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A B S T R A C T

This paper presents a variational modeling framework for investigating the flexoelectricity-driven evolution of
remanent polarization in piezoceramics. In small-scale electromechanical systems, strain gradients can exhibit
polarization in dielectric materials via the direct flexoelectric effect. In ferroelectrics, it is reasonable to expect
that a sufficiently large magnitude of the flexoelectricity leads to a switching of the domain structure and
thus the material becomes remanently polarized. It is interesting to note that this means that poling would
be able to occur in the absence of any external electrical source. This provides the motivation to gain a
better understanding of this effect for a possible technical use in e.g. sensor applications. For this purpose, a
macroscopic model is presented that couples flexoelectricity and ferroelectric domain switching processes. By
embedding the model in the variational framework of the generalized standard materials (GSM), a minimum-
type potential structure and thus a stable and efficient numerical treatment is obtained. A mixed finite element
formulation based on the Helmholtz free energy is introduced to solve the higher-order flexoelectric boundary
value problem. In order to realistically predict the flexoelectric material behavior, the model response is
adapted to experimental results in literature obtained for a piezoceramic in a bending test. By simulations
based on the adapted model the evolution of the flexoelectricity-driven remanent polarization in the vicinity
of a notch is shown.
1. Introduction

Currently, there is a trend towards miniaturization of micro-electro-
mechanical systems (MEMS) in the field of sensing and actuation. As
the component dimension decreases, size-dependent material proper-
ties become increasingly influential in the material behavior. Therefore,
it is worth considering the size-dependent effect of flexoelectricity,
which has received significant attention in the scientific community,
cf. e.g. Yudin and Tagantsev (2013), Zubko et al. (2013), Wang et al.
(2019) and Shu et al. (2019). In general, the direct flexoelectric ef-
fect refers to the electromechanical coupling between the mechanical
strain gradient and the electric polarization in a dielectric, occurring
independently of its crystal symmetry.

In ferroelectric ceramics, such as lead zirconate titanate (PZT) or
barium titanate (BaTiO3), significant manifestations of flexoelectric
coupling properties have been observed (Ma and Cross, 2005; Wang
et al., 2013; Ma and Cross, 2006). In addition, they possess pronounced
piezoelectric properties, making them a popular choice for sensing
and actuation applications. To activate these piezoelectric coupling
properties in a ferroelectric polycrystal, a poling process has to be
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performed under the action of high electric fields. During this process,
at the microstructural level, the initially randomly oriented domains
undergo irreversible alignment in the direction of the applied field.
This results in a highly non-linear material behavior, which includes
a significant increase of the macroscopic polarization and strain with
an irreversible character. Under cyclic conditions, the characteristic
large signal hysteresis phenomena of ferroelectrics can be observed, cf.
e.g. Jaffe et al. (1971) and Moulson and Herbert (2003). Multiaxial
phenomenological constitutive models for the hysteretic behavior of
ferroelectrics are given e.g. in Kamlah and Böhle (2001), Landis (2002),
Kamlah and Wang (2003) and Mehling et al. (2007), see also (Kamlah,
2001; Landis, 2004; Sutter and Kamlah, 2023) and the references
therein.

The direct flexoelectric effect can be interpreted as an internal
electric driving force generated by an inhomogeneous deformation.
This motivates the idea of initiating poling processes in ferroelectrics
using this effect without the need for an external electrical source. It
has already been experimentally demonstrated that a local external
mechanical load can affect the domain state in the material and create
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Fig. 1. Consideration of the mechanisms underlying the formation of remanent polarization in ferroelectric materials (e.g. PZT) driven by flexoelectricity.
a remanent polarization (Bursian et al., 1969; Gruverman et al., 2003;
Lu et al., 2012). However, quantifying the contribution of flexoelectric-
ity to domain switching processes is challenging due to the complex
loading states required to generate strain gradients in the material.
Therefore, simulations are necessary to gain a deeper understanding of
the underlying mechanisms and to maintain the perspective of being
able to use the effect specifically in technical applications.

Numerical studies of the domain switching behavior in ferro-
electrics, including flexoelectricity, have been performed using phase
field methods, cf. e.g. Liu et al. (2019), Cao et al. (2006), Chen et al.
(2014), Gu et al. (2015), Jiang et al. (2015b,a), Cao et al. (2015) and
Cao et al. (2017). However, due to the high computational demand,
only a few domains in a single crystal are typically taken into account,
which makes the consideration of entire components questionable. On
a macroscopic continuum scale, flexoelectric models are often based
on the strain gradient theory formulated by Mindlin and Eshel (1968).
The resulting boundary value problems arise as fourth-order partial
differential equations, which cannot be solved using conventional finite
element approaches. Therefore, various alternative numerical methods
are used in the literature, like e.g. isogeometric methods (Ghasemi
et al., 2017; Thai et al., 2018; Nguyen et al., 2018, 2019), meshless
methods (Abdollahi et al., 2014; Zhuang et al., 2020a), mixed finite
element methods (Deng et al., 2017; Mao et al., 2016; Serrao and Kozi-
nov, 2023), collocation mixed finite element methods (Tian et al., 2021;
Tannhäuser et al., 2023, 2024), C0 interior penalty FE methods (Ven-
tura et al., 2021; Balcells-Quintana et al., 2022), immersed boundary
methods (Codony et al., 2019) and peridynamics (Roy and Roy, 2019).
For a detailed review of computational modeling of flexoelectricity,
see Zhuang et al. (2020b) and Codony et al. (2021b).

Most numerical studies on flexoelectricity in ferroelectrics at the
macroscopic scale have been conducted under the assumption of linear
material behavior, e.g. Abdollahi et al. (2014) and Nguyen et al. (2018).
Material non-linearities are considered in the continuum modeling of
flexoelectricity, for example, in the form of hyperelasticity in Yvonnet
and Nguyen (2017), Thai et al. (2018), Nguyen et al. (2019), Codony
et al. (2021a) and Deng et al. (2023) or viscoelasticity in Sladek et al.
(2022). In Witt et al. (2023, 2024), dissipative effects of irreversible
character were considered in a coupling with diffusion problems to
simulate the healing of microcracks in human bone. Recently, Ser-
rao and Kozinov (2024) presented a model that takes into account
the flexoelectricity in ferroelectric solids, including domain switching
2

effects in a micromechanical framework. The numerical investigations
carried out there provide interesting insights into the influence of
the converse flexoelectric effect on the dielectric hysteresis and the
butterfly hysteresis.

The objective of the present work is, first, to introduce a vari-
ational flexoelectric continuum modeling framework capable of de-
scribing the dissipative domain switching processes in ferroelectrics
under quasi-static conditions and, second, to investigate the effect of
direct flexoelectricity on the evolution of remanent polarization. This
provides a perspective to gain a deeper understanding of the interplay
of flexoelectricity and poling-induced piezoelectricity in ferroelectric
engineering devices. Therefore, it is possible to examine the potential
for purely mechanically induced poling processes in ferroelectrics.
For this purpose, the minimum-type variational modeling framework
introduced in Sutter and Kamlah (2023) is extended to include the
flexoelectric effect, and a suitable mixed finite element formulation is
presented for solving the higher-order global boundary value problems.
Essential aspects of the presented numerical investigations are, on the
one hand, a comparison with experimental results on the macroscopic
flexoelectric response of real piezoceramics and parameter fitting. On
the other hand, unloaded states are considered where remanent effects
on the polarization state due to the flexoelectric effect become clearly
visible.

2. Preliminary scale-bridging considerations for the evolution of
flexoelectricity-driven remanent polarization

In a first step, we want to give a – from the authors point of
view – plausible interpretation of purely flexoelectricity-driven rema-
nent polarization appearing on the macroscopic continuum scale in
ferroelectric polycrystals. In these considerations we will also take into
account the mesoscopic domain structure of the polycrystal as well as
the unit cell level, cf. Fig. 1.

Consider a beam-like structure made of ferroelectric material in
an initial thermally depolarized state. A unit cell of its crystal lattice
has an asymmetric tetragonal configuration with a microscopic dipole
resulting in a spontaneous polarization. The polycrystalline structure
consists of grains where each grain contains domains of a homoge-
neous crystal lattice with coaxially oriented spontaneous polarization
vectors of all unit cells. The averaged polarization for a representative
volume element (RVE) – with a sufficient number of grains – of such
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a material would vanish due to the random distribution of the domain
orientations.

An applied bending moment would cause a strain gradient in the
structure, which would also be noticeable at the level of the unit cells.
The non-symmetric deformation of the cell causes a charge redistribu-
tion and thus forms an additional spontaneous polarization component
that can be attributed to the flexoelectric effect. This flexoelectric
polarization is superimposed on all unit cells of a polycrystal and can
therefore be measured on a macroscopic scale. If the external load
does not exceed a critical value, the superimposed polarization of the
material would disappear after unloading.

Now we want to consider a situation where the applied bending
moment causes a strain gradient of high magnitude. The atomistic
flexoelectric effect would then lead to a redistribution of the ions
appearing as 90◦ or 180◦ ferroelectric switching of a unit cell. This
switching process takes place in all domains of the polycrystal un-
der the action of a sufficiently large strain gradient and leads to a
macroscopic polarization of the material. The remanent characteristic
of this polarization becomes visible after unloading. Other than the
vanishing reversible polarization 𝑃 𝑟 an irreversible polarization 𝑃 𝑖

emains in the sample. Therefore, the material exhibits a poling process
nder mechanical loading driven by the flexoelectric effect, without
ny electrical stimulus.

In this simplified illustration of the emergence of a remanent po-
arization in ferroelectrics caused by flexoelectricity, we have initially
eglected the occurrence of ferroelastic domain switching processes
or the sake of clarity. In the numerical examples discussed in this
aper, we will see that they play an important role. Their occurrence
ecomes visible in a permanent deformation of the unloaded sample,
s indicated in Fig. 1.

. Flexoelectric field theory for ferroelectric materials

In this section, the field quantities of an electro-mechanically cou-
led continuum theory with linearized kinematics for a body  are

introduced. This theory takes into account flexoelectricity as well as
dissipative effects caused by ferroelectric or ferroelastic domain switch-
ing mechanisms in the material. Only quasi-static loading scenarios
with vanishing inertia effects are assumed. The ferroelectric materials
under consideration are idealized to be non-conductive with no avail-
able free body charges and no magnetic effects. Furthermore, a con-
stant temperature of uniform distribution is assumed for all considered
processes.

3.1. Field variables

The second-order infinitesimal strain tensor

𝜺 = 1
2
(𝑯𝑇 +𝑯) or 𝜀𝑖𝑗 =

1
2
(𝑢𝑗,𝑖 + 𝑢𝑖,𝑗 ) , (1)

calculated from the displacement field 𝑢 of a material point 𝑥⃗ ∈ 
ia the displacement gradient 𝑯 = 𝑢 ⊗ ∇⃗, is considered as the first
inematic variable. In order to be able to describe the flexoelectric
ffect, a kinematic field variable of higher order must be included in
he theory. For this purpose, the third-order strain gradient tensor

𝜼 = 𝜺⊗ ∇⃗ = 1
2
(

𝑯𝑇 ⊗ ∇⃗ +𝑯 ⊗ ∇⃗
)

or 𝜂𝑖𝑗𝑘 = 𝜀𝑖𝑗,𝑘 = 1
2
(𝑢𝑗,𝑖𝑘 + 𝑢𝑖,𝑗𝑘)

(2)

s introduced, whose symmetry condition affects the first two indices.
detailed discussion of the symmetry conditions in strain gradient

heories can be found e.g. in Gusev and Lurie (2017). Graphical repre-
entations of the various components of the strain gradient tensor can
e found, for example, in Sutter (2024) and Polizzotto (2016).

The electric displacement vector

⃗ ⃗ ⃗
3

= 𝜖0𝐸 + 𝑃 (3)
s used to represent the state of charge at a material point in an
nsulating electro-mechanical body. While 𝑃 and 𝜖0 symbolize the
acroscopic polarization vector and the permittivity of the vacuum in

3), respectively, for non-magnetic materials the curl-free electric field
ector

⃗ × 𝐸⃗ = 0⃗ ⟺ 𝐸⃗ = −∇⃗𝜙 (4)

s given as the negative gradient of the electric potential 𝜙.
In summary, a set of intensive quantities can be represented by the

et

∶=
{

𝜺, 𝜼, 𝐷⃗
}

, (5)

hile they are defined as the independent field variables of the consti-
utive model presented here.

.2. Internal state variables

Since the theory presented should include a non-linear material
ehavior with dissipative effects, as is characteristic of ferroelectrics,
he possibility of the occurrence of irreversible parts in some field
uantities must be considered. Therefore, an additive split of the strain
ensor and the electric displacement vector according to

= 𝜺𝑟 + 𝜺𝑖(𝑨) and 𝐷⃗ = 𝐷⃗𝑟 + 𝑃 𝑖(𝜌) , (6)

espectively, in reversible and irreversible parts is assumed, cf.
assiouny et al. (1988) and Bassiouny and Maugin (1989). The irre-
ersible strain tensor in (6)1
𝑖(𝑨) = 3

2
𝜀𝑠𝑎𝑡𝑨𝐷𝑒𝑣 (7)

is expressed as a function of the second-order texture tensor 𝑨 and
scaled by the macroscopic saturation strain 𝜀𝑠𝑎𝑡. Furthermore, the ir-
reversible polarization vector

𝑃 𝑖(𝜌) = 𝑃 𝑠𝑎𝑡𝜌 (8)

is written in terms of the relative polarization vector 𝜌 and weighted by
the saturation polarization 𝑃 𝑠𝑎𝑡 of a ferroelectric polycrystal.

The two microscopically motivated internal state variables, summa-
rized by the field

q ∶=
{

𝑨, 𝜌
}

, (9)

are based on a macroscopic modeling framework initially introduced
in Kamlah and Jiang (1999) and Kamlah and Wang (2003). Later, the
representation chosen in this work was presented in Mehling et al.
(2007), see also (Sutter and Kamlah, 2023). It is further assumed that
the history of a material point, which includes all dissipative processes
that have taken place, is represented by these internal variables. Their
initial values, corresponding to a thermally depolarized material state,
are given by 𝑨 = 1∕3𝑰 and 𝜌 = [0 0 0]𝑇 , where 𝑰 represents the
second-order identity tensor.

4. Variational modeling of dissipative flexoelectric solids

In order to derive a thermodynamically consistent theory for higher
order dissipative solids with a variational structure, which is suffi-
cient to satisfy the Clausius–Duhem inequality for all admissible ther-
modynamic processes, the presented model is formulated within the
framework of the generalized standard materials (GSM) (Halphen and
Nguyen, 1975). In this context, we will follow the approach for a local
theory presented in Miehe et al. (2011) and Sutter and Kamlah (2023).
Hence, we consider a material point element of an electro-mechanically
coupled continuum whose state is completely described by the sets of
independent intensive variables E and the internal state variables q.
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4.1. Formulation of an algorithmic potential

Let us assume within a time step 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛 the existence of a
local rate-type potential in its algorithmic representation (cf. Simo and
Honein, 1990; Ortiz and Stainier, 1999; Radovitzky and Ortiz, 1999;
Miehe, 2002)

𝜋(E, q) ∶= 𝜋𝑖𝑛𝑡(E, q) − 𝑒𝑥𝑡(E) (10)

ith the internal contribution
𝑖𝑛𝑡(E, q) ∶= 𝛹 (E, q) − 𝛹 (E𝑛, q𝑛) + 𝛥𝑡𝛷

( 1
𝛥𝑡 (q − q𝑛)

)

, (11)

where the quantities with the subscript □𝑛 represent their states at time
𝑡𝑛, while the subscript of the current time 𝑡𝑛+1 is omitted for simplicity.
n this potential, the energy storage per unit volume is described by the
onvex Helmholtz free energy function 𝛹 and the energy dissipation
y a convex, normalized and non-negative dissipation potential 𝛷. The
xternal load function assumed to be given for time 𝑡𝑛+1 is defined as

𝑒𝑥𝑡(E) ∶= S ⋅ (E − E𝑛) (12)

epending on the external loading

∶=
{

𝝈, 𝝉 , 𝐸⃗
}

, (13)

ith the local stress tensor 𝝈 of second order, the non-local stress tensor
of third order, the work conjugate of 𝜼, and the electric field vector

⃗. They are called dependent field variables in the following.

.2. Helmholtz free energy

For the Helmholtz free energy per unit volume the decomposition

(E, q) = 𝛹 𝑟(E, q) + 𝛹 𝑖(q) (14)

n a reversible and an irreversible part is postulated, cf. Bassiouny et al.
1988). The reversible part is given by the quadratic form

𝑟(E, q) = 1
2
(𝜺 − 𝜺𝑖) ∶C𝐷 ∶ (𝜺 − 𝜺𝑖) + 1

2
𝜼 ∴G𝐷 ∴ 𝜼

+ 1
2
(𝐷⃗ − 𝑃 𝑖) ⋅ 𝜷𝜀 ⋅ (𝐷⃗ − 𝑃 𝑖) + 𝜼 ∴ b ∶ (𝜺 − 𝜺𝑖)

− (𝐷⃗ − 𝑃 𝑖) ⋅h ∶ (𝜺 − 𝜺𝑖) − (𝐷⃗ − 𝑃 𝑖) ⋅ f ∴ 𝜼 ,

(15)

hile the material tensors contained in (15) are the fourth-order elastic-
ty tensor at constant electric displacement C𝐷, the sixth-order strain
radient elasticity tensor at constant electric displacement G𝐷, the
econd-order impermittivity tensor at constant strain 𝜷𝜀, the fifth-order
train coupling tensor b, the third order piezoelectric tensor h and
he fourth-order flexoelectric coupling tensor f. All these tensors are
unctions of the relative polarization vector 𝜌. The exact representations
re derived in Appendix A. The less intuitive energy contribution from
he coupling of the strain with the strain gradient in (15) is the result
f a consistent derivation of the form of the Helmholtz free energy
rom the constitutive equations based on the electric Gibbs energy
2(𝜺, 𝝉 , 𝐸⃗), which is also presented in Appendix A.

The irreversible part of the Helmholtz free energy in (14) is written
s
𝑖(q) = 1

2
𝑐𝐴𝑨𝐷𝑒𝑣 ∶ 𝑨𝐷𝑒𝑣 + 1

2
𝑐𝜌𝜌 ⋅ 𝜌

+
𝑎𝐴
𝑚𝐴

tr(𝑨−𝑚𝐴 ) +
𝑎𝜌
𝑚𝜌

(1 − 𝜁 )−𝑚𝜌

with 𝜁 (𝑨, 𝜌) = ‖(𝜉𝑰 + (1 − 𝜉)𝑨)−1 ⋅ 𝜌‖2 ,

(16)

where the first two terms describe a linear kinematic hardening in
the evolution of the internal state variables and the last two terms
correspond to the saturation behavior characteristic for ferroelectric
materials, indicating a fully oriented state of the domain structure.
For more details on the different contributions in (16) see Sutter and
Kamlah (2023) and Mehling et al. (2007).
4

c

4.3. Dissipation potential

In accordance with its construction in Miehe et al. (2011) and Sut-
ter and Kamlah (2023), for a rate-independent material behavior the
dissipation potential in (11) is assumed to be

𝛷
( 1
𝛥𝑡 (q − q𝑛)

)

∶= sup
fq ,𝜆≥ 0

{

fq ⋅ 1
𝛥𝑡 (q − q𝑛) − 𝜆𝐹 (fq)

}

, (17)

which itself appears as a maximization problem. It has to be optimized
during the solution process with respect to the set of the dissipative
internal driving forces

fq ∶=
{

𝒇𝐴, 𝑓 𝜌} (18)

and the Lagrange multiplier 𝜆, enforcing the fulfillment of the threshold
function

𝐹 (fq) ∶=
(𝒇𝐴)𝐷𝑒𝑣 ∶ (𝒇𝐴)𝐷𝑒𝑣

(𝑓𝐴
𝑐 )2

+
𝑓 𝜌 ⋅ 𝑓 𝜌

(𝑓 𝜌
𝑐 )2

− 1 ≤ 0 . (19)

he dissipative internal forces (18) act as work conjugated quantities
n the internal state variables in (9) and drive them to evolve if
heir magnitude leads to a violation of the threshold function (19).
hysically, this process is related to the initiation of microstructural
omain switching effects in real piezoceramics. The critical values in
he threshold function in (19) are given by 𝑓𝐴

𝑐 =
√

3∕2𝜀𝑠𝑎𝑡𝜎𝑐 and
𝑓 𝜌
𝑐 = 𝑃 𝑠𝑎𝑡𝐸𝑐 with the coercive values of the stress 𝜎𝑐 and the electric
ield 𝐸𝑐 experimentally observed for a polycrystal, cf. also Table 1.

.4. Incremental variational principle

In order to perform an incremental constitutive update of the inde-
endent variables (5) and the internal state variables (9) of a material
oint within a time interval 𝛥𝑡 based on the introduced algorithmic
ate-type potential (10), the incremental variational principle

E, q
}

= Arg
{

inf
E,q

𝜋(E, q)
}

(20)

an be formulated as a pure minimization problem.1
Since the external contribution in the potential in (10) is indepen-

ent of the internal state variables, their incremental update can be
erformed independently by optimizing the variational sub-problem

= Arg
{

inf
q
𝜋𝑖𝑛𝑡(E, q)

}

. (21)

n optimal state of the internal variables has to fulfill the stationarity
ondition 𝛿q𝜋𝑖𝑛𝑡 = 𝟎 of the argument in (21). The resulting Euler
quations

q𝛹 (E, q) + 𝛥𝑡𝜕q𝛷
( 1
𝛥𝑡 (q − q𝑛)

)

= 0 (22)

are commonly referred to as the Biot equations (Biot, 1965) and can be
identified with the help of the specific form of the dissipation potential
in (17) as the constitutive equations

𝒇𝐴 = −𝜕𝑨𝛹 and 𝑓 𝜌 = −𝜕𝜌𝛹 (23)

for the internal driving forces. Their exact expressions are derived from
(14) and are given in Sutter (2024).

The remaining part of the optimization problem initially introduced
in (20) with respect to the set of independent variables E then results
in the constitutive variational principle

E = Arg
{

inf
E

{

𝑊 (E) − 𝑒𝑥𝑡(E)
}

}

(24)

by introducing the reduced incremental internal work potential

𝑊 (E) = inf
q

{

𝜋𝑖𝑛𝑡(E, q)
}

(25)

1 If the electric field is chosen as the independent variable instead of the
lectric displacement in (5), the resulting variational problem in (20) has a
onvex-concave saddle-point structure, see e.g. Miehe et al. (2011).
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evaluated for a found optimal state of the internal variables. By comput-
ing the corresponding stationarity conditions of the variational problem
in (24), the general expression

S = 𝜕E𝑊 (E) (26)

of the constitutive equations for the evaluation of the dependent vari-
ables initially introduced in (5) is obtained.

The consistent algorithmic material tangent modulus

C𝑇 ∶= 𝜕ES = 𝜕2
EE

𝑊 (E) (27)

at time 𝑡𝑛+1 can be calculated analytically by computing the second
order derivatives of the reduced incremental internal work potential
(25). Due to the introduced incremental variational structure of the
local problem at a material point, the material tangent is symmetric
for arbitrary processes. The definition of the rate-type potential (10)
in terms of the convex Helmholtz free energy 𝛹 and the assumption
of a convex dissipation potential 𝛷 satisfies a non-negative algorithmic
representation of the second-order work expression

𝛥S ⋅ 𝛥E = 𝛥E ⋅C𝑇 ⋅ 𝛥E ≥ 0 , for all 𝛥E ≠ 𝟎 , (28)

by a positive definite material tangent modulus and thus ensures a
stable electro-mechanical material behavior with unique constitutive
relations in (26).

4.5. Numerical treatment of the local problem

Next, we consider a local problem in a non-linear finite element
scheme that must be solved at each Gauss point. Such a Gauss point
would be representative of a material point in a continuum, which has
been the subject of discussion in the previous section. Such a local
problem takes as input the current state of the independent variables 𝜺,
𝜼 and 𝐃 as well as a converged state of the internal variables 𝐪𝑛 related
to the previous global load step 𝑡𝑛.

By including the dissipation potential (17), the optimization prob-
lem in (21) becomes

𝐪 = Arg
{

inf
𝐪

{

𝛹 (𝜺, 𝜼,𝐃,𝐪) − 𝛹𝑛(𝜺𝑛, 𝜼𝑛,𝐃𝑛,𝐪𝑛)

+ sup
𝐟𝑞 ,𝛾

{

𝐟𝑞 𝑇 (𝐪 − 𝐪𝑛) − 𝛾𝐹 (𝐟𝑞)
}

}

}

,
(29)

obtaining an update of the internal state variables at time 𝑡𝑛+1. Here,
the Lagrange multiplier is considered in its algorithmic form 𝛾 = 𝛥𝑡𝜆.
In (29), all quantities are represented in vector–matrix notation, which
is further indicated by the use of bold letters, regardless of the tensor
order. Thus, the internal state variables are written as

𝐪 =
[

𝐀𝑇 , 𝝆𝑇 ]𝑇 ,

ith 𝐀 =
[

𝐴11, 𝐴22, 𝐴33, 2𝐴12, 2𝐴23, 2𝐴13
]𝑇

and 𝝆 =
[

𝜌1, 𝜌2, 𝜌3
]𝑇 .

(30)

The work conjugated dissipative internal driving forces in vector–
matrix notation are given by

𝐟𝑞 =
[

𝐟𝐴𝑇 , 𝐟𝜌 𝑇
]𝑇 ,

ith 𝐟𝐴 =
[

𝑓𝐴
11, 𝑓

𝐴
22, 𝑓

𝐴
33, 𝑓

𝐴
12, 𝑓

𝐴
23, 𝑓

𝐴
13
]𝑇

and 𝐟𝜌 =
[

𝑓 𝜌
1 , 𝑓

𝜌
2 , 𝑓

𝜌
3
]𝑇 .

(31)

urthermore, the vector–matrix representations of the stress and strain
uantities are given in Appendix B.

In order to realize a numerical solution process for the optimization
roblem in (29), a well-known return mapping algorithm is used,
f. Wilkins (1964) and Ortiz and Simo (1986). For a given state of
he independent variables 𝜺, 𝜼 and 𝐃, by considering the relations in
23) the threshold function 𝐹 is evaluated assuming constant internal
ariables 𝐪 within the time step 𝛥𝑡. If this trial state of the material
5

iolates the threshold function, i.e. 𝐹 > 0, an update of the internal o
tate variables is required. By computing the Jacobian of the variation
roblem in (29), the stationarity conditions

𝐚 𝜋
𝑖𝑛𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐀𝛹 + 𝐟𝐴
𝜕𝝆 𝛹 + 𝐟𝜌

𝐀 − 𝐀𝑛 − 𝛾(𝜕𝐟𝐴𝐹 )𝑇

𝝆 − 𝝆𝑛 − 𝛾(𝜕𝐟𝜌𝐹 )𝑇

−𝐹

⎤

⎥

⎥

⎥

⎥

⎥

⎦19×1

=∶ 𝐑 = 𝟎 (32)

re derived along with the loading and unloading conditions

≥ 0, 𝐹 ≤ 0, 𝛾𝐹 = 0 (33)

hat are satisfied for a possible optimal state of the material. In (32),
he notation 𝐚 = [𝐪𝑇 , 𝐟𝑞 𝑇 , 𝛾]𝑇 is used. An appropriate solution is then
ound by using Newton’s method, where the stationarity conditions in
32) become the residuum 𝐑 of the iteration. An incremental update
uring the solution process is given by

𝐚 = −(𝜕𝐚𝐑)−1𝐑 , (34)

here the symmetric tangent matrix in (34) represents the Hessian

𝐚𝐑 ∶= 𝜕2𝐚𝐚𝜋
𝑖𝑛𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2𝐀𝐀𝛹 𝜕2𝐀𝝆 𝛹 𝟏6×6 𝟎6×3 𝟎6×1
𝜕2𝝆𝐀𝛹 𝜕2𝝆𝝆 𝛹 𝟎3×6 𝟏3×3 𝟎3×1
𝟏6×6 𝟎6×3 −𝛾 𝜕2

𝐟𝐴𝐟𝐴
𝐹 𝟎6×3 −(𝜕𝐟𝐴𝐹 )𝑇

𝟎3×6 𝟏3×3 𝟎3×6 −𝛾 𝜕2𝐟𝜌𝐟𝜌𝐹 −(𝜕𝐟𝜌𝐹 )𝑇

𝟎1×6 𝟎1×3 −𝜕𝐟𝐴𝐹 −𝜕𝐟𝜌𝐹 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(35)

f the variational problem in (29), while 𝟏6×6 = diag[1 1 1 1 1 1]. The
teration with incremental update (34) can be terminated if the norm
f the residual vector in (32) vanishes in the numerical sense, i.e. ‖𝑹‖ =
𝜕𝐚𝜋𝑖𝑛𝑡

‖ ≤ tol.
With a found optimal solution state 𝐚 = 𝐚∗ at hand, the constitutive

pdate of the dependent variables in (26) is performed with

= 𝜕𝜺𝑊 = 𝐂𝐷(𝜺 − 𝜺𝑖
)

+ 𝐛𝑇 𝜼 − 𝐡𝑇
(

𝐃 − 𝐏𝑖) (36)

= 𝜕𝜼𝑊 = 𝐛
(

𝜺 − 𝜺𝑖
)

+𝐆𝐷𝜼 − 𝐟𝑇
(

𝐃 − 𝐏𝑖) (37)

= 𝜕𝐃𝑊 = −𝐡
(

𝜺 − 𝜺𝑖
)

− 𝐟 𝜼 + 𝜷𝜀 (𝐃 − 𝐏𝑖) , (38)

hile 𝐂𝐷, 𝐛, 𝐡, 𝐆𝐷, 𝐟 and 𝜷𝜀 are the vector–matrix representations of
he material tensors in (15), see Appendix C. Finally, the symmetric
aterial tangent moduli in (27) can be expressed explicitly as

𝑇 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕2𝜺𝜺𝑊 𝜕2𝜺𝜼𝑊 𝜕2𝜺𝐃𝑊

𝜕2𝜼𝜺𝑊 𝜕2𝜼𝜼𝑊 𝜕2𝜼𝐃𝑊

𝜕2𝐃𝜺𝑊 𝜕2𝐃𝜼𝑊 𝜕2𝐃𝐃𝑊

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕2𝜺𝜺𝛹 𝜕2𝜺𝜼𝛹 𝜕2𝜺𝐃𝛹

𝜕2𝜼𝜺𝛹 𝜕2𝜼𝜼𝛹 𝜕2𝜼𝐃𝛹

𝜕2𝐃𝜺𝛹 𝜕2𝐃𝜼𝛹 𝜕2𝐃𝐃𝛹

⎤

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

𝜕2𝜺𝐪𝛹 𝟎6×10
𝜕2𝜼𝐪𝛹 𝟎18×10
𝜕2𝐃𝐪𝛹 𝟎3×10

⎤

⎥

⎥

⎥

⎦

(

𝜕𝐚𝐑
)−1

[

𝜕2𝐪𝜺𝛹 𝜕2𝐪𝜼𝛹 𝜕2𝐪𝐃𝛹
𝟎10×6 𝟎10×18 𝟎10×3

]

,

(39)

here the second term is active only if the threshold function (19) is
iolated and an evolution of the internal state variables takes place.
or more details on the implementation of the numerical treatment,
ee Sutter (2024).

. Mixed flexoelectric finite element formulation

Due to the occurrence of higher-order derivatives of the displace-
ent field, the consideration of flexoelectricity in an electro-
echanical theory leads to fourth-order partial differential equations
ith higher-order boundary conditions for the description of the global
oundary value problem. For the numerical solution of such a higher-

rder problem in the context of the finite element method, special
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approximation techniques have to be used which satisfy higher con-
tinuity requirements, cf. e.g. Argyris et al. (1968), Dasgupta and
Sengupta (1990) and Petera and Pittman (1994). In order to avoid
the complexities involved by such formulations, mixed finite element
formulations are an alternative, see e.g Shu et al. (1999), Amanatidou
and Aravas (2002) and Zybell et al. (2012) for applications in strain
gradient theory. In the following section, such a mixed formulation for
flexoelectric solids based on a scalar-valued global system potential is
derived in a variational form and the resulting element matrices and
vectors are given.

5.1. Variational formulation

According to Deng et al. (2017), a mixed variational potential for
flexoelectric problems in terms of the convex–concave electric Gibbs
energy 𝐺2(𝜺, 𝜼, 𝐸⃗) can be written as

(𝑢,𝑯 , 𝜙,𝝀) = ∫

(

𝐺2(𝜺, 𝜼, 𝐸⃗) + 𝝀 ∶ (𝑯 − 𝑢 ⊗ ∇⃗)
)

𝑑𝑉

+ 𝛱𝑒𝑥𝑡(𝑢,𝑯 , 𝜙)
(40)

with

𝛱𝑒𝑥𝑡(𝑢,𝑯 , 𝜙) = − ∫
𝑏⃗𝑒𝑥𝑡 ⋅ 𝑢 𝑑𝑉 − ∫𝜕𝑡

𝑡⃗𝑒𝑥𝑡 ⋅ 𝑢 𝑑𝐴

− ∫𝜕𝑟

𝑟𝑒𝑥𝑡 ⋅ (𝑯 ⋅ 𝑛) 𝑑𝐴 + ∫𝜕𝑞

𝑞𝑒𝑥𝑡𝜙 𝑑𝐴 ,
(41)

here 𝑏⃗𝑒𝑥𝑡, 𝑡⃗𝑒𝑥𝑡, 𝑟𝑒𝑥𝑡 and 𝑞𝑒𝑥𝑡 represent the external sources of the body
orces per unit volume, the surface tractions, the higher-order surface
ractions and the surface charges. In this formulation, the displacement
radient 𝑯 is introduced as an independent variable and its relation to
he displacement field is enforced by a Lagrange multiplier 𝝀. Further-
ore, the strain gradient 𝜼 is expressed in terms of the new introduced
isplacement gradient, cf. (2)1.

In order to introduce a global system potential that is energetically
ompatible with the variational framework for the local problem in-
roduced in Section 4, it should be formulated in terms of the convex
elmholtz free energy 𝛹 . More precisely, in case of dissipative material
ehavior assumed in Section 4, a formulation in terms of the reduced
ncremental internal work potential 𝑊 (𝜺, 𝜼, 𝐷⃗) in (25), derived from the

special form of the Helmholtz free energy in (14), should be chosen.
Therefore, a suitable mixed variational potential can be written as

𝛱̂(𝑢,𝑯 , 𝐷⃗, 𝜙,𝝀) = ∫

(

𝑊 (𝜺, 𝜼, 𝐷⃗) + ∇⃗𝜙 ⋅ 𝐷⃗

+ 𝝀 ∶ (𝑯 − 𝑢 ⊗ ∇⃗)
)

𝑑𝑉 +𝛱𝑒𝑥𝑡(𝑢,𝑯 , 𝜙) ,
(42)

where compared to the potential in (40), the electric Gibbs energy 𝐺2
is expressed in terms of reduced incremental internal work potential
𝑊 by considering a partial Legendre transformation that performs a
variable change in the electric quantities, cf. Sutter and Kamlah (2023),
Gil and Ortigosa (2016) and Mao et al. (2016). Such a modification
results in the electric displacement 𝐷⃗ as an additional independent
variable in the formulation. The corresponding five-field variational
principle is then given by the optimization problem
{

𝑢,𝑯 , 𝐷⃗, 𝜙,𝝀
}

= Arg
{

inf
𝑢,𝑯 ,𝐷⃗

sup
𝜙,𝝀

𝛱̂(𝑢,𝑯 , 𝐷⃗, 𝜙,𝝀)
}

(43)

with a saddle-point structure for the determination of the unknown
field quantities.

The variation of the global system potential in (42) can be calcu-
lated as

𝛿𝛱̂ = ∫

(

𝜕𝜺𝑊 ∶ 𝛿𝜺 − 𝝀 ∶ 𝛿𝑢 ⊗ ∇⃗ + 𝜕𝜼𝑊 ∴ 𝛿𝜼 + 𝝀 ∶ 𝛿𝑯

+ (𝜕𝐷⃗𝑊 + ∇⃗𝜙) ⋅ 𝛿𝐷⃗ + 𝐷⃗ ⋅ ∇⃗𝛿𝜙 + (𝑯 − 𝑢 ⊗ ∇⃗) ∶ 𝛿𝝀
)

𝑑𝑉

𝑒𝑥𝑡 !

(44)
6

+ 𝛿𝛱 = 0 s
with

𝛿𝛱𝑒𝑥𝑡 = − ∫
𝑏⃗𝑒𝑥𝑡 ⋅ 𝛿𝑢 𝑑𝑉 − ∫𝜕𝑡

𝑡⃗𝑒𝑥𝑡 ⋅ 𝛿𝑢 𝑑𝐴

− ∫𝜕𝑟

𝑛 ⊗ 𝑟𝑒𝑥𝑡 ∶ 𝛿𝑯 𝑑𝐴 + ∫𝜕𝑞

𝑞𝑒𝑥𝑡𝛿𝜙 𝑑𝐴 .
(45)

By applying partial integration and the divergence theorem, the asso-
ciated Euler equations

∇⃗ ⋅ (𝜕𝜺𝑊 − 𝝀) + 𝑏⃗𝑒𝑥𝑡 = 0⃗ in  (46a)

𝜕𝜼𝑊 ⋅ ∇⃗ − 𝝀 = 𝟎 in  (46b)

𝜕𝐷⃗𝑊 + ∇⃗𝜙 = 0⃗ in  (46c)

∇⃗ ⋅ 𝐷⃗ = 0 in  (46d)

𝑯 − 𝑢 ⊗ ∇⃗ = 𝟎 in  (46e)

(𝜕𝜺𝑊 − 𝝀) ⋅ 𝑛 − 𝑡⃗𝑒𝑥𝑡 = 0⃗ on 𝜕𝑡 (46f)

𝜕𝜼𝑊 ⋅ 𝑛 − 𝑛 ⊗ 𝑟𝑒𝑥𝑡 = 𝟎 on 𝜕𝑟 (46g)

𝐷⃗ ⋅ 𝑛 + 𝑞𝑒𝑥𝑡 = 0 on 𝜕𝑞 (46h)

are derived from the variational formulation in (44) describing the
nderlying boundary value problem. In this set of equations, the phys-
cal meaning of the Lagrange multiplier, which enforces the kinematic
elation in (46e), can be recognized in (46b) as the divergence of the
on-local stress (37). Together with the local stress (36), it has to
atisfy the balance of linear momentum of a non-local continuum in
46a). Furthermore, besides the relation (4) connecting the electric field
ith the electric potential in (46c) as well as Gauss law in (46d), the
eumann boundary conditions (46f)–(46h) can be identified.

.2. Linearization

Due to the assumed non-linearity of the optimization problem in
43), an iterative solution must be performed within the framework of
he FEM. The necessary linearization of the variational formulation in
44) can be achieved using the Taylor series expansion Lin [𝛿𝛱̂ (𝑥)] =
𝛱̂ (𝑥)+𝐷𝑥 [𝛿𝛱̂ (𝑥)]⋅𝛥𝑥 = 𝛿𝛱̂+𝛿𝛥𝛱̂ ≈ 0, cf. e.g. Wriggers (2008). Under
he assumption of conservative external loads, the tangential part of the
inearization

𝛥𝛱̂ =∫

(

𝛿𝜺 ∶ (𝜕2𝜺𝜺𝑊 ∶ 𝛥𝜺 + 𝜕2𝜺𝜼𝑊 ∴ 𝛥𝜼 + 𝜕2
𝜺𝐷⃗

𝑊 ⋅ 𝛥𝐷⃗)

+ 𝛿𝜼 ∴ (𝜕2𝜼𝜺𝑊 ∶ 𝛥𝜺 + 𝜕2𝜼𝜼𝑊 ∴ 𝛥𝜼 + 𝜕2
𝜼𝐷⃗

𝑊 ⋅ 𝛥𝐷⃗)

− 𝛿𝑢 ⊗ ∇⃗ ∶ 𝛥𝝀 + 𝛿𝑯 ∶ 𝛥𝝀

+ 𝛿𝐷⃗ ⋅ (𝜕2
𝐷⃗𝜺

𝑊 ∶ 𝛥𝜺 + 𝜕2
𝐷⃗𝜼

𝑊 ∴ 𝛥𝜼 + 𝜕2
𝐷⃗𝐷⃗

𝑊 ⋅ 𝛥𝐷⃗ + ∇⃗𝛥𝜙)

+ ∇⃗𝛿𝜙 ⋅ 𝛥𝐷⃗ + 𝛿𝝀 ∶ 𝛥𝑯 − 𝛿𝝀 ∶ 𝛥𝑢 ⊗ ∇⃗
)

𝑑𝑉

(47)

s derived. The occurring components of the material tangent in (47)
re given in (39).

.3. Discretization

In the following, we assume a discretized problem with a subdivi-
ion of the continuous body under consideration into a finite number
𝑒𝑙𝑒𝑚 of elements. In order to define appropriate shape functions for
n isoparametric finite element formulation, the admissible functional
paces for the individual field quantities must be identified first.

For the displacement field, a functional space satisfying the corre-
ponding Dirichlet boundary conditions with their predefined values
∗ is given by

⃗ ∈ 𝑢 ∶=
{

𝑢 ∈ 𝐻1() ∣ 𝑢 = 𝑢 ∗ auf 𝜕𝑢

}

, (48)

hich corresponds to the Sobolev space 𝐻1 containing square-
ntegrable functions with existing square-integrable derivatives. Con-

idering the requirements in (48), in this work the approximation of
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the displacement field is realized by 𝐶0-continuous quadratic Lagrange
polynomials of the serendipity type, cf. e.g. Zienkiewicz et al. (2005).
In a compact way, the element-wise interpolation of the displacement
field and its gradient can be written as the sums

𝐮ℎ =
∑𝑛𝑢𝑒𝑙

𝐼=1𝐍
𝑢
𝐼𝐮𝐼 = 𝐍𝑢

𝑒𝐮𝑒 and ∇𝐮ℎ =
∑𝑛𝑢𝑒𝑙

𝐼=1𝐌
𝑢
𝐼𝐮𝐼 = 𝐌𝑢

𝑒𝐮𝑒 (49)

ver the corresponding element nodes 𝑛□𝑒𝑙 in terms of the nodal values
𝐼 , while the approximation of the strain field reads

ℎ =
∑𝑛𝑢𝑒𝑙

𝐼=1𝐁
𝑢
𝐼𝐮𝐼 = 𝐁𝑢

𝑒𝐮𝑒 . (50)

he nodal matrices of the shape functions 𝐍𝑢
𝐼 and their derivatives 𝐁𝑢

𝐼
nd 𝐌𝑢

𝐼 , as well as those introduced in the same fashion subsequently,
re given in detail in Sutter (2024). For the discretized fields □ℎ again
vector–matrix notation is used in this section, indicated by bold

ymbols.
Similar to the displacement field, the requirements

∈ 𝜙 ∶=
{

𝜙 ∈ 𝐻1() ∣ 𝜙 = 𝜙∗ auf 𝜕𝜙

}

(51)

or the functional space of the electric potential are also satisfied by
sing 𝐶0-continuous quadratic serendipity Lagrange polynomials for
he construction

ℎ =
∑𝑛𝜙𝑒𝑙

𝐼=1𝑁
𝜙
𝐼 𝜙𝐼 = 𝐍𝜙

𝑒 𝝓𝑒 and ∇𝜙ℎ =
∑𝑛𝜙𝑒𝑙

𝐼=1𝐁
𝜙
𝐼𝜙𝐼 = 𝐁𝜙

𝑒 𝝓𝑒 (52)

f its discretized version and that of its gradient.
For the independent displacement gradient, the admissible func-

ional space

∈ 𝐻 ∶=
{

𝑯 ∈ 𝐻1() ∣ 𝑯 ⋅ 𝑛 = (𝑯 ⋅ 𝑛)∗ auf 𝜕𝐻

}

(53)

ust be taken into account. In accordance with the polynomial degree
f the displacement field, its approximation and that of the strain
radient

ℎ =
∑𝑛𝐻𝑒𝑙

𝐼=1𝐍
𝐻
𝐼 𝐇𝐼 = 𝐍𝐻

𝑒 𝐇𝑒 and 𝜼ℎ =
∑𝑛𝐻𝑒𝑙

𝐼=1𝐁
𝐻
𝐼 𝐇𝐼 = 𝐁𝐻

𝑒 𝐇𝑒 (54)

s implemented by a 𝐶0-continuous interpolation with linear Lagrange
olynomials, cf. e.g. Wriggers (2008) and Zienkiewicz et al. (2005).

The approximation of the remaining two field quantities, namely
he electric displacement and the Lagrange multiplier, must fit into the
paces

𝐷⃗ ∈ 𝐷 ∶=
{

𝐷⃗ ∈ 𝐿2()
}

nd 𝝀 ∈ 𝜆 ∶=
{

𝝀 ∈ 𝐿2()
}

,
(55)

here 𝐿2 denotes the Lebesgue space of square-integrable functions.
his is met by using linear Lagrange polynomials for the interpola-
ion of both fields. In contrast to the Lagrange multiplier, where 𝐶0-
ontinuity is chosen, we use a 𝐶−1-continuous (discontinuous) ansatz
or the electric displacement. The discretized fields are then given by

ℎ =
∑𝑛𝐷𝑒𝑙

𝐼=1𝐍
𝐷
𝐼 𝐃𝐼 = 𝐍𝐷

𝑒 𝐃𝑒 and 𝜦ℎ =
∑𝑛𝜆𝑒𝑙

𝐼=1𝐍
𝜆
𝐼𝜦𝐼 = 𝐍𝜆

𝑒𝜦𝑒 . (56)

According to the chosen polynomial degrees, the corresponding
umber of nodes per element involved in the approximation of the
egrees of freedom is given, e.g. for a 2D quadrilateral element as
𝑢
𝑒𝑙 = 𝑛𝜙𝑒𝑙 = 8, 𝑛𝐻𝑒𝑙 = 𝑛𝐷𝑒𝑙 = 𝑛𝜆𝑒𝑙 = 4 and for a 3D hexahedral element
ith 𝑛𝑢𝑒𝑙 = 𝑛𝜙𝑒𝑙 = 20, 𝑛𝐻𝑒𝑙 = 𝑛𝐷𝑒𝑙 = 𝑛𝜆𝑒𝑙 = 8. Following a classical Bubnov–
alerkin approach, the same shape functions are used for the virtual 𝛿□
nd the incremental 𝛥□ representations of all quantities. The vector–
atrix representations of the nodal degrees of freedom of the finite

lement formulation under discussion are given in Appendix D.
By inserting the discretized and approximated quantities introduced

n (49), (50), (52), (54) and (56) into the linearized variational formu-
ation by an element-wise consideration of (44) and (47), we end up
ith the equations

in[𝛿𝛱̂]ℎ = 𝛿𝛱̂ℎ + 𝛿𝛥𝛱̂ℎ = 𝛿𝐯𝑇
(

𝐅 − 𝐏 +𝐊 𝛥𝐯
)

, (57)
7

𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑇 𝑒 𝑒 f
ith the incremental update of the unknown element degrees of free-
om

𝐯𝑒 =
[

𝛥𝐮𝑒 𝛥𝐇𝑒 𝛥𝐃𝑒 𝛥𝝓𝑒 𝛥𝜦𝑒
]𝑇 , (58)

he components of the element tangential stiffness matrix

𝑇 𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐊𝑢𝑢
𝑒 𝐊𝑢𝐻

𝑒 𝐊𝑢𝐷
𝑒 𝟎 −𝐊𝑢𝜆

𝑒

𝐊𝐻𝑢
𝑒 𝐊𝐻𝐻

𝑒 𝐊𝐻𝐷
𝑒 𝟎 𝐊𝐻𝜆

𝑒

𝐊𝐷𝑢
𝑒 𝐊𝐷𝐻

𝑒 𝐊𝐷𝐷
𝑒 𝐊𝐷𝜙

𝑒 𝟎

𝟎 𝟎 (𝐊𝐷𝜙
𝑒 )𝑇 𝟎 𝟎

−(𝐊𝑢𝜆
𝑒 )𝑇 (𝐊𝐻𝜆

𝑒 )𝑇 𝟎 𝟎 𝟎

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (59)

he element vector of the internal forces

𝑒 =
[

𝐅𝑢
𝑒 𝐅𝐻

𝑒 𝐅𝐷
𝑒 𝐅𝜙

𝑒 𝐅𝜆
𝑒

]𝑇
(60)

nd the element vector of the external forces

𝑒 =
[

𝐏𝑢
𝑒 𝐏𝐻

𝑒 𝟎 −𝐏𝜙
𝑒 𝟎

]𝑇
. (61)

he different components in (59), (60) and (61) are given in detail in
ppendix E. The numerical evaluation of the integrals is performed by
tandard Gaussian quadrature integration.

Due to the discontinuous approximation of the electric displacement
ield, a static condensation of the components of this nodal degree of
reedom on element level is possible. By considering the third equation
n (57) and solving Lin[𝛿𝛱̂𝑒]𝐷 = 0 for arbitrary 𝛿𝐃𝑒, the expression

𝐃𝑒 = −(𝐊𝐷𝐷
𝑒 )−1(𝐊𝐷𝑢

𝑒 𝛥𝐮𝑒 +𝐊𝐷𝐻
𝑒 𝛥𝐇𝑒 +𝐊𝐷𝜙

𝑒 𝛥𝝓𝑒 + 𝐅𝐷
𝑒 ) (62)

s found for its incremental update in terms of the other degrees of
reedom. Insertion of (62) into the first, second and fourth equation in
57) leads to the reduced expression

in[𝛿𝛱̂]ℎ𝑒 = 𝛿𝐯̃𝑇𝑒
(

𝐅̃𝑒 − 𝐏̃𝑒 + 𝐊̃𝑇 𝑒𝛥𝐯̃𝑒
)

(63)

f the element-wise linearization, where the incremental changes of the
emaining degrees of freedom are given by

𝐯̃𝑒 =
[

𝛥𝐮𝑒 𝛥𝐇𝑒 𝛥𝝓𝑒 𝛥𝜦𝑒
]𝑇 . (64)

he components of the reduced element tangential stiffness matrix

̃
𝑇 𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐊̃𝑢𝑢
𝑒 𝐊̃𝑢𝐻

𝑒 𝐊̃𝑢𝜙
𝑒 −𝐊𝑢𝜆

𝑒

𝐊̃𝐻𝑢
𝑒 𝐊̃𝐻𝐻

𝑒 𝐊̃𝐻𝜙
𝑒 𝐊𝐻𝜆

𝑒

𝐊̃𝜙𝑢
𝑒 𝐊̃𝜙𝐻

𝑒 𝐊̃𝜙𝜙
𝑒 𝟎

−(𝐊𝑢𝜆
𝑒 )𝑇 (𝐊𝐻𝜆

𝑒 )𝑇 𝟎 𝟎

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (65)

he reduced element vector of the internal forces

̃
𝑒 =

[

𝐅̃𝑢
𝑒 𝐅̃𝐻

𝑒 𝐅̃𝜙
𝑒 𝐅𝜆

𝑒

]𝑇
(66)

nd the reduced element vector of the external forces

̃
𝑒 =

[

𝐏𝑢
𝑒 𝐏𝐻

𝑒 −𝐏𝜙
𝑒 𝟎

]𝑇
(67)

re given in Appendix F. Assembling the incremental equation in
63) over all the elements and assuming arbitrary and non-vanishing
ariations 𝛿□, one obtains the linear system of equations
𝑛𝑒𝑙𝑒𝑚
⋃

𝑒=1
𝛿𝐯̃𝑇𝑒

(

𝐊̃𝑇 𝑒𝛥𝐯̃𝑒 + (𝐅̃𝑒 − 𝐏̃𝑒)
)

= 0 ⟹ 𝐊̃𝑇 𝛥𝐯̃ = −𝐆̃ (68)

or the nodal degrees of freedom on the global system level. The
ecalculation (62) of the condensed nodal electric displacements is
erformed in each iteration step on the element level with the stored
lement matrices and vectors from the previous iteration step. Further
etails on the implementation of the proposed mixed finite element

ormulation can be found in Sutter (2024).
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Fig. 2. Top: Sketch of the experimental setup of the four point bending test performed
by Ma and Cross (2003). Bottom: 2D plane strain FE model with the specified boundary
conditions of the beam section under consideration.

6. Numerical investigations

With the introduced macroscopic model combining ferroelectricity
and flexoelectricity, numerical investigations are carried out in the
following. In a first step, the model is adapted to the real mate-
rial behavior by comparison with experimental results of the macro-
scopic flexoelectric response of ferroelectric ceramics. Furthermore, the
adapted model is used to investigate the formation of flexoelectricity-
driven remanent polarization in the presence of pronounced strain
gradients. The simulations are performed with an in-house FE code in
MATLAB (2022).

6.1. Four point bending test

To apply the modeling framework that was previously introduced
in the Sections 3 to 5, we will consider an experiment that was carried
out by Ma and Cross and documented in Ma and Cross (2003). They
performed four point bending tests on samples with the dimensions
of 60 mm × 7 mm × 3 mm to investigate the macroscopic occurrence
of the direct flexoelectric effect in ferroelectrics. The material under
consideration is the commercial piezoceramic PZT-5H manufactured by
TRS Ceramics Company, State College, Pennsylvania (USA), in a un-
poled state that usually occurs after sintering during the manufacturing
process. The corresponding experimental setup is sketched in Fig. 2.
The choice of a four point bending test to investigate the flexoelectric
effect is reasonable because of the homogeneous bending state without
the influence of shear forces in the specimen in the area between
the load application points. This allows the assumption of a constant
strain gradient component 𝜂113 in the specimen for the evaluation of
the macroscopic flexoelectric response. The polarization that is caused
can be estimated by the measurement of the surface charges on the
electrodes. The displacement-controlled loading speed chosen in the
experiment is 2 mm/min, so that the restriction made in this paper to
consider only quasi-static processes applies.

In order to simulate the bending test realistically and at the same
time efficiently, a symmetrized two-dimensional plane strain model
of the 10 mm wide section with applied electrodes in between the
loading points is chosen. Therefore, the 2D model corresponds to a
strip cut from the center of the 𝑥 -direction of the beam. In Fig. 2
8

2

Fig. 3. The adapted dielectric (a) and butterfly hysteresis (b), as well as the ferroelastic
behavior (c) calculated using the macroscopic model at a material point representative
for a unit volume (d), compared with the experimental results obtained by Chaplya
and Carman (2001) for the piezoceramic PZT-5H.

the half-model selected for the calculation, discretized with 35 × 30 =
1050 finite elements, is illustrated together with the chosen boundary
conditions. The bending moment is applied by the external traction 𝜎𝑒𝑥𝑡

11
corresponding to the local stress tensor (cf. (13)), which varies linearly
over the beam height. The boundary loaded by 𝜎𝑒𝑥𝑡

11 is sufficiently far
away from the symmetry plane that any inhomogeneities due to higher-
order stress effects resulting from local load application can be assumed
not to affect the region of interest. Thus, at the symmetry plane, the
desired homogeneous bending condition is achieved.

Before the simulation of the four point bending test is performed,
the parameters of the ferroelectric material model introduced in Sec-
tion 4 are first adjusted to the real material behavior of PZT-5H, except
for the flexoelectric material constants. For this purpose, the results
of the experimental investigations of Chaplya and Carman (2001) on
the characteristic hysteretic material behavior of this piezoceramic are
considered. The hystereses calculated with the model, adapted to the
experimental material behavior, are shown in Fig. 3. The dielectric
hysteresis, the butterfly hysteresis and the ferroelastic behavior during
a mechanical depolarization process have been taken into account. A
simplified model variant neglecting the flexoelectric effect was assumed
in the calculations performed on an isolated material point in the course
of the adaptation process. The parameters for which the calculated
response of the material model could be adequately matched to the
real large-signal behavior of the piezoceramic are listed in Table 1.

The next step is the repeated simulation of the four point bending
test with varying the flexoelectric constants 𝑚12 and 𝑚44 to match as
closely as possible the macroscopic flexoelectric response observed by
Ma and Cross (2003). In order to minimize the impact of the strain
gradient elasticity on the model response, we set the internal length
parameter 𝑙𝑒 (see (A.3)) to a relatively low value,2 cf. Table 1. In
the non-linear finite element calculations, the external bending stress
is applied in ten equidistant loading and five unloading steps with
a maximum magnitude of 𝜎𝑒𝑥𝑡,𝑚𝑎𝑥

11 = 60 MPa. At the beginning of
each simulation, the material of the sample is assumed to be in a
thermally depolarized state, cf. Section 3.2. The comparison of the
fitted simulation results with the experimental data is presented in

2 Choosing 𝑙𝑒 = 0 would lead to a non-positive definite material matrix in
(39) and therefore to an unstable material behavior.
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Table 1
Parameters of the material model introduced in Section 4 for the four point bending
test adapted to the large signal behavior of the commercial piezoceramic PZT-5H (cf.
also Appendix A).

Parameter Value Calc. value

𝑌 70000 MPa 70 kN∕mm2

𝜈 0.31 0.31
𝑙𝑒 1 ⋅ 10−9 m 1 ⋅ 10−6 mm
𝑑33 0.59 ⋅ 10−9 m/V 0.59 mm/MV
𝑑31 −0.27 ⋅ 10−9 m/V −0.27 mm/MV
𝑑15 0.74 ⋅ 10−9 m/V 0.74 mm/MV
𝜖0a 8.854 ⋅ 10−12 C/(V m) 8.854 ⋅ 10−3 kN/MV2

𝜅𝜎 30 ⋅ 10−9 C/(V m) 30 kN/MV2

𝑚12 5 ⋅ 10−8 C/m 5 ⋅ 10−5 kN/MV
𝑚44 −1.1 ⋅ 10−6 C∕m −1.1 ⋅ 10−3 kN∕MV
𝐸𝑐 0.7 ⋅ 106 V/m 0.7 ⋅ 10−3 MV/mm
𝜎𝑐 25 MPa 25 ⋅ 10−3 kN/mm2

𝑃 𝑠𝑎𝑡 0.37 C/m2 0.37 kN/(MV mm)
𝜀𝑠𝑎𝑡 0.0035 0.0035
𝑐𝐴 0.25 MPa 2.5 ⋅ 10−4 kN/mm2

𝑐𝜌 1 ⋅ 10−3 MPa 1 ⋅ 10−6 kN/mm2

𝑎𝐴 1 ⋅ 10−3 MPa 1 ⋅ 10−6 kN/mm2

𝑚𝐴 0.8 0.8
𝑎𝜌 5 ⋅ 10−3 MPa 5 ⋅ 10−6 kN/mm2

𝑚𝜌 0.6 0.6
𝜉 0.2 0.2

a Natural constant.

Fig. 4. The upper diagram shows the evolution of the axial strain
component of the bottom edge fibers of the beam in response to the
external bending stress during the loading and unloading process. The
pronounced deviation from initial linearity can be attributed to the
occurrence of ferroelastic domain switching. This process begins at
a bending stress level of around 30 MPa and results in a significant
reduction in beam stiffness, which is well replicated by the model. At
the end of the linear-elastic unloading path of the model response, a
remanent strain of approximately 0.08% is observed. This is consistent
with the experimental observation of a residual curvature in the sample
after unloading, cf. Cross (2006).

For the quantification of the direct flexoelectric effect, the focus in
the lower diagram in Fig. 4 is on the vertical component of the electric
displacement caused by the acting strain gradient component 𝜂113. The
redicted model response is also compared to the experimental results.
rom Gauss’s law together with the ‘closed circuit’ boundary condition
t follows that the dielectric displacement is constant over the beam
eight. Likewise, 𝜂113 is constant in this direction since the axial strain is
inear caused by the pure bending state. With the adjusted flexoelectric
onstants given in Table 1, the model can represent the change in
lope that correlates with the onset of the ferroelastic domain switching
rocesses. According to Zubko et al. (2007), the effective transverse
lexoelectric coefficient
𝑒𝑓𝑓
12 = 𝑚12 −

𝜈
1 − 𝜈

(𝑚12 + 2𝑚44) = 1.02 μC/m (69)

can be calculated based on the adapted flexoelectric tensor compo-
nents, which can be directly compared with the experimental results.
This value lies between the coefficients of 0.5 and 2 μC/m determined
piecewise by Ma and Cross (2003) and can therefore be classified
as quite realistic. After full load recovery, a strain gradient remains
in the sample due to the remanent strains caused by the ferroelastic
domain switching. Therefore, a remanent polarization also remains due
to the direct flexoelectric coupling. Unfortunately, a comparison of this
observation is not possible due to the lack of experimental results of
the unloading path.

After successfully adapting the model to the real flexoelectric system
behavior, the distribution of the individual field variables along the
symmetry axis of the model is now considered. For this purpose, Fig. 5
(top) shows the relevant mechanical and electrical quantities over the
9

𝑥3-coordinate in the height direction of the beam at the time of the
Fig. 4. Comparison of the results of the FE calculation with the experimentally
determined quasi-static system behavior of the 4-point bending test at a displacement
controlled loading rate of 2 mm/min. Top: Applied external bending stress 𝜎𝑒𝑥𝑡

11 over
axial strain of the bottom edge fibers of the beam 𝜀11. Bottom: Vertical component of
the electric displacement 𝐷3 over the gradient in vertical 𝑥3-direction 𝜂113 of the axial
strain.

maximum external load 𝜎𝑒𝑥𝑡,𝑚𝑎𝑥
11 = 60 MPa. The linearly distributed

external bending stress 𝜎𝑒𝑥𝑡
11 results in a linear distribution of the axial

strain 𝜀11. This result confirms that the simulations have reproduced
the desired pure bending state in the symmetry plane of the model. At
this loading state, ferroelastic domain switching processes have already
occurred over more than two-thirds of the entire cross section. This
can be seen from the appearance of the irreversible strain components
𝜀𝑖11 and 𝜀𝑖33 on the one hand, and the flattening slope of the axial
stress 𝜎11 on the other. The difference between the maximum axial
stress component 𝜎11 at the outer edge fibers with the external bending
stress 𝜎𝑒𝑥𝑡

11 is caused by the constraint to satisfy the switching criterion
(19). Corresponding to the linear axial strain distribution, the strain
gradient component 𝜂113 becomes constant over the cross section. The
section-wise linear strain 𝜀33 in height direction exhibits kinks due
to the dominance of its irreversible components 𝜀𝑖33. This results in
a section-wise constant distribution for the associated strain gradient
component 𝜂333 with local non-linearities located in the regions where
the transition from reversible to irreversible material behavior takes
place.

According to the flexoelectric transverse effect, a constant down-
ward electric displacement 𝐷3 occurs in the height direction of the
beam. It is a result of the constant strain gradient component 𝜂113
and also follows the Gaussian law. An axial component of the electric
displacement 𝐷1 in the beam can be excluded by assuming charge-free
model boundaries on the left and right sides. The distribution of the
electric field, and correspondingly of the electric potential, results from
the conditions of satisfying the constitutive equation (38) and, at the
same time, resulting in a constant dielectric displacement according to
Gauss’s law. The maximum electric field strength reached in the cross
section is only a few parts per thousand of the coercive field strength. It
appears that the irreversible polarization in the outer regions is caused
by the local maximum of the strain gradient component 𝜂333, which
moves during the loading process from the outside to the inside from
both, the top and bottom surfaces, and seems to act as an electrical
driving force due to the flexoelectric effect.



European Journal of Mechanics / A Solids 108 (2024) 105410F. Sutter and M. Kamlah
Fig. 5. Results of the individual field quantities along the symmetry axis of the model at the time of the maximum bending stress 𝜎𝑒𝑥𝑡,𝑚𝑎𝑥

11 = 60 MPa (top) and after complete
unloading (bottom). (a) Stress components (b) Strain and strain gradient components (c) Vertical electric field and potential (d) Vertical components of electric displacement and
irreversible polarization.
The results of the considered field quantities after complete un-
loading of the sample are shown at the bottom of Fig. 5. Due to the
ferroelastic switching processes occurring in the specimen, the axial
stress 𝜎11 cannot be completely relieved and a residual stress state
remains in the cross section. The strain components 𝜀11 and 𝜀33 de-
crease in amplitude and correspond approximately to their irreversible
counterparts after unloading. The strain gradients also decrease in the
same way, with an additional decrease at the outer edges of the cross
section for the 𝜂333 component. This effect also has a direct influence
on the electric field distribution and the irreversible polarization, where
amplitude reductions are also observed in these regions. As can also be
seen from the results in Fig. 4, the unloading results in only a slight
reduction in the electric displacement in the beam. In the future, the
physical plausibility of this observation should be verified as far as
possible by further experimental investigations.

6.2. Plate with elliptical notch

In contrast to the previous example, which considered a real exper-
iment, this example is more of an academic problem. The motivation
is to select the geometry of a fictitious component in such a way
that the direct flexoelectric effect is specifically addressed by strongly
pronounced strain gradients. The subject of this investigation is the
plate with an elliptical notch in Fig. 6. The geometry of this model
problem is taken from Witt et al. (2023), where all dimensions are
modified by a factor of 10−1. In this example, plane strain conditions
are assumed.

The plate consists of the piezoceramic PZT-5H in the thermally
depolarized state, which was already examined in Section 6.1. The
flexoelectric, as well as the piezoelectric and ferroelectric properties of
this material are accounted for in this example. Therefore, the material
parameters from Table 1 are also assumed for this simulation, with the
exception of the internal length parameter. The investigations for this
example showed a pronounced sensitivity of the numerical calculation
stability to this parameter, so that it had to be increased to 𝑙𝑒 = 2 ⋅
10−4 mm.

The bottom edge of the model is assumed to be mechanically fixed
in the 𝑥 -direction and electrically grounded, corresponding to a zero
10

2

Fig. 6. Model problem of a plate with an elliptical notch and the associated boundary
conditions. The notch is not shown to scale.

potential. In addition, the center node at the bottom is fixed in the
𝑥1-direction. The purely mechanical load in this example is applied
stepwise via a compressive local stress boundary condition3 at both side
faces up to a maximum value of 𝜎𝑚𝑎𝑥11 = 60 MPa.

In this example, high intensity strain gradients are expected in the
immediate vicinity of the notch tip. This means that the direct flexo-
electric effect can also be expected there. Depending on the intensity
of the induced flexoelectric stimulus, electrically driven alignment of
the domains in this region can also occur in addition to mechanically
driven switching processes. The aim is to investigate the occurrence of
the flexoelectric effect and the mechanisms of induced ferroelectricity.
For this purpose, the set of material parameters will be used, which are
adapted to experiments, see Section 6.1, and therefore are realistic to
the best of our knowledge. In particular, we focus on the possibility of

3 Since it is closer to reality, a compressive instead of a tensile load is
considered in this example. Real piezoceramics would be damaged even at
very low tensile stresses.
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Fig. 7. Selected FE mesh with quadratic triangular elements with a very strong mesh
efinement in the area of the notch tip.

aining a remanent polarization in the material by deliberately creating
strain gradient in the absence of an external electric source.

The simulation is performed on an FE model discretized with 3613
riangular elements4 with strong mesh refinement in the region of the
otch tip, see Fig. 7. The underlying FE formulation corresponds to the
ne introduced in Section 5. The specified loading of the left and right
and sides is applied in 80 equidistant steps within the FE calculation.
he subsequent unloading is also done in 80 steps. These relatively
mall loading and unloading steps are necessary because of the highly
on-linear material behavior that occurs early at the notch tip.

In the following, the results of the simulation at the state of max-
mum applied compressive stress and after complete unloading are
onsidered. As a result of the applied load, a homogeneous strain
tate occurs over large areas of the plate. However, strain increases in
ntensity in the area of the notch. The activation of the flexoelectric
ffect is caused by the components of the strain gradient tensor. Their
istribution at maximum loading in the area of the notch tip is shown
n Fig. 8. The selected observation area corresponds to the enlarged
rea shown in Fig. 7, the dimensions of which are approximately 3 × 3
m2. For better comparability, the same color scale was set for all
omponents shown and limited to reasonable maximum and minimum
alues. The high intensities of the shear components 2𝜂121 and 2𝜂122 of
he strain gradient tensor are striking. Since the adaptation of the flexo-
lectric constant to the experiment in Section 6.1 resulted in a relatively
igh value for the shear parameter 𝑚44, the field distributions shown in
ig. 8 can be considered as optimal conditions for the activation of the
irect flexoelectric effect.

The distribution and strength of the electric field components gen-
rated by the direct flexoelectric effect at maximum load are shown in
ig. 9. The maximum values of the selected color scale are limited to the
oercive field strength, cf. Table 1. It is clear that this coercivity value
s only reached in the immediate vicinity of the notch tip. However,
ooking at the distribution of the irreversible polarization components
n the same figure, it can be seen that domain switching processes
nd thus poling of the material occurs over a much larger area. The
ocal distribution of the irreversible polarization components can only
artially be explained by the shape of the electric field components.
pparently, the strain gradient tensor components play the role of
direct internal driving force in the evolution of the irreversible

olarization by the direct flexoelectric effect. This suggests that in the
odel response discussed here, the electric field is generated more

or compatibility reasons to ensure electrostatic equilibrium in the
resence of the disturbing flexoelectric effect. The magnitudes of the
olarization components are far from reaching the value of the macro-
copic saturation polarization resulting from the dielectric hysteresis,
f. Fig. 3. Even at the tip of the notch, the irreversible polarization
eaches only about two-thirds of this value, which is not visible in
ig. 9, where the maximum values have also been limited for the sake
f clarity.

4 Triangular elements were chosen because the meshing obtained proved
o be much more economical than using quadrilateral elements.
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In the following, the focus is on the changes in the field distributions
after complete unloading. The components of the strain gradient tensor
that remain in the material and are therefore remanent are shown in
Fig. 10. Their magnitudes are significantly smaller than at maximum
loading, this is why the limits of the color scale have been reduced by
a factor of 1/3. The persistence of the strain gradients can be attributed
to the inhomogeneous remanent strains caused by ferroelectric and
ferroelastic domain switching processes in the region of the notch.
Therefore, the flexoelectric effect is expected to persist even after the
samples are mechanically unloaded.

The distributions of the irreversible polarization components shown
in Fig. 11 are qualitatively similar to those at maximum load. Despite
the strong decrease in the strain gradients and thus the magnitude of
the flexoelectric effect, the polarization caused in the material does not
decrease. The remanent nature of the polarization is therefore evident,
as is the poled state of the material at the base of the notch. The electric
fields also decrease but do not disappear. They are essentially the
depolarization fields that compensate for the polarization remaining in
the material.

7. Conclusion

This paper presents a macroscopic continuum model that accounts
for the higher-order effect of flexoelectricity in addition to the hys-
teretic material behavior of piezoceramics. Based on the concept of
generalized standard materials, a thermodynamically consistent macro-
scopic modeling framework for higher-order dissipative electro-
mechanical solids with a minimum-type variational potential structure
is established. For the description of the domain switching processes
characteristic of ferroelectrics, a microscopically motivated material
model is used that is capable of representing the whole relevant range
of the quasi-static hysteretic material behavior. To solve the higher-
order electro-mechanical boundary value problems arising in flexoelec-
tricity, a mixed finite element formulation based on the Helmholtz
free energy is presented. In the numerical examples discussed, the
parameters of the non-linear material model are first adapted to the
experimentally measured flexoelectric behavior of the piezoceramic
PZT-5H in a four point bending test as can be found in literature. This
adapted parameter set is then used to calculate a notched plate under
compressive loading. Due to the strong strain gradients in the region
of the notch tip, domain switching processes and thus polarization
of the material can be observed in the model response due to the
direct flexoelectric effect. However, this is limited to a small region
around the notch tip. Since the calculations were performed with a
set of parameters that can be considered quite realistic, this gives at
least an indication that such flexoelectricity-driven poling processes
can occur in reality. For smaller samples much larger polarized volume
fractions in the material can be expected to be affected due to the
pronounced size effect of flexoelectricity. The results presented in this
work can stimulate further in-depth investigations into the possibility
of enhancing the impact of the direct flexoelectric effect and the
perspectives of employing it to induce poling processes without an
electric source.
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Fig. 8. Distribution of the components of the strain gradient tensor at maximum load in the immediate vicinity of the notch tip. Top: Strain gradients along the horizontal
𝑥1-direction. Bottom: Strain gradients along the vertical 𝑥2-direction. The region of interest corresponds to the detailed view in Fig. 7. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Distribution of the components of the electric field (top) and the irreversible
polarization (bottom) at maximum load in the immediate vicinity of the notch tip. The
region of interest corresponds to the detailed view in Fig. 7. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Appendix A. Derivation of the Helmholtz free energy

The electric Gibbs energy for a higher-order flexoelectric solid is
given by

𝐺2 =
1
2
𝜀𝑖𝑗𝐶

𝐸
𝑖𝑗𝑘𝑙𝜀𝑘𝑙 +

1
2
𝜂𝑖𝑗𝑘𝐺

𝐸
𝑖𝑗𝑘𝑙𝑚𝑛𝜂𝑙𝑚𝑛 −

1
2
𝐸𝑖𝜖

𝜀
𝑖𝑗𝐸𝑗

− 𝐸𝑖𝑒𝑖𝑘𝑙𝜀𝑘𝑙 − 𝐸𝑖𝑚𝑖𝑙𝑚𝑛𝜂𝑙𝑚𝑛 ,
(A.1)

with the isotropic elasticity tensor at constant electric field

𝐶𝐸
𝑖𝑗𝑘𝑙 = 𝛬𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (A.2)

and the isotropic strain gradient elasticity tensor at constant electric
field

𝐺𝐸
𝑖𝑗𝑘𝑙𝑚𝑛 = 𝛬𝑙2𝑒𝛿𝑖𝑗𝛿𝑘𝑛𝛿𝑙𝑚 + 𝜇𝑙2𝑒 (𝛿𝑖𝑙𝛿𝑗𝑚𝛿𝑘𝑛 + 𝛿𝑖𝑚𝛿𝑗𝑙𝛿𝑘𝑛) (A.3)

expressed in terms of the internal length parameter 𝑙𝑒 and the Lamé
constants

𝛬 = 𝑌 𝜈
(1 − 2𝜈)(1 + 𝜈)

and 𝜇 = 𝑌
2(1 + 𝜈)

. (A.4)

In (A.4), 𝑌 stands for the Young’s modulus and 𝜈 for the Poisson’s ratio.
Although piezoceramics exhibit anisotropy, the model was assumed to
have isotropic elastic properties for the sake of simplicity.
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Fig. 10. Distribution of the components of the strain gradient tensor after unloading in the immediate vicinity of the notch tip. Top: Strain gradients along the horizontal
𝑥1-direction. Bottom: Strain gradients along the vertical 𝑥2-direction. The region of interest corresponds to the detailed view in Fig. 7. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Distribution of the components of the electric field (top) and the irreversible
polarization (bottom) after unloading in the immediate vicinity of the notch tip. The
region of interest corresponds to the detailed view in Fig. 7. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

The remaining material tensors in (A.1) are the permittivity tensor
13

at constant strain

𝜖𝜀𝑖𝑗 = 𝜖𝜎𝑖𝑗 − 𝑑𝑖𝑘𝑙𝑒𝑗𝑘𝑙 , (A.5)
the piezoelectric e-tensor

𝑒𝑚𝑘𝑙 = 𝑑𝑚𝑖𝑗𝐶
𝐸
𝑖𝑗𝑘𝑙 (A.6)

and the isotropic flexoelectric tensor

𝑚𝑙𝑖𝑗𝑘 = 𝑚12𝛿𝑙𝑘𝛿𝑖𝑗 + 𝑚44(𝛿𝑙𝑖𝛿𝑗𝑘 + 𝛿𝑙𝑗𝛿𝑖𝑘) , (A.7)

where 𝑚12 and 𝑚44 are the transversal and shear flexoelectric coeffi-
cients, respectively. Due to the lack of information on the anisotropic
properties of the flexoelectric tensor in the literature, an isotropic
representation was chosen here for simplicity. In (A.5) and (A.6) one
can find the isotropic permittivity tensor at constant stress

𝜖𝜎𝑖𝑗 = (𝜖0 + 𝜅𝜎 )𝛿𝑖𝑗 (A.8)

and the anisotropic piezoelectric d-tensor

𝑑𝑘𝑖𝑗 =
(

𝑑33 − 𝑑31 − 𝑑15
)

𝜌𝑘𝜌𝑖𝜌𝑗 + 𝑑31𝜌𝑘𝛿𝑖𝑗

+ 1
2
𝑑15

(

𝛿𝑘𝑖𝜌𝑗 + 𝛿𝑘𝑗𝜌𝑖
)

,
(A.9)

with the additional parameters 𝜖0, 𝜅𝜎 and 𝑑33, 𝑑31, 𝑑15 representing the
permittivity of the vacuum, the dielectric susceptibility of the material
and the longitudinal, transversal and shear piezoelectric constants,
respectively.

The constitutive equations in the electric Gibbs energy form can
then be derived as

𝜎𝑖𝑗 =
𝜕𝐺2
𝜕𝜀𝑖𝑗

= 𝐶𝐸
𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘 , (A.10)

𝜏𝑖𝑗𝑘 =
𝜕𝐺2
𝜕𝜂𝑖𝑗𝑘

= 𝐺𝐸
𝑖𝑗𝑘𝑙𝑚𝑛𝜂𝑙𝑚𝑛 − 𝑚𝑙𝑖𝑗𝑘𝐸𝑙 , (A.11)

and 𝐷𝑖 = −
𝜕𝐺2
𝜕𝐸𝑖

= 𝑒𝑖𝑘𝑙𝜀𝑘𝑙 + 𝑚𝑖𝑘𝑙𝑚𝜂𝑘𝑙𝑚 + 𝜖𝜀𝑖𝑗𝐸𝑗 . (A.12)

By solving (A.12) for the electric field and inserting it into (A.10) and
(A.11), the constitutive equations in the Helmholtz free energy scheme
become

𝜎 = (𝐶𝐸 + 𝑒 ℎ )𝜀 + (𝑓 𝑒 )𝜂 −
(

𝑒 (𝜖𝜀 )−1
)

𝐷
𝑖𝑗 𝑖𝑗𝑘𝑙 𝑚𝑖𝑗 𝑚𝑘𝑙 𝑘𝑙 𝑘𝑙𝑚𝑛 𝑘𝑖𝑗 𝑙𝑚𝑛 𝑘𝑖𝑗 𝑘𝑙 𝑙
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𝐏

𝐅
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𝐊

= 𝐶𝐷
𝑖𝑗𝑘𝑙𝜀𝑘𝑙 + 𝑏𝑙𝑚𝑛𝑖𝑗𝜂𝑙𝑚𝑛 − ℎ𝑙𝑖𝑗𝐷𝑙 =

𝜕𝛹
𝜕𝜀𝑖𝑗

(A.13)

𝜏𝑖𝑗𝑘 = (𝑚𝑙𝑖𝑗𝑘ℎ𝑙𝑚𝑛)𝜀𝑚𝑛 + (𝐺𝐸
𝑖𝑗𝑘𝑙𝑚𝑛 + 𝑚𝑜𝑖𝑗𝑘𝑓𝑜𝑙𝑚𝑛)𝜂𝑙𝑚𝑛 −

(

𝑚𝑙𝑖𝑗𝑘(𝜖𝜀𝑙𝑚)
−1)𝐷𝑚

= 𝑏𝑖𝑗𝑘𝑚𝑛𝜀𝑚𝑛 + 𝐺𝐷
𝑖𝑗𝑘𝑙𝑚𝑛𝜂𝑙𝑚𝑛 − 𝑓𝑚𝑖𝑗𝑘𝐷𝑚 = 𝜕𝛹

𝜕𝜂𝑖𝑗𝑘
(A.14)

𝐸𝑖 = −
(

(𝜖𝜀𝑖𝑗 )
−1𝑒𝑗𝑘𝑙

)

𝜀𝑘𝑙 −
(

(𝜖𝜀𝑖𝑗 )
−1𝑚𝑗𝑘𝑙𝑚

)

𝜂𝑘𝑙𝑚 + (𝜖𝜀𝑖𝑗 )
−1𝐷𝑗

= −ℎ𝑖𝑘𝑙𝜀𝑘𝑙 − 𝑓𝑖𝑘𝑙𝑚𝜂𝑘𝑙𝑚 + 𝛽𝜀𝑖𝑗𝐷𝑗 =
𝜕𝛹
𝜕𝐷𝑖

, (A.15)

with the impermittivity tensor at constant strain

𝛽𝜀𝑖𝑗 = (𝜖𝜀𝑖𝑗 )
−1 , (A.16)

the piezoelectric h-tensor

ℎ𝑖𝑘𝑙 = 𝛽𝜀𝑖𝑗𝑒𝑗𝑘𝑙 , (A.17)

the elasticity tensor at constant electric displacement

𝐶𝐷
𝑖𝑗𝑘𝑙 = 𝐶𝐸

𝑖𝑗𝑘𝑙 + 𝑒𝑚𝑖𝑗ℎ𝑚𝑘𝑙 , (A.18)

the flexoelectric coupling tensor

𝑓𝑖𝑘𝑙𝑚 = 𝛽𝜀𝑖𝑗𝑚𝑗𝑘𝑙𝑚 , (A.19)

the strain gradient elasticity tensor at constant electric displacement

𝐺𝐷
𝑖𝑗𝑘𝑙𝑚𝑛 = 𝐺𝐸

𝑖𝑗𝑘𝑙𝑚𝑛 + 𝑚𝑜𝑖𝑗𝑘𝑓𝑜𝑙𝑚𝑛 , (A.20)

and the strain coupling tensor

𝑏𝑖𝑗𝑘𝑚𝑛 = 𝑚𝑙𝑖𝑗𝑘ℎ𝑙𝑚𝑛 = 𝑚𝑙𝑖𝑗𝑘𝛽
𝜀
𝑙𝑜𝑒𝑜𝑚𝑛 = 𝑓𝑜𝑖𝑗𝑘𝑒𝑜𝑚𝑛 = 𝑏𝑖𝑗𝑘𝑚𝑛 . (A.21)

Finally, the expression for the Helmholtz free energy of a flexoelectric
solid of higher-order is found to be

𝛹 = 1
2
𝜀𝑖𝑗𝐶

𝐷
𝑖𝑗𝑘𝑙𝜀𝑘𝑙 +

1
2
𝜂𝑖𝑗𝑘𝐺

𝐷
𝑖𝑗𝑘𝑙𝑚𝑛𝜂𝑘𝑙𝑚 + 1

2
𝐷𝑖𝛽

𝜀
𝑖𝑗𝐷𝑗

+ 𝜂𝑖𝑗𝑘𝑏𝑖𝑗𝑘𝑙𝑚𝜀𝑙𝑚 −𝐷𝑖ℎ𝑖𝑘𝑙𝜀𝑘𝑙 −𝐷𝑖𝑓𝑖𝑘𝑙𝑚𝜂𝑘𝑙𝑚 ,
(A.22)

hile its relation to the electric Gibbs energy is given by the partial
egendre transformation

2(𝜺, 𝜼, 𝐸⃗) = inf
𝐷⃗

{

𝛹 (𝜺, 𝜼, 𝐷⃗) − 𝐸⃗ ⋅ 𝐷⃗
}

. (A.23)

ppendix B. Vector–matrix representations of the mechanical field
uantities

The local stress tensor and the strain tensor in a vector–matrix
otation are given by

= [𝜎11 𝜎22 𝜎33 𝜎12 𝜎23 𝜎13]𝑇 (B.1)

= [𝜀11 𝜀22 𝜀33 2𝜀12 2𝜀23 2𝜀13]𝑇 , (B.2)

hile the notation used in this paper for the non-local stress tensor and
he strain gradient tensor is written as

= [𝜏111 𝜏221 𝜏331 𝜏122 𝜏133 | 𝜏222 𝜏112 𝜏332 𝜏121 𝜏233 |

𝜏333 𝜏113 𝜏223 𝜏131 𝜏232 | 𝜏231 𝜏132 𝜏123]𝑇
(B.3)

= [𝜂111 𝜂221 𝜂331 2𝜂122 2𝜂133 | 𝜂222 𝜂112 𝜂332 2𝜂121 2𝜂233 |

𝜂333 𝜂113 𝜂223 2𝜂131 2𝜂232 | 2𝜂231 2𝜂132 2𝜂123]𝑇
. (B.4)

ppendix C. Material tensors in vector–matrix notation

The vector–matrix notation of the material tensors is given for the
lasticity tensor at constant electric field

𝐸 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝛬 + 2𝜇 𝛬 𝛬 0 0 0
𝛬 𝛬 + 2𝜇 𝛬 0 0 0
𝛬 𝛬 𝛬 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

, (C.1)
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⎣ 0 0 0 0 0 𝜇⎦ 𝐊
the strain gradient elasticity tensor at constant electric field

𝐆𝐸 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐆1 𝟎5×5 𝟎5×5 𝟎5×3
𝟎5×5 𝐆1 𝟎5×5 𝟎5×3
𝟎5×5 𝟎5×5 𝐆1 𝟎5×3
𝟎3×5 𝟎3×5 𝟎3×5 𝐆2

⎤

⎥

⎥

⎥

⎥

⎦

(C.2)

ith

1 = 𝑙2𝑒

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛬 + 2𝜇 𝛬 𝛬 0 0
𝛬 𝛬 + 2𝜇 𝛬 0 0
𝛬 𝛬 𝛬 + 2𝜇 0 0
0 0 0 𝜇 0
0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(C.3)

nd

2 = 𝑙2𝑒
⎡

⎢

⎢

⎣

𝜇 0 0
0 𝜇 0
0 0 𝜇

⎤

⎥

⎥

⎦

, (C.4)

he piezoelectric d-tensor

=
⎡

⎢

⎢

⎣

𝑑111 𝑑122 𝑑133 2𝑑112 2𝑑123 2𝑑113
𝑑211 𝑑122 𝑑233 2𝑑212 2𝑑223 2𝑑213
𝑑311 𝑑322 𝑑333 2𝑑312 2𝑑323 2𝑑313

⎤

⎥

⎥

⎦

(C.5)

ith components 𝑑𝑘𝑖𝑗 of the tensor (A.9), and the flexoelectric tensor

=
⎡

⎢

⎢

⎣

𝐦0 𝟎1×5 𝟎1×5 𝟎1×3
𝟎1×5 𝐦0 𝟎1×5 𝟎1×3
𝟎1×5 𝟎1×5 𝐦0 𝟎1×3

⎤

⎥

⎥

⎦

(C.6)

ith

0 =
[

𝑚12 + 2𝑚44 𝑚12 𝑚12 𝑚44 𝑚44
]

. (C.7)

ppendix D. Nodal degrees of freedom of the finite element for-
ulation

The nodal degrees of freedom of the mixed finite element formula-
ion can be summarized as follows:

𝐼 = [𝑢1 𝑢2 𝑢3]𝑇

𝐼 = [𝐻11 𝐻22 𝐻33 𝐻12 𝐻21 𝐻23 𝐻32 𝐻13 𝐻31]𝑇

𝐼 = [𝐷1 𝐷2 𝐷3]𝑇

𝐼 = 𝜙

𝐼 = [𝜆11 𝜆22 𝜆33 𝜆12 𝜆21 𝜆23 𝜆32 𝜆13 𝜆31]𝑇

(D.1)

ppendix E. Element matrix and vector components of the finite
lement formulation

The components of the vectors of internal and external forces in (60)
nd (61) of the proposed finite element formulation are given by

𝐅𝑢
𝑒 = ∫𝛺𝑒

(

𝐁𝑢 𝑇
𝑒 𝜕𝜺𝑊 −𝐌𝑢 𝑇

𝑒 𝜦ℎ) 𝑑𝑉 ,
𝑢
𝑒 = ∫𝛺𝑒

𝐍𝑢 𝑇
𝑒 𝐛𝑒𝑥𝑡 𝑑𝑉 + ∫𝜕𝛺𝑒

𝐍𝑢 𝑇
𝑒 𝐭𝑒𝑥𝑡 𝑑𝐴 ,

(E.1)

𝐻
𝑒 = ∫𝛺𝑒

(

𝐁𝐻 𝑇
𝑒 𝜕𝜼𝑊 + 𝐍𝐻 𝑇

𝑒 𝜦ℎ) 𝑑𝑉 ,

𝐏𝐻
𝑒 = ∫𝜕𝛺𝑒

𝐍𝐻 𝑇
𝑒 𝐫𝑒𝑥𝑡 𝑑𝐴 ,

(E.2)

𝐷
𝑒 = ∫𝛺𝑒

𝐍𝐷𝑇
𝑒 (𝜕𝐃𝑊 + ∇𝜙ℎ) 𝑑𝑉 , (E.3)

𝜙
𝑒 = ∫𝛺𝑒

𝐁𝜙𝑇
𝑒 𝐃ℎ 𝑑𝑉 , 𝐏𝜙

𝑒 = ∫𝜕𝛺𝑒
𝐍𝜙
𝑒 𝑞𝑒𝑥𝑡 𝑑𝐴 , (E.4)

nd 𝐅𝜆
𝑒 = ∫𝛺𝑒

𝐍𝜆 𝑇
𝑒 (𝐇ℎ − ∇𝐮ℎ) 𝑑𝑉 . (E.5)

he components of the tangential stiffness matrix (59) are
𝑢𝑢
𝑒 = ∫𝛺𝑒

𝐁𝑢 𝑇
𝑒 𝐂𝜀𝜀

𝑇 𝐁𝑢
𝑒 𝑑𝑉 , 𝐊𝑢𝐻

𝑒 = ∫𝛺𝑒
𝐁𝑢 𝑇
𝑒 𝐂𝜀𝜂

𝑇 𝐁𝐻
𝑒 𝑑𝑉

𝑢𝐷 𝑢 𝑇 𝜀𝐷 𝐷 𝑢𝜆 𝑢 𝑇 𝜆 (E.6)

𝑒 = ∫𝛺𝑒

𝐁𝑒 𝐂𝑇 𝐍𝑒 𝑑𝑉 ,𝐊𝑒 = ∫𝛺𝑒
𝐌𝑒 𝐍𝑒 𝑑𝑉
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𝐊

𝐊

A
t

b

𝐊

𝐊

𝐊

𝐊𝐻𝑢
𝑒 = ∫𝛺𝑒

𝐁𝐻 𝑇
𝑒 𝐂𝜂𝜀

𝑇 𝐁𝑢
𝑒 𝑑𝑉 , 𝐊𝐻𝐻

𝑒 = ∫𝛺𝑒
𝐁𝐻 𝑇
𝑒 𝐂𝜂𝜂

𝑇 𝐁𝐻
𝑒 𝑑𝑉

𝐻𝐷
𝑒 = ∫𝛺𝑒

𝐁𝐻 𝑇
𝑒 𝐂𝜂𝐷

𝑇 𝐍𝐷
𝑒 𝑑𝑉 ,𝐊𝐻𝜆

𝑒 = ∫𝛺𝑒
𝐍𝐻 𝑇
𝑒 𝐍𝜆

𝑒 𝑑𝑉
(E.7)

𝐊𝐷𝑢
𝑒 = ∫𝛺𝑒

𝐍𝐷𝑇
𝑒 𝐂𝐷𝜀

𝑇 𝐁𝑢
𝑒 𝑑𝑉 , 𝐊𝐷𝐻

𝑒 = ∫𝛺𝑒
𝐍𝐷𝑇
𝑒 𝐂𝐷𝜂

𝑇 𝐁𝐻
𝑒 𝑑𝑉

𝐷𝐷
𝑒 = ∫𝛺𝑒

𝐍𝐷𝑇
𝑒 𝐂𝐷𝐷

𝑇 𝐍𝐷
𝑒 𝑑𝑉 ,𝐊𝐷𝜙

𝑒 = ∫𝛺𝑒
𝐍𝐷𝑇
𝑒 𝐁𝜙

𝑒 𝑑𝑉 .
(E.8)

ppendix F. Components of the reduced tangential stiffness ma-
rix and reduced vector of internal forces

The components of the reduced tangential stiffness matrix are given
y

̃ 𝑢𝑢
𝑒 = 𝐊𝑢𝑢

𝑒 −𝐊𝑢𝐷
𝑒 (𝐊𝐷𝐷

𝑒 )−1𝐊𝐷𝑢
𝑒 , (F.1)

̃ 𝑢𝐻
𝑒 = 𝐊𝑢𝐻

𝑒 −𝐊𝑢𝐷
𝑒 (𝐊𝐷𝐷

𝑒 )−1𝐊𝐷𝐻
𝑒 , (F.2)

̃ 𝐻𝑢
𝑒 = 𝐊𝐻𝑢

𝑒 −𝐊𝐻𝐷
𝑒 (𝐊𝐷𝐷

𝑒 )−1𝐊𝐷𝑢
𝑒 , (F.3)

𝐊̃𝑢𝜙
𝑒 = −𝐊𝑢𝐷

𝑒 (𝐊𝐷𝐷
𝑒 )−1𝐊𝐷𝜙

𝑒 , (F.4)

𝐊̃𝜙𝑢
𝑒 = −𝐊𝜙𝐷

𝑒 (𝐊𝐷𝐷
𝑒 )−1𝐊𝐷𝑢

𝑒 , (F.5)

𝐊̃𝐻𝐻
𝑒 = 𝐊𝐻𝐻

𝑒 −𝐊𝐻𝐷
𝑒 (𝐊𝐷𝐷

𝑒 )−1𝐊𝐷𝐻
𝑒 , (F.6)

𝐊̃𝐻𝜙
𝑒 = −𝐊𝐻𝐷

𝑒 (𝐊𝐷𝐷
𝑒 )−1𝐊𝐷𝜙

𝑒 , (F.7)

𝐊̃𝜙𝐻
𝑒 = −𝐊𝜙𝐷

𝑒 (𝐊𝐷𝐷
𝑒 )−1𝐊𝐷𝐻

𝑒 , (F.8)

and 𝐊̃𝜙𝜙
𝑒 = −𝐊𝜙𝐷

𝑒 (𝐊𝐷𝐷
𝑒 )−1𝐊𝐷𝜙

𝑒 . (F.9)

The components of the reduced vector of internal forces are

𝐅̃𝑢
𝑒 = 𝐅𝑢

𝑒 −𝐊𝑢𝐷
𝑒 (𝐊𝐷𝐷

𝑒 )−1𝐅𝐷
𝑒 , (F.10)

𝐅̃𝐻
𝑒 = 𝐅𝐻

𝑒 −𝐊𝐻𝐷
𝑒 (𝐊𝐷𝐷

𝑒 )−1𝐅𝐷
𝑒 , (F.11)

and 𝐅̃𝜙
𝑒 = 𝐅𝜙

𝑒 −𝐊𝜙𝐷
𝑒 (𝐊𝐷𝐷

𝑒 )−1𝐅𝐷
𝑒 . (F.12)
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