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Abstract

The flexibility of electrical heating devices can help address the issues arising from the growing presence of unpredictable renewable
energy sources in the energy system. In particular, heat pumps offer an effective solution by employing smart control methods that
adjust the heat pump’s power output in reaction to demand response signals. This paper combines imitation learning based on
an artificial neural network with an intelligent control approach for heat pumps. We train the model using the output data of an
optimization problem to determine the optimal operation schedule of a heat pump. The objective is to minimize the electricity
cost with a time-variable electricity tariff while keeping the building temperature within acceptable boundaries. We evaluate our
developed novel method, PSC-ANN, on various multi-family buildings with differing insulation levels that utilize an underfloor
heating system as thermal storage. The results show that PSC-ANN outperforms a positively evaluated intelligent control approach
from the literature and a conventional control approach. Further, our experiments reveal that a trained imitation learning model
for a specific building is also applicable to other similar buildings without the need to train it again with new data. Our developed
approach also reduces the execution time compared to optimally solving the corresponding optimization problem. PSC-ANN
can be integrated into multiple buildings, enabling them to better utilize renewable energy sources by adjusting their electricity
consumption in response to volatile external signals.

Keywords: Imitation learning, demand response, heat pumps, residential building, artificial neural networks

1. Introduction

The increasing share of volatile renewable energy sources
like photovoltaic and wind energy in many countries makes
flexible electrical loads vital to cope with their intermittent na-
ture. Especially electrical heating devices like heat pumps (HP)
coupled to thermal storage can provide flexibility to the energy
system by using demand response [1]. To this end, novel in-
telligent control strategies are necessary that regulate the heat
pump’s electricity consumption based on external signals, like
a time-variable electricity tariff.

A promising approach to improve current control approaches
is to include methods from the field of machine learning in the
control procedures. Supervised learning approaches are mainly
used for forecasting demand and generation load profiles for
the control problem [2]. Thus, supervised learning is not used
to control the devices’ actions directly. Many studies from the
literature use Reinforcement Learning (RL) to train an agent
in a building environment to control flexible devices optimally.
However, RL has some crucial drawbacks that limit its suit-
ability for real-world applications in the energy sector. The
main disadvantage is that RL needs a lot of time to train the
model and thus requires a lot of interactions with the environ-
ment [3, 4]. Further, as the power and energy systems have high
safety requirements, online training of the agent may negatively
affect the operation of the device if no domain knowledge is in-
cluded in the control.

Therefore, we introduce a novel control approach that com-

bines imitation learning with domain knowledge of the control
problem. Imitation learning is a paradigm for supervised learn-
ing in which a model learns by observing and mimicking the
behavior of an expert [3]. The goal is to enable the trained
model to perform a task or make decisions similar to those of
the expert, even in situations it has not encountered before.

Optimally reacting to the volatile energy generation requires
the repeated solving of an optimization problem. Finding the
optimal solution is equivalent to depicting a high-dimensional
mapping between the inputs of the problem (demand, exter-
nal signal, outside temperature, etc.) and the optimal control
actions. As the same problem is solved for the same build-
ing recurrently with different inputs, a trained machine learning
model can learn the mapping between inputs and outputs and
thus imitate the exact solver. The trained model can then be
amortized over multiple problem instances. Therefore, it can
lead to a reduction in execution time. Imitation learning has
shown promising results in the energy field [3, 5], and we inves-
tigate its applicability to intelligently controlling a heat pump
for demand response.

The remainder of the paper is organized as follows: In Sec. 2,
we summarize the relevant literature and highlight the contribu-
tion of this paper. We define the optimization problem in Sec. 3.
Our novel control approach is explained in Sec. 4. We show the
results of our experiments to evaluate the introduced control ap-
proach in Sec. 5. This paper ends with a conclusion and outlook
in Sec. 6.
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Nomenclature

Acronyms
ANN Artificial Neural Network

MILP Mixed Integer Linear Programming

ML Machine Learning

PSC Price Storage Control

RL Reinforcement Learning

Indices
t time slot

Z total number of time slots

Parameters
∆t time step duration

ρConcrete density of concrete

cConcrete specific heat capacity of concrete

COPt coefficient of Performance of the heat pump

kswitchedOff
t number of starts for the heat pump until time t

modmin minimum modulation degree of the heat pump

nswitchedOff maximum number of starts for the heat pump

PHPmax maximum heating power of the heat pump

PDemandEl
t electrical power of the inflexible devices

QDemandSH
t space heating demand at time step t

QLossesSH
t heat losses in space heating

T max maximum allowable building temperature

T min minimum allowable building temperature

VUFH volume of underfloor heating system

Variables
x̃t,pred predicted output of the ML algorithm for the heat

pump at time t

C total cost

hon
t binary variable indicating if the heat pump is running

at time t

hswitchedOff
t binary variable indicating if the heat pump is

switched off at time t

pt price of electricity

QHP
t heat pump heat output

T Building
t building temperature at time step t

T Outside
t building temperature at time step t

xt modulation degree of the heat pump

2. Related work and contribution

2.1. Related work

Table 1 lists the relevant papers from the literature for our
study. All the studies combine methods from the field of ma-
chine learning with traditional control approaches. Javed et al.
[6], Kim et al. [7], Dey et al. [8], Zou et al. [9] and Dinh et al.
[3] use an intelligent control approach for heating ventilation
and air-conditioning (HVAC) systems. Javed et al. [6] use an
ANN to predict the occupancy level and adjust the control sys-
tem according to the predictions. Kim et al. [7] train an ANN
to model the building behavior, which they then integrate into
the optimization problem. The output is a multi-hour schedule.
However, no direct control mechanism is based on the ANN,
and a forecast is necessary for their approach. Dey et al. [8]
train an RL agent using synthetic data from a rule-based con-
trol heuristic as a warm start for the RL training procedure. Zou
et al. [9] use RL with a Long-Short-Term-Memory (LSTM) as
the environment for interaction. They train the LSTM to pre-
dict the behavior of HVAC systems using historical data from
rule-based control. Dinh et al. [3] solve a mixed-integer lin-
ear program (MILP) to generate optimal control actions for an
HVAC system. They optimize the electricity costs while maxi-
mizing thermal comfort.

Zhang et al. [10], Dinh et al. [11], Ahmed et al. [12], Gao
et al. [13] and López et al. [14] use machine learning methods

to improve the control of different flexible appliances in build-
ings. Zhang et al. [10] use transfer learning for scheduling-
based loads and storage systems. Their RL agent learns from a
pre-trained agent of another building. Dinh et al. [11] control
the energy flows of a battery to minimize the costs with a time-
variable electricity tariff. They train an ANN with the optimal
control actions derived from solving a MILP. Their approach re-
quires a forecast of the future demand, which they compute us-
ing a recurrent neural network. Ahmed et al. [12] use an ANN
to learn the control actions from a simulation. They apply their
approach to household devices that can be switched on and off,
like air conditioners, electric water heaters, washing machines,
and refrigerators. Gao et al. [13] train an ANN with the out-
put of a MILP scheduling problem. The ANN generates actions
that are then used to solve a simplified MILP problem. This re-
duces the solving time of the MILP. They consider batteries and
diesel generators as flexible devices to minimize energy costs
with a time-variable electricity price. López et al. [14] use an
ANN to control electric vehicle charging to minimize the elec-
tricity cost. The labeled data is created by optimally solving the
respective control problem using dynamic programming.

2.2. Contribution

To the best of our knowledge, the approach we introduce in
this paper is the only one that embeds a forecast-free control
approach based on imitation learning from optimal actions into
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Table 1: Comparison of relevant papers from the literature

Forecast-free
control

Learning from
optimal control

Embedded in smart
control heuristic

Compared to optimal
and smart control

Training data from
other buildings

Javed et al., 2017 [6] ✗ ✗ (✓) ✗ ✗

Kim et al., 2020 [7] ✗ ✓ ✗ ✓ ✗

Dey et al., 2023 [8] ✓ ✗ ✗ (✓) ✗

Zou et al., 2020 [9] ✓ ✗ (✓) ✗ ✗

Dinh et al., 2022 [3] ✓ ✓ ✗ ✓ ✗

Zhang et al., 2020 [10] ✓ ✗ ✗ (✓) ✓

Dinh et al., 2022 [11] ✗ ✓ ✗ ✓ ✗

Ahmed et al., 2016 [12] ✓ ✗ ✗ ✗ ✗

Gao et al., 2022 [13] ✓ ✓ ✗ ✓ ✗

López et al., 2019 [14] ✓ ✓ ✗ ✗ ✗

Present work ✓ ✓ ✓ ✓ ✓

a smart control heuristic. Further, in contrast to all other papers
from the literature, our study compares the novel control ap-
proach to both optimal control and a positively evaluated smart
control heuristic from the literature. Another main feature of
our study is using training data from other buildings for the
supervised learning approach. In summary, our paper has the
following three unique contributions:

• We introduce a novel imitation learning based control ap-
proach that combines domain knowledge with supervised
ML. The introduced control approaches are compared to
optimal control, smart heuristic control, and conventional
control approaches.

• We test different ML methods for their applicability to im-
prove the control approach of a heat pump. We generate
the training data by optimally solving a MILP.

• Our study investigates the ability of the introduced ap-
proach to generalize by applying a model that has been
trained with data from other similar buildings.

3. Optimization problem of the building

To determine the optimal schedule for the heat pump, we
solve a MILP. The goal of the building is to minimize the elec-
tricity cost C under a time-variable electricity tariff pt. The heat
pump utilizes the building mass as thermal storage. Eq. 1 shows
the objective function. The variable xt determines the modula-
tion degree of the heat pump. Next to the electrical power of the
heat pump, the electricity consumption of the inflexible devices
PDemandEl

t also influences the objective function.

min C =
Z∑

t=0

(xt · PHPmax + PDemandEl
t ) · ∆t · pt (1)

subject to:

T min ≤ T Building
t ≤ T max ∀t (2)

T Building
t = T Building

t−1 +
QHP

t − QDemandSH
t − QLossesSH

t

VUFH · ρConcrete · cConcrete
∀t , 0 (3)

QHP
t = xt · PHPmax ·COPt · ∆t ∀t (4)

hswitchedOff
t ≤ hon

t−1 ∀t , 0 (5)
hswitchedOff

t ≤ 1 − hon
t ∀t (6)

hswitchedOff
t ≥ hon

t−1 − hon
t ∀t , 0 (7)

kswitchedOff
t =

t∑
τ=0

hswitchedOff
τ ∀t (8)

kswitchedOff
t ≤ nswitchedOff ∀t (9)

xt ≤ hon
t ∀t (10)

xt ≥ hon
t · modmin ∀t (11)

xt ∈ [0, 1], hswitchedOff
t ∈ {0, 1}, hon

t ∈ {0, 1} (12)

Eqs. 2 to 12 define the problem’s constraints. Eq. 2 ensures
that the temperature of the building T Building

t is always between a
lower T min and an upper T max limit. We use a one-zone model
for the temperature of the building with the energetic difference
equation Eq. 3. The heat energy from the heat pump QHP

t in-
creases the temperature of the building while the demand for
space heating QDemandSH

t and the losses of the heating system it-
self QLossesSH

t decrease it. The demand for space heating is a
time series incorporating the building’s transmission and ven-
tilation losses, as well as internal and solar gains. We describe
in Sec. 5.1 how we generated the time series. As we use an
underfloor heating system, we need to divide the energetic dif-
ference by the volume of the underfloor heating system VUFH,
the density ρConcrete and the specific heat capacity of concrete
cConcrete. To calculate the heating energy of the heat pump, we
multiply the heat pump’s modulation degree xt in Eq. 4 with
the maximum electrical power of the heat pump PHPmax, the
temperature-dependant coefficient of performance (see 5.1) and
the time resolution of the model ∆t. The equation system Eqs. 5
to 9 ensures that the number of heat pump starts kswitchedOfft (or
switch-offs) does not exceed a predefined upper limit nswitchedOff.
This prevents damage to the compressor resulting from too fre-
quent starts. For this purpose, we use the two auxiliary binary
variables hswitchedOfft and hont . The variable hswitchedOfft indicates if the
heat pump is being switched off at time t and hont has the value
1 if the device is running at time t. Eq. 10 and Eq. 11 force the
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heat pump not to violate a minimum modulation degree modmin

while running.

4. Imitation learning for building control

We introduce a novel control approach for heat pumps that
combines imitation learning with the intelligent control heuris-
tic Price-Storage-Control [15]. Imitation learning is a ma-
chine learning paradigm where an agent learns a task by ob-
serving and imitating the behavior of an expert demonstrator
[16]. In imitation learning, the learning agent aims to repli-
cate the demonstrator’s actions to perform a specific task. The
agent learns a mapping between observations and actions. In
our application, the expert demonstrator consists of actions ob-
tained from optimally solving the optimization problem (MILP)
of Sec. 3.

Fig. 1 illustrates the workflow of our approach to create the
heat pump controller PSC-ML. We use historical data on elec-
tricity prices, heat demand, and outside temperatures as input
for an optimization problem. The optimization problem in-
cludes a simple building model with a uniform temperature
whose difference equation is described in Sec. 3. The output
of the optimization problem is the heat pump’s optimal heat-
ing actions for every time slot (HP schedule) and the resulting
building temperature.

From the HP schedule of the last 24 hours, two HP run statis-
tics are derived. These statistics indicate how often the heat
pump has started the compressor during the current day and if
the heat pump was running at time t. This information serves
as one part of the input features for the machine learning (ML)
algorithm.

Figure 1: PSC-ML training

The other part of the input features are the Price factor and
the Storage factor calculated by PSC algorithm using the result-
ing building temperature from the optimization problem and the

historic electricity price. The Price factor quantifies for every
time slot the share of future electricity price values in the next
24 hours that are higher than the current price pt. The Stor-
age factor determines how far the current temperature of the
building T Building

t is away from the lower T min and upper T max

temperature limits. Details about the calculations of the control
algorithm PSC are explained in [15]. Additionally, we use the
outside temperature as another input feature.

The optimal heating action xt from the resulting HP sched-
ule serves as the target label for the ML algorithm, which we
obtain by solving the optimization problem. The ML algorithm
is trained to capture the relationship between the inputs of the
control problem and the optimal output. It essentially derives
a regression model that maps the inputs to the optimal outputs.
We calculate the loss during the training by comparing the pre-
dicted output of the ML algorithm x̃t,pred with the corresponding
optimal output from the optimization problem xt. The trained
model is subsequently incorporated into the heat pump and in-
tegrated with the PSC algorithm as part of the novel control
approach PSC-ML.

Fig. 2 illustrates the application of PSC-ML. At every time
slot t, the heat pump controller observes the relevant input data.
The PSC algorithm and the trained ML model are integrated
into the heat pump. The HP controller uses the outside tem-
perature T Outside

t , the number of starts of the heat pump so far
kswitchedOff

t , and the binary variable hon
t directly. Using the elec-

tricity price pt and the building temperature T Building
t , the PSC

algorithm derives the Price factor and the Storage factor. These
five features are the input for the trained ML regression model,
which outputs the heating action xt, influencing the HP run
statistics during the next time slot. The PSC-ML controller in-
cludes some super-ordinate rules that can overrule the actions
proposed by the ML algorithm. These rules are similar to the
ones explained in [17]. They ensure that the heat pump heats
the building if the room temperature is too low and stops heat-
ing if it is too high.

Figure 2: PSC-ML applied

We use different machine learning approaches (see Section
5), but applying an ANN as the machine learning approach
yields the best results. Fig. 3 illustrates a schematic view of
the ANN. The ANN is a multi-layer perceptron with fully con-
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nected nodes and the rectified linear unit (ReLU) as the activa-
tion function. As described in Section 5, we investigated differ-
ent configurations and hyperparameters.

Figure 3: ANN schema

We use three types of buildings that differ regarding their in-
sulation level and, thus, their heat demand. Heat pumps are
mainly used in buildings with good insulation standards due
to increased efficiency. Hence, the analysis includes buildings
with a heat demand of 25 kWh, 50 kWh, and 80 kWh per year
for every square meter of living area. Overall, the buildings
have a good insulation level compared to the average heat de-
mand of buildings in Germany, which lies between 125 kWh

m2 and
150 kWh

m2 [18] per year. However, these values are typical for new
buildings in Germany.

Figure 4: Training process with data from other buildings

Our analysis includes data from different buildings for train-
ing the ANN to see if a trained model can be applied to similar
buildings. Fig. 4 illustrates the training process. We use build-
ing BUai from cluster i of buildings to generate the training data
by solving the optimization problem for that building. Each
cluster includes buildings with a similar heat demand per year
and square meters of living area. For each building cluster, we
created 20 different datasets (see Section 5.1). The time series
of heat demand within each cluster varies regarding the tempo-
ral dimension and the magnitude of values. These differences
arise due to temporal shifts and multiplication of the time series
with a constant factor, leading to variations in both the timing
and the magnitude of the heat demand data. The resulting av-
erage yearly heat demand for every building within one cluster
differs at most +5 kWh

m2 or −5 kWh
m2 from the base demand, which

is 25 kWh
m2 , 50 kWh

m2 and 80 kWh
m2 for the corresponding clusters.

The generated training data for building BUai is then used as

input for the ANN. This results in the specific controller PSC-
ML for building BUai . To test the capability of our approach to
generalize and thus to be applied in different buildings, we use
another building from the same cluster BUbi for applying the
novel control approach. Thus, building BUbi uses the controller
PSC-ML BUai for the evaluation that has been trained with data
from another building.

5. Results

5.1. Scenarios for the analysis
We use the air-source heat pump Compress 6800i AW [19]

from the company Bosch Thermotechnik with a maximum elec-
trical power of 3000 W and a minimal modulation degree of
20%. For the efficiency factor COP, we assume a linear re-
lationship between the values provided in the technical docu-
mentation of the heat pump model as in [17]. The efficiency
COPt for a time slot t depends on the difference between the
sink temperature, which is the underfloor heating system’s sup-
ply temperature of 30 ◦C, and the source temperature (outside
temperature). For the 25 kWh buildings, we aggregated three
of the mentioned heat pump models into one with an electrical
power of 9000 W, while the 50 kWh buildings have four heat
pumps combined in cascading operations, and the 80 kWh have
six. We set the maximum number of starts for the heat pump to
28 during one week.

The buildings are all multi-family houses located in the fed-
eral state of Schleswig-Holstein in the north of Germany. The
building has 12 apartments, each with a living area of 75 m2

and a concrete width of 7 cm for the UFH [17]. The lower
limit for the temperature is 20.5 ◦C, while the upper limit is at
23.5 ◦C. The losses of the UFH were assumed to be 45 W. It
has to be noted that these are merely the losses of the heating
system’s tubes that do not contribute to heating the building.
The heat demand data incorporates the building’s significantly
higher transmission heat losses.

We use the CREST model [20] and German time use data
[21] for occupancy behavior simulation, which builds the ba-
sis for the consistent simulation of building space heating and
electricity demand. Appliance starts are simulated based on
the occupancy profiles, local weather conditions, and house-
hold device equipment. Finally, the appliance-specific load
profiles are aggregated to one electricity demand profile per
household. Additionally, the 5R1C thermal building model
[22] is used to calculate the demand for space heating based
on occupancy-related internal heat gains and thermal building
parameters taken from the TABULA residential building typol-
ogy [23].

For the electricity price, we use the data of the Day-Ahead
market in Germany from 2021, which we took from the
ENTSO-E Transparency Plattform [24]. We scaled them up to
align with the average electricity price for residential customers
in Germany. The prices have an hourly resolution.

5.2. Evaluation
We use the optimal schedules of 20 weeks to train the ML

models. The time resolution of the data obtained from the op-
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timization is 30 minutes. We split the training data into 70%
for training the model and 30% for the validation. After train-
ing, the ML model, embedded into the control approach PSC,
is tested in 20 weeks that were not included in the training
data. For every week in the evaluation, we train the model from
scratch and choose 20 weeks of training data randomly from 26
weeks of available training data (we only considered the heat-
ing period from October to March). The time resolution of the
control actions ∆t (and thus of the training data) is 30 minutes.

For our first evaluation, we train the model with data from
one building and apply the trained model to 20 different build-
ings from the same building cluster. The average training time
per week was 9 minutes using the GPU Nvidia GeForce RTX
3090 [25] and an Intel Core i9-7940X [26] as CPU. The av-
erage time for deriving and executing the control actions for
one week (2 decisions per hour) is 3 seconds with the trained
PSC-ML control approach, while the exact optimization needs
about 40 seconds. We use the Gurobi solver [27] to solve the
optimization problem of the building.

Figure 5: Improvement regarding the cost reduction compared to the Conven-
tional Control approach averaged over 20 buildings per building type for 20
weeks and three runs

Fig. 5 depicts the cost reduction of the methods Optimal Con-
trol, PSC and PSC-ANN compared to Conventional Control.
We obtained the results for the three building type clusters by
averaging over 20 buildings per building type and 20 weeks. We
further made three simulation runs per method. Thus, each bar
represents the average values of 1200 evaluation weeks. The re-
sults reveal that for all building-type clusters, the three methods
lead to cost improvements compared to the Conventional Con-
trol approach. As expected, the Optimal Control yields the best
results because it is based on the assumption of having a perfect
forecast of future demands and prices (or, equivalently, calcu-
lating the optimal control actions retrospectively using histori-
cal data). Thus, the Optimal Control merely represents a theo-
retical upper bound for the improvements. In contrast, PSC and
PSC-ANN do not require a building model or any forecast to
derive their control actions. The diagram shows that PSC-ANN
outperforms PSC for all building types. The additional cost re-
duction using an ANN to calculate the control actions ranges
between 1% for the 80 kWh buildings and 4.7% for the 25 kWh

buildings.
Table 2 lists the average electricity costs per week for the 50

kWh buildings averaged over 20 buildings and three runs. PSC
and PSC-ANN lead to significantly better results than Conven-
tional Control. While in three out of 20 weeks, PSC leads to
lower costs compared to PSC-ANN, on average, the use of PSC-
ANN leads to cost reductions of more than 5 € per week.

Table 2: Average electricity costs in € per week for the 50 kWh buildings
averaged over 20 buildings and three runs

Week
Optimal
Control

Conventional
Control PSC PSC-ANN

1 269.52 323.33 316.00 317.91
2 155.79 205.12 189.73 178.63
3 273.40 316.44 306.49 295.91
4 178.59 200.89 198.92 185.42
5 325.30 376.47 356.56 356.41
6 228.01 270.14 256.62 246.17
7 281.37 324.84 306.51 300.89
8 233.47 272.67 257.95 257.00
9 133.24 154.66 153.04 147.75
10 186.08 217.42 205.24 201.86
11 178.45 201.28 192.80 185.83
12 188.51 214.73 206.55 204.79
39 122.47 129.85 128.52 125.07
40 135.51 146.05 146.30 136.90
41 140.41 158.68 157.07 145.00
42 254.95 292.63 276.92 266.73
43 146.68 155.92 155.54 152.18
44 241.43 276.34 263.73 264.05
45 221.62 272.17 253.56 257.25
46 153.90 188.46 177.96 175.29

Average 202.44 234.90 225.30 220.05

Next to an artificial neural network, we investigate the appli-
cation of Random Forest and Gradient Boosting decision trees
as the machine learning approach. Fig. 6 shows the results
of the experiments. The bars quantify the average improve-
ment compared to the Conventional Control approach for dif-
ferent machine learning methods averaged over six buildings
per building type for 20 weeks. The diagram reveals that ap-
plying any function approximator improves the results of PSC.
Using artificial neural networks for imitation learning for all
three building types leads to the most significant improvements
and, thus, the lowest costs in our experiments. Because of this,
we only use ANN for our large-scale analysis with 20 different
buildings per building type (see Fig. 5).

We ran experiments with different hyperparameters of the
ANN. Fig. 7 illustrates the results of our analysis for one 25
kWh building averaged over 20 weeks. We varied the batch
size, the learning rate, the number of neurons per layer, and the
number of layers. In general, the impact of the different pa-
rameters is mediocre, ranging from improvements of 9.5% to
10.8%. For our large-scale experiment, we chose the hyperpa-
rameter combination that yielded the best results (batch size 30,
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Figure 6: Average improvement compared to the Conventional Control ap-
proach for different machine learning methods averaged over 6 buildings per
building type for 20 weeks

learning rate 0.0018, number of neurons per layer 50, number
of layers 5).

Figure 7: Improvement compared to the Conventional Control approach for
different ANN parameters averaged over one 25 kWh building for 20 weeks

Fig. 8 plots the loss function (mean squared error) as a func-
tion of the epochs of the training and validation dataset for three
weeks of a 25kWh building. We choose 20 epochs as the error
function in the validation dataset does not significantly reduce
after a certain number of epochs. We observed this in almost all
weeks and for multiple different buildings.

We implemented the simulations and the optimization in the
programming language Python. For the MILP, we use the pack-
age Pyomo [28], for the ML approaches keras [29] and scikit-
learn [30].

5.3. Critical appraisal

To carry out our experiments, we made some simplifications.
The used building model is relatively simple as it only has one
temperature zone. Thus, it does not consider internal heat flows
and solar heat gains. The solar heat gains are incorporated in

the demand data. We also did not analyze the use of domes-
tic hot water tanks as an additional source of flexibility needed
throughout the year. Further, we solely considered one build-
ing with one flexible device. The analysis of coordinated reac-
tions to demand response signals from multiple buildings was
not in the scope of this paper. We carried out all our investiga-
tions in a simulation environment. Thus, we did not apply our
proposed approach in real-world experiments. Our method de-
fines a general procedure to combine domain knowledge with
machine learning for control problems of electrical heating de-
vices. Because of this, we are convinced that our developed
control algorithm can be used for more complex building set-
tings and real-world applications.

6. Conclusion

In this paper, we developed a novel control approach for de-
mand response with heat pumps PSC-ANN based on imitation
learning. It uses the effective control method PSC from the lit-
erature and trains an artificial neural network with optimal con-
trol action data. The trained model quickly derives the control
actions based on real-time data. The results reveal the benefits
of including an artificial neural network in the control process.
The introduced approach outperforms an intelligent control al-
gorithm that has been positively evaluated. Further, we showed
that the trained model can generalize and thus be used for var-
ious similar buildings without the need for training again with
building-specific data.

This enables our developed approach to be applied in many
buildings and scenarios. All tested models strongly outperform
a conventional control approach. They lead to a better utiliza-
tion of volatile renewable energy sources and can also be used
to stabilize the electricity grid.

Future work will consider multiple buildings with intelligent
controllers and their interactions. Methodologically, the use of
machine learning methods for dealing with sequential data, like
recurrent neural networks, constitutes a promising approach for
building-related control problems. In addition, we plan to com-
pare our approach to methods from the field of reinforcement
learning, especially regarding the sample efficiency. Also, we
intend to include other flexibility options like electric vehicles,
hot water tanks, or battery storage systems in our analysis.

Supplementary materials

Both the code and data are openly accessible. The repository
containing the commented code is available at GitHub. The
input data and result profiles can be accessed at KITOpen.

Appendix

Exemplary profiles for one week resulting from the different
control approaches are presented in Fig. 9.
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Figure 8: RMSE as a function of epochs for three weeks of a 25kWh building
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Figure 9: Exemplary profiles for one week in December for a 50 kWh building
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