the proof of Theorem 6. Furthermore, let
𝐵0 denote an open subset of V∗ ⧵  such that V∗ ⊆ 𝐵0 ∪

⋃𝐿

𝓁=1 𝐵(𝜶𝓁, 𝛿𝓁). Let 𝜑0, … , 𝜑𝐿 ⊆ 𝐶∞(V∗) denote a partition of
unity subject to this open covering. By Theorem 6, in each ball we have

𝑤(𝜶) =
∑

⊂𝐉(𝜶𝓁)
∏
𝒋∈

√
𝜅2 − |𝜶 − 𝒋|2 𝑤𝓁,(𝜶) , 𝜶 ∈ 𝐵(𝜶𝓁, 𝛿𝓁), 𝓁 = 1,… , 𝐿 ,

with 𝑤𝓁, analytic in 𝐵(𝜶𝓁, 𝛿𝓁). Let 𝐉 =
⋃𝐿

𝓁=1 𝐉(𝜶𝓁) and define 𝑤𝓁, = 0 for  ⊆ 𝐉, but  ⊈ 𝐉(𝜶𝓁), 𝓁 = 1,… , 𝐿. Since the
function𝑤 on 𝐵0 is itself analytic according to the first part of Theorem 5, we set𝑤0,∅ = 𝑤 and𝑤0, = 0 for all other  ⊆ 𝐉.
Finally, on V∗ we define

𝑣 =
𝐿∑
𝓁=0

𝜑𝓁 𝑤𝓁, ,  ⊆ 𝐉 ,

where we extend each product on the right-hand side by 0 outside its domain of definition. Then

𝑤(𝜶) =
∑
⊆𝐉

∏
𝒋∈

√
𝜅2 − |𝜶 − 𝒋|2 𝑣(𝜶) , 𝜶 ∈ V∗ .
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ARENS et al. 9 of 21

By definition, 𝑣 ∈ 𝐶∞(V∗; �̃�1
per(Ω

2𝜋
H )). A standard estimate for analytic functions (see Theorem 2.2.7, [27]) gives that for

some constant 𝐶

max
𝜶∈𝐵(𝜶𝓁,𝛿𝓁)

‖‖‖‖‖𝜕
𝜇𝑤𝓁,
𝜕𝛼

𝜇
𝜈

‖‖‖‖‖�̃�1
per(Ω

2𝜋
H )

≤ 𝐶 𝜇!

𝛿
𝜇

𝓁

, 𝜈 = 1, 2 , 𝜇 ∈ ℕ0 , 𝓁 = 1,… , 𝐿 . (19)

Finally, we uniformly bound each derivative of 𝑤 on 𝐵0 and for some 𝛿 > 0, dist(𝐵0,) ≥ 𝛿 > 0. Thus, together with
bounds on the derivative of the function 𝜑𝓁, we obtain the assertion. □

4 A NUMERICAL INVERSION OF THE FLOQUET–BLOCH TRANSFORM

We propose a numerical scheme to obtain the total field in a scattering problem by combining a numerical method, such
as the finite element method, to compute the transformed field 𝑤(𝜶) for fixed 𝜶 with a tailor-made quadrature rule to
approximate the inverse Floquet–Bloch transform to high order. The regularity properties of the transformed field reported
in the previous section are an essential prerequisite for the derivation of such a rule. According to (7), the total field is
calculated by the inverse Floquet–Bloch transform as

𝑢(𝒙 + 2𝜋𝒋, 𝑥3) = ∫
V∗
𝑤(𝜶, 𝒙) 𝑒i𝜶⋅(𝒙+2𝜋𝒋) d𝜶, 𝒙 ∈ Ω2𝜋

H , 𝒋 ∈ ℤ2. (20)

For an analysis of the approximation of this integral, it obviously suffices to consider the case 𝒋 = 0 as the analytic phase
factor exp(i𝜶 ⋅ 2𝜋𝒋) does not affect the regularity of the integrand.
A naive way to approximately compute the integral in (20) is to generate an equidistant uniform square mesh inV∗ and

then use the set of vertices in this mesh to define a composite trapezoidal rule [14–16]. However, convergence of such an
approach is typically slow: due to the square root singularities present in the representation of 𝑤(𝜶) in (15), one can not
even attain second order convergence in the mesh width.
We instead propose to generate a specific quadrature rule matching the a priori known structure of singularities in𝑤 to

achieve high order of convergence. A recursively refined square mesh, dependent only on the wave number, is generated,
with elements getting smaller with decreasing distance to the curves of singularities. On each square, except for the finest
level, a tensor-product Gauss–Legendre rule is applied to approximate the integral in (20). On the finest level, a tensor-
product trapezoidal rule is employed.

4.1 Mesh generation adapted to the set of singular curves

First, note that although V∗ = [−0.5, 0.5]2, it suffices to generate a mesh on [0, 0.5]2 due to the symmetry of the curves
of singular points  (see Figure 3 for an illustration). We start by subdividing [0, 0.5]2 into squares of lateral length ℎ0 =
1∕(2𝑛0) for some 𝑛0 ∈ ℕ≥2. Then 𝑁 refinement steps are taken, further subdividing those squares close to the curves of
singular points, which are circular arcs of radius 𝜅 centred at 𝒋 ∈ �̃� ∶= ∪𝜶∈[0,0.5]2𝐉(𝜶). The complete procedure is presented
as Algorithm 1 whose the output is illustrated in Figure 5 for 𝑁 = 6 and different values of the wave numbers 𝜅.
In the proposition below, we list properties of the adapted mesh 𝑁 generated by Algorithm 1. To concisely formulate

these results, we introduce the sets of squares of lateral length ℎ𝑛 = ℎ0∕2
𝑛 in the mesh,

𝑛 = {𝐾 ∶ 𝐾 ∈ 𝑁 and 𝐾 has lateral length ℎ𝑛} , 𝑛 = 0,… ,𝑁 , (21)

as well as the union of all squares of lateral length ℎ𝑛,

𝑛 =
⋃

𝐾∈𝑛

𝐾 , 𝑛 = 0,… ,𝑁 . (22)
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10 of 21 ARENS et al.

ALGORITHM 1 Generate adapted mesh

Input: 𝜅, 𝑁, 𝑛0, �̃�
1 ℎ0 ← 1∕(2𝑛0)

2 0 ← {
[𝜇1ℎ0, (𝜇1 + 1) ℎ0] × [𝜇2ℎ0, (𝜇2 + 1) ℎ0] ∶ 𝜇1,𝜇2 = 0,… ,𝑛0 − 1

}
3 for 𝑛 = 1, … ,𝑁 do

4 𝑛 ← {}

5 ℎ𝑛 ← ℎ𝑛−1∕2

6 for 𝐾 ∈ 𝑛−1 do
7 let 𝝃𝐾 denote the center of 𝐾
8 dist(𝝃𝐾,)← min𝒋∈�̃� |𝜅 − |𝝃𝐾 − 𝒋||
9 if dist(𝝃𝐾,) ≤ 1∕2𝑛 then

10 Refine 𝐾 into 𝐾1, … , 𝐾4 of lateral length ℎ𝑛
11 𝑛 ← 𝑛 ∪ {𝐾1, … , 𝐾4}
12 else

13 𝑛 ← 𝑛 ∪ {𝐾}
14 return 𝑁

F IGURE 5 The generated adapted mesh 6 for different 𝜅 by Algorithm 1.

Proposition 8. Let the square 𝐾 ∈𝑛 (for 𝑛 = 1,… ,𝑁) with center 𝝃𝐾 , then

dist(𝝃𝐾,)> 1

2𝑛+1
, 𝑛 = 0,… ,𝑁 − 1,

dist(𝝃𝐾,) ≤ 1

2𝑛

(
1 +

√
2

2
ℎ0

)
, 𝑛 = 1,… ,𝑁.

Furthermore,

dist(𝑛,) ≥ 1

2𝑛+1

(
1 −

√
2ℎ0

)
=∶ 𝑑min,𝑛, 𝑛 = 0,… ,𝑁 − 1, (23)

sup
𝑥∈𝑛

dist(𝑥,) ≤ 1

2𝑛

(
1 +

√
2ℎ0

)
=∶ 𝑑max,𝑛, 𝑛 = 1,… ,𝑁. (24)

Proof. Consider the square 𝐾 ∈𝑛, 𝑛 = 1,… ,𝑁, with center 𝝃𝐾 . According to Algorithm 1, 𝐾 is generated by refining a
larger square 𝐾 ∈𝑛−1. The center 𝝃𝐾 of 𝐾 satisfies the condition

dist(𝝃�̃� ,) = |𝜅 − |𝝃�̃� − 𝒋|| ≤ 1

2𝑛
for at least for one 𝒋 ∈ 𝑱. (25)
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ARENS et al. 11 of 21

Based on the refinement, we first conclude that |𝝃𝐾 − 𝝃𝐾| = (
√
2∕4) ℎ𝑛−1, and hence from (25) that

dist(𝝃𝐾,) ≤ dist(𝝃𝐾, 𝝃𝐾) + dist(𝝃𝐾,) ≤ 1

2𝑛

(
1 +

√
2

2
ℎ0

)
, 𝑛 = 1,… ,𝑁 . (26)

A bound for 𝑥 ∈ 𝐾 is obtained by adding half of the diameter of 𝐾,

dist(𝑥,) ≤
√
2

2
ℎ𝑛 +

1

2𝑛

(
1 +

√
2

2
ℎ0

)
=

1

2𝑛

(
1 +

√
2 ℎ0

)
.

As the right-hand side is independent of 𝐾, it actually holds for all 𝑥 ∈ 𝑛.
On the other hand, any 𝐾 ∈𝑛, 𝑛 = 0,… ,𝑁 − 1, that was not subject to the refinement in the (𝑛 + 1)-th refinement

step, it implies

dist(𝝃𝐾,) > 1

2𝑛+1
, 𝑛 = 0,… ,𝑁 − 1. (27)

Hence, for any 𝑥 ∈ 𝐾, we have

dist(𝑥,) ≥ dist(𝝃𝐾,) − diam(𝐾)∕2 > 1

2𝑛+1
−

√
2

2
ℎ𝑛 =

1

2𝑛+1

(
1 −

√
2 ℎ0

)
.

As the right-hand side is independent of 𝐾, the estimate holds for any 𝑥 ∈ 𝑛. □

Remark 9. Proposition 8 shows that every set 𝑛 is covered by annuli for which we have explicit bounds for inner and
outer radius. As each𝑛 is the union of the equally sized squares in𝑛, we may estimate the number of squares in𝑛.
For 𝑛 = 𝑁, we have

|𝑁| ≤ 𝜋
(
𝜅 + 𝑑max,𝑁

)2
− 𝜋

(
𝜅 − 𝑑max,𝑁

)2
= 4𝜋𝜅 𝑑max,𝑁 =

4𝜋𝜅

2𝑁

(
1 +

√
2 ℎ0

)
,

and hence

#𝑁 =
|𝑁|
ℎ2𝑁

≤ 4𝜋𝜅

ℎ0

(√
2 +

1

ℎ0

)
2𝑁 .

Similarly, for 𝑛 = 1,… ,𝑁 − 1,

|𝑛| ≤ 4𝜋𝜅 (𝑑max,𝑛 − 𝑑min,𝑛) =
2𝜋𝜅

2𝑛

(
1 + 3

√
2 ℎ0

)
,

and

#𝑛 =
|𝑛|
ℎ2𝑛

≤ 2𝜋𝜅

ℎ0

(
3
√
2 +

1

ℎ0

)
2𝑛 .

We will now proceed with defining appropriate quadrature rules on each square in 𝑁 and then analyze the corre-
sponding error in computing the integral. We will strongly rely on the correspondence of the squares in the mesh to
representations of the integrand 𝑤. In accordance with Theorem 6, we may use (15) for 𝑤 on the smallest squares if
𝑁 ⊆ ̃ and if ℎ𝑁 <

√
2 𝛿. In the first step, we will use this observation to estimate the error of applying a composite

trapezoidal rule on 𝑁 . Afterwards, we investigate the error of a 𝑃-point Gaussian quadrature rule applied on all other
squares, making use of the representation as derived in Theorem 7. Finally, it is proved that combining both rules for
approximating the inverse Floquet–Bloch transform is super-algebraically convergent.
Recall that it suffices to consider the case 𝒋 = 0when approximating (20). Led by the properties of the transformed total

field established in Section 3, let us first sum up all required assumptions for the integrand. Also recall the definition of
the space  in (14).

Assumption 10. We assume that 𝑤 ∈ (𝐻1
per(Ω

2𝜋
H )) and that 𝑟, 𝛿 denote the corresponding numbers from Theorem 6.

Note that 𝑤 then will also admit the representation (17).
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12 of 21 ARENS et al.

4.2 The trapezoidal rule on the smallest squares

We first consider a square 𝐾 ∈𝑁 with center 𝝃𝐾 = (𝜉𝐾,1, 𝜉𝐾,2). The vertices of 𝐾 are given by 𝜶𝑝,𝑞 = 𝝃𝐾 + (𝑝 −
1

2
) ℎ𝑁 𝒆

(1) + (𝑞 −
1

2
) ℎ𝑁 𝒆

(2), 𝑝, 𝑞 = 0, 1, where 𝒆(𝑗) denotes the 𝑗-th coordinate vector. The integral 𝑤 over 𝐾 is
approximated by the trapezoidal rule

∫
𝐾

𝑤(𝜶) d𝜶 =
ℎ2𝑁
4

1∑
𝑝,𝑞=0

𝑤(𝜶𝑝,𝑞) + E𝑡𝐾𝑤 ,

where 𝐸𝑡𝐾𝑤 denotes the error. To estimate 𝐸𝑡𝐾𝑤, we require the bilinear interpolation operator of the transformed field in
the points 𝜶𝑝,𝑞, which we shall denote by 𝑃𝐾 . Well-known estimates for interpolation give

max
𝜶∈𝐾

|𝑓(𝜶) − 𝑃𝐾𝑓(𝜶)| ≤ 𝐶 max
𝜈=1,2

‖‖‖‖‖𝜕
2𝑓

𝜕𝛼2𝜈

‖‖‖‖‖∞ ℎ2𝑁, (28)

for any 𝑓 ∈ 𝐶2(𝐾). This estimate of course generalizes to 𝐶2-smooth functions on 𝐾 with values in a Sobolev space.

Theorem 11. Let 𝑤 satisfy Assumption 10 and let ℎ0,𝑁 be chosen such that 𝑑max,𝑁 < 𝑟, ℎ𝑁 ≤ √
2𝛿. Then

max
𝜶∈𝐾

‖𝑤(𝜶) − 𝑃𝐾𝑤(𝜶)‖�̃�1
per(Ω

2𝜋
H ) ≤ C2−𝑁∕2 ,

where the constant 𝐶 depends on 𝜅 and the functions 𝑤 appearing in (15) for all the centers of expansion from Remark 6.

Proof. According to Theorem 6, there exists 𝜶0 ∈  such that the representation

𝑤(𝜶) =
∑

⊆𝐉(𝜶0)
∏
𝒋∈

√
𝜅2 − |𝜶 − 𝒋|2 𝑣(𝜶) ,

with analytic functions 𝑤 , holds for all 𝜶 ∈ 𝐾. To establish the assertion, it is necessary to distinguish between curves of
singular points close to 𝐾 and those at a larger distance. Hence, define

𝐽1 =
{
𝒋 ∈ 𝐉(𝜶0) ∶ |𝜅 − |𝜶 − 𝒋|| ≤ 𝑑max,𝑁 for some 𝜶 ∈ 𝐾

}
,

and 𝐽2 = 𝐉(𝜶0) ⧵ 𝐽1. To abbreviate notation, we set 𝛾𝒋(𝜶) =
√
𝜅2 − |𝜶 − 𝒋|2 and introduce

𝑣1 (𝜶) =

⎧⎪⎪⎨⎪⎪⎩
𝑤∅(𝜶) +

∑
∅≠2⊆𝐽2

𝑤2 (𝜶)
∏
𝒋∈2

𝛾𝒋(𝜶) , 1 = ∅ ,

∑
2⊆𝐽2

𝑤1∪2 (𝜶)
∏
𝒋∈2

𝛾𝒋(𝜶) , 1 ⊆ 𝐽1 , 1 ≠ ∅ .

With this notation, the representation of 𝑤 becomes

𝑤(𝜶) =
∑
1⊆𝐽1

𝑣1 (𝜶)
∏
𝒋∈1

𝛾𝒋(𝜶) . (29)

The goal is thus to establish the asserted estimate for each term in (29). Throughout the arguments we shall make use of
a generic 𝐶 denoting constants that depend on 𝜅, the maximum norms of derivatives of all 𝑤 up to second order and on
maximum norms of all 𝑣 (but not their derivatives).
We start with terms for 1 = ∅. For 𝑤∅, the estimate follows directly from (28). This is, in fact, also the initial step in an

induction over the number of square root factors in a summand in the definition of 𝑣1 . For the induction step, assume that
the estimate has been proven for some bounded continuous function 𝑧. Let 𝒋 ∈ 2. From Lemma A2 and the definition
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ARENS et al. 13 of 21

of 𝐽2, we obtain |||||𝜕
2𝛾𝒋(𝜶)

𝜕𝛼2𝜈

||||| ≤ 𝐶
(𝜅 + |𝜶 − 𝒋|)1∕2|𝜅 − |𝜶 − 𝒋||3∕2 ≤ 𝐶

𝑑
3∕2
max,𝑁

≤ 𝐶 23𝑁∕2 , 𝜶 ∈ 𝐾 , 𝜈 = 1, 2 . (30)

By the induction and properties of 𝑃𝐾 ,

|𝑃𝐾(𝛾𝒋 𝑧)(𝜶) − 𝛾𝒋(𝜶) 𝑧(𝜶)|
≤ |𝑃𝐾(𝛾𝒋 𝑧)(𝜶) − 𝛾𝒋(𝜶) 𝑃𝐾𝑧(𝜶)| + |𝛾𝒋(𝜶) 𝑃𝐾𝑧(𝜶) − 𝛾𝒋(𝜶) 𝑧(𝜶)|

≤ |𝑃𝐾(𝛾𝒋 𝑃𝐾𝑧)(𝜶) − 𝛾𝒋(𝜶) 𝑃𝐾𝑧(𝜶)| + 𝐶
‖‖‖𝛾𝒋‖‖‖∞;V∗

2−𝑁∕2.

Now using Equation (28), the bilinearity of 𝑃𝐾𝑧 and finally (30), the first term can be estimated by

|||𝑃𝐾(𝛾𝒋 𝑃𝐾𝑧)(𝜶) − 𝛾𝒋(𝜶) 𝑃𝐾𝑧(𝜶)
||| ≤ 𝐶 ‖𝑧‖∞ max

𝜈=1,2

‖‖‖‖‖𝜕
2𝛾𝒋

𝜕𝛼2𝜈

‖‖‖‖‖∞;𝐾

ℎ2𝑁 ≤ 𝐶 2−𝑁∕2 .

Next, we establish the estimate for terms with 1 ≠ ∅. Consider again a bounded continuous function 𝑧 for which the
asserted estimate is valid and let now 𝒋 ∈ 1. Similarly as before, we estimate

|||𝑃𝐾(𝛾𝒋 𝑧)(𝜶) − 𝛾𝒋(𝜶) 𝑧(𝜶)
|||

≤ |𝑃𝐾(𝛾𝒋 𝑧)(𝜶) − 𝛾𝒋(𝜶) 𝑃𝐾𝑧(𝜶)| + 𝐶 ‖𝛾𝒋‖∞;𝐾 2
−𝑁∕2 ≤ 𝐶

(
1 + 2−𝑁∕2

) ‖‖‖𝛾𝒋‖‖‖∞;𝑁

.

By the definition of 𝐽1, it follows that‖‖‖𝛾𝒋‖‖‖∞;𝑁

≤ 𝐶 |𝜅 − |𝜶 − 𝒋|| ≤ 𝐶
(
𝑑max,𝑁 + diam(𝐾)

) ≤ 𝐶
(
2−𝑁 +

√
2 ℎ𝑁

) ≤ 𝐶 2−𝑁 .

By induction, the asserted estimate now follows for all terms in (29). □

It is now straightforward to obtain a bound for approximating the integral on the union of all 𝐾 ∈𝑁 . The
corresponding quadrature operator will be denoted by

𝐼𝑇𝑁𝑤 =
∑

𝐾∈𝑁
∫
𝐾

𝑃𝐾𝑤(𝜶) d𝜶 .

Theorem 12. Let 𝑤 satisfy Assumption 10 and let 𝑁 be chosen such that 𝑑max,𝑁 < 𝑟, ℎ𝑁 ≤ √
2𝛿. Then, the error of the

trapezoidal rule over𝑁 is bounded by

‖‖‖‖‖∫𝑁

𝑤(𝜶) d𝜶 − 𝐼𝑇𝑁𝑤
‖‖‖‖‖�̃�1

per(Ω
2𝜋
H )

≤ 𝐶 2−3𝑁∕2.

Proof. By using the triangle inequality and Theorem 11, we have

‖‖‖‖‖∫𝑁

𝑤(𝜶) d𝜶 − 𝐼𝑇𝑁𝑤
‖‖‖‖‖�̃�1

per(Ω
2𝜋
H )

≤ ∑
𝐾∈𝑁

∫
𝐾

‖(𝑤 − 𝑃𝐾𝑤)(𝜶)‖�̃�1
per(Ω

2𝜋
H ) d𝜶

≤ C(𝜅) (#𝑁) ℎ
2
𝑁 2

−𝑁∕2 .

By using Remark 9, which establishes #𝑁 ∼ 2𝑁 , and the construction ℎ𝑁 ∼ 2−𝑁 , the assertion follows. □
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14 of 21 ARENS et al.

4.3 The Gauss–Legendre quadrature rule on all larger squares

On all squares 𝐾 ∈𝑛 for 𝑛 = 1,… ,𝑁 − 1, we will use a 𝑃-point Gauss–Legendre quadrature rule in each coordinate
direction to approximate the inverse Floquet–Bloch transform. We denote this rule applied to a function 𝑓 by 𝐼𝐺𝑃,𝐾𝑓 and
set 𝐼𝐺

𝑃,𝑛
𝑓 =

∑
𝐾∈𝑛

𝐼𝐺𝑃,𝐾𝑓. In the next theorem, we present the well known general error estimate for applying such a rule.

Theorem 13. Let 𝑓 ∈ 2𝑃(𝑛; �̃�
1
per(Ω

2𝜋
H )). Then, there is a constant 𝐶 such that

‖‖‖‖‖∫𝑛

𝑓(𝜶) d𝜶 − 𝐼𝐺
𝑃,𝑛

𝑓
‖‖‖‖‖�̃�1

per(Ω
2𝜋
H )

≤ 𝐶

(
ℎ0
2

)2𝑃
2−(2𝑃+1)𝑛

(2𝑃 + 1)!
max
𝜶∈𝑛

⎛⎜⎜⎝
2∑

𝜈=1

‖‖‖‖‖𝜕
2𝑃𝑓(𝜶)

𝜕𝛼2𝑃𝜈

‖‖‖‖‖�̃�1
per(Ω

2𝜋
H )

⎞⎟⎟⎠.
Proof. Extending standard estimate for the 𝑃-point Gauss–Legendre quadrature rule (see e.g., [28, Theorem 9.20]) to the
two-dimensional case and our setting of functions mapping to a Sobolev space, gives

‖‖‖‖‖∫𝐾 𝑓(𝜶) d𝜶 − 𝐼𝐺𝑃,𝐾𝑓
‖‖‖‖‖�̃�1

per(Ω
2𝜋
H )

≤ 4

(2𝑃 + 1)!

(
ℎ𝑛
2

)2𝑃+2

max
𝜶∈𝐾

⎛⎜⎜⎝
2∑

𝜈=1

‖‖‖‖‖𝜕
2𝑃𝑓(𝜶)

𝜕𝛼2𝑃𝜈

‖‖‖‖‖�̃�1
per(Ω

2𝜋
H )

⎞⎟⎟⎠.
Using the estimates from Remark 9, we obtain the asserted error bound. □

Based on Theorem 13, the error of the Gauss–Legendre rule for computing the integral of 𝑤 over 𝑛 depends on the
2𝑃-th partial derivatives of 𝑤 with respect to either 𝛼1 or 𝛼2. Recalling the representation (17), it suffices to estimate the
2𝑃-th partial derivatives of

∏
𝒋∈

√
𝜅2 − |𝜶 − 𝒋|2 𝑣(𝜶) with respect to only one coordinate. We do so in the next lemma

using some standard estimates for square root functions and their derivatives presented in the appendix.

Lemma 14. For any fixed 𝓁 ∈ ℕ, there is a constant 𝐶 such that

max
𝜶∈𝑛

||||||
𝜕𝓁

√
𝜅2 − |𝜶 − 𝒋|2
𝜕𝛼𝓁𝜈

|||||| ≤
𝐶 𝓁!

(
𝑑max,𝑛

)1∕2(
𝑑min,𝑛

)𝓁 , for 𝑛 = 1,… ,𝑁 − 1, 𝜈 = 1, 2, (31)

where 𝑑min,𝑛 and 𝑑max,𝑛 are defined by (23) and (24), respectively.

Proof. According to Lemma A2 in Appendix, for all 𝜶 ∈ 𝑛, 𝑛 = 1,… ,𝑁 − 1, there is a constant 𝐶1 such that

||||||
𝜕𝓁

√
𝜅2 − |𝜶 − 𝒋|2
𝜕𝛼𝓁𝜈

|||||| ≤
𝐶1 𝓁! ||𝜅 + |𝜶 − 𝒋|||1∕2||𝜅 − |𝜶 − 𝒋|||𝓁−1∕2 .

Hence, using Equations (23), (24), that is, 𝑑min,𝑛 ≤ |𝜅 − |𝜶 − 𝒋|| ≤ 𝑑max,𝑛, leads to

max
𝜶∈𝑛

||||||
𝜕𝓁

√
𝜅2 − |𝜶 − 𝒋|2
𝜕𝛼𝓁𝜈

|||||| ≤
𝐶 𝓁!

(
𝑑max,𝑛

)1∕2(
𝑑min,𝑛

)𝓁 .

□

Theorem 15. Let  ⊆ 𝐉 and denote by Λ(𝜶) ∶=
∏

𝒋∈
√
𝜅2 − |𝜶 − 𝒋|2 𝑣(𝜶) one of the terms in (17). Let 𝑚 = #. Then,

for every 𝓁 ∈ ℕ0 there exists 𝐶𝓁 > 0 such that

max
𝜶∈𝑛

‖‖‖‖‖𝜕
𝓁Λ
𝜕𝛼𝓁𝜈

‖‖‖‖‖�̃�1
per(Ω

2𝜋
H )

≤ C𝓁
(
𝑑max,𝑛

)𝑚∕2(
𝑑min,𝑛

)𝓁 , 𝜈 = 1, 2. (32)
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ARENS et al. 15 of 21

Proof. From the generalized Leibniz formula, we obtain

𝜕𝓁Λ(𝜶)
𝜕𝛼𝓁𝜈

=
∑

K0+⋯+K𝑚=𝓁

𝓁!

K0!⋯K𝑚!

𝜕K0 𝑣(𝜶)
𝜕𝛼

K0
𝜈

𝑚∏
𝜇=1

𝜕K𝜇

𝜕𝛼
K𝜇
𝜈

√
𝜅2 − |𝜶 − 𝒋𝜇|2 .

Using (18) and Lemma 14 yields for 𝜶 ∈ 𝑛‖‖‖‖‖𝜕
𝓁Λ(𝜶)
𝜕𝛼𝓁𝜈

‖‖‖‖‖�̃�1
per(Ω

2𝜋
H )

≤ 𝐶
∑

K0+⋯+K𝑚=𝓁

𝓁!

K0!⋯K𝑚!

𝐶K0(
𝑑min,𝑛

)K0 𝑚∏
𝜇=1

K𝜇!
(
𝑑max,𝑛

)1∕2(
𝑑min,𝑛

)K𝜇 .

Combining all constants gives the assertion. □

Theorem 16. Let 𝑤 satisfy Assumption 10. Then, for every 𝑃 ∈ ℕ, there exists a constant 𝐶𝑃 such that‖‖‖‖‖‖
𝑁−1∑
𝑛=1

∫𝑛

𝑤(𝜶) d𝜶 −

𝑁−1∑
𝑛=1

𝐼𝐺
𝑃,𝑛

𝑤

‖‖‖‖‖‖�̃�1
per(Ω

2𝜋
H )

≤ 𝐶𝑃 ℎ
2𝑃
0 .

Proof. Combining Theorems 13 and 15, we obtain the estimate‖‖‖‖‖∫𝑛

𝑤(𝜶) d𝜶 − 𝐼𝐺
𝑃,𝑛

𝑤
‖‖‖‖‖�̃�1

per(Ω
2𝜋
H )

≤ 𝐶𝑃

(
ℎ0
2

)2𝑃
2−(2𝑃+1)𝑛

(𝑑min,𝑛)2𝑃
,

with some constant 𝐶𝑃 independent of ℎ0 and 𝑛. From (23), we have 𝑑min,𝑛 ≥ 𝐶 2−𝑛. Hence, we conclude‖‖‖‖‖∫𝑛

𝑤(𝜶) d𝜶 − 𝐼𝐺
𝑃,𝑛

𝑤
‖‖‖‖‖�̃�1

per(Ω
2𝜋
H )

≤ 𝐶𝑃
ℎ2𝑃0
2𝑛

.

Summing over 𝑛 = 1,… ,𝑁 − 1 completes the proof. □

Now, we are going to provide the analysis of the total error in numerical solution of the main non-periodic scattering
problem (1–4).

4.4 The combined quadrature rule

It is now straightforward to combine the quadrature rules of both the previous two subsections to up to a
super-algebraically convergent approximation to the Floquet–Bloch transform of the total field.

Corollary 17. Let𝑤 satisfy Assumption 10 and fix 𝑃 ∈ ℕ. Then there is 𝐶𝑃 > 0 such that for every ℎ0 and𝑁 with 𝑑max,𝑁 < 𝑟,
ℎ𝑁 ≤ √

2𝛿, there holds ‖‖‖‖‖‖∫V∗ 𝑤(𝜶) d𝜶 − 𝐼𝑇𝑁𝑤 −

𝑁−1∑
𝑛=1

𝐼𝐺
𝑃,𝑛

𝑤

‖‖‖‖‖‖�̃�1
per(Ω

2𝜋
H )

≤ 𝐶𝑃
(
2−3𝑁∕2 + ℎ2𝑃0

)
.

Example 18. As examples for the performance achievable with our quadrature rule, we consider functions 𝑤 that are
simply products of the square root functions occurring in the representation (15). In this special case, all 𝑤 are either
constant 0 or 1 and thus analytic on V∗. From (19) and the estimates in the proof of Theorem 15 we expect the constant 𝐶𝑃
to be independent of 𝑃 in this case.
We apply the quadrature rule to the approximation of two integrals,

𝐈1 = ∫
V∗

√
𝜅2 − |𝜶 − 𝒋|2 d𝜶 , 𝜅 = 0.4 , 𝒋 = (0, 0) ,

𝐈2 = ∫
V∗

√
𝜅2 − |𝜶 − 𝒋|2√𝜅2 − |𝜶 − 𝒍|2 d𝜶 , 𝜅 = 1.4 , 𝒋 = (−1, 0) , 𝒍 = (−1, 1) .
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16 of 21 ARENS et al.

F IGURE 6 Difference between the value computed for 𝐈𝑗 , 𝑗 = 1, 2 by using the quadrature rule for various 𝑁 and 𝑃 and the exact value
(𝑗 = 1) or reference value (𝑗 = 2), respectively.

For the first integral, the set  is a single circle entirely contained in the set V∗. Hence, the exact value of the integral 𝐈1
can be obtained analytically. We have used Maple 2022 to carry out this task and then computed approximations using
our quadrature rule for various values of 𝑁 and 𝑃.
In the second integral, the integrand is singular along two circular arcs contained in the set V∗. The exact value of

this integral is not available. Instead, we have computed a reference value for 𝑁 = 23 and 𝑃 = 5 and compare our results
against this.
The results are presented in Figure 6. The theoretically predicted convergence rate from Corollary 17 is very well

reflected, with exponential convergence with respect to 𝑁 dominating the result for small 𝑁, until the error of the Gauss
quadrature rule becomes dominant. The results also nicely illustrate our expectation that 𝐶𝑃 is independent of 𝑃 for these
examples.

To conclude our analysis, we combine the result of Corollary 17 with error bounds for the Galerkin approximation of
the solution of the variational Equation (12).

Theorem 19. Let (𝜶) ∈ 𝐻
−1∕2
per (Γ2𝜋H ) and 𝑤(𝜶) denote the exact solution of the variational formulation of (12) and 𝑤𝜏(𝜶)

its numerical approximation by the finite element method with mesh size 𝜏. For sufficiently small 𝜏,

‖𝑤(𝜶) − 𝑤𝜏(𝜶)‖𝐻𝑠(Ω2𝜋H ) ≤ 𝐶 𝜏2−𝑠 ‖(𝜶)‖
𝐻
−1∕2
per (Γ2𝜋H )

, for 𝑠 = 0, 1 ,

where 𝐶 is independent of 𝜶.

Proof. The proof is completely analogous to that of Theorem 16 presented in ref. [10]. □

Combing both error bounds yields the complete estimate for the proposed numerical method. To concisely formulate
this result, we introduce operators

Υ𝒋𝜓(𝜶, 𝒙) = 𝜓(𝜶, 𝒙) ei𝜶⋅(𝒙+2𝜋𝒋) and  −1
𝑃,𝑁,ℎ0

𝜓(𝒙 + 2𝜋𝒋, 𝑥3) =

(
𝐼𝑇𝑁 +

𝑁−1∑
𝑛=1

𝐼𝐺
𝑃,𝑛

)
Υ𝒋𝜓(𝒙) .
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ARENS et al. 17 of 21

Theorem 20. Let 𝑢𝑖 ∈ 𝐻1
𝑟 (ΩH) for some |𝑟| < 1 and additionally  ∈ (𝐻−1∕2

per (Γ2𝜋H )). Let 𝑢 denote the total field, that is,
the solution to (5), and for any 𝜶 ∈ V∗ by 𝑤𝜏(𝜶) the finite element approximation to the solution of (12) for sufficiently small
mesh size 𝜏. Let ℎ0 and𝑁 satisfy 𝑑max,𝑁 < 𝑟, ℎ𝑁 ≤ √

2𝛿 and fix 𝑃 ∈ ℕ. Then there holds the error estimate

‖𝑢 −  −1
𝑃,𝑁,ℎ0

𝑤𝜏‖𝐻𝑠(Ω2𝜋H ) ≤ 𝐶
(
𝜏2−𝑠 + 2−3𝑁∕2 + ℎ0

2𝑃
)
, 𝑠 = 0, 1 ,

where 𝐶 depends on 𝑃 and 𝑢𝑖 .

Proof. For any 𝜶 ∈ V∗, denote by 𝑤(𝜶) the exact solution to (12). By using the inverse Floquet–Bloch transform and then
the triangle inequality, we have‖‖‖𝑢 −  −1

𝑃,𝑁,ℎ0
𝑤𝜏

‖‖‖𝐻𝑠(Ω2𝜋H )
=

‖‖‖ −1𝑤 −  −1
𝑃,𝑁,ℎ0

𝑤𝜏
‖‖‖𝐻𝑠(Ω2𝜋H )

≤ ‖‖‖‖( −1 −  −1
𝑃,𝑁,ℎ0

)
𝑤
‖‖‖‖𝐻𝑠(Ω2𝜋H )

+
‖‖‖ −1

𝑃,𝑁,ℎ0
(𝑤 − 𝑤𝜏)

‖‖‖𝐻𝑠(Ω2𝜋H )
. (33)

Note that application of Υ𝒋 is just a multiplication with an analytic function, hence Υ𝒋𝑤 satisfies Assumption 10. For the
first term of (33), Corollary 17 gives ‖‖‖‖( −1 −  −1

𝑃,𝑁,ℎ0

)
𝑤
‖‖‖‖𝐻𝑠(Ω2𝜋H )

≤ 𝐶𝑃
(
2−3𝑁∕2 + ℎ2𝑃0

)
.

Denote by 𝜶𝓁, 𝜚𝓁, for 𝓁 = 1,… ,𝑄, all the quadrature points and corresponding weights appearing in the rules 𝐼𝑇𝑁 and
𝐼𝐺
𝑃,𝑛

, respectively. It should be noted that all the weights are positive. Accordingly, we may write using Theorem 19,

‖‖‖ −1
𝑃,𝑁,ℎ0

(𝑤 − 𝑤𝜏)
‖‖‖𝐻𝑠(Ω2𝜋H )

≤
𝑄∑
𝓁=1

𝜚𝓁‖𝑤(𝜶𝓁) − 𝑤𝜏(𝜶𝓁)‖𝐻𝑠(Ω2𝜋H ) ≤ 𝐶𝜏2−𝑠
𝑄∑
𝓁=1

𝜚𝓁 ‖(𝜶𝓁)‖𝐻−1∕2
per (Γ2𝜋H )

.

As  ∈ (𝐻−1∕2
per (Γ2𝜋H )), we may use the same approach as in the proof of Theorem 7 to derive an expression analogous

to (17) for  and conclude that sup𝜶∈V∗ ‖(𝜶)‖𝐻−1∕2
per (Ω2𝜋H )

< ∞. Then, using the fact that
𝑄∑
𝓁=1

𝜚𝓁 = |V∗| = 1, the proof is

completed. □

5 NUMERICAL RESULTS

In this section, we present numerical examples to illustrate the performance of the proposedmethod for solving the three-
dimensional scattering problems. To have access to an exact solution, we consider the case of a radiation problem: We
assume that Γ ⊆ ℝ3

+, whereℝ
3
+ ∶= {𝒙 ∈ ℝ3

+ ∶ 𝑥3 > 0} is the upper half-space and that 𝑢𝑖 is the Dirichlet Green’s function
for this upper half-space for some source point 𝒚 located between Γ and 𝑥3 = 0,

𝑢𝑖(𝒙) = G(𝒙, 𝒚) =
1

4𝜋

[
exp (i𝜅|𝒙 − 𝒚|)|𝒙 − 𝒚| −

exp (i𝜅|𝒙 − 𝒚|)|𝒙 − 𝒚|
]
, 𝒙 ∈ ℝ3

+, 𝒙 ≠ 𝒚 .

As indicated we assume that 𝒚 = (𝑦1, 𝑦2, 𝑦3)
⊤ satisfies 0 < 𝑦3 < 𝜉(𝑦1, 𝑦2), and 𝒚 = (𝑦1, 𝑦2, −𝑦3)

⊤ denotes the reflected
point source. The reason for using this Green’s function instead of the standard fundamental solution is its faster decay
rate in vertically bounded strips. It is known that 𝑢𝑖 ∈ 𝐻1

𝑟 (ΩH) for 𝑟 < 1 [16]. As we are considering a radiation problem,
the “scattered field” 𝑢𝑠 satisfies 𝑢𝑠 = −𝑢𝑖 in Ω. Hence, we are able to compute explicitly the numerical approximation
error in the scattered field 𝑢𝑠𝜏 obtained by Equation (11) for the vanishing total field in the bounded cell Ω2𝜋

H .
We fix H = 2, and assume that Γ is given by the bi-periodic function

𝜉 ( �̃�) = 0.6 + 0.3 sin ( 𝑥1) cos ( 2𝑥2) + 0.2 sin ( 2𝑥1) sin ( 3𝑥2), �̃� = ( 𝑥1, 𝑥2) ∈ ℝ2.

Moreover, we consider the point source 𝒚 = (0, 0, 0.1)⊤.
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18 of 21 ARENS et al.

TABLE 1 Relative error and computational order with respect to 𝜏 by 𝑁 = 3, 𝑃 = 2.

𝜿 = 𝟎.𝟒 𝜿 = 𝟏.𝟒 𝜿 = 𝟑

𝝉 𝐄𝐫𝐫𝐨𝐫 𝐂𝐨𝐫𝐝𝐞𝐫 𝐄𝐫𝐫𝐨𝐫 𝐂𝐨𝐫𝐝𝐞𝐫 𝐄𝐫𝐫𝐨𝐫 𝐂𝐨𝐫𝐝𝐞𝐫

0.78 3.3438 × 10−2 — 3.7156 × 10−2 — 1.9390 × 10−1 —
0.41 1.0870 × 10−2 1.75 1.0788 × 10−2 1.92 5.9628 × 10−2 1.83
0.21 3.0854 × 10−3 1.88 2.8671 × 10−3 1.98 1.5824 × 10−2 1.98
0.10 8.1722 × 10−4 1.79 7.3826 × 10−4 1.83 4.0295 × 10−3 1.84

TABLE 2 Relative error with respect to 𝑃 and 𝑁 for wave number 𝜅 = 0.4.

𝝉 = 𝟎.𝟕𝟖 𝝉 = 𝟎.𝟐𝟏

𝑷 𝑵 = 𝟐 𝑵 = 𝟑 𝑵 = 𝟐 𝑵 = 𝟑

2 3.3658 × 10−2 3.3438 × 10−2 3.4548 × 10−3 3.0854 × 10−3

3 3.3658 × 10−2 3.3438 × 10−2 3.4548 × 10−3 3.0854 × 10−3

4 3.3658 × 10−2 3.3438 × 10−2 3.4548 × 10−3 3.0854 × 10−3

To solve Equation (11) inV∗ × Ω2𝜋
2 , we first generate an adapted squaremesh inV∗ by using Algorithm 1 and tetrahedral

meshes in Ω2𝜋
2 with (M + 1)

2
× (M∕2 + 1) nodes forM ∈ {16, 32, 64, 128} so that the maximum diameter 𝜏 for these four

generated meshes is 0.78,0.41, 0.21 and 0.1, respectively. Note that these values for 𝜏 are smaller than the essential limit of
one-tenth of the wavelength for each value of 𝜅 considered below. For each 𝜶 ∈ V∗, we approximate the solution 𝑤(𝜶, .)
of (12) by P1 − conforming piecewise linear finite elements. The Floquet–Bloch transform of the incident field for each
𝜶 ∈ V∗ is computed by [16]

 𝑢𝑖(𝜶, 𝒙) = ∑
𝒋∈ℤ2

𝑒i(𝜶−𝒋)⋅(𝒙−𝒚)

⎧⎪⎨⎪⎩
𝑒i
√
𝜅2−|𝜶−𝒋|2𝑥3 sinc(√𝜅2 − |𝜶 − 𝒋|2𝑦3) 𝑦3, 𝑦3 < 𝑥3,

𝑒i
√
𝜅2−|𝜶−𝒋|2𝑦3 sinc(√𝜅2 − |𝜶 − 𝒋|2𝑥3) 𝑥3, otherwise.

The right-hand side of (11) is obtained the normal derivative and the DtN map of  𝑢𝑖(𝜶, 𝒙). Thus, the formula for  𝑢𝑖
above in particular shows that the assumptions of Theorem 20 are satisfied. The right hand side can be evaluated by
truncating the infinite series if |𝑗1| and |𝑗2| > 40. Eventually, we solve a sparse linear system for each 𝜶 by the GMRES
iterative method with tolerance 1 × 10−6.
Below, we will demonstrate the dependence of the numerical errors on the discretization parameters 𝜏, 𝑁 and 𝑃. In

Table 1, the relative errors and the computational orders, which are computed the following formula

Error =
‖𝑢𝑠 − 𝑢𝑠𝜏‖𝐿2(Ω2𝜋H )‖𝑢𝑠‖𝐿2(Ω2𝜋H )

, Corder =
log(E1∕E2)

log(𝜏1∕𝜏2)
,

are listed for different values of the finite element discretization parameter 𝜏 and wave number 𝜅. This table indicates
that the numerical results are consistent with the analytic results of Theorem 20 for each 𝜅 since the errors converge as
𝜏 decreases even with a low number of 𝑁 and 𝑃. Note that for large values of the wave number 𝜅, the structure of the
singular curves becomes more complicated. For example for 𝜅 = 3 there are 20 curves of singular points in the domain
V∗. Despite the complicated structure of the singular curves in 𝛼-space, the accurate results can still be obtained by using
small values of 𝑁 and 𝑃, only refining the spatial mesh 𝜏, as reported in Table 1.
In Tables 2 and 3, we report the relative errorswith respect to𝑁 and𝑃 for different values of 𝜏. Since the error of the finite

element method is dominated in the computational order, we can not see the exponential convergence of the proposed
numerical integration method with respect to 𝑁 and 𝑃.
In Figure 7, we show the numerical scattered field and its numerical error in 𝐿2-norm for 𝜅 = 1 with the parameter

𝜏 = 0.21, 𝑁 = 3 and 𝑃 = 2.
In conclusion, ourmethod provides a way to very accurately approximate the inverse Floquet–Bloch transform for solu-

tions to a non-periodic scattering problem. Even for very small values of 𝑃, the error from this approximation is already
dominated by the error from the finite element method. Nevertheless, for larger wave numbers, the structure of the sin-
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TABLE 3 Relative error with respect to 𝑁 and 𝜏 for 𝜅 = 1, 𝑃 = 2.

𝑵 𝝉 = 𝟎.𝟕𝟖 𝝉 = 𝟎.𝟒𝟏 𝝉 = 𝟎.𝟐𝟏

2 3.4106 × 10−2 1.1145 × 10−2 3.5580 × 10−3

3 3.4054 × 10−2 1.1137 × 10−2 3.2018 × 10−3

4 3.3979 × 10−2 1.1078 × 10−2 3.1413 × 10−3

5 3.3976 × 10−2 1.1078 × 10−2 3.1428 × 10−3

F IGURE 7 Graphs of the numerical scattered field and its absolute error for 𝜅 = 1 in Ω2𝜋
H .

gular curves quickly becomes quite complicated, making it necessary to use a large number of quadrature points. Thus,
the accurate solution of non-periodic scattering problems in periodic domains remains a computational challenge.
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APPENDIX A: ESTIMATES FOR DERIVATIVES OF SQUARE ROOT FUNCTIONS
Lemma A1. Let 𝑠 ∈ ℂ, 𝛼 ∈ ℝ such that 𝛼 ≠ 𝑠. Then, for any 𝓁 ∈ ℕ,||||| d 𝓁

d𝛼 𝓁

√
𝑠 ± 𝛼

||||| ≤ 𝓁! ||𝑠 ± 𝛼||1∕2−𝓁 .
Proof. For any 𝓁 ≥ 0, a direct calculation yields||||| d 𝓁

d𝛼 𝓁

√
𝑠 ± 𝛼

||||| = |(2𝓁 − 3)!!|
2𝓁

||𝑠 ± 𝛼||1∕2−𝓁 ≤ (2𝓁)!!

2𝓁
||𝑠 ± 𝛼||1∕2−𝓁 = 𝓁! ||𝑠 ± 𝛼||1∕2−𝓁 . □

 15214001, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202300650 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [30/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1080/00036811.2016.1221942
https://doi.org/10.1137/16M1067524
https://doi.org/10.1137/16M1104111
https://doi.org/10.1016/j.jmaa.2016.08.055
https://doi.org/10.1017/S0308210515000335
urn:nbn:de:gbv:46-00107835-13
https://doi.org/10.1002/mma.7680
https://doi.org/10.1016/j.camwa.2017.08.042
http://global-sci.org/intro/article_detail/cicp/7767.html
https://pastel.hal.science/pastel-00005464
https://doi.org/10.1016/j.jcp.2011.10.007
http://global-sci.org/intro/article_detail/cicp/7989.html
https://doi.org/10.1137/17M1144945
https://doi.org/10.48550/arXiv.2203.05792
https://doi.org/10.48550/arXiv.2203.05792
https://doi.org/10.1137/090776111
https://doi.org/10.1137/040615523
https://doi.org/10.1002/(SICI)1099-1476(19980925)21:14%3C1297::AID-MMA997%3E3.0.CO;2-C
https://doi.org/10.1002/(SICI)1099-1476(19980925)21:14%3C1297::AID-MMA997%3E3.0.CO;2-C
https://doi.org/10.1002/zamm.202300650


ARENS et al. 21 of 21

Lemma A2. Let 𝜈 ∈ {1, 2}. For any fixed 𝓁 ∈ ℕ, there is a constant 𝐶 such that||||||
𝜕𝓁

√
𝜅2 − |𝜶|2
𝜕𝛼𝓁𝜈

|||||| ≤
𝐶 𝓁! ||𝜅 + |𝜶|||1∕2||𝜅 − |𝜶|||𝓁−1∕2 ,

for all 𝜶 ∈ ℝ2 such that |𝜶| ≠ 𝜅.

Proof. Without loss of generality, we treat the case 𝜈 = 1. Consider
√
𝜅2 − |𝜶|2 = √

𝑠2 − 𝛼21 where 𝑠 =
√
𝜅2 − 𝛼22 . Using

the Leibniz formula and Lemma A1 leads to||||||||
𝜕𝓁

√
𝑠2 − 𝛼21

𝜕𝛼𝓁1

|||||||| ≤
𝓁∑
𝑛=0

(𝓁
𝑛

)||||||
𝜕𝑛

√
𝑠 + 𝛼1

𝜕𝛼𝑛1

||||||
||||||
𝜕𝓁−𝑛

√
𝑠 − 𝛼1

𝜕𝛼𝓁−𝑛1

||||||
≤

𝓁∑
𝑛=0

(𝓁
𝑛

)
𝑛! (𝓁 − 𝑛)! |𝑠 + 𝛼1|1∕2−𝑛|𝑠 − 𝛼1|1∕2−𝓁+𝑛

≤ 𝐶 𝓁!
√|𝑠2 − 𝛼21|(

min
{||𝑠 + 𝛼1||, ||𝑠 − 𝛼1||})𝓁 .

Now, it remains to estimatemin
{||𝑠 + 𝛼1||, ||𝑠 − 𝛼1||}, and we can distinguish two cases as follows:

1. If |𝛼2| ≥ 𝜅, then 𝑠 = i
√
𝛼22 − 𝜅2. Hence,

||𝑠 + 𝛼1|| = ||𝑠 − 𝛼1|| = √
𝛼22 − 𝜅2 + 𝛼21 =

√|𝜅2 − |𝜶|2| ≥ ||𝜅 − |𝜶||| .
2. If |𝛼2| < 𝜅, then 𝑠 =

√
𝜅2 − 𝛼22 > 0. In this case, we write

min {|𝑠 + 𝛼1|, |𝑠 − 𝛼1|} = |𝑠 − |𝛼1|| = |𝜅2 − |𝜶|2|√
𝜅2 − 𝛼22 + |𝛼1| .

We conclude that

min{|𝑠 + 𝛼1|, |𝑠 − 𝛼1|} ≥ |𝜅2 − |𝜶|2|
𝜅 + |𝜶| = |𝜅 − |𝜶||.

In both cases, we find by substituting 𝑠2 = 𝜅2 − 𝛼22 in the estimate found above that

|||||𝜕
𝓁
√
𝜅2 − |𝜶|2
𝜕𝛼𝓁1

||||| ≤ 𝐶 𝓁! ||𝜅 + |𝜶|||1∕2||𝜅 − |𝜶|||𝓁−1∕2 .
□
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