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Abstract

The problem of list ranking determines for every vertex in a list the distance to the end

of the list. The input can be generalized to a forest. This problem is denoted by tree

rooting. Here each vertex aims to determine its distance to the tree’s root and identify the

root itself. Solutions to both of these problems are fundamental building blocks that are

often encountered in graph algorithms. Tree rooting can be used for finding connected

components which has a broad spectrum of applications. An important application of list

ranking is the Euler tour technique.

Since graphs increase in size due to larger amount of data, leveraging parallelism becomes

essential to process them within a reasonable timeframe. For list ranking the sparse ruling

set algorithm seems to show the best performance in the literature. However, we are not

aware of any implementation that works for tree rooting.

In this thesis, we provide an overview of the related work in the fields of list ranking

and tree rooting. Our goal is a practical tree rooting algorithm for distributed memory

machines scaling up to several thousands of cores. This leads to our main contribution, a

sparse ruling set algorithm for tree rooting. We compare two well known strategies of

this algorithm where one initially spawns all rulers and the other approach additionally

spawns rulers in the course of this algorithm aiming to reduce communication overhead.

Furthermore, we evaluate blocking and non-blocking communication.

We use techniques from the literature to reduce communication volume by omitting im-

plicit known information. We aim to lower communication overhead for global message

exchange by utilizing a two-level approach instead of direct communication. We use tech-

niques for contracting edges by removing edges beween vertices on the same processing

element (PE), which is a common strategy for other distributed graph problems.

We propose a new algorithm for removing high-degree vertices, which otherwise adversely

affect the performance of our algorithms. Our practical evaluation indicates that the effec-

tiveness of this method is not dependent on the initial degrees of the vertices.

Our experiments show that the sparse ruling set algorithm for tree rooting is almost twice

as fast for rooting a tree than ranking the Euler tour with the sparse ruling set algorithm

optimized for lists and up to 10 times faster than using pointer doubling. This algorithm

roots all instances including a list and very shallow forests with a good performance for

processor counts up to at least 16384 cores, which is far more than the previous practical

contributions we are aware of.
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Zusammenfassung

List Ranking bestimmt für jeden Knoten in einer Liste die Distanz zum Ende der Liste.

Die Eingabe kann dabei von einer Liste zu einem Wald erweitert werden. Dieses Problem

heißt Tree Rooting, wobei jeder Knoten die Distanz zur Wurzel des Baumes bestimmt und

außerdem den Wurzelknoten identifiziert. Das Wissen der Knoten über ihre Wurzelkno-

ten kann benutzt werden, um zusammenhängende Komponenten zu identifizieren, ein

Problem, welches viele Anwendungen in der Informatik hat. List Ranking findet eine sehr

häufige Anwendung in der Euler Tour Technik.

Da in heutigen Zeiten immer mehr Daten anfallen und verarbeitet werden müssen, besteht

eine wichtige Aufgabe der Forschung darin, parallele Algorithmen zu entwickeln, die mit

solchen Datenmengen in kurzer Zeit umgehen können. Für List Ranking ist uns der Sparse

Ruling Set Algorithmus bekannt für seine gute parallele Performance. Bei der Literaturre-

cherche haben wir eine Anwendung dieses Algorithmus für Tree Rooting jedoch nicht

finden können.

In dieser Thesis geben wir einen Überblick über den Stand der Forschung in diesem Be-

reich. Unser wichtigster Beitrag ist der Sparse Ruling Set Algorithmus, angepasst für Tree

Rooting, welcher mit verteiltem Speicher arbeitet. Wir haben unseren Algorithmus mit blo-

ckierender und nicht blockierender Kommunikation verglichen. Ein weiterer Freiheitsgrad

des Algorithmus ist die Art und Weise, wie Ruler ausgewählt werden. Oft wird einfach

eine feste Anzahl an Rulern zu Beginn ausgewählt, im Gegensatz dazu kann man aber

auch im Laufe des Algorithmus neue Knoten zu Rulern machen, um den Overhead für die

Kommunikation zu verringern.

Unser Algorithmus nutzt bekannte Techniken, um Kommunikationsvolumen und außer-

dem Kommunikationsoverhead durch den Einsatz von Indirektionen bei der Nachrich-

tenaggregation erheblich reduzieren. Wir benutzen auch Techniken um lokale Kanten zu

kontrahieren, sodass nur noch Kanten zwischen Knoten auf verschiedenen Prozessorker-

nen existieren. Dies ist ein Ansatz, der bei vielen verteilten Graph Algorithmen benutzt

wird.

Ein weiterer Beitrag dieser Thesis ist eine neue Methode, um mit sehr hohen Knotengra-

den umgehen zu können, denn diese haben einen schlechten Einfluss auf die Laufzeit. In

Experimenten konnten wir zeigen, dass die Laufzeit dieser Methode unabhängig von den

initialen Knotengraden ist.

In unserer Evaluation zeigte sich die gute Performance unseres Algorithmus, auf Listen

sowie auf flachen Wäldern, auf mindestens 16384 Prozessorkernen, was deutlich über den

in der Literaturrecherche gefundenen Experimenten liegt,
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1 Introduction

Graphs are a commonly utilized abstraction for describing relationships between objects.

In today’s world, as these graphs increase in size, processing them within a reasonable

timeframe requires the exploitation of parallelism. Given the limited memory in shared-

memory machines, a significant challenge lies in developing algorithms that operate on

distributed memory machines equipped with several thousand cores. On these highly

distributed supercomputers, communication frequently becomes the bottleneck, necessi-

tating the discovery of solutions for scalable algorithms.

We explore the concept of tree rooting, where each vertex in a forest aims to identify its

root and its depth. This fundamental issue represents a basic algorithm in the toolbox that

can be leveraged for a variety of problems. The root pointers of each vertex designate the

specific tree they belong to, a technique that can be utilized to find connected components.

This has a broad range of applications, including in VLSI design, machine learning, and

image analysis [24].

However, when our input is a list, the problem becomes more restricted, namely list

ranking. In this scenario, each vertex in a list seeks to determine its distance to the end

of the list. List ranking holds significant importance in computer science as it frequently

serves as a subroutine, for instance, in the Euler-tour technique. Ranking the Euler tour

enables us to determine the depth of all vertices [20] and can be applied to calculating the

minimum spanning tree of a graph [13, 3]. Furthermore, list ranking can be extended to

compute the prefix sum of any associative operator, underscoring its extensive study in

the field [12, 10, 2, 1, 44].

Despite its widespread application, most algorithms break down when applied to tree

rooting [41]. An interesting aspect of list ranking is that, sequentially, the optimal al-

gorithm with linear work is straightforward by just following the vertices’ pointers. In

contrast, devising a practical parallel algorithm is far from trivial, given all the several dif-

ferent approaches. The high degree of irregularity in list ranking necessitates considerable

effort to achieve even a speed-up of one [38].

Our Contribution We provide an overview of the related work in the fields of list rank-

ing and tree rooting. We conduct practical comparisons of various implementations of

the sparse ruling set algorithm and pointer doubling, with an emphasis on accelerating

these algorithms through diverse techniques. One such technique leverages locality by

eliminating edges between vertices on the same processing element (PE). Additionally,

we use two distinct routing algorithms to facilitate global message exchange, aiming to

minimize communication overhead.

Moreover, we introduce an algorithm designed to reduce a forest into instances with
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1 Introduction

lower vertex degrees, addressing potential negative effects on our runtime. Our principal

contribution is the adaptation and generalization of the sparse ruling set algorithm [41]

for tree rooting.

Our experimental results reveal that our algorithms scale well up to at least 16384 cores.

This performance contrasts with previous studies, which typically focus on systems with

several hundred cores.

Structure of this Thesis In Chapter 2, we lay the groundwork by introducing fun-

damental definitions, as well as providing an overview of the machine model and problem

definition. Following this, Chapter 3 provides an overview of the related work, covering

various algorithms and offering a historical perspective on the field.

Chapter 4 details our implementations and the strategies we have employed to enhance

performance. In the following Chapter 5, we conduct a comprehensive evaluation of our

algorithms. This includes demonstrating their performance across a range of instances

and sizes, and discussing their scalability.

Finally, in the concluding chapter, we summarize our findings and propose directions for

future research.
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2 Preliminaries

In this chapter, we introduce the fundamental concepts utilized throughout this thesis,

along with additional information regarding the underlying machine model and problem

definitions.

2.1 Basic Definitions

Let 𝐺 = (𝑉 , 𝐸) be a directed graph where 𝑉 = {0, ..., 𝑛 − 1} is the set of vertices and

𝐸 ⊆ 𝑉 ×𝑉 is the set of edges. 𝐺 has 𝑛 vertices and𝑚 edges.

The ingoing neighbours of a vertex 𝑣 are a set of vertices pointing to 𝑣 with 𝑁𝑖𝑛 (𝑣) =
{𝑢 | (𝑢, 𝑣) ∈ 𝐸} and analogue are the outgoing neighbours defined as 𝑁𝑜𝑢𝑡 (𝑣) = {𝑤 | (𝑣,𝑤) ∈
𝐸}. We will call the indegree of a vertex 𝑣 as the number of ingoing neighbours 𝑑𝑖𝑛 (𝑣) =
|𝑁𝑖𝑛 (𝑣) | and the outdegree of 𝑣 as 𝑑𝑜𝑢𝑡 (𝑣) = |𝑁𝑜𝑢𝑡 (𝑣) |. The neighbours of 𝑣 are the ingoing
and outgoing neigbours with 𝑁 (𝑣) = 𝑁𝑖𝑛 (𝑣) ∪𝑁𝑜𝑢𝑡 (𝑣) and the degree of 𝑣 is 𝑑 (𝑣) = |𝑁 (𝑣) |.

A path is an ordered set of vertices (𝑣1, ..., 𝑣𝑘) ∈ 𝑉 𝑘
where all the vertices are connected

with edges i.e. ∀𝑖 ∈ {1, ..., 𝑘 − 1} : (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸. The length of this path | (𝑣1, ..., 𝑣𝑘) | is the
number of edges which is 𝑘 − 1. If there exists for every pair of vertices 𝑢, 𝑣 ∈ 𝑉 a path

(𝑢, .., 𝑣) then 𝐺 is called connected.

An in-tree is a graph where one vertex is called root and for every other vertex there is

exactly one path to the root. The vertices with zero ingoing neighbours are called leaves
and the other vertices apart froom the root are called inner vertices. An in-tree can consist

of only one vertex.

An in-forest is a graph that is a disjoint union of in-trees. A list is a in-tree that just has

one leaf. In this case we call the root final vertex and the leaf initial vertex.

2.2 Machine Model and Input Format

We take a look at two different machine models. The PRAM (parallel random access

machine) model is a shared-memory model. Here we have 𝑝 processors where each knows

its index 𝑖 ∈ {0, .., 𝑝 − 1}. There are submodels that specify concurrent access on the same

memory cell. These are exclusive read exclusive write (EREW) PRAM, concurrent read

exclusive write (CREW) PRAM and concurrent read concurrent write (CRCW) PRAM.

Real shared-memory machines behave similar to the CREW model since they support

something that resembles concurrent read [34]. The CRCW PRAM model is the most

3



2 Preliminaries

powerful since it supports also concurrent write. However we need to define what happens

when multiple values are written in the same memory cell at the same time. Here the most

widely used are "common" and "arbitrary". The common CRCW PRAM model handles

concurrent write by only accepting these concurrent operations when they are equal.

Different concurrent write on the same memory cell will result in no write operation.

The arbitrary CRCW PRAM model handles these concurrent operations by picking an

arbitrary operation of those. This model also assumes synchronized time steps where each

PE executes exactly one operation in each time step [34].

We also consider the distributed-memory computing model since our goal is a dis-

tributed memory algorithm. It consists of 𝑝 processing elements (PEs) numbered 0, .., 𝑝 − 1
that makes single-ported communication possible [34]. Each PE knows its own index.

Sending a message of length 𝑙 between two different PEs takes time of 𝛼 + 𝑙𝛽 where 𝛼

is the overhead for sending the first machine word and 𝛽 is the time for sending every

further machine word [34]. Accessing a memory cell located on another PE consists of a

request and a reply that are sent through our interconnection network.

Input Format

We assume that our input graph is an in-forest. It will be stored as a successor array
𝑠𝑢𝑐𝑐 [𝑣0], .., 𝑠𝑢𝑐𝑐 [𝑣𝑛−1] where the successor of a root is itself and the successor of every

other vertex is the unique outgoing neighbour. On the distributed-memory computing

model we assume 𝑝 |𝑛 and every PE with index 𝑖 has an successor array for the vertices

𝑣𝑖 𝑛
𝑝
, .., 𝑣 (𝑖+1) 𝑛

𝑝
−1. We denote the number of vertices per PE as 𝑘 = 𝑛

𝑝
.

2.2.1 Problem Definitions

We focus on the general problem of tree rooting, where our input is an in-forest. Each

vertex 𝑣 aims to identify the root of the tree it belongs to, as well as the distance to this

root. We denote these as 𝑑𝑖𝑠𝑡 [𝑣] and 𝑟𝑜𝑜𝑡 [𝑣].
Additionally, we explore the concept of list ranking. In this scenario, our input is a list

also stored in a successor array, where each vertex 𝑣 seeks to determine its distance to the

final vertex. This distance is similarly denoted as 𝑑𝑖𝑠𝑡 [𝑣].

4



3 Related Work

In this chapter, we delve into the list ranking problem, a fundamental challenge in com-

puter science that involves calculating the distance of every vertex in a given list to the

final vertex. This problem is widely recognized and has been the subject of extensive

research [12, 10, 2, 1, 44]. Moreover, list ranking can be extended to compute the prefix

sum for any associative operator, showcasing its versatility.

Additionally, this problem finds relevance in the context of a forest, where each vertex 𝑣

seeks to identify the root of the tree it belongs to and the distance to this root. This specific

application is referred to as tree rooting [41]. In this chapter, we provide an introduction

to both list ranking and tree rooting, accompanied by a review of related work, covering

various algorithms and offering a historical perspective on the field.

The first parallel list ranking algorithm was presented byWyllie named pointer doubling

in 1979 [44]. He knew that this algorithm can also be applied to trees however in context

of list ranking he conjectured that Ω(𝑛) processors are required to reach a logarithmic

running time. In 1985 Kruskal, Rudolph and Snir presented the first deterministic optimal

speed up algorithm in O(𝑛𝜖) using 𝑛 1

𝜖 processors for fixed epsilon [23]. They just assumed

EREW PRAM. In 1984 Vishkin proposed optimal speed up randomized algorithms which

are today known as independent set removal and ruling set [43]. Two years later, in

1986, Vishkin and Cole proposed a deterministic ruling set algorithm in O(log(𝑛)) on
EREW PRAM using

𝑛 log(𝑛,𝑘)
log(𝑛) processors for any fixed 𝑘 (note that log(𝑛, 1) = log(𝑛) and

log(𝑛, 𝑘) = log(log(𝑛, 𝑘 − 1)) for 𝑘 > 1) thereby showing that Wyllie’s conjecture is

incorrect [11]. In 1988 then Cole and Vishkin proposed the first deterministic optimal

speed up algorithm in O(log(𝑛)) while assuming just EREW PRAM [12].

3.1 Applications

Tree rooting effectively calculates the root 𝑟𝑜𝑜𝑡 [𝑣] for every vertex 𝑣 , enabling the de-

termination of connected components within a graph because when two vertices have

𝑟𝑜𝑜𝑡 [𝑣0] = 𝑟𝑜𝑜𝑡 [𝑣1], it indicates they are part of the same connected tree. Chung and

Condon used distributed pointer doubling for contracting connected components [9].

Another application is for calculating a minimum spanning tree (MST) where Arge et al

proposed using small rounds of Euler tour construction and list ranking [3]. The Euler tour

technique is a general approach and can be used for a variety of problems [20]. List ranking

is also used in computational biology, particularly in the analysis of genome sequences

[19], where large data sets of short chains need to be contracted using an adjustion of the

sparse ruling set algorithm [38], which we explain in the following.

5



3 Related Work

3.2 Euler Tour Technique

The Euler tour of a directed graph is a path on all edges where each edge is included exactly

once. By viewing the edges as a list we can give each edge a specific weight according to

the problem it should solve, simplifying a complex graph problem to a list problem.

Calculating the Euler Tour The goal is to order all edges of the tree such that it is a

Euler tour. Note that in our case, where our input is an in-forest stored in a successor array

𝑠𝑢𝑐𝑐 , we interpret every edge (𝑖, 𝑠𝑢𝑐𝑐 [𝑖]) as two edges in both directions. Additionaly

we can ignore the self edge for the root. This also means that for our inputs the Euler

tour always exists and calculating the Euler tour can be simply done by computing a

successor function that maps every edge 𝑒 ∈ 𝐸 to its successor 𝑠 (𝑒) ∈ 𝐸. When having an

adjacency array this function is very simple. Let 𝑁 (𝑣) = (𝑢0, .., 𝑢𝑑−1) be an ordered set

then 𝑠 (𝑢𝑖, 𝑣) = (𝑣,𝑢𝑖+1 mod 𝑑) is a correct Euler tour [20].
Applications In cases where our input is an undirected tree, we can transform each

undirected edge into a directed edge pointing towards the root, thereby converting it

into an in-tree [20]. To accomplish this, we first convert every undirected edge into two

directed edges, one in each direction, to facilitate the construction of the Euler tour. The

euler tour ends at one edge pointing to the root by 𝑠 (𝑢, 𝑟 ) = (𝑢, 𝑟 ) and each edge is given a

weight of one. Then for each edge (𝑢, 𝑣) set 𝑝 (𝑣) := 𝑢 when the rank of (𝑢, 𝑣) is smaller

than the rank of (𝑣,𝑢).
Another application is determining a postorder numbering for an in-tree [20]. Here

we also add reversing edges and remove self edges of the root. The edge weights are

𝑤 (𝑣, 𝑠𝑢𝑐𝑐 [𝑣]) = 1 and 𝑤 (𝑠𝑢𝑐𝑐 [𝑣], 𝑣) = 0. Then post(𝑣) is equal to the prefix sum of

(𝑣, 𝑠𝑢𝑐𝑐 [𝑣]) and the post order numbering of the root is just 𝑛.

We can also determine for all vertices the distances to their root which we denoted by

𝑑𝑖𝑠𝑡 [𝑣]. Here the edge weights are set to 𝑤 (𝑣, 𝑠𝑢𝑐𝑐 [𝑣]) = −1 and 𝑤 (𝑠𝑢𝑐𝑐 [𝑣], 𝑣) = 1 [20].

In Figure 3.1 these edge weights are visualized.

0

1 2

3 4 5

1

−1

1−1

1−1 1−1 1

−1

Figure 3.1: Edge weights on Euler tour for tree rooting
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3.3 Communication Primitives

Collective operations like broadcast, allreduce or scan are important for synchronization.

In a broadcast one PE wants to send a message of length 𝑙 to all other PEs. Broadcast can be

implemented with a time complexitiy of O(𝛼 log(𝑝) + 𝑙𝛽) using pipelining on a binary tree

[34]. Allreduce computes for any associative operator

⊗
given a message𝑚𝑖 of length 𝑙 for

every PE 𝑖 the term
⊗

𝑚 𝑗
𝑗<𝑝

. The scan operation just computes the prefix sum

⊗
𝑚 𝑗

𝑗<=𝑖

and the

exclusive scan operation

⊗
𝑚 𝑗

𝑗<𝑖

. Allreduce and both scan operations can be implemented

using the hypercube algorithm in O(log(𝑝) (𝛼 + 𝑙𝛽)) [34]. However we often need a more

general operation like alltoall where each PE has 𝑝 personalized messages for each other

PE where 𝑙𝑖, 𝑗 is the message from PE 𝑖 to PE 𝑗 . We will first consider regular alltoall which

we will call alltoall where all 𝑝2 messages have the same length 𝑙 . This operation can

be implemented in O(𝛼𝑝 + 𝐿𝛽) with 𝐿 = 𝑝𝑙 being the length of all messages that every

PE sends or receives. However for small messages the startup overheads dominate the

running time. We can add one indirection by viewing the PEs as two dimensional grid

and we first exchange messages horizontally and then vertically. Therefore we achieve

O(√𝑝𝛼 + 𝐿𝛽). We can generalize this scheme by adding indirections with a computational

complexity O(𝑑 (𝑝 1

𝑑 𝛼 + 𝐿𝛽)). We can add up to 𝑑 = log
2
(𝑝) (assuming 𝑝 = 2

𝑑
) indirections

which equals the hypercube algorithm. This algorithm has a computational complexity of

O((𝛼 + 𝐿𝛽) log(𝑝)) [22]. In practice an intermediate solution turns out to be optimal on

highly distributed memory machines [5].

However in practice we need irregular alltoall which we denote by alltoallv where all

𝑝2 messages have arbitrary lengths. With zero indirections we have the same formula

O(𝛼𝑝 + 𝐿̂𝛽) but 𝐿̂ is now the bottleneck volume which is the maximum amount of data

sent or received by any PE. By adding one indirection we achieve O(√𝑝𝛼 + 𝐿̂𝛽) which for

practical purposes can significantly improve performance for massively parallel algorithms

[32]. Note that that the bottleneck volume 𝐿̂ can differ by adding one indirection even if

the messages are all the same, which we further explain in Section 4.1.1.

3.4 Parallel Algorithms

In this section we will cover various algorithms from the literature and offering a historical

perspective on the field.

3.4.1 Pointer doubling

Pointer doubling or also called Wyllie’s algorithm [44] is a simple algorithm with the basic

idea of updating the successor of a vertex according to the successor of its successor.

7
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Algorithm 1: Pointer Doubling
Input: Successor Array 𝑠𝑢𝑐𝑐 ∈ N𝑛
Output: Dist Array 𝑑𝑖𝑠𝑡 ∈ N𝑛

1 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 ← {𝑓 𝑎𝑙𝑠𝑒, .., 𝑓 𝑎𝑙𝑠𝑒} // 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 [𝑖] = 𝑡𝑟𝑢𝑒 iff 𝑖 is root

2 𝑟𝑜𝑜𝑡 ← 𝑠𝑢𝑐𝑐

3 𝑑𝑖𝑠𝑡 ← {1, .., 1} // 𝑑𝑖𝑠𝑡 [𝑖] = 0 iff 𝑖 is root

// Start pointer doubling

4 for 0 <= iteration < ⌈log
2
(𝑛 − 1)⌉ do

5 for 0 <= i < n do
6 if ¬𝑝𝑎𝑠𝑠𝑖𝑣𝑒 [𝑖] then
7 𝑟𝑜𝑜𝑡 [𝑖] ← 𝑟𝑜𝑜𝑡 [𝑟𝑜𝑜𝑡 [𝑖]]
8 𝑑𝑖𝑠𝑡 [𝑖] = 𝑑𝑖𝑠𝑡 [𝑖] + 𝑑𝑖𝑠𝑡 [𝑟𝑜𝑜𝑡 [𝑖]]
9 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 [𝑖] = 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 [𝑟𝑜𝑜𝑡 [𝑖]]

10 return dist

The pseudocode of this is Algorithm 1. In the first 3 lines we initialize our variables.

The final vertex has a 𝑟𝑜𝑜𝑡 pointer to itself with distance 0 and is passive. Every other

vertex has a pointer to its successor with a distance 1 and is active. Afterwards we start

pointer doubling where in each iteration in Line 4 we double the distance that our 𝑟𝑜𝑜𝑡

pointer covers. Since a list has a maximum distance of 𝑛 − 1 we need to perform at least

log
2
(𝑛 − 1) iterations. In Figure 3.2 there is a visualization of this algorithm where we

have 𝑛 = 8 and we therefore need 3 iterations. The edges visualize the 𝑟𝑜𝑜𝑡 pointers and at

the top we can see how the 𝑟𝑜𝑜𝑡 pointers are initialized. Below we see the three iterations

chronologically and in the end every vertex has a 𝑟𝑜𝑜𝑡 pointer that actually points to the

root.

This algorithm consists of O(log(𝑛)) iterations. Each iteration costs O( 𝑛
𝑝
) resulting in a

total runtime of O( 𝑛
𝑝
log(𝑛)) on EREW PRAM for lists since the 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 values ensure that

there is no contention on any memory cell [38].

3.4.1.1 Variants and Optimizations

This algorithm consists of ⌈log
2
(𝑛 − 1)⌉ iterations in which every vertex 𝑣 updates its 𝑟𝑜𝑜𝑡 ,

𝑑𝑖𝑠𝑡 and 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 value according to the values from 𝑟𝑜𝑜𝑡 [𝑣]. Since we run our algorithms

on distributed machines we do not have shared memory and the 𝑟𝑜𝑜𝑡 of a vertex is not

neccesarily on the same PE. Thus every read consists of a request and a reply where

packets are sent through our interconnection network. In practice there is room for some

improvements and therefore we will now discuss different optimizations found in the

literature.

Reducing Communication Volume

Sibeyn et al. proposed reducing the packet size and therefore reducing the communication

volume by omitting implicitly known information [38]. In one iteration of the pointer

doubling algorithm we want to update the values of every vertex 𝑣 with the information

8
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0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

iteration 0

iteration 1

iteration 2

iteration 3

0 active vertex 0 passive vertex

Figure 3.2: Pointer doubling visualization

of 𝑟𝑜𝑜𝑡 [𝑣]. Any PE would write a vector of request packages and route them by a alltoallv.

These will be answered and routed back by another alltoallv. Trivially one would write in

each packet from which vertex the request is and then the request itself. However one

could also just route back all the packages. In this case there is no need to add information

about the source vertex.

We can further reduce the communication volume because we do not need to transfer the

𝑝𝑎𝑠𝑠𝑖𝑣𝑒 status, 𝑑𝑖𝑠𝑡 and 𝑟𝑜𝑜𝑡 information in our reply. We can omit the 𝑑𝑖𝑠𝑡 field. Since if

𝑟𝑜𝑜𝑡 [𝑣] is an active vertex the 𝑑𝑖𝑠𝑡 just doubles. Only when 𝑟𝑜𝑜𝑡 [𝑣] is an passive vertex

this field has to be requested. When a vertex becomes passive we request in one last extra

round 𝑑𝑖𝑠𝑡 [𝑟𝑜𝑜𝑡 [𝑣]]. In total every active vertex 𝑣 has the request 𝑟𝑜𝑜𝑡 [𝑣] which is one

integer and our reply is 𝑟𝑜𝑜𝑡 [𝑟𝑜𝑜𝑡 [𝑖]] which is also one integer (if we can take one bit for

our 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 status) and we need ⌈log
2
(𝑛 − 1)⌉ + 1 iterations.

Pointer Tripling

We can reduce the number of iterations by tripling the pointers in every iteration leading

to only ⌈log
3
(𝑛− 1)⌉ iterations [38]. The idea is instead of answering the requests they can

be forwarded one more time and then answered. We will therefore need 3 · ⌈log
3
(𝑛)⌉ ≈

1, 89 · log
2
(𝑛) alltoallv which is less than pointer doubling as explained needing 2 · ⌈log

2
(𝑛)⌉

alltoallv. However we cannot ommit the requesting vertex and therefore double the

communication volume for reducing the startup overheads to
1,89
2
≈ 0.945 in comparison

9
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to the optimization reduce communication volume. More than tripling will never be worth

[38].

Double Pointer Jumping

We can further reduce the number of iterations by omitting every request. The idea is to

first calculate the predecessor array 𝑝𝑟𝑒𝑑 . In the first iteration vertex 𝑣 sends its predecessor

𝑝𝑟𝑒𝑑 [𝑣] to its sucessor 𝑠𝑢𝑐𝑐 [𝑣] and vice versa. The only restriction is that initial and final

vertex do not send and do not receive. Therefore we have just ⌈log
2
(𝑛 − 1)⌉ + 1 global

message exchanges. Thus we reduce our commuication overhead to half for doubling the

communication in comparison to the optimization reduce communication volume [38].

3.4.1.2 Conclusion

Note that all three optimizations exclude each other. The optimization reduce communi-

cation volume has the lowest communication volume while double pointer jumping has

the lowest communication overhead. Pointer tripling reduces communication overhead

about 5% while doubling the communication volume. Sibeyn et al. implemented reducing

communication volume and double pointer jumping. Their conclusion is reducing com-

munication volume has the best performane while double pointer jumping is just good for

very small instances where then the seqential algorithm dominated. He prospected that

only for very large parallel computers this may help [38].

Even though this algorithm has more than linear work many parallel list ranking

algorithms follow the following scheme[20].

• Step 1: Shrink the list to size O( 𝑛
log𝑛
)

• Step 2: Apply pointer doubling to shrinked list

• Step 3: Restore original List

The reason for this is that the work of pointer doubling on this reduced sublist is

O( 𝑛

log𝑛
log( 𝑛

log𝑛
)) = O(𝑛)

so we have to just achieve linear work in step one and three to reach linear work in total.

Tree Rooting for Pointer Doubling

Wyllie proposed this algorithm also for forests [44]. The pseudocode in Algorithm 1

works also for tree rooting. However note that not all optimizations do work directly on

forests. We implemented double pointer jumping and reduce communication volume for

list ranking but as proposed, they do not work for tree rooting. Reduce communication

volume returns for the last request only the 𝑑𝑖𝑠𝑡 field and therefore has a wrong 𝑟𝑜𝑜𝑡

pointer [38]. And while calculating the predecessor array for double pointer jumping a

vertex might have an arbitrary amount of predecessors which makes this algorithm more

10
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complicated.

On forests we only need to perform O(log(ℎ)) pointer jumping iterations where ℎ denotes

the depth of the forest. Here we achieve a work of O(𝑛 log(ℎ)) and a runtime O(log(ℎ))
on CREW PRAM [20]. However if we just assume EREW PRAM and ℎ ≤ 𝑐

√
𝑛 for some

constant 𝑐 this leads to a worst case runtime of Ω(ℎ) [29]. There exist optimizations to

asymptotically improve its performance, however, we observe these approaches more to

be categorized as ruling set or independent set removal algorithms, which we explain

further in the following sections.

3.4.2 Ruling Set

The first occurance in the literature we are aware of is by Vishkin [43]. The basic idea

behind this algorithm is that a subset of size 𝑟 of the vertices are selected as rulers. Then
these initiate a wave by sending packets along the edges. These packets are forwarded

until they reach a ruler or a final vertex. In Figure 3.3 we see that the algorithm picks

4 rulers. These split our input into sublists. The waves contain information about the

initiating ruler such that every vertex has a pointer to the preceeding ruler. When there

are no active waves the set of rulers form a sublist that can be ranked independently. Note

that the sublist of rulers is directed in reversed order.

Ruler Ruler Ruler Ruler

Chasing packets

Sublist of Rulers

Figure 3.3: Ruling set visualization

The pseudocode of the ruling set algorithm is illustrated in Algorithm 2. First the variables

are initialized and we pick rulers by blackbox function choose_rulers(𝑠𝑢𝑐𝑐, 𝑟 ) which re-

turns a subset of the vertices of size 𝑟 . Then all rulers start sending packages. These will be

forwarded until they reach a ruler or a final vertex. Each vertex 𝑣 then has a 𝑟𝑜𝑜𝑡 [𝑣] pointer
to the preceeding ruler with its edge weight 𝑑𝑖𝑠𝑡 [𝑣]. Note the edges in Figure 3.3 represent

the 𝑟𝑜𝑜𝑡 pointers. The sublist of rulers form a reversed weighted sublist of the initial

successor array which will be ranked by some arbitrary ranking algorithm. After this we

have to calculate the 𝑑𝑖𝑠𝑡 . First we restore the 𝑑𝑖𝑠𝑡 for every ruler in Line 15. When a ruler

has rank 𝑟𝑎𝑛𝑘 in this sublist then the ruler has rank 𝑛 − 1 − 𝑟𝑎𝑛𝑘 in our initial successor

11
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array because on a list for every vertex the distance to the final vertex plus the distance to

the initial vertex is always𝑛−1. Afterwards we can rank all the other vertices like in Line 17.

Algorithm 2: Ruling Set
Input: Successor Array 𝑠𝑢𝑐𝑐 ∈ N𝑛 , Number of Rulers 𝑟 ∈ N
Output: Dist Array 𝑑𝑖𝑠𝑡 ∈ N𝑛

1 𝑅 ← choose_rulers(𝑠𝑢𝑐𝑐, 𝑟 )

2 𝑟𝑜𝑜𝑡 ← {0, .., 𝑛 − 1}
3 𝑑𝑖𝑠𝑡 ← {0, .., 0}
// Send Packets

4 for 𝑟𝑢𝑙𝑒𝑟 ∈ 𝑅 do
5 𝑝𝑎𝑐𝑘𝑒𝑡 ← (𝑠𝑢𝑐𝑐 [𝑟𝑢𝑙𝑒𝑟 ], 𝑟𝑢𝑙𝑒𝑟, 1) // (destination,ruler_source,distance)

6 send(𝑝𝑎𝑐𝑘𝑒𝑡 )

// Chase Packets

7 while recv(𝑝𝑎𝑐𝑘𝑒𝑡 ) do
// packet = (destination,ruler_source,distance)

8 𝑟𝑜𝑜𝑡 [𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛] = 𝑟𝑢𝑙𝑒𝑟_𝑠𝑜𝑢𝑟𝑐𝑒

9 𝑑𝑖𝑠𝑡 [𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛] = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

10 if 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is neither final nor ruler then
11 𝑛𝑒𝑤_𝑝𝑎𝑐𝑘𝑒𝑡 ← (𝑠𝑢𝑐𝑐 [𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛], 𝑟𝑢𝑙𝑒𝑟_𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 1)
12 send(𝑛𝑒𝑤_𝑝𝑎𝑐𝑘𝑒𝑡 )

// Rank Sublist of rulers

13 𝑟𝑎𝑛𝑘𝑠 ← algorithm()

// (𝑖, 𝑟𝑎𝑛𝑘) ∈ 𝑟𝑎𝑛𝑘𝑠 iff vertex 𝑖 has rank 𝑟𝑎𝑛𝑘 in weighted reversed

sublist

// Calculate Final Ranks

14 for [𝑖, 𝑟𝑎𝑛𝑘] ∈ 𝑟𝑎𝑛𝑘𝑠 do
15 𝑑𝑖𝑠𝑡 [𝑖] = 𝑛 − 1 − 𝑟𝑎𝑛𝑘
16 for 0 <= 𝑖 < 𝑛 ∧ 𝑖 ∉ 𝑅 do
17 𝑑𝑖𝑠𝑡 [𝑖] = 𝑑𝑖𝑠𝑡 [𝑟𝑜𝑜𝑡 [𝑖]] − 𝑑𝑖𝑠𝑡 [𝑖]
18 return 𝑑𝑖𝑠𝑡

3.4.2.1 Variants and Optimizations

The first variant of this algorithmwas presented by Vishkin in 1984 [43]. For 𝑝 =
𝑛 log(log(𝑛))

log(𝑛)
Vishkin chooses 𝑝 random rulers. Then log(𝑛) iterations of packet chasing are performed

and after that, the list could be contracted to a size 2𝑝+ log(𝑛) with probability 1− 1

log(log(𝑛))
in O(log(𝑛)) on CRCW PRAM. The sublist of rulers is ranked with pointer doubling in

O(log(𝑛)).
Two years later, in 1986, Vishkin and Cole [11] proposed a deterministic ruling set al-

gorithm in O(log(𝑛)) on EREW PRAM using
𝑛 log(𝑛,𝑘)
log(𝑛) processors for any fixed 𝑘 (note

that log(𝑛, 1) = log(𝑛) and log(𝑛, 𝑘) = log(log(𝑛, 𝑘 − 1)) for 𝑘 > 1) thereby showing that
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Wyllie’s conjecture is incorrect. He defined the 𝑟 -ruling set problem, which basically

meant finding a subset of 𝑉 called rulers 𝑅 where no two rulers are adjacent and for

every vertex 𝑣 ∈ 𝑉 there exists a ruler 𝑟𝑢𝑙𝑒𝑟 ∈ 𝑅 with distance at most 𝑟 [11]. He then

found an iterative approach for finding an O(log(log(𝑛)))-ruling set in 1986 [11] that Jaja

simplified in his influental book six years later [20]. Each vertex 𝑣 ∈ {0, .., 𝑛 − 1} is the
color 𝑐 [𝑣] = 𝑣 assigend. One iteration of his coloring procedure recolored each vertex 𝑣 to

𝑐′[𝑣] = 2𝑘 + 𝑐 [𝑣]𝑘 where 𝑘 is the least significant bit where 𝑐 [𝑣] and 𝑐 [𝑠𝑢𝑐𝑐 [𝑣]] disagree
and 𝑐 [𝑣]𝑘 the 𝑘th bit of 𝑐 [𝑣]. Note that if 𝑐 is a correct coloring then 𝑐′ is a correct coloring.
After two iterations the vertices are properly colored with O(log(log(𝑛))) colors and each
vertex whose color is a local minimum becomes a ruler defining a O(log(log(𝑛)))-ruling
set. The contraced list can be ranked with pointer doubling. We are not aware of any

practical evaluations of this algorithm even though it was referenced often [31, 2, 20, 11].

Since then there are various different variants of this algorithm proposed. The main

problem that each of the variants tries to solve differently is that two succeeding rulers

can have an arbitrary distance. Dehne and Song prove Lemma 3.4.1 and use this lemma

to show for 𝑥𝑘 = 𝑟 = 𝑛
𝑝
that 𝑃 [𝑚 > 𝑐3𝑝 log(𝑛)] ≤ 1

𝑛𝑐
for 𝑐 > 2 and conclude that

3𝑝 log(𝑛) = 3
𝑛
𝑟
log(𝑛) is a good probabilistic upper bound that in practical experiments

was never cossed. We generalize this in Lemma 3.4.2 for any 𝑟 .

Lemma 3.4.1 Consider 𝑥𝑘 ≤ 𝑛 randomly chosen rulers. The maximum distance between
two succeeding rulers is denoted as𝑚. If 𝑘 ≥ log(𝑥) + 2 log(𝑛) then P[𝑚 > 𝑐 𝑛

𝑥
] ≤ 1

𝑛𝑐
for

𝑐 > 2 [14]

Lemma 3.4.2 Consider 𝑟 ≤ 𝑛 randomly chosen rulers. Then 𝑃 [𝑚 > 𝑐
3𝑛 log(𝑛)

𝑟
] ≤ 1

𝑛𝑐
for

𝑐 > 2.

Proof: Set 𝑥 = 𝑟
W(𝑛2𝑟 ) and 𝑘 = log(𝑥) + 2 log(𝑛). Note that W ist the lambert W function

𝑛2𝑟 = 𝑛2𝑟

𝑛2𝑟 = 𝑒W(𝑛
2𝑟 )
W(𝑛2𝑟 )

𝑛2
𝑟

W(𝑛2𝑟 ) = 𝑒W(𝑛
2𝑟 )

log

( 𝑟

W(𝑛2𝑟 )

)
+ 2 log(𝑛) = W(𝑛2𝑟 )

𝑟

W(𝑛2𝑟 )

(
log

( 𝑟

W(𝑛2𝑟 )

)
+ 2 log(𝑛)

)
= 𝑟

𝑥𝑘 = 𝑟

Then
1

𝑛𝑐

lemma 3.4.1
≥ 𝑃 [𝑚 ≥ 𝑐

𝑛W(𝑛2𝑟 )
𝑟
] ≥ 𝑃 [𝑚 ≥ 𝑐

𝑛 log(𝑛3)
𝑟
] = 𝑃 [𝑚 ≥ 𝑐

3𝑛 log(𝑛)
𝑟
] for 𝑐 > 2. □

We prove in Lemma 3.4.3 which uses the basic idea of Sibeyn [38] that for 𝑡 = 1 there are

after
𝑛
𝑟
log(𝑟 ) iterations an expected number of one ruler unreached. Note that when all
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rulers are reached then all vertices are reached. In practice there is always the first ruler

unreached, which we ignore for simplicity in this lemma.

Lemma 3.4.3 After 𝑑 =
log( 𝑡

𝑟
)

log(1− 𝑟
𝑛
) ≈

𝑛
𝑟
log( 𝑟

𝑡
) iterations of chasing packets, there are expected

𝑡 rulers unreached given randomly chosen rulers.

Proof:
For any given ruler the probability that there are no rulers the d positions before in the

list are (
1 − 𝑟

𝑛

)𝑑
≈ 𝑒−𝑑 · 𝑟𝑛 (3.1)

We want this probability to be
𝑡
𝑟
so we have an expected number of 𝑡 rulers unreached(
1 − 𝑟

𝑛

)𝑑
!

=
𝑡

𝑟
(3.2)

𝑑 =
log( 𝑡

𝑟
)

log(1 − 𝑟
𝑛
) (3.3)

𝑑 ≈ 𝑛

𝑟
log

(𝑟
𝑡

)
(3.4)

The Equation 3.4 results by replacing the left term of Equation 3.2 with its approximate

value from above. □

Wemeasured for one single random list (we explain our experimental setup and generation

of a random list in Chapter 5) this maximum distance with different parameters to validate

these formulas in Table 3.1. Here we can see that the bound 3
𝑛
𝑟
log(𝑛) is never crossed

but we can also see that for 𝑡 = 1 our formula
𝑛
𝑟
log(𝑟 ) is a good approximation of the

maximum distance.

𝑛
𝑟

5 10 15 20 25 30 35 40

maximum distance (𝑝 = 2
8, 𝑛

𝑝
= 10

5) 75 151 248 305 415 426 452 581

3
𝑛
𝑟
log(𝑛) 256 512 768 1023 1279 1535 1791 2047

𝑛
𝑟
log(𝑟 ) 77 148 215 281 346 410 473 535

maximum distance (𝑝 = 2
14, 𝑛

𝑝
= 10

7) 115 216 340 452 594 710 771 813

3
𝑛
𝑟
log(𝑛) 387 775 1162 1549 1937 2324 2711 3099

𝑛
𝑟
log(𝑟 ) 121 235 347 457 565 673 779 885

Table 3.1: Maximum distance of rulers

Improve maximum distance of vertices

Dehne and Song try to improve the maximum distance by initially picking
𝑛
𝑝
random rulers

[14]. Then they iteratively make every ruler to a non ruler, that was in a certain distance of

14
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another ruler. They stated that the way they picked rulers, the maximum distance between

two successive rulers is 6𝑝 log(3𝑝) + 3𝑝 ( 2
3
𝑝)2𝑘+1 where 𝑘 = argmin

𝑖>0

log
𝑖+1 ≤ ( 2

3
𝑝)2𝑖+1 ≤

ln
∗(𝑛) is a very small number which is at most 2 for 𝑛 ≤ 10

10
100

and 𝑝 ≥ 4. However this

method also uses 2𝑘 log
2
( 2
3
𝑝) iterations of pointer jumping, which can be costly.

Dehne et al. proposed another deterministic way to bound the maximum distance of rulers

some years later [13]. There in O(log(𝑝)) communication rounds the maximum distance

between two successive rulers was improved to O(𝑝2) with a ruling set of size O( 𝑛
𝑝
). The

idea is assigning each vertex the label 𝑖 if the vertex is located on PE 𝑖 . A vertex 𝑣 is

selected as ruler when its label is larger than the label of its predecessor and its successor.

In O(log(𝑝)) iterations that consist of a pointer doubling contractions, rulers that would

be contracted with another ruler become non rulers. However Dehne et al tested this

method but they came to the conclusion that just picking random
𝑛
𝑝
rulers performs better

in practice [8].

Leave some unreached vertices

Sibeyn proposed to run packet chasing for a fixed number of iterations and then leave

some unreached vertices. Then the unreached vertices are ranked by any list ranking

algorithm and afterwards the set of rulers are independently ranked by any list ranking

algorithm [37]. Note that the edges for the unreached vertices are in the opposite direction

than the edges for the rulers. So ranking them with the same algorithm requires reversing

the edges for one of the two subproblems. Sibeyn said this approach limits the recursion

deph to at most two because the number of subproblems grow exponentially [41].

One year later Sibeyn published a paper where he implemented this algorithm. He gave

some practical infos on implementation details and most importantly how to choose 𝑟 with

𝑟 = 3𝑝
√
𝑛. Then the algorithm is running for 𝑑 = 𝑛

𝑟
log(𝑛

𝑟
) iterations leaving approximately

𝑟 vertices unreached on which the same terminal algorithm is applied. Sibeyn concluded

that two recursions of this algorithm is the best for most inputs [38].

Spawn new Rulers

Sibeyn’s latest work on the ruling set algorithm proposed that if a wave hits a ruler then a

new wave starts by spawning a new ruler on the same PE. This leads to
𝑛
𝑟
+ 1 communica-

tion rounds with high probability [41]. However there are in the end 𝑟 · H(𝑛
𝑟
) ≈ 𝑟 log(𝑛

𝑟
)

rulers where H(𝑖) is the 𝑖th harmonic number. Note that this means less communication

overhead but a bigger subproblem. To balance this out he concludes that 𝑟 =
3𝑝
√
𝑛

log(
√
𝑛

3𝑝
)
in this

new algorithm and that this version is on average twice as fast as leaving some unreached

vertices for any choice of 𝑟 [41].

In Table 3.2 we compared three different versions of this algorithm in terms of com-

munication overhead and reduced problem size. Note that we prove in Lemma 3.4.3 for

chasing packets until the end a good approximation is
𝑛
𝑛
log(𝑟 ) and for spawning new

rulers we can achieve always
𝑛
𝑟
global communication round with a small modification

that we explain in Section 4.2.
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Version #global communications Reduced problem size

Chase packets until the end [14] ≤ 3
𝑛
𝑟
log(𝑛) 𝑟

Leave some unreached vertices [38]
𝑛
𝑟
log(𝑛

𝑟
) 2𝑟

Spawn new rulers [41] ≤ 𝑛
𝑟
+ 1 𝑟 log(𝑛

𝑟
)

Table 3.2: Comparison of different versions of ruling set algorithm

Version #global communications reduced problem size

Leave some unreached vertices

√
𝑛

3𝑝
log(

√
𝑛

3𝑝
) 2 · 3𝑝

√
𝑛

Spawn new rulers

√
𝑛

3𝑝
log(

√
𝑛

3𝑝
) (1 +

log(log
√
𝑛

3𝑝
))

log(
√
𝑛

3𝑝
)
) · 3𝑝

√
𝑛

Table 3.3: Comparison of different versions of ruling set algorithm with set 𝑟 according to

Sibeyn [38, 41]

Because of different behaviours of different versions, 𝑟 has to be set individually. In Table

3.3 for leaving some unreached vertices we set 𝑟 = 3𝑝
√
𝑛 [38] and for spawning new rulers

3𝑝
√
𝑛

log(
√
𝑛

3𝑝
)
[41]. As Sibeyn proposed [41] for the same communication overhead we have about

half the reduced problem size. Since we can’t compare Sibeyn’s latest version to simply

chasing packets until the end we will do that on our own in Chapter 4 and show that

spawning rulers has superior performance the bigger 𝑝 gets.

Tree Rooting for Ruling Set

Chung and Codon proposed a supervertex algorithm which is similar to a ruling set

algorithm for tree rooting. During this algorithm vertices with probability of
1

2
become a

supervertex, which is similar to being a ruler. They implemented packet chasing by pointer

doubling and recursively called the supervertex algorithm on the set of supervertices.

However the idea of the ruling set algorithm is specifying a small set of rulers to achieve

smaller reduced instances, which is why this algorithm is also called sparse ruling set [41].

Jackson et al. proposes a method for transcriptome assembly where they encounter graphs

with many long chains [19]. They use the sparse ruling set algorithm on the set of these

chains to contract these chains into one vertex.

However to our best knowledge we are not aware of an implemention of the sparse

ruling set algorithm for tree rooting. As shown in Figure 3.3 the algorithm needs a small

modification to work on forests. In Line 15 of Algorithm 2 we use the invariant that on a

list for every vertex the distance to the final vertex plus the distance to the initial vertex is

always 𝑛 − 1. On forest there may be several roots and leaves with arbitrary depths. Just

reversing directions of the edges of the initial input 𝑠𝑢𝑐𝑐 or the sublist of rulers will make

it work and we will evaluate this algorithm.
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3.4 Parallel Algorithms

3.4.3 Independent Set Removal

The first occurence in the literature that we found of was by Vishkin [43]. The basic idea

of this algorithm is to find independent sets 𝐼 and exclude these vertices so we have a

smaller subproblem. An independent set in this context means that for every vertex in 𝐼 its

predecessor and successor are not in 𝐼 . This is visualized in Figure 3.4. First we determine

the independent set 𝐼 which are the blue vertices. A vertex 𝑣 ∈ 𝐼 is excluded by informing

its predecessor about 𝑠𝑢𝑐𝑐 [𝑣]. When the remaining vertices are ranked, every vertex 𝑣 ∈ 𝐼
just has to ask its successor’s rank to calculate the final ranks.

0 1 2 3 4

Determine independent set I

0 1 2 3 4

Exclude I

0 1 2 3 4

Rank remaining nodes

0 1 2 3 4

Reinsert I

0 1 2 3 4

Figure 3.4: Independent set visualization

The pseudocode of this algorithm is shown in Algorithm 3. In every iteration in Line 5

we calculate an independent set 𝐼 and exclude it. By iteratively reducing the problem size

we can finally rank the remaining vertices and then in reverse order insert the excluded

independent sets. We exclude a vertex 𝑣 by letting the predecessor expand its 𝑟𝑜𝑜𝑡 pointer.

Reinserting is also straight forward since our excluded vertices have a pointer to a correctly

ranked vertex.

3.4.3.1 Variants and Optimizations

The important difference beween different variants is the way 𝐼 is determined. Note that

on lists at most every second vertex can become an independent vertex.
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Throwing a Coin

The idea is for every vertex 𝑣 throwing a binary coin 𝑐 [𝑣]. Then 𝑣 is in 𝐼 set when 𝑐 [𝑣] = 1

and 𝑐 [𝑝𝑟𝑒𝑑 [𝑣]] = 0. Its predecessor 𝑝𝑟𝑒𝑑 [𝑣] is not in 𝐼 since 𝑐 [𝑝𝑟𝑒𝑑 [𝑣]] = 0 and also

its successor 𝑣′ because 𝑐 [𝑝𝑟𝑒𝑑 [𝑣′]] = 𝑐 [𝑣] = 1. This can be achieved with one global

message exchange where every vertex 𝑣 where 𝑐 [𝑣] = 0 informs it successor about this.

This method achieves independent sets of size
𝑛
4
[43] which is not optimal however the

determination of 𝐼 is so cheap that it has widespread relevance [6, 31, 41, 38, 39].

This method was proposed in the first independent set algorithm that we are aware of

by Vishkin in 1884 [43]. The algorithm iteratively exclude vertices until the number of

remaining vertices is less than
𝑛

log(𝑛) . Miller devised this algorithm one year later and

named it random mating [25]. Here each vertex is assigned a gender male and female. The

determination of 𝐼 stays the same but the algorithm excludes independent sets until there

are no more vertices [30, 25]. Newer results on GPUs also use this approach because of its

simplicity [6].

Algorithm 3: Independent Set Removal

Input: Successor Array 𝑠𝑢𝑐𝑐 ∈ N𝑛
Output: Dist Array 𝑑𝑖𝑠𝑡 ∈ N𝑛

1 𝑟𝑜𝑜𝑡 ← 𝑠𝑢𝑐𝑐

2 𝑑𝑖𝑠𝑡 ← {1, .., 1} // 𝑑𝑖𝑠𝑡 [𝑖] = 0 iff 𝑖 is root

3 𝐴← {0, .., 𝑛 − 1}
// Reduce problem sufficiently small

4 𝑝ℎ𝑎𝑠𝑒 ← 0

5 while |𝐴| > 𝑓 (𝑛) do
6 𝑝ℎ𝑎𝑠𝑒 ← 𝑝ℎ𝑎𝑠𝑒 + 1
7 𝐼 ← calculate_independent_set()

8 for 𝑖 ∉ 𝐼 ∧ 𝑠𝑢𝑐𝑐 [𝑖] ∈ 𝐼 do
9 𝑟𝑜𝑜𝑡 [𝑖] ← 𝑟𝑜𝑜𝑡 [𝑟𝑜𝑜𝑡 [𝑖]]

10 𝑑𝑖𝑠𝑡 [𝑖] ← 𝑑𝑖𝑠𝑡 [𝑖] + 𝑑𝑖𝑠𝑡 [𝑟𝑜𝑜𝑡 [𝑖]]
11 𝐴← 𝐴 \ 𝐼

// Rank all remaining active vertices

12 𝑟𝑜𝑜𝑡, 𝑑𝑖𝑠𝑡 ← some_rank()

// Reinsert vertices from last phase to first phase

13 while 𝑝ℎ𝑎𝑠𝑒 > 0 do
14 foreach vertex 𝑖 removed in iteration 𝑝ℎ𝑎𝑠𝑒 do
15 𝑟𝑜𝑜𝑡 [𝑖] ← 𝑟𝑜𝑜𝑡 [𝑟𝑜𝑜𝑡 [𝑖]]
16 𝑑𝑖𝑠𝑡 [𝑖] ← 𝑑𝑖𝑠𝑡 [𝑖] + 𝑑𝑖𝑠𝑡 [𝑟𝑜𝑜𝑡 [𝑖]]
17 𝑝ℎ𝑎𝑠𝑒 ← 𝑝ℎ𝑎𝑠𝑒 − 1
18 return 𝑟𝑜𝑜𝑡
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Coloring

When coloring our list with 𝑘 colors then the set of local minima (or maxima) is an

independent set of size Ω(𝑛
𝑘
) [20]. Jaja then referenced an optimal 3-coloring algorithm in

O(log(𝑛)) time using O(𝑛) operations in O(log(𝑛)) on EREW PRAM [20]. Miller proposed

a similar algorithm [31], however we are not aware of any practical evaluations.

Ruler

This iterative method initially assigns every vertex no status. Every vertex with no status

becomes with probability 𝑞 a ruler and informs their predecessor and sucessor that they

become a non ruler. This is repeated 𝑟 times and afterwards every vertex with no status

becomes a ruler. All non rulers form an independent set. For 𝑟 = 2 and 𝑞 = 0.35 the

indepentent set has expected size 0.449𝑛 and for 𝑟 = 3 and 𝑞 = 0.28 it has size 0.475𝑛 [38].

Sibeyn evaluated this method but came to the conclusion that throwing a binary coin is

faster in practice [38, 41].

Tree Rooting for Independent Set Removal

Independent set removal can be generalized for forests. However we have to make sure

before excluding a vertex that every successor and predecessor is not excluded which

makes our independent sets small. Sibeyn stated that this algorithm for tree rooting is

inefficient [41].

3.4.4 Cleaning Algorithm

The first occurance that we are aware of was by Sibeyn [39]. The basic idea of this algorithm

is that the vertices are divided into two distinct subsets 𝑆0 and 𝑆1. Then we reduce the

instance to 𝑆0, rank these vertices and then reconstruct all ranks. This algorithm uses

two important subroutines named autoclean and altroclean. Both subroutines work on

a real subset of all vertices and initially 𝑟𝑜𝑜𝑡 is initalized the same as 𝑠𝑢𝑐𝑐 and 𝑑𝑖𝑠𝑡 [𝑣] is
initialized with 0 for the actual root of a tree and 1 for all the other vertices.

Autoclean Autocleaning 𝑆 means that all vertices 𝑣 ∈ 𝑆 follow their 𝑟𝑜𝑜𝑡 pointers until a

vertex𝑤 ∉ 𝑆 is reached. Then their 𝑟𝑜𝑜𝑡 field gets updated by 𝑟𝑜𝑜𝑡 [𝑣] ← 𝑤 and 𝑑𝑖𝑠𝑡 [𝑣] to
the covered distance until𝑤 was reached.

AltrocleanAltrocleaning 𝑆 means that all vertices 𝑣 ∈ 𝑆 that have not reached a final vertex
and where 𝑟𝑜𝑜𝑡 [𝑣] ∉ 𝑆 update their 𝑟𝑜𝑜𝑡 and 𝑑𝑖𝑠𝑡 values according to their 𝑟𝑜𝑜𝑡 [𝑟𝑜𝑜𝑡 [𝑣]].
This algorithm is visualized in Figure 3.5. Our input is divided into two distinct sets. Then

we call Autoclean(𝑆1) which ensures there are no edges between two different vertices

in 𝑆1. Afterwards we call Altroclean(𝑆0) such that each vertex 𝑣 ∈ 𝑆0 points to another

vertex in 𝑆0 or to a rootin 𝑆1. Then by first ranking 𝑆0 every vertex 𝑣 ∈ 𝑆1 just needs one
request to compute their final ranks which happens by Altroclean(𝑆1).

In Algorithm 4 cleaning is explained. After reducing the problem in Line 5 there are no

𝑟𝑜𝑜𝑡 pointers to vertices in 𝑆1 that are not a root. Then the remaining vertices are ranked

by any ranking algorithm and the final values can be calculated.
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Figure 3.5: Peeling Off Visualization

3.4.4.1 Variants and Optimizations

Sibeyn scheduled the subroutines autoclean and altroclean between sets of vertices on

two distinct PEs and called this One-by-One cleaning [39]. The advantage was that there

was no global communication but rather direct communication between two PEs used.

However the communication volume per PE was O(𝑘 log 𝑃). He optimizes this algorithm

by minimizing the global communication volume by a constant factor, but he concludes

one-by-one cleaning just performs good on networks on which global communication is

strongly penalized [36, 40].

Sibeyn solves this by dividing the PEs into two sets and iteratively halves the number of

active PEs until there is just one left that can solve the problem sequentially. The obvious

disadvantage is that number of idle PEs doubles each round. He calls this algorithm

repeated halving [39].

In a different approach Sibeyn avoids idle PEs by defining 𝑆0 as half of the vertices of

every PE and 𝑆1 accordingly. Then he iteratively halves the number of vertices per PE

for log log𝑛 recursions which is then ranked by pointer doubling. He calls this algorithm

peeling off [41].

Algorithm 4: Cleaning
Input: Successor Array 𝑠𝑢𝑐𝑐 ∈ N𝑛
Output: Dist Array 𝑑𝑖𝑠𝑡 ∈ N𝑛

1 𝑟𝑜𝑜𝑡 ← 𝑠𝑢𝑐𝑐

2 𝑑𝑖𝑠𝑡 ← {1, .., 1} // 𝑑𝑖𝑠𝑡 [𝑖] = 0 iff 𝑖 is root

3 𝑆0, 𝑆1 ← split() with 𝑆0
.
∪ 𝑆1 = 𝑉

// Reduce problem

4 Autoclean(𝑆1(𝑡))
5 Altoclean(𝑆0(𝑡))
// Rank all remaining vertices

6 𝑟𝑜𝑜𝑡, 𝑑𝑖𝑠𝑡 ← some_rank(𝑆0)
// Reconstruct all ranks

7 Altroclean(𝑆1)
8 return dist
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Tree Rooting for Cleaning

These algorithms works for tree rooting. The only difference is that several vertices may

have the same successor. Sibeyn stated for peeling off, that when each vertex is randomly

assigned to any PE, then any forest is rooted in O( 𝑛
𝑝
+ log(𝑛)) expected time. When the

input is a set of lists then they are rooted in O( 𝑛
𝑝
+ log(𝑛)) w.h.p [41].

3.4.5 Comparison of Algorithms

We want to summarize and compare our findings. After years of intense study of list

ranking algorithms Sibeyn stated to have found the ultimate parallel list ranking algorithms

where he practically evaluated from each of our presented categories one algorithm

and compared them to each other [41]. He implemented independent set removal with

determining 𝐼 by throwing a coin. As a ruling set algorithm he picked the version where

rulers are spawned whenever a wave dies and he implemented peeling off as cleaning

algorithm. He also theoretically analyzed these algorithms in terms of communication

which we now summarize.

Ruling setChasing packets with spawning new rulers needs ≤ 𝑛
𝑟
+1 global communication

rounds where in total each vertex sends a packet consisting of 3 integers [41]. The reduced

instance size is 𝑟 log(𝑛
𝑟
) [41]. We have to add to his analysis in order to calculate the final

ranks, every vertex sends a request to its designated ruler and the ruler answers with its

distance to the end of the list. In total we have a communication volume of 5 per vertex by

using ≤ 𝑛
𝑟
+ 3 global communication rounds to reduce our instance of size 𝑟 log(𝑛

𝑟
).

Independent set removal Sibeyn evaluated throwing a coin for determining 𝐼 . We can

efficiently determine 𝐼 where every vertex 𝑣 with 𝑐 [𝑣] = 1 sends a packet to its successor.

If a vertex 𝑣′ with 𝑐 [𝑣′] = 1 receives such a packet then it will be excluded and send back

𝑑𝑖𝑠𝑡 [𝑣′] and 𝑟𝑜𝑜𝑡 [𝑣′] and if 𝑐 [𝑣′] = 0 a placeholder indicating 𝑣′ ∉ 𝐼 . While reinserting

every 𝑣 ∈ 𝐼 sends a packet to 𝑟𝑜𝑜𝑡 [𝑣] which answers with 𝑑𝑖𝑠𝑡 [𝑟𝑜𝑜𝑡 [𝑣]] and 𝑟𝑜𝑜𝑡 [[𝑣]]. In
total we have a communication volume of two integers per vertex for the first phase [41].

Then we have to multiply this with

∑∞
𝑖=0

3

4
= 4 which results in a total communication

volume of 8 integers per vertex and 4 global communication rounds per exluding an

independent set [41]. We now further analyze this algorithm since we are interested in

how many recursive independent set removals are neccessary. This independent set has

expected size
𝑛
4
[38] and we can show that its size is close to the expected value. The size

of the independent set changes at most by 2 by changing one single coin throw for 𝑣 which

one can see by brute forcing all 2
3
cases 𝑝𝑟𝑒𝑑 [𝑣], 𝑣, 𝑠𝑢𝑐𝑐 [𝑣] ∈ {0, 1}3. We denote with

𝐼 (𝑐) the size of the independent set for a given coin assignment. The bounded difference

inequality [17] gives

P
[
|𝐼 (𝑐) − E[𝐼 (𝑐)] | ≥

√︁
2𝑛 log(2𝑛)

]
≤ 2𝑒

−2(
√
2𝑛 log(2𝑛) )2
4𝑛 =

1

𝑛

thus the size of 𝐼 will be very close to expectation with high probability. Therefore we can

assume that 𝐼 always has size 𝑛
4
. In every iteration we exclude our independent set of size

𝑛
4
.

We need 𝑑 iterations to reduce our instance to 𝑛( 3
4
)𝑑 !

= 𝑛
log(𝑛) which means 𝑑 =

log(log(𝑛))
log( 4

3
) ≈

3.48 log(log(𝑛)). Sibeyn showed every iteration needs 4 global communication rounds [41]
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Algorithm #global communication routing volume Reduced problem size

Cleaning 𝑑 (6 + 2 log(log(𝑛))) 6 + 3 log(𝑑)+6 log(𝑝)
𝑑+1

𝑛

2
𝑑

Ruling Set
𝑛
𝑟
+ 3 5 𝑟 log(𝑛

𝑟
)

Independent Set Removal 14 log(log(𝑛)) 8
𝑛

log(𝑛)

Table 3.4: Comparison of different list ranking algorithms

which makes in total 4 · 3.48 log(log(𝑛)) ≈ 14 log(log(𝑛)) global communication rounds

with a communication volume per vertex of at most 8 and a reduced problem size
𝑛

log(𝑛) .

Peeling off Note that in this version of the cleaning algorithm the sets 𝑆0 and 𝑆1 are

distributed over all PEs. Sibeyn implemented autoclean by pointer doubling and altroclean

is a request and reply global message exchange. Sibeyn stated that the most important

feature to optimize is the number of recursive calls𝑑 . In iteration 𝑡 the problem is reduced by

factor
1+𝑑−𝑡
2+𝑑−𝑡 for a good trade off between communication volume and global communication

rounds [41]. Then after 𝑑 iterations the communication volume is ≤ 6 + 3 log(𝑑)+6 log(𝑝)
𝑑+1

w.h.p per vertex using ≤ 𝑑 (6 + log(log(𝑛)) w.h.p global communications to reduce our

instance to ≤ 𝑛

2
𝑑 [41].

We summarize the analysis of these algorithms in Table 3.4 and compared them in terms

of number of global communications, routing volume which we measure by number of

integers per vertex and reduced problem size. Note that the comparisons are difficult

because all algorithms have parameters that are optimized and some of the values are

upper bounds as explained above. Sibeyn practically evaluated all of these algorithms for

list ranking and compared them to each other. He came to the conclusion, that ruling

set performs best on most instances and on small instances simply pointer doubling is

superior. In terms of tree rooting he stated that independent set removal is inefficient and

peeling off is a simple and versatile algorithm that can be used for tree rooting. However

he did not comment on the possibility of tree rooting for ruling set.

3.5 Tree Contraction

Tree contraction is a systematic way to shrink a tree into a single vertex [20]. Miller

and Reif initially motivated this problem for the expression evaluation problem where

each leaf is assigned a number and each inner vertex an arithmetic operator [26]. They

further found many applications like tree isomorphism, maximal subtree isomorphism of

unbounded degrees, computing 3-connected components, planar graph embeddings and

list ranking [27]. Since then there has been a massive amount of research for applications

like finding planar graph seperators [16], online evaluation of arithmetic circuits [28],

the huffman code problem [4] and approximating smallest linear grammar [21]. There

exist basically two approaches of parallel tree contraction. A top-down approach starts

starts at the root where we have to find a seperator vertex that divides the tree into two

subtrees. The main problem is finding seperators where both subtrees have roughly the

same size. The bottom-up approach uses the parallel contract subroutine where O(log(𝑛))
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3.5 Tree Contraction

contractions reduce the tree into one vertex [31] and newer results show that the bottom

up approach is in theory massively parallel [18]. We are aware of an evaluation of list-

and tree contraction showing noticable speed-ups using 80 hyper threads [35].
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There exists a lot of reseach on list ranking [12, 10, 2, 1, 44] and our goal is to find an

versatile algorithm that can also be used for tree rooting. Sibeyn stated that independent

set removal breaks down for tree rooting [41]. Peeling off is a simple algorithm that can

also be used for tree rooting, however he did not comment on the possibility of the ruling

set algorithm for tree rooting, which was the best algorithm for list ranking on most

instances [41, 38].

In this chapter we will first explain some of the building blocks that influence our algo-

rithms. Then we explain our ruling set implementation with different optimizations and

with the possibility for tree rooting.

4.1 Building Blocks

Massively parallel algorithms are often dominated by communication rather than local

computation. Sending a message of length 𝑙 between two different PEs takes time of 𝛼 + 𝑙𝛽
where 𝛼 is the overhead for sending the first machine word and 𝛽 is the time for sending

every further machine word [34]. For highly distributed algorithms the overheads can

dominate the running time so we will use indirect communication to reduce overheads

which we denoty by latency. We can also reduce the communication volume using different

techniques where we omit implicitly known data and remove duplicate data. Then we

present different techniques to modify our input that would otherwise negatively influence

the running time of our algorithms.

4.1.1 Reducing Latency

We often use alltoallv as global communication. However as the number of PEs increases

the startup overhead becomes the dominant term. Let 𝐿̂ be the bottleneck volume, which

is the maximum amount of data a PE sends or receives. Then the time complexity is given

by the formula 4.5.

𝑇one-level(𝑝) = 𝑝𝛼 + 𝐿̂𝛽 (4.5)

By adding indirections we can reduce latency. Note that this is not a build in MPI routine.

We used a similar impementation than by Sanders and Schimek where the PEs are arranged

in a virtual two dimensional grid [32]. The grid consists of 𝑐 = ⌊√𝑝⌋ columns and 𝑟 = ⌈𝑝
𝑐
⌉
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rows. PE 𝑖 is assigned colum col(𝑖) = 𝑖 mod 𝑐 and row row(𝑖) = ⌊ 𝑖
𝑐
⌋. Global communication

is performed in two steps. Amessage from PE 𝑖 to PE 𝑗 is first sent to PE 𝑡 in row row( 𝑗) and
column col(𝑖) and then to the final destination. Note that during both message exchanges

at most

√
𝑝 + 2 PEs participate which reduces the startup overheads to O(√𝑝) at cost of

double the communication volume [32]. This scheme can be generalized for up to log(𝑝)
dimensions which equals the hypercube algorithm [22]. We call this the two-level message

exchange. The time complexity is given by

𝑇two-level(𝑝) = 2 · (√𝑝𝛼 + 𝐿̂𝛽) (4.6)

where 𝐿̂ is still the maximum amount of data any PE sends or receives. However note

that 𝐿̂ can be worse by factor O(√𝑝) for the same 𝑝2 messages when for example just the

𝑖th PE in the first collumn wants to send a single message of length one to the 𝑖th PE in

the first row. Then all O(√𝑝) messages will be aggregated in PE in row 1 and column 1.

However this usually does not happen in practice. When all 𝑝2 messages have the same

length then 𝐿̂ stays the same.

4.1.2 Reduce Communication Volume

Besides from communication overheads the communication volume dictates the time for

a message exchange so we are also interested in reducing the communication volume.

During our algorithm often a subset of the vertices in our input graph have requests for

other vertices that are aggregated sent with one global message exchange. The requests

are then answered and sent back to the requester with one more global message exchange.

We call this request-reply scheme. Since we can simply route the answers back the same

way we do not have to add to our request the source vertex [38]. Note that this is also

possible with the two level approach.

During our request-reply scheme we can further reduce the communication volume by

removing duplicate requests. Before sending our requests, we find duplicates using hash
tables and then send only the unique requests. Note that this is also compatible with the

omission of the requester just explained, which is always be done. If we use the two-level

approach the requests are first sent to an intermediate PE before they reach the final

destination. In this case we use the intermediate hop to further remove duplicate requests

also using hash tables.

4.1.3 Exploiting Locality

We further reduce the overall instance size by local preprocessing. This is a general scheme

that we observed by various parallel graph algorithms [32, 24]. There exist instances with

many edges between vertices on the same PE. Note that our input is a successor array so

we cannot simply do a breadth-first search. This routine first determines for every vertex

𝑣 its local root by following its successor pointers. If we reach a already rooted vertex 𝑣′

while following the successor pointers we can stop and use the local root of 𝑣′ as local
root for 𝑣 such that we achieve linear work. Then the set of local roots is our modified
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instance. Note that we need one request-reply scheme for the local roots since they may

point now to a removed vertex and additionally we need to update the correct weights.

This is visualized in Figure 4.1. We can see on the left there are 5 vertices on the PE that

all belong to the same local tree and in total we see 7 vertices distributed over several PEs

of this tree. On the edges we can see the updated edge weight so that the distances from

our mainpulated instance are actually the correct distances and we can restore the 𝑟𝑜𝑜𝑡

and 𝑑𝑖𝑠𝑡 values for all vertices from our correcly rooted modified instance without any

further communication.

before after
PE i

1

1

1

1

1

1

PE i

2

1

2

Figure 4.1: Local contraction visualization

4.1.4 Load Balancing

The time and space complexity of our algorithms depends on the number of ingoing

and outgoing neighbours. If there are 𝑛′ vertices on a PE, then the number of outgoing

neighbours is also 𝑛′. However if 𝑠𝑢𝑐𝑐 is a forest the number of ingoing neighbours is

arbitrary. We can first balance this by randomly permuting our instance further explained

in Section 5.1. This method helps to load balance most instances, but there is one problem

that is not solved.

Our instance may consist of a few high degree vertices. Just one high degree vertex on a PE

can cause it to slow down massively. Our idea is to modify the instance and then recover

the real 𝑑𝑖𝑠𝑡 and 𝑟𝑜𝑜𝑡 array from our modified instance. In Figure 4.2 we visualized four of

the five steps of our algorithm. Our initial instance is shown in step 1 where we marked

each high degree vertex. Note that we picked our threshold degree for becoming a high

degree vertex 𝑑max = 3 for our example. In step 2 we modify our instance by determining

all vertices 𝑣 that point to a high degree vertex and transform 𝑣 into a root. In the next step

we rank our modified instance. We can use this modified instance and a linear number

of operations to generate our instance of high degree vertices. In the last step we rank

our instance of high degree vertices and by basically performing one iteration of pointer

doubling we calculated all final 𝑟𝑜𝑜𝑡 and 𝑑𝑖𝑠𝑡 values. We now explain chronologically each

step of the algorithm.
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Determine high degree vertices In the first step every vertex 𝑣 sends a packet to its

successor 𝑠𝑢𝑐𝑐 [𝑣]. Just like our request-reply scheme we remove duplicate requests but

additionally count packets to the same successor. Note that we just want the indegrees of

all vertices and do not need a reply. When using the two-level global message exchange

we use the indirection PE for removing duplicate packets to the same successor as well.

Upon receiving the requests we can count the degrees and every vertex whose degree is at

least 𝑑max becomes a high degree vertex.

Modify instance In the second step every vertex 𝑣 asks its successor if it is a high degree

vertex and if so we set 𝑠𝑢𝑐𝑐′[𝑣] ← 𝑣 such that the high degree vertices have no ingoing

neighbours. If the successor is not a high degree vertex we do not change the successor

𝑠𝑢𝑐𝑐′[𝑣] ← 𝑠𝑢𝑐𝑐 [𝑣]. This step consists of one request-reply scheme.

Rank modified instance In this step we rank our modified instance 𝑠𝑢𝑐𝑐′. Note that this
instance has the same size but the maximum vertex degree is bounded by 𝑑max and we

denote the resuls as 𝑟𝑜𝑜𝑡 and 𝑑𝑖𝑠𝑡 .

Create instance of high degree verticesWe first need to restore our pointers to the high

degree vertices. Every vertex 𝑣 where 𝑣 ≠ 𝑠𝑢𝑐𝑐 [𝑣] sends a request to 𝑣′ = 𝑟𝑜𝑜𝑡 [𝑣]. Note
that 𝑣′ is never a high degree vertex itself. In the first case 𝑠𝑢𝑐𝑐 [𝑣′] is a high degree vertex.

Then it sends back 𝑠𝑢𝑐𝑐 [𝑣′] such that 𝑟𝑜𝑜𝑡 [𝑣] ← 𝑠𝑢𝑐𝑐 [𝑣′] and 𝑑𝑖𝑠𝑡 [𝑣] ← 𝑑𝑖𝑠𝑡 [𝑣] +1. In the

other case 𝑣′ sends back a placeholder such that 𝑣 does not need to update anything. Now

each high degree vertex 𝑣 performs one step of pointer doubling 𝑟𝑜𝑜𝑡 [𝑣] ← 𝑟𝑜𝑜𝑡 [𝑟𝑜𝑜𝑡 [𝑣]]
and 𝑑𝑖𝑠𝑡 [𝑣] ← 𝑑𝑖𝑠𝑡 [𝑣] + 𝑑𝑖𝑠𝑡 [𝑟𝑜𝑜𝑡 [𝑣]]. Now 𝑟𝑜𝑜𝑡 [𝑣] is the correct root pointer or 𝑟𝑜𝑜𝑡 [𝑣]
is a high degree vertex and 𝑑𝑖𝑠𝑡 [𝑣] is also the correct distance to 𝑟𝑜𝑜𝑡 [𝑣]. This means we

have our instance of high degree vertices.

Calculate final ranksWe first rank our instance of high degree vertices and now each

vertex 𝑣 performs one step of pointer doubling and we have our correct 𝑑𝑖𝑠𝑡 and 𝑟𝑜𝑜𝑡

values for every vertex.

Note that during this algorithm we have two instances to rank. One is our modified

instance that can be seen in step 2 of Figure 4.2. This instance is the same size as our initial

instance but our maximum degree is bounded by 𝑑max. After this we create our instance

of high degree vertices whose size is at most
𝑛

𝑑max

. Note that the degrees of our instance

of high degree vertices just have a trivial bound of
𝑛

𝑑max

, however, if we set 𝑑max =
√
𝑛 we

reduce our maximum degree to

√
𝑛 in our modified instance as well as in our instance of

high degree vertices.

4.2 Ruling Set Specific Optimizations

In this section, we begin by explaining our ruling set algorithm optimized for lists. Follow-

ing that, we describe the process through which we generalized this algorithm for tree

rooting.

Algorithm 5 is the pseudocode of our algorithm, which is close to an implementation. We

start picking 𝑟 < 𝑛 vertices as rulers. Each of those initiates a wave by sending a packet

to their successor. In every iteration of packet chasing all incoming packets from the

𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟 are processed and written into the 𝑜𝑢𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 . The algorithm stops when
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step 1: determine high degree vertices
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Figure 4.2: Removal of high degree vertices

there are no active waves left. Note that in an parallel implementation of Algorithm 5

we can only stop our while loop in Line 9 when every PE receives zero packets in their

𝑜𝑢𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 . After packet chasing we can rank the sublist of rulers by any list ranking

algorithm. The successors of each ruler 𝑣 are then 𝑟𝑜𝑜𝑡 [𝑣] with an edge weight of 𝑑𝑖𝑠𝑡 [𝑣].
In Line 20 we have to restore our final 𝑑𝑖𝑠𝑡 values for our rulers. Note that in a list the

distance of 𝑣 to the start plus the distance of 𝑣 to the end is 𝑛 − 1. Since the 𝑟𝑎𝑛𝑘 from a

ruler is the distance to the start of the list, 𝑛 − 1− 𝑟𝑎𝑛𝑘 is the distance to the end of the list

shown in Line 20. In Line 22 we rank all non rulers.

In related work in Chapter 3 we showed that there are many different implementations

and compared three of them, as shown in the Table 3.2.

The first version chooses random rulers and follows all packets until they reach the next

ruler or the end [8]. The second version chases packets for a fixed number of iterations,
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leaving some unreached vertices [38]. The third spawns new rulers each time a packet

reaches a ruler, making the number of active waves constant [41]. Sibeyn showed that

the third variant is superior to the second, as shown in Table 3.3. However, we cannot

conclude from the literature that this algorithm is superior to simply chasing packets to

the end. Chan et al. compared two list ranking methods in 2005, where one version picked

rulers randomly and chased packets to the end, and the other version picked rulers in a

deterministic way to bound the maximum distance between two consecutive rulers, and

the randomised algorithm performed better [8]. Since we are not aware of any comparison

of spawning rulers to just chasing packets to the end, we compare these techniques. We

name the first variant where packets are chased until the end and no rulers are spawned

ruling set chase and the third variant where new rulers are spawned whenever a wave dies

ruling set spawn.
Ruling set chase starts by randomly selecting 𝑟 rulers, all of which send packets. The

maximum number of iterations in the while loop in line 9 is equal to the longest distance

between two consecutive rulers (or the last ruler and the root vertex). The longest distance

is approximately
𝑛
𝑟
log(𝑟 ) with Lemma 3.4.3. We test before each iteration with an allreduce

over the number of active waves indicating if there is need for further iterations. Note

that in this version our packets as defined in Line 6 omit the distance, since all packets in

iteration 𝑖 also have distance 𝑖 .

Ruling set spawn picks rulers, sends packets and forwards packets the same way as

ruling set chase. However Sibeyn suggested that whenever a wave hits a ruler, a new local

ruler is spawned [41]. This limits the number of iterations of the while loop in Line 9 with

𝑛
𝑟
+ 1 w.h.p. if 𝑟

𝑝
≥ 64 log(𝑝) [41], which means that there must be on average at least

64 log(𝑝) rulers per PE selected at the beginning. Note that this inequality is not easy to

satisfy for large 𝑝 and also depends on the choice of 𝑟 . Sibeyn called this probabilistic

bound an "obstacle for optimal-time PRAM algorithms" [41] and we will explain why the

number is just probabilistically bounded. The number of rulers 𝑟 tells us the number of

active waves. However, in the end it may happen that we cannot spawn a new ruler locally,

but we could on another PE which means a wave dies. In Figure 4.3 we can see that we

set 𝑟 = 3, but the number of active waves decreases already in the first iteration. Vertices

labelled 𝑟 are rulers. We adapted this algorithm by setting the number of packets leaving in

PE 0 PE 1 PE 2

r r r

rrr

rrr

Figure 4.3: Wave by a ruler dies
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each iteration to a fixed number for each PE. A PE with 𝑛′ vertices will pick 𝑛′ 𝑟
𝑛
rulers, and

in each further iteration 𝑛′ 𝑟
𝑛
packets leave our PE. If a PE would forward more than this

threshold these packets are queued in a FIFO queue. If a PE would forward less than this

threshold, then first packets from our queue are forwarded and if that is still not enough

then new rulers are selected. Our small adjustment also ensures that there are always 𝑟

active waves and always
𝑛
𝑟
iterations in Line 9. However note that load imbalances can

still happen when all ingoing neighbours from PE 𝑖 forward a wave in the same iteration

with or without our adjustion. Sibeyn proved for his algorithm that there will be about

𝑟 log(𝑛
𝑟
) rulers at the end [41], which we also observed for our adapted approach.
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Algorithm 5: Ruling Set for Lists
Input: Successor Array 𝑠𝑢𝑐𝑐 ∈ N𝑛 , Number of Rulers 𝑟 ∈ N
Output: Dist Array 𝑑𝑖𝑠𝑡 ∈ N𝑛
// Initialize Variables

1 𝑅 ← choose_rulers(𝑠𝑢𝑐𝑐, 𝑟 )

2 𝑟𝑜𝑜𝑡 ← {0, .., 𝑛 − 1}
3 𝑑𝑖𝑠𝑡 ← {0, .., 0}
4 𝑜𝑢𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 ← Vector<N × N × N>(0)
// Send Packets

5 for 𝑟𝑢𝑙𝑒𝑟 ∈ 𝑅 do
6 𝑝𝑎𝑐𝑘𝑒𝑡 ← (𝑠𝑢𝑐𝑐 [𝑟𝑢𝑙𝑒𝑟 ], 𝑟𝑢𝑙𝑒𝑟, 1) // (destination,ruler_source,distance)

7 𝑜𝑢𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 .push_back(𝑝𝑎𝑐𝑘𝑒𝑡)
8 𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟 ← send(𝑜𝑢𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 )
// Chase Packets

9 while ¬𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟 .is_empty() do
10 𝑜𝑢𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 ← Vector<N × N × N>(0)
11 for (𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑟𝑢𝑙𝑒𝑟_𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) ∈ 𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟 do
12 𝑟𝑜𝑜𝑡 [𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛] = 𝑟𝑢𝑙𝑒𝑟_𝑠𝑜𝑢𝑟𝑐𝑒

13 𝑑𝑖𝑠𝑡 [𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛] = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

14 if 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is neither final nor ruler then
15 𝑛𝑒𝑤_𝑝𝑎𝑐𝑘𝑒𝑡 ← (𝑠𝑢𝑐𝑐 [𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛], 𝑟𝑢𝑙𝑒𝑟_𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 1)
16 𝑜𝑢𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 .push_back(𝑛𝑒𝑤_𝑝𝑎𝑐𝑘𝑒𝑡))

17 𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟 ← send(𝑜𝑢𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 )
// Rank Sublist of rulers

18 𝑟𝑎𝑛𝑘𝑠 ← algorithm()

// (𝑖, 𝑟𝑎𝑛𝑘) ∈ 𝑟𝑎𝑛𝑘𝑠 iff vertex 𝑖 has rank 𝑟𝑎𝑛𝑘 in weighted reversed

sublist

// Calculate Final Ranks

19 for [𝑖, 𝑟𝑎𝑛𝑘] ∈ 𝑟𝑎𝑛𝑘𝑠 do
20 𝑑𝑖𝑠𝑡 [𝑖] = 𝑛 − 1 − 𝑟𝑎𝑛𝑘
21 for 0 <= 𝑖 < 𝑛 ∧ 𝑖 ∉ 𝑅 do
22 𝑑𝑖𝑠𝑡 [𝑖] = 𝑑𝑖𝑠𝑡 [𝑟𝑜𝑜𝑡 [𝑖]] − 𝑑𝑖𝑠𝑡 [𝑖]
23 return 𝑑𝑖𝑠𝑡

Comparison of Versions

Comparing these versions cannot be done by simply running the algorithms for the same 𝑟

and comparing the running times, because one could argue that 𝑟 should be set differently

for the two versions, since ruling set chase reduces our list to size 𝑟 and ruling set spawn

reduces it to 𝑟 log(𝑛
𝑟
). We compare the running times for the same result, i.e. the same

reduced instance size so we can postpone the choice of 𝑟 until later. In Figure 4.4 on the

left plot we can see for 𝑝 = 256 the comparison of both versions for
𝑛
𝑝
∈ {105, 106, 107}.
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reduction factor 𝑓 5 10 15 20 25 30 35 40

ruling set spawn 17 44 73 105 137 170 203 241

ruling set chase (𝑝 = 2
8, 𝑛

𝑝
= 10

5) 75 151 248 305 415 426 452 581

ruling set chase(𝑝 = 2
14, 𝑛

𝑝
= 10

7) 115 216 340 452 594 710 771 813

Table 4.1: Number of iterations for ruling set spawn versus ruling set chase

Note that the 𝑥−axis is the factor by which we reduced our instance and the 𝑦−axis is
the running time until we start our recursion in Line 18 since the rest of the algorithm

is the same. For smaller 𝑛 ruling set spawn performas superior, and for larger 𝑛 ruling

set chase. In Figure 4.4 on the right plot we can see the same experiment for 𝑝 = 16384.

Here ruling set spawn is far superior for smaller 𝑛, and for
𝑛
𝑝
= 10

7
ruling set spawn is

superior for most reduction factors. In the Table 4.1 we can see the number of iterations

which is at the same time the number of global message exchange while chasing packets.

In theory for ruling set chase for given reduction factor 𝑓 this means 𝑟 = 𝑛
𝑓
and the

number of iterations is
𝑛
𝑟
log(𝑟 ) with Lemma 3.4.3. Ruling set spawn needs

𝑛
𝑟
iterations

and the formula
𝑛
𝑓
= 𝑟 log(𝑛

𝑟
) ⇔ 𝑓 =

𝑛
𝑟

log( 𝑛
𝑟
) holds [41]. Note that the number of iterations

does not depend on 𝑛 for ruling set spawn, but it does for ruling set chase. This is the

reason why ruling set chase is the worse scaling algorithm considering the communication

overheads. Note that ruling set chase has less communication volume because we can omit

the distance in packets however for recursive calls we cannot omit the distance because

the edge weights are arbitrary, which reduces its few advantages. We conclude that ruling

set spawn is the better scaling algorithm and will further engineer this version.
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Figure 4.4: Comparison of ruling set chase versus ruling set spawn

We now want to approach the determination of 𝑟 . Note that the problem becomes more

dimensional since this algorithm is called recursively. Chan et al. suggested setting 𝑟 = 𝑛
𝑝

[8] when testing their ruling set chase which means they reduced their instance to size
𝑛
𝑝
.
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Sibeyn, however, proposed for ruling set spawn 𝑟 =
3𝑝
√
𝑛

ln(
√
𝑛

3𝑝
)
, resulting in a reduced instance

size of (1 +
ln(ln(

√
𝑛

3𝑝
))

ln(
√
𝑛

3𝑝
)
) · 3𝑝

√
𝑛 ≈ 3𝑝

√
𝑛. We want to test Sibeyn’s formula for 𝑟 , since he

proposed it for his algorithm. First, we must note that he concludes 𝑟 as a result of an

optimization problem he defined, where he set 𝛼 = 2 · 10−4 seconds and a running time of

5 · 10−5𝑛 seconds for a sequential list ranking algorithm of size 𝑛 which are appropriate

numbers for the Intel Paragon [38]. Sibeyn models the running time as one reduction

phase of ruling set and then sequentially rank the sublist of rulers [38].

4.2.1 Choose Parameters for Ruling Set Spawn

Sibeyn considered a general routing algorithm for global message exchange that has 𝑠

start ups. Our two-level approach consists of approximately 2

√
𝑝 startups wich we explain

in Section 4.1.1 and our one level approach of 𝑝 . His formula is illustrated in the Equation

4.7, where the constant we are now optimizing is 𝑐 , which Sibeyn set to
1

3
[38]. Note that

𝑊 is the Lambert W-function, which is the inverse of the function 𝑥 ↦→ 𝑥 · 𝑒𝑥 .

𝑟 =

√
𝑛𝑝𝑠

𝑐 ln( 𝑐
√
𝑛√
𝑝𝑠
)
⇔ 𝑛

𝑟
=
𝑐
√
𝑛

√
𝑝𝑠

ln(𝑐
√
𝑛

√
𝑝𝑠
) ⇔ 𝑐 =

𝑒𝑊 (
𝑛
𝑟
)

√
𝑛√
𝑝𝑠

(4.7)

Our idea is to run our algorithm for different 𝑟 and then compute back 𝑐 and use this

result to compute 𝑟 for deeper recursion calls. In figure 4.5 we evaluated our algorithm for
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Figure 4.5: Experiments for determining 𝑐

different parameters and for one-level message exchange our best data point is for
𝑛
𝑟
= 80

for which we can conclude 𝑐 = 0.796 and for two-level message exchange
𝑛
𝑟
= 130 for

which we can conclude 𝑐 = 0.290 and in both cases three recursive calls of this algorithm.

Own Experiments

In our own experiments, we observed a much simpler pattern. Sibeyn’s formula led to very

strange choices of 𝑟 in some cases. For very large 𝑝 we had very small reduction factors.
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We notice that 𝑟 = 𝑛
100

is always a good pick. This would result in a reduced instance of

size 𝑟 log(𝑛
𝑟
) = 𝑛

100
log( 𝑛

𝑛
100

) ≈ 0.0461𝑛. Then we recursively call our ruling set algorithm

until we have reduced our instance to where
𝑛
𝑝
≤ 10

4
, and break the recursion with pointer

doubling. We compared Sibeyn’s method and our simple approach for a random list with

𝑛
𝑝
∈ {105, 106, 107} for different 𝑝 and for one-level and two-level message exchange. Note

that in some cases Sibeyn’s formula resulted in 𝑟 > 𝑛, which is impossible, and therefore

called directly pointer doubling, but in all other cases we made three recursive calls. In

Figure 4.6 we can see that both approaches lead to similar results. However for 𝑝 ≥ 2
12

our apprach had a better performance for all instance sizes and also for one-level and

two-level message exchange. We conclude that our simplified approach scales better, but

we note that choosing 𝑟 is far from trivial and there is room for improvement.
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Figure 4.6: Comparison of two functions for determining 𝑟

4.2.2 Ruling Set for Tree Rooting

The first difference with forest as input is that in addition to a 𝑑𝑖𝑠𝑡 array, we also want

a correct 𝑟𝑜𝑜𝑡 array, which tells us for each vertex its corresponding root. Note that in

Algorithm 5 our sublist of rulers is reversed. In order for each non-ruler to update its 𝑑𝑖𝑠𝑡

pointer according to the 𝑑𝑖𝑠𝑡 pointer of our preceding ruler, we must either reverse our

sublist of rulers before recursion or reverse our initial list of all vertices. Even though

reversing the edges is more expensive at the beginning, it has advantages. The most

important advantage is that we have a noticeable reduction in size for all 𝑠𝑢𝑐𝑐 instances.

To understand why, we first need to explain the problem of not reversing edges at the

beginning. By implementing ruling set spawn all leaves become rulers, since they will

never be reached by a packet. For example, if 𝑠𝑢𝑐𝑐 is a binary tree, then about half of our

vertices are leaves resulting in a reduced instance size of at least half. By reversing the

edges, we get noticeable reductions in size regardless of our instance. In Figure 4.7 we

visualize the problem. Our input is a binary tree and some inner vertices but all leaves

are rulers. When we first reverse all edges we can exclude also all leaves due to our ruler

picking policy explained next.

Note that ruling set chase has a similar problem. Leaves are either picked as rulers or they

are unreached vertices at the end of packet chasing. Both have to be ranked independently.
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initial instance

reduce by ruling set spawn

reduce by reversing edges and then ruling set spawn

Figure 4.7: Sibeyn’s algorithm on binary in tree

We now explain all differences when generalizing ruling set spawn for forests. Our input

is still our successor array 𝑠𝑢𝑐𝑐 and 𝑟 . In context of list ranking 𝑟 is the number of rulers

initially picked and also the number of active waves during each iteration. In this context

𝑟 displays just the number of active waves.

Ruler Picking Policy In our implementation we know all the roots because they satisfy

𝑠𝑢𝑐𝑐 [𝑖] = 𝑖 . Since they become rulers anyway we first pick all the roots as rulers and then

uniform at random from the set of vertices that are not Leaves. Note our ruler picking

policy views a tree of size 1 as a leaf so these never become a ruler. Now we explain all

differences in each part as proposed in our pseudocode in Algorithm 5.

Initialize Variables As just explained, we need to reverse all edges, which can be done

by a single global message exchange. Now every vertex knows all ingoing neighbours.

Note that every vertex has one outgoing neighbour but can have an arbitrary number

of ingoing neighbours. Every ingoing neighbour receives one packet during the course

of this algorithm so PE 𝑖 with 𝑒 ingoing neighbours iteratively picks vertices as rulers

that send a packet to each ingoing neighbour until 𝑡 = 𝑒/𝑛
𝑟
packets in total are sent. Note
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4.2 Ruling Set Specific Optimizations

that for a list this means in total 𝑟 rulers are initially picked but for forests ≤ 𝑟 rulers are

initially picked however in any case there are 𝑟 active waves.

Chase Packets In each iteration in Line 9 we process our incoming packets. Each packet

is targeted to a single vertex 𝑣 . We forward this packet by sending it to any ingoing

neighbour of 𝑣 . We process as many packets as long as we do not exceed our threshold 𝑡 .

If we were to exceed 𝑡 , we would put the packets in a FIFO queue 𝑞 to be processed in later

iterations. If we processed all incoming packages and do not reach 𝑡 , we process packets

from 𝑞 first, and if we still do not reach 𝑡 , we would pick new rulers that send packets

to all incoming neighbours until we hit our threshold 𝑡 . Since every PE with 𝑒 ingoing

neighbours send 𝑡 = 𝑒/𝑛
𝑟
packets per iteration we always need

𝑛
𝑟
iterations in Line 9 until

every vertex is reached.

(i, j)

i

i is recursive index and j is initial index

i is initial index

0

1

2

3

4

5

(0, 0)

initial instance recursive instance

(2, 3)

(1, 2) (3, 5)

Figure 4.8: Representation of recursive instances

Rank Sublist of Rulers Since we also want to compute correct 𝑟𝑜𝑜𝑡 pointers, we obvi-

ously also need to call a forest rooting algorithm for the sublist of rulers. Besides arbitrary

edge weights, recursive algorithms also have an adaptation. The problem is illustrated in

figure 4.8. Our instances are defined as successor arrays 𝑠𝑢𝑐𝑐 with consecutive indices. So

in the recursive instance, the vertex with recursive index 3 would have a 𝑟𝑜𝑜𝑡 pointer to

the vertex with recursive index 2. However, we want the result to be the initial index 3. So

in addition to our new successor array with edge weights recursive instances also consist

of an array indicating for each vertex its initial index.
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Calculate Final Ranks Since we added also initial indices to our recursive instances

our rulers already have correct 𝑟𝑜𝑜𝑡 and 𝑑𝑖𝑠𝑡 values. Thus all non rulers 𝑣 send a request

to the ruler that initiated the wave that hit 𝑣 . This ruler is stored in 𝑟 = 𝑟𝑜𝑜𝑡 [𝑣] and ruler

𝑟 answers by 𝑟𝑜𝑜𝑡 [𝑟 ] and 𝑑𝑖𝑠𝑡 [𝑟 ] which consists of one request-reply scheme.

4.2.3 Non Blocking Packet Chasing

Sibeyn proposed an approch for his ruling set spawn called interlacing computation and

communication [41]. The basic idea is that global message exchange is divided into 𝑝 − 1
point-to-point message exchanges such that we can directly process packets after each

point-to-point exchange and do not wait until we receive all packets from all PEs. This

method effectively doubles the efficiency of the algorithm on average [41]. This approach

however still performs 𝑝 − 1 point-to-point messages that hinder scalability. We adjusted

this a approach by using a message queue. Uhl is developing a generalized message queue

framwork that buffers messages locally until a certain threshold is exceeded [42], which

he first introduced in a previous distributed memory triangle counting algorithm [33].

This message queue can perform a nonblocking poll that returns all received messages to

immediatly process them, which is at the core a similar idea than interlacing computaiton

and communication. Additionally this framework allows message indirection, aiming to

reduce latency to not perform O(𝑝) point-to-point exchanges. We use indirections similar

to the two-level message exchange 4.1.1.

This message queue allows custom aggregation and deaggregation. In our usecase we

just append a packet to the existing packets. Messages are buffered in the message queue

locally, until a certain global threshold exceeds.

Our implementation starts sending the same number of waves as our blocking ruling set,

by posting a message for each wave. Note in our implementation the threshold is∞. In a

while loop our algorithm processes all local messages and posts the forwarded and new

spawned waves. The loop ends with a termination detection that basically returns all

buffered messages.
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In this chapter we evaluate the performance of our algorithms across various test scenarios

with processor counts up to 16384. Initially, we detail the selection of test instances and

the methodology used for their generation.

Experimental SetupWe implemented our algorithms in C++ and our implementations are

available at https://github.com/ThomasWeidmann/MasterarbeitCode. For experiments

we use the thin compute nodes of the SuperMUC-NG supercomputer at the Leibniz

Supercomputing Center. The thin compute nodes consist of 8 islands with 792 nodes per

island which makes up a total of 6336 nodes. Each node consists of an Intel Skylake Xeon

Platinum 8174 processor with 48 cores and in total 96GB of memory per node using the

SUSE Linux Enterprise Server (SLES) operating system.

We compile our code with the g++ 12.2.0 and Intel MPI 2021 using optimization level -O3.

All of our datapoints are the average of 3 runs.

5.1 Methologies for Test Instances

KaGen is a communication-free graph generator [15]. We utilize KaGen for generating

distributed lists at scale. KaGen computes a pseudo-permutation for a specified global size

𝑛 using a Feistel cipher. Additionally, we employ this list as a test instance to manipulate

our instances. A random instance of our input instance 𝑠𝑢𝑐𝑐 is created by first generating

a list with KaGen, where we link the final vertex to the initial vertex, which we denote by

𝑠𝑢𝑐𝑐′. Assuming our input successor array is 𝑠𝑢𝑐𝑐 , for every edge (𝑖, 𝑠𝑢𝑐𝑐 [𝑖]), our random
instance includes the edge (𝑠𝑢𝑐𝑐′[𝑖], 𝑠𝑢𝑐𝑐′[𝑠𝑢𝑐𝑐 [𝑖]]). We also explore the use of Boruvka

trees. Boruvka’s algorithm [7] calculates the minimum spanning trees for undirected

weighted graphs. The initial step involves identifying and picking one adjacent edge with

the lowest weight for each vertex 𝑣 , resulting in a pseudotree. These pseudotrees are

subsequently converted into a tree. Our implementation picks from the set of adjacent

vertices with lowest edge weight, the one with lowest index. When transforming the

pseudotrees into a rooted tree, the vertex with the lowest index becomes a root. Note

that our input is an undirected graph to which we first assign edge weights𝑤 ∈ {0, .., 𝑘}
uniformly at random. We use Boruvka trees from RGG or GNM (Erdős Rényi) graphs

which are also generated by KaGen. For scaling random geometric graphs (RGG) KaGen

places vertices uniformly at random within a unit square (RGG2D) or unit cube (RGG3D).

Each MPI process is assigned a subset of these vertices. Edges are formed between vertices

if the Euclidean distance between them falls below a certain threshold. The𝐺 (𝑛,𝑚) model

chooses a graph uniformly at random from the set of all possible graphs with 𝑛 vertices

and𝑚 edges.
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5.2 Algorithms

We have developed a variety of versions for pointer doubling and ruling set algorithms.

Here is a brief overview of the foundational components we employed:

Message exchange For one-level message exchange, we utilize the built-in MPI routine

alltoallv. Our approach to two-level message exchange involves using this routine twice,

engaging at most

√
𝑝 + 2 PEs, as as explained in Section 4.1.2.

Request-reply Our algorithms frequently require a double round of global message ex-

change to respond to a collection of requests. In some experiments we use the optimization

remove duplicate requests, where we refine our request-reply process by eliminating dupli-

cate requests with the aid of hash tables, a method thoroughly explained in Section 4.1.2.

Now we introduce our algorithms for list ranking and tree rooting. It is important to note

that our input consists of a successor array 𝑠𝑢𝑐𝑐 with each PE being allocated an equally

sized segment. However our algorithms can also handle irregular instances which occur

in recursive calls of our algorithms.

Algorithms for List Ranking

Although tree rooting algorithms can be applied to list ranking, we first focus on our

implementations specifically tailored for list ranking.

List pointer doubling This algorithm utilizes techniques aiming to minimize the com-

munication volume to one integer per request and one integer per reply [38]. It requires

1 + ⌈log
2
(𝑛 − 1)⌉ iterations, each involving a request-reply cycle.

Double pointer jumping This method starts by computing the predecessor array from

the given successor array 𝑠𝑢𝑐𝑐 . It then proceeds through ⌈log
2
(𝑛 − 1)⌉ iterations, each

featuring one global message exchange [38].

List ruling set This approach initially picks 𝑟 = 𝑛
100

rulers, leading to 100 iterations, as

detailed in Section 4.2. The algorithm recursively calls itself until
𝑛
𝑝
≤ 10

4
at which point

it switches to list pointer doubling.

Algorithms for Tree Rooting

Now we turn our attention to our algorithms for tree rooting. Importantly, in addition to

determining the distance of every vertex from its root, each vertex also aims to identify

the root itself.

Forest pointer doubling This algorithm operates similarly to list pointer doubling. Addi-

tionally it assesses, after each iteration, whether there are active vertices by performing

an allreduce operation with the addition operator over the number of active vertices per

PE. The algorithm stops when there are no active vertices remaining.

Euler tour This algorithm calculates the weighted Euler tour [20] and then applies the list

ruling set algorithm to this tour. Note that this approach is specifically utilized when the

input 𝑠𝑢𝑐𝑐 represents a tree, as in such cases the Euler tour forms a single list, allowing

for an efficient application of our list ruling set algorithm.

Forest ruling set This technique is a generalization of the list ruling set, as detailed in

Section 4.2.2. It employs 𝑟 = 𝑛
100

rulers, resulting in 100 iterations each consisting of one
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global message exchange. Note that after the set of rulers is ranked, we need one request-

reply scheme to calculate the final values for all vertices. Similar to the list ruling set,

this algorithm recurses until
𝑛
𝑝
≤ 10

4
, at which point forest pointer doubling is employed.

We have also developed a version using non blocking communication, referred to as non
blocking forest ruling set detailed further in Section 4.2.2. Our non blocking forest ruling

set performs one reduction. If
𝑛
𝑝
≤ 10

4
, forest pointer doubling continues and otherwise

the blocking version, which we just call forest ruling set, is used.

Local Contraction This algorithm initiates with a local rooting process aimed at eliminat-

ing all edges between distinct vertices located on the same PE, as detailed in Section 4.1.3.

It employs a single request-reply for all remaining vertices. The modified instance is then

suitable for ranking by any tree rooting algorithm. These results are used for calculating

the final 𝑟𝑜𝑜𝑡 and 𝑑𝑖𝑠𝑡 values for all vertices without the need for further communication.

Remove high degree vertices This method modifies our instance by identifying all

vertices with a degree higher than 𝑑max further explained in Section 4.1.4 by removing all

connections to these vertices. The resulting modified instance can be ranked by any tree

rooting algorithm. Afterwards we use forest pointer doubling for the set of high degree

vertices due to the typically small size of these instances, for which pointer doubling is

optimally suited. This algorithm involves a fixed number of request-reply cycles.

5.3 Preliminary Experiments

In our preliminary experiments, we evaluate the impact of two-level message exchange.

Theoretically, for any given communication volume, there exists a threshold beyond which

higher processor counts benefit from two-level message exchange which is further ex-

plained in Section 4.1.1. To investigate this, we test our algorithms using both one-level and

two-level message exchange. The results, illustrated in Figure 5.1 and detailed further in

the appendix in Section 7.1, present the running times for various algorithms — including

double pointer jumping, list pointer doubling, synchronous and asynchronous forest ruling

set, and list ruling set — for
𝑛
𝑝
∈ {104, 105, 106}, comparing one- and two-level message

exchanges.

Our findings indicate that the effectiveness of two-level message exchange depends on

the algorithm and the size of the instance. Notably, for small instances where
𝑛
𝑝
= 10

4
and

𝑝 > 2
4
, two-level message exchange significantly reduces running times for the list ruling

set. For larger instances, where
𝑛
𝑝
= 10

6
, an improvement in performance by two-level

message exchange requires 𝑝 > 2
10
. For all other evaluated algorithms we observe similar

behavior and for 𝑝 > 2
12
every algorithm benefits from two-level message exchange.

Based on our analysis, two-level message exchange proves to be advantageous for the

range of evaluation sizes we consider. Therefore we focus exclusively on utilizing two-level

message exchange in our further evaluations.
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Figure 5.1: Impact of one-level message exchange versus two-level message exchange
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5.4 Test instances

We demonstrate the influence of graph structure on our algorithms’ runtimes using a

variety of synthetic test instances. In the following we introduce all test instances we use.

List For generated distributed random list at scale we use KaGen [15]. KaGen computes a

pseudo-permutation for a specified global size 𝑛 using a Feistel cipher. We call this instance

a random list.
Tree Tree instances are generated using the formula in Equation 5.8, where rand(0, 𝑖)

uniformly returns a random number between 0 and 𝑖−1. The resulting tree is characterized
by logarithmic depth which is visualized in Figure 5.2, where we generated trees for various

values of 𝑝 with
𝑛
𝑝
= 10

5
and determined their depth. Following this, we randomly permute

the vertices, as explained in Section 5.1 to load balance this tree. We call this instance a

random tree.

𝑠 [𝑖] = rand(0, 𝑖) ∈ {0, .., 𝑖 − 1} (5.8)
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Figure 5.2: Depth of our tree instances

GNM Boruvka forestWe use KaGen for generating GNM and RGG2D undirected graphs,

assign uniform random edge weights from {0, .., 𝑘} and then determine a Boruvka forest

as explained in Section 5.1. Figure 5.3 displays the depths of different Boruvka forests. The

trees in Boruvka forests of GNM(𝑛, 10𝑛), 𝑘 = 0 do not vary in depth for
𝑛
𝑝
∈ {104, 105, 106}

as well as for the RGG2D Boruvka forests, which is why we plotted in this figure the

depths only for one fixed
𝑛
𝑝
. The Boruvka forests for GNM graphs with 𝑘 = 0 are very

shallow with depths of at most 15 in contrary to the depths for RGG2D Boruvka forest for

𝑘 = 0 with some trees reaching depths of several thousand. We can use the parameter 𝑘 to

make these trees more shallow, which makes the RGG2D Boruvka forest with 𝑘 = 10 to a
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depth of approximately 50.
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Figure 5.3: Depths of Boruvka forest for different graphs

Caterpillar Here we address instances with vertices that have very high degrees. We

generated caterpillar graphs as visualized in Figure 5.4. Our caterpillar is basically a list

where every 𝑑th vertex becomes a vertex of degree 𝑑 .
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...d

...

...

...

...

...

...

Figure 5.4: Caterpillar

5.5 Scaling Experiments

We conduct a comprehensive analysis of our algorithms across a diverse range of inputs as

previously described. Our primary objective is to identify the strengths and weaknesses of

each algorithm. We conducted weak scaling experiments, keeping the problem size per PE

fixed, with processor counts up to 16384. Note that all experiments use two-level message
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exchange.

In Figure 5.5, we assessed the performance of various algorithms—including list pointer

doubling, the forest ruling set, the non-blocking forest ruling set, double pointer jumping,

and the list ruling set—on a random list where the ratio
𝑛
𝑝
ranges between 10

4
and 10

6
. It

is important to note that an Euler tour of a list effectively doubles the list’s length, and our

implementation of forest pointer doubling is inherently slower than list pointer doubling,

as detailed in the algorithm descriptions. Consequently, we did not apply either algorithm

to list data in our tests.

Results from applying algorithms such as Euler tour ranking, forest ruling set, non-

blocking forest ruling set, and forest pointer doubling on a random tree are presented in

Figure 5.6, where
𝑛
𝑝
also ranges between 10

4
and 10

6
. The lower plot specifically illustrates

the impact of eliminating duplicate requests on the forest ruling set’s performance. Addi-

tionally, Figure 7.4 in the appendix showcases how removing duplicate requests affects

forest pointer doubling on a random tree. The implications of applying forest pointer

doubling and forest ruling set algorithms on RGG2D(𝑛, 10𝑛) Boruvka forests (with 𝑘 = 0,

given that some trees exceed depths of 1000 as shown in Figure 5.3) are depicted in the

appendix in Figure 7.5.

Figure 5.7 displays the outcomes for forest pointer doubling, the non-blocking forest

ruling set, and the forest ruling set applied to both GNM(𝑛, 10𝑛) and RGG2D(𝑛, 10𝑛) Boruvka

forests at 𝑘 = 0. These instances are random and were chosen to examine the effects of

varying tree depths without considering locality.

Our analysis of tree rooting algorithms on RGG2D(𝑛, 10𝑛) Boruvka forests, for both

𝑘 = 1 and 𝑘 = 10, is shown in Figure 5.8. Unlike the previously mentioned instances, these

are characterized by significant locality, prompting us to test our local contraction method.

We then ranked the contracted instances using both forest pointer doubling and the forest

ruling set. Note that the reported runtimes include the time taken to contract the instance

and to restore the 𝑑𝑖𝑠𝑡 and 𝑟𝑜𝑜𝑡 values for all vertices.

In Figure 5.9, we examine how the presence of high-degree vertices affects the perfor-

mance of our forest ruling set algorithm on random caterpillar graphs with degrees 𝑑

ranging from 10
5
to 10

8
. We applied the algorithm both directly and with removing high

degree vertices, setting 𝑑max = 10
5
because our caterpillars have degrees of only 1 and 𝑑 .

In all scenarios, it was necessary to remove duplicate requests. We also conducted pointer

doubling tests, that are not displayed here, on some data points with runtimes averaging

around a minute.
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Figure 5.9: Forest synchron ruling set on randomized RGG2D Boruvka tree

Our experiments have demonstrated the runtime performance of our algorithms across

a variety of instances. We now proceed to analyze these algorithms in detail.

Pointer Doubling A key advantage of the pointer doubling algorithm is its minimal

communication overhead. Our pointer doubling algorithms run for log
2
(ℎ) ≤ log

2
(𝑛)

iterations. The double pointer doubling variant conducts one global message exchange,

while both list and forest pointer doubling require two global message exchanges. In

contrast, our ruling set algorithms, with a chosen 𝑟 = 𝑛
100

, necessitate at least 100 global

message exchanges, not including the additional overhead required for ranking the re-

duced instances. This explains why pointer doubling showcases strong performance for

smaller sizes, where
𝑛
𝑝
= 10

4
. However, as the ratio

𝑛
𝑝
increases, the impact of commu-

nication volume and local computations on runtime becomes more pronounced. This

effect increases for forests with greater depths and especially for lists. At
𝑛
𝑝
= 10

6
, pointer

doubling only demonstrates marginally better performance than our forest ruling set

algorithm on very shallow forests (such as random GNM(𝑛, 10𝑛) Boruvka forests at 𝑘 = 0)

and in shallow RGG2D(𝑛, 10𝑛) Boruvka forests at 𝑘 = 10. Double pointer jumping showed

inferior performance in the experiments presented, mainly due to its significantly higher

communication volume. It is crucial to recognize that double pointer jumping yields

the best results on very small instances, with several hundred vertices per PE, for both

one-level and two-level message exchange systems. This efficiency is attributed to the

reduction of communication overhead by approximately half.

List ruling set and Euler Tour Our list ruling set performed, as expected, on big lists
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where
𝑛
𝑝
= 10

6
the best. On smaller instances

𝑛
𝑝
= 10

4
the performance was similar to

pointer doubling. Ranking the Euler tour needs for every processor count and instance

size almost double the runtime than our forest synchron ruling set on our random tree.

This increased runtime can be attributed to the increased instance size of the Euler tour.

The Euler tour consists of double the vertices than our initial tree with assigned edge

weights.

Forest ruling set In our experiments we observed that this algorithm is versatile and has

on all instances a good performance. In Figure 5.10 we summarized all running times from

our blocking ruling set algorithm and our best pointer doubling algorithm for
𝑛
𝑝
= 10

6

(on not random graphs we performed local contraction, on trees we use remove duplicate

requests, list pointer doubling for lists and forest pointer doubling for all other instances).

We can see that forest ruling set had on all instances, except the contracted instances, a

pretty similar behaviour. Acually the worst performance was on lists. The reason is, that

on lists, this algorithm had the lowest reduction facters. While on lists our instance of

rulers should be smaller by factor 20 due to our pick of 𝑟 , the reduced instances were on

other inputs far smaller, particularly for trees, where it exceeded a factor of 100. This

discrepancy arises because we need ≤ 𝑟 rulers to start 𝑟 waves, only on lists we need

guaranteed 𝑟 rulers to start 𝑟 waves. This makes a wave on a dense tree much more

impactful than on a list.

Forest non blocking ruling set Given that the internal threshold is set to∞, we antici-
pated that our non-blocking variant would perform comparably to the blocking version.

Surprisingly on random lists and on our random trees the non blocking variant, forest non

blocking ruling set, performed inferior.

Load Imbalances As illustrated in Figure 5.10, the performance of the forest ruling set al-

gorithm is largely unaffected by the graph’s structure. However, instances that exhibit load

imbalances—where PEs have significantly varying numbers of incoming neighbours—pose

challenges for this algorithm. Notably, caterpillar graphs, with their degrees reaching up

to 10
8
, represent highly imbalanced instances. The effect of these high degree vertices on

the forest ruling set’s performance is depicted in Figure 5.9. This figure also demonstrates

that our method for removing high-degree vertices remains effective regardless of the

vertex degree. In additional experiments not presented here, tree instances that have not

undergone random permutation also show substantial imbalances. This is especially true

for PE 0, handling vertices 0 to
𝑛
𝑝
− 1, which on average have indegrees significantly higher

than 1, even though they are far away of being a high degree vertex. While theory suggests

load imbalances could occur in recursive instances, our experiments did not reveal such

issues.

Exploiting locality In Figure 5.8, we display the runtime results for our forest ruling

set applied to Boruvka trees generated from RGG2D(𝑛, 10𝑛) with 𝑘 ∈ 1, 10. For 𝑘 = 10,

the trees exhibit shallowness and fewer edges between distinct vertices within the same

PE. This shallowness likely contributes to the superior performance of pointer doubling

over the forest ruling set for 𝑘 = 10, a contrast to the results observed for 𝑘 = 1. Our local

contraction method for 𝑘 = 1 reduces the graph size to approximately
𝑛
𝑝
= 7 · 103, and for

𝑘 = 10, to
𝑛
𝑝
= 170 · 103. Surprisingly, even with the significantly contracted instance for

𝑘 = 1, the forest ruling set still outperforms pointer doubling, however, these differences
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are marginal.

Summary

Pointer doubling consistently performs well for small values of
𝑛
𝑝
due to its minimal

requirement for global message exchanges. However, for a vertex at depth ℎ, log
2
(ℎ)

pointer doublings are necessary, which leads to a communication volume of O(log(ℎ))
for each such vertex, in contrast to the forest ruling set where the communication volume

per vertex remains constant. This distinction was evident in our preliminary experiments,

where pointer doubling applied to lists required significantly larger processor counts to

justify the use of two-level message exchange compared to the forest ruling set. This

suggests that our forest ruling set could potentially benefit from employing a three-level

message exchange—or higher—in our evaluated scenarios.

For extremely shallow forests, pointer doubling invariably shows strong performance. Yet,

the gap between it and our forest ruling set remains narrow, as evidenced in Figure 5.10,

where we compare the best outcomes from both our pointer doubling algorithm and our

forest ruling set algorithm (applying local contraction to non-random graphs, removing

duplicate requests for trees, and using list pointer doubling for lists and forest pointer

doubling for all other cases). In random instances, the forest ruling set’s performance

is largely unaffected by the graph’s structure. Nonetheless, load imbalances—previously

discussed—do impact our runtimes, and the removal of high-degree vertices becomes

essential when present. For instances featuring numerous edges between distinct vertices

within the same processing element, our local contraction method proved its worth.
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In this thesis we introduced a new ruling set algorithm for tree rooting using the ideas

of the sparse ruling set algorithm for list ranking [41]. Our experiments show that the

sparse ruling set algorithm for tree rooting is almost twice as fast on trees than ranking

the euler tour with the sparse ruling set algorithm optimized for lists and up to 10 times

faster than using pointer doubling. This algorithm roots all instances including a list and

very shallow forests with a good performance for processor counts up to at least 16384

cores, surpassing the scale of any previously reported experiments in both tree rooting

and list ranking to our knowledge. Various techniques were employed to furtherenhance

the speed of our algorithms.

One such technique involves exploiting locality by contracting all edges between vertices

on the same PE, a strategy also applied in solving other algorithmic graph problems [24,

32]. For instances with a lot of such edges, this method effectively reduces the size of our

instance and allows for the reconstruction of all final values from this reduced instance

without additional communication. Additionally we implemented strategies from the

literature to decrease both the volume and overhead of communication.

We introduced a new approach for removing high degree vertices, which can otherwise

poorly influence performance. Our experiments, testing up to degrees of 10
8
, showed that

vertices did not impact our runtime unlike direct rooting of these instances without the

removal of high degree vertices. We refined the sparse ruling set algorithm by Sibeyn [41]

with a slight adjustment, ensuring the number of iterations during packet chasing, which is

the dominating part of the algorithm, to a fixed number rather than being probabilistically

bound, while keeping all important properties of the algorithm.

Our findings reveal that our forest ruling set algorithm can be applied to list ranking

with only a slight decrease in performance compared to the sparse ruling set algorithm

optimized for lists. We confirmed that pointer doubling performs well for very shallow

forests which is a well known fact. However, for pointer doubling to outperform our

advanced forest ruling set algorithm, the forests must not only be very shallow but also

have a low number of vertices per PE.

Future Work We demonstrated the effectiveness of our forest ruling set algorithm. How-

ever, our comparison included different forest ruling set algorithms and the simple pointer

doubling method. The field of tree contraction also offers algorithms applicable for tree

rooting [18].

We implemented a non blocking version of our algorithm. Using thresholds of ∞ and

many terminations result in similar performance than our blocking version. Experiments

with different thresholds, differing scheduling of polls and less terminations potentially

increase performance.

Furthermore, determining the optimal number of initial rulers is a complex challenge.

While Sibeyn proposed a methodology, it did not scale as effectively as our simpler strategy
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of consistently selecting 1% of the vertices as rulers. Our experiments indicated that for

smaller processor counts, fewer rulers should be chosen, since communication is not

strongly penalized in comparison to larger processor counts, increasing the number of

rulers showed slightly better results and lists do need more rulers than any other instance.

Additionally our results indicate especially instances with small
𝑛
𝑝
and large 𝑝 benefit from

an three-level message exchange or more even on our evaluation sizes. Optimizing both

parameters may enhance runtime.

Another methology that potentially positively affects performance is hybrid parallelization

which uses both threads and MPI tasks. Since some threads use a shared memory there is

no need for communication between them and on this shared memory the instance sizes

increases, which makes exploiting locality more impactful.
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7 Appendix

7.1 Algorithms on Random List using one- and two-level
Message Exchange

In this section we show the impact of one-level message exchange versus two level

message exchange for all tested algorithms on lists, that were not shown in our preliminary

experiments. In Figure 7.1 we can see the effects for double pointer jumping, in Figure

7.2 the effects for forest non blocking ruling set and in Figure 7.3 for list ruling set with

𝑛
𝑝
∈ {104, 105, 106} and processor counts up to 16384.
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Figure 7.1: Double pointer jumping on random list
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Figure 7.2: Forest non blocking ruling set on random list
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Figure 7.3: List ruling set on random list
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7.2 Algorithms on Random Instances with/without remove duplicate requests

7.2 Algorithms on Random Instances with/without remove
duplicate requests

In this section we show the effect of remove duplicate requests on different algorithms

and different instances. In Figure 7.4 forest pointer doubling is used on a random tree, in

Figure 7.5 the effects for random GNM(𝑛, 10𝑛) Boruvka trees for 𝑘 = 0.
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Figure 7.4: Forest pointer doubling on random tree
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