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Abstract 
Energy storage systems (ESS) offer a wide range of applications in industrial production, with the potential to significantly 
reduce electricity power costs through peak-shaving, particularly in Germany. This paper proposes a methodology for 
designing ESSs specifically for industrial peak shaving from a techno-economic perspective. The proposed approach 
utilizes mixed-integer linear programming (MILP) to calculate the minimum annualized total operating costs, compares 
various energy storage technologies (EST) to determine the optimal solution, and performs sensitivity analysis to identify 
critical impact factors on the optimization problem. A case study is implemented with real-world data. The results indicate 
that connecting a 38.4 kW/38.4 kWh lithium-ion (Li-ion) battery energy storage system (BESS) to the example factory 
delivers the greatest economic benefit compared to the other three storage technologies. This results in a total cost saving 
of 980 €/a and a peak power reduction of 33.8 kW. Additionally, a lookup table is provided to assist the factory in selecting 
the optimal Li-ion BESS available in the market. 
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1 Introduction  
In recent years, there has been a growing interest in explor-
ing the potential of energy storage systems (ESS) in the in-
dustrial sector. Various applications such as ancillary ser-
vices, peak-shaving, and arbitrage have been actively in-
vestigated. Among these applications, peak-shaving has 
gathered significant attention due to its potential to reduce 
electricity power costs for factories while also contributing 
to network stability [1, 2]. The design process of ESS can 
be categorized into three main areas: energy storage tech-
nology (EST) selection, ESS sizing, and optimal operation 
of ESSs [1]. Each of these steps is crucial, and any im-
proper design within these areas can result in increased 
costs and system losses. 
 Research efforts have been dedicated to addressing the 
complex optimization problem of designing ESS specifi-
cally for peak-shaving applications. Braeuer et al. [3] and 
Hong et al. [4] separately employed linear programming 
and heuristic algorithm to optimize the sizing of batteries 
for peak-shaving, yet they did not compare different ESTs. 
Similarly in [5], Lucas and Chondrogiannis focused on va-
nadium redox flow batteries (VRFB) for peak-shaving 
without providing a quantitative analysis of the reasoning 
behind their selection. On the other hand, Alsaidan et al. 
[6] studied different ESTs, aiming to minimize the mi-
crogrid operation costs but they did not consider peak-
shaving costs in the objective function. Oudalov et al. [7] 
proposed an industrial ESS design method through dy-
namic optimization, but the optimal operation was deter-
mined with a known energy storage size. As highlighted 

above, previous studies have primarily focused on some 
specific aspects of the overall ESS design problem. 
To address the existing gap in the literature, this paper pre-
sents an innovative design framework for optimal select-
ing, sizing, and operating an ESS specifically for the pur-
pose of peak-shaving in industrial production. The key 
contributions of this article can be summarized as follows: 
 A techno-economic ESS design methodology for 

peak-shaving in the manufacturing industry is pro-
posed. 

 A generalized ESS model applicable to different types 
of ESTs considering various system parameters is de-
veloped. 

The remainder of this paper is organized as follows. The 
whole design framework is described in Section 2. Section 
3 introduces a mixed-integer linear programming (MILP) 
based optimization model for ESS design. Section 4 pre-
sents a case study with real-world data. The evaluation in-
cluding sensitivity analysis is provided in Section 5. This 
paper is concluded in Section 0. 

2 Design framework 
The overall objective of the proposed methodology is to 
achieve the optimal design of an ESS for discrete produc-
tion systems from an economic perspective. Thereby the 
scope can be the whole factory, a particular part of the pro-
duction system (e.g., milling shop floor) or a specific ma-
chine (e.g., forming press). The design framework in Fig-
ure 1 can be structured as a four-step process, starting with 
the creation of a database of ESTs, followed by optimal 
sizing and optimal operation for each technology, contin-
ued with the selection of the best technology by comparing 
the optimization results of various technologies and finally 
a sensitivity analysis of the optimization model. The whole 

 
The authors acknowledge the financial support by the Federal 
Ministry for Economic Affairs and Climate Action of Germany in 
the project ESiP (project number 03EI6062B). 
 

NEIS 2023

ISBN 978-3-8007-6134-0 © VDE VERLAG GMBH  Berlin  Offenbach

79
Authorized licensed use limited to: KIT Library. Downloaded on August 05,2024 at 08:06:54 UTC from IEEE Xplore.  Restrictions apply. 



process is based on a given electrical load profile of the 
production system or machine.

2.1 Database creation 
The design solution for an ESS relies on two fundamental 
inputs: EST data and production data.
It is essential to have a comprehensive collection of core 
parameters for each EST. Different ESTs, such as various 
types of lithium-ion (Li-ion) batteries, VRFB, lead–acid 
(Pb-Acid) batteries, flywheels, and supercapacitors, ex-
hibit distinct characteristics. A thorough comparison of 
ESTs is presented in previous works [8–12]. Table 1 pre-
sents a list of the essential parameters for all ESTs that will 
be utilized in the case study described in Section 4. It is 
important to note that all parameters considered in this 
study are taken from a system-level perspective.
The parameters listed in Table 1 are categorized into three 
groups. The first category contains economic parameters
[12], which include energy related cost (consisting of bat-
tery capital cost, construction and commissioning cost) in 
€/kWh, power related cost (comprising the power conver-
sion system and balance of plant) in €/kW, and operating 
and maintenance (O&M) cost in €/(kW-a). These three 
costs together form the total cost of an ESS. It is worth not-
ing that flywheel energy storage (FES) is measured only in 
€/kW due to its low specific energy. The values provided 
in the table are based on the exchange rate of 0.95 between 
the US dollar and the euro in the previous year [13]. Price 
plays a crucial role in the process of selecting the appropri-

ate EST, as only ESSs that offer economic benefits are con-
sidered viable for industrial production. Excessively high 
storage costs can make it economically unprofitable for in-
dustrial producers. However, it is important to note that 
price is not the sole determining factor. The second cate-
gory comprises efficiency related parameters, such as sys-
tem efficiency, depth of discharge (DoD), discharge time, 
and self-discharge. These parameters determine the actual 
energy and power that can be extracted from and delivered 
to an ESS. In terms of discharge time, the values for the 
three types of electrochemical ESTs are set at 1 h, while 
the flywheel has a faster discharge time of 0.25 h. Addi-
tionally, the flywheel exhibits a high self-discharge rate.
The last classification concerns the degradation related pa-
rameters, which include cycle life and calendar life. Typi-
cally, the lifetime value is determined when the remaining 
energy capacity of batteries decreases from 100% to 80%
[14]. 

Table 1  Parameters of ESTs [8–12]

Parameters Units Li-
ion VRFB Pb-

Acid 
Fly-

wheel 

Costs

Energy 
Related €/kWh 353 707 414

Power  
Related €/kW 368 427 427 1026

O&M €/kW/a 9.5 9.5 9.5 5.3

Efficiencies 

Battery Cycle % 95 70 80 90

Average  
Inverter % 95 95 95 95

System % 93 79 85 90

DoD % 80 80 80 80

Discharge 
Time h 1 1 1 0.25

Self- 
Discharge %/h 0 0 0 20

Lifetimes 

Calendar a 10 15 10 20

Cycle 3,000 10,000 2,000 200,000

The design process of an ESS necessitates a comprehensive 
analysis that encompasses not only the characteristics of 
the EST itself but also the specific production process. 
Therefore, an additional crucial dataset to consider is the 
production data, typically represented by the factory load 
profile. By examining basic load profile characteristics, 
such as the period, maximum power, and cycle total energy 
consumption, the initial screening of ESTs can be imple-
mented. Furthermore, a detailed load profile can be em-
ployed for the precise sizing of the ESS.

2.2 Sizing and operation 
The primary task of this step is to design ESSs and develop
operation plans utilizing different ESTs for a given produc-
tion process. To achieve this, the optimal sizing and oper-
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Figure 1  Flowchart of the design methodology of ESS.
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ation problem is formulated as a MILP problem. The ob-
jective function aims to minimize the overall operating 
costs. Several constraints are imposed on the ESS, which 
are derived from the characteristics of the ESTs and other 
limitations associated with the utility grid. To find the op-
timal solution, a specialized software tool like MATLAB
is employed. The difficulty of this part lies in balancing the 
conflict between the model complexity and the computa-
tion time. The Literature [15] suggests that reducing a non-
linear and complex ESS model to a linear model is a well-
established approach. This simplification allows the opti-
mization problem to be solved for an optimal solution. The 
detailed process of model building and solution finding 
will be explained in Section 3. 

2.3 Comparison and selection
Optimization results will be obtained for each EST after 
solving the MILP problem, including optimal size, and op-
timal ESS operation strategy. Then the best EST will be 
selected in terms of economy and peak-shaving ratio. This 
step represents a subsequent optimization of the previous 
step (Subsection 2.2).

2.4 Evaluation 
After the design is completed, sensitivity analysis [16, 17]
is employed to determine how uncertainties in the input pa-
rameters affect the optimal design outcomes. To facilitate 
easy access to the optimization results without the need to 
rerun the optimization algorithm every time, a lookup table 
can be created. This table serves as a reference guide for 
plants and assists in making informed decisions regarding 
the selection of ESSs available in the market.

3 Model formulation
Figure 2 illustrates a simplified industrial distribution net-
work with an ESS. In the absence of an ESS, the plant load 
is fully covered by the utility grid. However, with the inte-
gration of an ESS at a specific bus (AC-coupled), the sys-
tem gains additional flexibility in controlling the power 
flow within each component, thus enabling the optimiza-
tion of the overall system operation.

Various methods have been developed by numerous re- 
searchers to determine the size and power dispatch of ESSs
[18]. In this paper, a single-objective optimization model 

based on MILP is proposed. To linearize the model, certain 
assumptions are made.  

The electric loss of the ESS is considered while the
thermal loss and the loss of the management system 
are neglected.
The system efficiency, including battery cycle effi-
ciency and inverter efficiency, is set as a constant.  
All ESTs operate in their respective lifetime intervals 
without considering the degradation model.

3.1 Objective function
The objective of the optimization problem is to minimize 
the overall operating costs in Figure 2. Eq. (1), which de-
rives from use case 2 in [3], shows that the objective func-
tion includes the annualized electricity power costs , 
the annualized system costs of ESS _ and the annu-
alized maintenance costs of ESS _ .  min ( + _ + _ ) (1)

is calculated in (2), where C _ , are the 
grid power cost and the peak demand. _ in (3) rep- 
resents the annualized system costs, where C _ , , C _ , , CRF are the ESS energy related cost, the 
nominal ESS capacity, the ESS power related cost, the 
nominal ESS power, and the capital recovery factor, re-
spectively. _ is calculated by multiplying the 
O&M cost C _ and . = C _ (2) 

_ = (C _ + C _ )CRF (3) 

_ = C _ (4) CRF allows costs to be calculated on an annualized basis, 
taking into account the useful life of the entire system and 
interest rates [19], CRF = ( (1 + ) ) ((1 + ) 1) [ /a] (5) 
where and are the interest rate and the lifetime of the 
ESS, respectively. is set to be 2% [20].

3.2 Constraints
Distribution network system level constraints include 
nodal power balance and utility grid power limitation. The 
nodal power balance (6) ensures that the load demand 
is always met by the utility grid power  and the ESS 
power , where is positive when charging 
( _ > 0, _ = 0) and negative when discharging 
( _ = 0, _ > 0). Constraints with indi-
cate that the condition should be satisfied at all times . , + , = ,   (6)

, =  _ , _ , (7)
Eq. (8) – (9) impose a maximum power from the grid, i.e., 
the threshold of peak-shaving . And this threshold is 
less than the maximum value of the load curve P .,   (8)

Figure 2  Schematic of an industrial distribution network with 
an ESS. 

NEIS 2023

ISBN 978-3-8007-6134-0 © VDE VERLAG GMBH  Berlin  Offenbach

81
Authorized licensed use limited to: KIT Library. Downloaded on August 05,2024 at 08:06:54 UTC from IEEE Xplore.  Restrictions apply. 



P  (9) 
ESS level constraints include power, state of charge (SoC) 
and charge/discharge capacity. Inequality constraints (10) 
limit the charge and discharge power of the ESS to the 

, where  is the efficiency of the ESS, consisting 
of the inverter efficiency  and the storage efficiency 

. _ ,    _ ,    =  (10) 

The working mode of the ESS is limited by (11), where _  and _  are integer variables. With this 
constraint, the ESS can only be in charging ( _  = 
1), discharging ( _  = 1) and standby ( _  = _  = 0) states. _ , _ , P    _ , _ , P    _ , + _ , 1   (11) 

Eq. (12) represents the conversion of power to energy, 
where  and  are the self-discharge rate of ESS and 
time step, respectively. , = , + ( ,, )   (12) 

The energy content of the ESS is limited by setting the up-
per limit SoC  and the lower limit SoC . SoC , SoC     (13) 

Eq. (14) limits the charge/discharge capacity of the storage 
by using the charge/discharge time  in Table 1. =  (14) 
To summarize, (1) – (5) and (6) – (14) describe the objec-
tive function and constraints of the optimization problem, 
respectively. 

4 Case study 
This section presents a case study based on real collected 
data. The first three steps of the four-step design process 
proposed in Section 2 will be applied in this section, and 
the last step will be proposed in Section 5. 

4.1 Database creation 
In the case study, a real electrical load profile from a me-
dium-sized factory in the field of tool and die making with 
100 employees is used (automotive supplier). It was meas-
ured at the central grid connecting point of the factory. The 
main consumers in the factory are the forming presses, 
milling machines, welding equipment and compressed air 
systems. Table 2 shows some key values of the load curve. 
The one-year load curve was divided into production 
weeks. To reduce the size of the variables and the calcula-
tion time, one characteristic week was selected. In the next 
steps of sizing, this week was simply repeated throughout 

the year (52 times). With this first approach, the uncertain-
ties in the load profile through fluctuations in production 
utilization and seasonal consumption were neglected. A 
duration factor is calculated by dividing annualized electri-
cal energy by maximum electrical power. According to the 
latest price list [21] of the German grid operator named 
Netz-BW, the power price is set to be 131 €/kW. 

Table 1  Basic Information Load Profile 

Features Units Values 

Cycle Length week 1 

Annualized Electrical Energy MWh 2,128 

Maximum Electrical Power kW 482 

Duration Factor h/a 7,492 

Electrical Power Price €/kW 131 

 
The sampling resolution of the load profile is 15 minutes, 
which means that there are 4 · 24 · 7 = 672 sampling points 
in a period of one week, i.e., in this case  = 0.25 h and 

 is shown in (15). = {1, 2, 3 672} (15) 
The bottom limit of the curve is about 110 kW, indicating 
that this value is the base load of the factory, while the peak 
load is about 482 kW, which is more than four times the 
base load. It can be inferred that it is possible to reduce the 
overall costs through peak-shaving with an ESS. The data-
bank of ESTs has been introduced in Subsection 2.1. For 
the purpose of this case study, four specific technologies 
have been selected as examples to individually optimize 
their sizing and operation. These technologies include Li-
ion batteries, Pb-Acid batteries, VRFB, and flywheels. 

4.2 Sizing and operation 
Building upon the optimization model described in Section 
3, the second step of the methodology is carried out. This 
model is implemented and solved using the optimization 
toolbox available in MATLAB. The MILP-based optimi-
zation model offers the advantage of finding the optimal 
solution. The resulting optimization outcomes are pre-
sented in Figure 3 and Table 3.  
Each column in Figure 3 represents an optimized operation 
design for one EST. In each column, the top graphic shows 
the threshold of peak-shaving ( ), the power flows of 
the load ( ) and the utility grid ( ). Sharp peaks in 
the load that exceed the threshold are covered by the power 
provided by the storage, whose power curve ( ) and 

 are presented in the bottom graphic. The first column 
about the Li-ion BESS, is taken as an example. The calcu-
lated optimal threshold is 448.2 kW, which means that all 
the load between 448.2 kW and 482 kW can be covered by 
the Li-ion BESS during the production cycle, and 38.4 
kWh of capacity is required for this purpose.  
From the first three columns, it is clear that the three elec-
trochemical ESSs perform similarly in terms of peak clip-
ping effects. Their respective optimal designs can cover 
peak power over about 450 kW. They successfully address 
four peaks in the load curve through 1-2 charge/discharge 
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cycles, with one peak occurring between 25 h to 30 h and 
three other peaks within the range of 90 h to 100 h. How-
ever, the performance of FES differs significantly. Due to 
the contradiction between the minimum SoC (set at 10%) 
and the high self-discharge rate (20%), the FES is always 
in cycles of charge and self-discharge. The optimized fly-
wheel design can only cover two peaks above 471 kW, 
within the interval of 96 h to 98 h.

4.3 Comparison and selection
For comparison purposes, the optimization results of the 
four ESTs are summarized in Table 3. Li-ion BESS (ST1) 
helps the plant to achieve the most economical operation, 
not only cutting 7% of the peak load in the production 
curve but also saving about 980 €/a. It is interesting to note 
that despite the many differences between VRF BESS 
(ST2) and Pb-Acid BESS (ST3) in terms of price, effi-
ciency, lifetime and other parameters, their respective op-
timal designs achieve almost the same result, with a 6% 
peak-shaving rate at an annualized cost of about €62.9k. At 
the same time, they both perform worse than ST1. Addi-
tionally, FES is the worst choice of them all, and it achieves 

only a 2.3% peak-shaving rate for almost the same cost as 
ST2 and ST3. A major reason for this is its overly expen-
sive price.= ( _ + _ ) (16)
To incorporate both economic considerations and the effect 
of peak-shaving, the investment per unit of peak-shaving 
power for each ESS is calculated using (16). The resulting 
order, from lowest to highest, is as follows: ST1 (102 
€/kW) < FES (106 €/kW) < ST3 (121 €/kW) < ST2 (123 
€/kW). The analysis reveals that the FES demonstrates a 
favorable price-to-performance ratio in this particular con-
text. This indicates that flywheels with high power-to-en-
ergy ratios and high unit prices are most suitable for ex-
treme power situations, i.e., extreme spikes with very high 
power and very little energy.  
In addition, the system losses of ESSs are an important 
evaluation factor. The losses of ST1, ST2 and ST3 increase 
with decreasing cycling efficiency, whereas the system 
losses of FES are mainly derived from its high self-dis-
charge rate.

Figure 3  Comparison of peak-shaving of four different kinds of ESSs. Peak-Shaving occurs exclusively between 20 h and 120 h, so 
graphics are zoomed in within this specific time range.

Table 3  Cost Comparison of Different Optimized ESSs

Parameters Units Li-ion BESS VRF BESS Pb-Acid BESS FES

Threshold Peak-Shaving kW 448.2 452.9 453.6 471

Ratio Peak-Shaving % 7 6 5.9 2.3

System Loss kWh/a 7.8 19.4 12.7 65.2

Power Cost k€/a 58.7 59.3 59.4 61.7

ESS Cost k€/a 3.1 3.2 3.1 1.1

Maintenance Cost k€/a 0.36 0.35 0.32 0.09

Sum Costs k€/a 62.16 62.85 62.82 62.89
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In summary, the Li-ion battery is the best of the three elec-
trochemical ESTs in terms of price, peak-shaving effect 
and system losses, while the FES is not the most suitable 
to be put into this factory because of its high price and high 
system losses. However, flywheel has a great potential for 
application in dealing with certain very high-power situa-
tions, which re mains to be studied. For this tool manufac-
turing plant (defined load profile), the optimal design is a 
38.4 kW/38.4 kWh Li-ion BESS, and the optimal operating 
scheme is shown in the first column of Figure 3. 

5 Evaluation 
From the Subsections 4.2 and 4.3, it can be concluded that 
the ESS designed for this plant will only be used roughly 
3-4 times during the production cycle of a week. However, 
this still makes sense from an economic point of view, as 
high electricity power costs can be reduced. The results 
show that the investment in the Li-ion BESS can get a total 
savings of 980 €/a. As the price of ESSs drops year by year, 
the benefits will become greater and greater. A similar con-
clusion is reached in [15]. The authors design an ESS for a 
profile and obtain the numbers of capped peaks of 20 with 
yearly billing scheme, and the full equivalent cycles of the 
ESS are only 5. But that BESS still brings benefits. 

5.1 Sensitivity analysis 
The data presented in Table 1 is sourced from [8–12], and 
discrepancies exist among the data obtained from these 
sources. Furthermore, certain parameters, such as energy 
and power related cost, exhibit variations over time. Thus, 
conducting a sensitivity analysis becomes crucial in as-
sessing the influence of alterations in input parameters on 
the model’s output results. 
For the analysis, four parameters from Table 1 have been 
chosen: energy related cost, power related cost, discharge 
time, and calendar lifetime. The values listed in the table 
serve as the reference values. When altering one parameter, 
the remaining parameters are held constant at their respec-
tive reference values. This approach, known as the “one-
at-a-time” approach [16], ensures that changes in a single 
parameter can be isolated and evaluated independently. 
The results of the analysis conducted for Li-ion BESS are 
depicted in Figure 4. All the data presented in the figure 
have been normalized, where the reference case corre-
sponds to the point (1, 1). The corresponding input param-
eters for the reference case can be found in the first column 
of Table 1, while the optimal sum costs associated with it 
are listed in the first column of Table 3. Figure 4 reveals 
that only the calendar lifetime exhibits a negative correla-
tion with the annualized sum costs, and this correlation 
holds significance. On the other hand, the other three pa-
rameters demonstrate a positive correlation. Both energy 
related cost and power related cost display a relatively sub-
stantial impact on the annualized sum costs, with discharge 
time following closely. Based on the sensitivity analysis 
conducted on the Li-ion BESS, it can be concluded that the 
crucial parameters influencing the optimization results are 
the two related costs and the calendar lifetime. In other 

words, lower costs and an extended battery lifetime con-
tribute to smaller annualized total operating costs of the 
plant. The same analytical procedure can be applied to the 
other ESSs to obtain comparable results. 
 

 
Figure 4  Impact of Li-ion BESS’s parameters on annualized 
costs. 

5.2 Lookup table 
For the plant in the case study in Section 4, it is very prac-
tical to get a lookup table for a certain kind of EST. The 
plant can query the table for the respective optimal system 
design results under dynamic parameters. In this section, 
the energy related cost and power related cost are com-
bined into one parameter, i.e., system cost. Then a one- 
dimensional lookup table for the optimal design of the Li-
ion BESS with the parameter of the system cost is created. 
Table 4 shows that as the system cost increments from half 
the reference to 1.5 times the reference, the optimal ESS 
size decreases, the total cost increases (consistent with the 
analysis in the Subsection 5.1), and the peak-shaving ratio 
decreases. As the system cost decreases to half the refer-
ence price, the optimal ESS size increases to 56.3 kW/56.3 
kWh while the peak-shaving ratio increases by 20%, which 
is a significant improvement. Figure 5 shows the power 
flow of the system under this design, where load demands 
higher than 441.2 kW are covered by the Li-ion BESS, and 
the 56.3 kWh capacity achieves a peak-shaving ratio of 
about 8.5%. On the other hand, when the system cost rises 
to 1.4 times the reference, Li-ion BESS will not be built at 
that plant because it will not be economically beneficial. In 
[12], the authors predict that the price of Li-ion BESS will 
reach down to 561 €/kW/kWh in 2025, with a decline of 
22%. As the cost continues to drop, its potential for indus-
trial peak shaving will continue to be explored. 

 
Figure 5  Power flow of Li-ion BESS with half of the reference 
system cost. 
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6 Conclusion 
A comprehensive ESS design methodology for peak- 
shaving in industrial production was proposed in this pa-
per. The technology, size and operation of ESS were opti-
mized. Moreover, a case study was performed. A 38.4 
kW/38.4 kWh Li-ion BESS was designed for a medium-
sized factory in the field of tool making. The follow-on 
work of this research will focus on building an ESS model 
considering heat losses and standby losses. A robust opti-
mization approach that covers the uncertainty of the load 
profile must also be developed. 
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Table 4  Lookup Table for Optimal Li-ion BESS Design 

 System Cost 
(baseline: 721 €/kW/a) 

Optimal Size 
( kW/ kWh) 

Sum Costs 
(baseline: 62.16 k€/a) 

Ratio of Peak-Shaving 
(baseline: 7%) 

 

 0.5 56.3/56.3 0.97 1.2  

 0.6 38.4/38.4 0.98 1  

 0.8 38.4/38.4 0.99 1  

 1.0 38.4/38.4 1 1  

 1.2 29.8/29.8 1 0.81  

 1.4  1.02 0  

 1.5  1.02 0  
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