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Abstract. Shading and soiling are the biggest environmental factors that negatively affect the 
yield of PV systems. In order to integrate PV systems into the grid as easily and on large scale 
as possible, it is important that energy generation forecasts are as accurate as possible. The 
scope of this paper is to present a method to integrate shading and soiling into machine learn-
ing based PV forecasts, even if they have already been pre-trained by a large dataset. This 
paper focuses on shading by buildings, trees, obstacles, while shading by clouds can only be 
considered to a limited extent by weather forecasts. This study uses a dataset of three years 
of training data to build a base model. Subsequently, the power loss due to shading and soiling 
is determined using a digital twin and used to correct the forecast values of the baseline model. 
Finally, an evaluation of the corrected and original predicted values is performed. This shows 
that the forecast error can be reduced in the same way as the loss due to shading and soiling 
using various machine learning methods. The results are compared against a Physics-In-
formed Neural Network (PINN), which outperformed popular machine learning methods both 
with and without shading and soiling by 6.6%. 

Keywords: Solar Power Forecasting, Shading, Soiling, Machine Learning, Physics-Informed 
Neural Networks  

1. Introduction 

The global deployment of photovoltaic (PV) systems and their associated capacity experienced 
a remarkable increase of 21.8%, from 866 GW in 2021 to 1055 GW in 2022. Anticipated further 
growth is essential to meet future CO2 emission targets [1]. However, challenges related to 
grid stability have come to the forefront due to the variable nature of PV power generation 
influenced by factors like cloud movements, rain, and irradiation changes [2]. Accurate fore-
casts are crucial to ensuring stability and availability, with forecasting methods encompassing 
physical models, statistical approaches, and machine learning methods. Machine learning is 
favored for its strong generalization capability, adapting to new situations [3]. Despite their 
advantages, machine learning methods demand substantial data collection over years to 
achieve high accuracy. Recent trends lean toward employing new neural network architectures 
for solar power forecasting. Studies have highlighted the effectiveness of Radial basis function 
(RBF) networks and variational autoencoder networks [4], [5]. While some studies suggest the 
superiority of Support vector regression (SVR) over neural networks, the choice depends on 
specific applications [6], [7]. Exogenous data such as irradiation, wind speed, and air temper-
ature are typically used for solar power forecasting [8]. The inclusion of weather forecast data 
for longer prediction periods has been emphasized in certain studies [9]. The commercial use 
of solar power forecasting solutions is already ongoing [10]. Challenges arise in predicting 
unforeseen situations not accounted for in recorded datasets, such as increased shade from 
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growing trees or newly constructed buildings. Additionally, factors like pollution, dust, and mod-
ule degradation impact PV system output. Traditional methods struggle to handle shading ad-
equately, leading to increased forecast errors. Existing research on solar power prediction of-
ten overlooks explicit consideration of shading effects caused by obstacles. In previous re-
search on the forecast of solar energy, shading effects due to obstacles or soiling are often not 
explicitly taken into account, as these effects on PV systems are usually not recorded explicitly 
so that these effects can be allocated. However, these effects are not always avoidable, espe-
cially for rooftop systems, and should therefore be taken into account. To the best of the au-
thors’ knowledge, there is only one relevant paper which explicitly uses shading and soiling 
losses in an energy forecast setup from Marca et al. [10]. In this study, the scope of the energy 
forecast was limited to daily forecasts. In addition, no dynamic changes in shading were con-
sidered, but a constant factor was determined for the whole day. The approach utilized Nu-
merical weather prediction (NWP) data for Global horizontal irradiance (GHI) and temperature, 
incorporating a Photovoltaic (PV) model accounting for shading, optical losses, and system 
losses [11]. Seasonal fluctuations of shading effects, combined with changing sun positions, 
pose challenges for solar power forecasting. Few studies extend beyond one year of training 
data, limiting their ability to address such effects. To address these limitations, a hybrid ap-
proach combining data-driven methods and physical models is proposed, explicitly considering 
shading and soiling effects and quantifying loss effects. This paper focuses on correcting pre-
diction values using a model with extensive training data under shading and soiling conditions 
to improve generalization capability. In this case, shading and soiling are also taken into ac-
count simultaneously for solar power forecasts for the first time. Furthermore, to the best of 
our knowledge, a Physics-Informed Neural Network is used for the first time for solar power 
forecasting, which, in addition to physical input variables such as irradiation or temperature, is 
also based on physical relationships in the form of equations. These relationships were not 
only implemented but also extended to include shading and soiling. 

The quantification of loss effects, such as shading and soiling, enables more robust fore-
casts, which are essential for energy management strategies in a real environment. This re-
search is unique in combining shading and soiling loss quantification with day-ahead solar 
power forecasting, recognizing the significant impact of shading and soiling on solar power 
generation. The validation of the proposed method using shading and soiling setups is pre-
sented, followed by a discussion of results and future outlook. Key contributions of this work 
include the development of solar power forecasts baseline model on a three-year dataset, an 
enforced shading and soiling setup for solar power forecasting and a comparison of popular 
machine learning methods under shading and soiling conditions. 

2. Methodology 

2.1. Method 

This section explains how the machine learning methods are trained and how the dataset re-
quired was created. The calculation of losses due to shading (ρShading) and soiling (ρSoiling) is 
also carried out using a simulation model as well as how the predicted values of the reference 
model were corrected. A common dataset must be created so that the parameters for the 
methods can be trained based on the data. For this purpose, the power of PV arrays and the 
corresponding weather data must be collected, which are to be used as input for the machine 
learning methods. Numerical simulations from the German Weather Service (DWD) can be 
used for the weather data, which can be collected as weather forecast data with an hourly 
resolution of three hours up to 10 days in the future. Power data from the solar park, which is 
located at 49.1° longitude and 8.4° latitude and can be used as the basis for the forecast. The 
setup of the solar park and the system structure of the tables are described in more detail in 
chapter 2.2. Here, data are available with a resolution of one second, which can be mixed 
down to hourly average values as weather data are only available in hourly resolution. How-
ever, these data are subject to disturbances, such as the presence of gaps as missing values 
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due to the failure of system components or sensor errors. For this reason, the values are fil-
tered so that no negative PV values are allowed and no PV values that are 20% above the 
maximum system installation capacity. These values are marked as corrupt and excluded from 
the dataset. As this only accounts for a very small part of the entire dataset, no impact is to be 
expected during training. The DWD's forecast data, which are used as weather data, have 
been collected since February 2021, so that a dataset of almost three and a half years can be 
created until December 2023. Two and a half years are used to train the machine learning 
algorithms and one year to validate the models on unknown data. Within this test period, the 
shading and soiling scenarios are also performed. However, since not all-weather features are 
relevant for the PV forecast, it must first be determined which input data are significant to the 
actual PV output. The Pearson correlation coefficient and the Mutual Information (MI) index 
are often used in the literature for this purpose [12]. The pearson coefficient simply calculates 
the correlation between the respective input variable and the corresponding PV power. The 
advantage here is that the procedure is easy to interpret. However, as a linear equation, the 
correlation measure is only able to capture linear relationships. For non-linear correlations, 
which can also occur in PV forecasting, the Mutual Information Index is often used. For the 
filtered dataset, only weather data with a correlation coefficient above 0.5 (|ρPearson | ≥ 0.5) and 
a Mutual Information Index (MI > 0.6), which is commonly used in the literature, are used [12]. 
After the dataset was restricted to the meaningful features, various machine learning methods 
were trained to validate the entire method on different learning algorithms. Classical machine 
learning methods [13] such as Decision trees (DT), Gaussian process models (GPR), Neural 
networks (NN) and kernel-based methods such as Support vector regressions (SVR) and 
Physics informed neural networks (PINN) [14] were used. The unique aspect of PINNs is that 
they can consider an equation or constraints to bring in additional prior physical knowledge. 
The PINN uses the Evans equation [15] in this work which is extended by the term ρSoiling ∙

(1 − ρShading) in order to incorporate shading and soiling into the training and testing process. 
The power according to the extended Evans equation is described by equation 1, which re-
quires the area 𝐴PV = 𝑁Series ∙ 𝑁parallel ∙ 𝐴Module of all modules, the temperature coefficient 𝑇C 
and two system-specific coefficients 𝐶1 and γ, which were determined using the training data. 

𝑃PV = 𝐶1 ∙ ρSoiling(1 − ρShading) ∙ 𝐴PV ∙ 𝐸POA ∙ ((1 − 𝑇C(𝑇Cell − 𝑇Ref) − 𝐶2𝑙𝑜𝑔10 (
𝐸POA

𝐸Ref
)) (1) 

In contrast to simpler PV power models, the Evans equation also takes into account the 
low-light behavior and temperature characteristics. For this purpose, the Global Horizontal Ir-
radiance (GHI) forecast must first be converted into the irradiation values that hit the PV mo-
dule perpendicular (EPOA). Here, an appropriate decomposition and transposition model from 
Louche et al. [16] is used with the Python library pvlib [17]. For the PINN, there are also more 
complex models in form of state space equations [18], which offer no additional value for this 
work due to the limitation of hourly-resolved weather data, as the processes can be seen as 
stationary. To estimate the temperature of the cells 𝑇Cell, the Faiman model [19] is used ac-
cording to equation (2), which can calculate the cell temperature based on air temperature, 
irradiation, and wind speed. This empirical model considers the interaction between these fac-
tors, accounting for the heat generated by solar radiation and the influence of wind on heat 
dissipation. 

𝑇Cell =  𝑇Amb +
𝐸POA

𝑈1 + 𝑈2 ∙ 𝑣Wind
 (2) 

The Python library SciANN [20] is used to implement the PINN. This provides a wrapper to 
include the physical knowledge as differential equations. For this purpose, the Evans equation 
was described by a differential equation whose algebraic solution it corresponds (see equation 
3). 

3



Kappler et al. | PV-Symposium Proc 1 (2024), "39. PV-Symposium 2024" 

𝐸POA
2 ∙

𝜕2

𝜕𝐸POA
2
𝑃PV  +

𝜕

𝜕𝑇Amb
𝑃PV +  𝐶𝑖 ∙ 𝐸POA

2 +  𝐶𝑗 ∙ 𝐸POA = 0 (3) 

With 𝐶𝑖 =
2 ∙𝐶1∙ρSoiling∙(1−ρShading)∙𝐴PV∙𝑇C

𝑈1+𝑈2∙𝑣Wind
) and 𝐶j =  𝐶1 ∙ ρSoiling ∙ (1 − ρShading) ∙ 𝐴PV ∙ (𝐶2 + 𝑇C) 

Equation (3) has the form 𝑥1
2 ∙ 𝑦𝑥1𝑥1

+ 𝑦𝑥2
+  𝐶i ∙ 𝑥1

2 +  𝐶𝑗 ∙ 𝑥1 = 0 and has the extended Evans 
equation as a solution. It can be used as an initial and boundary condition that no power is 
generated for no irradiation and the power is known under STC conditions. This means that 
not only the loss can be minimized due to the data, but also the physical loss due to the gov-
erning equations (1) – (3). 

Furthermore, it must be shown that the trained models are robust. For this purpose, a 5-
fold cross-validation is used to show the robustness. A robust model in machine learning is 
characterized by its ability to consistently perform well across different datasets and under 
different conditions. This robustness is important to ensure that the model does not overreact 
to specific characteristics of a dataset, but still is able to make accurate predictions for new 
unseen data. k-fold cross-validation is a method used to assess the robustness of such a 
model. Instead of relying on a single random division of the data into training and test sets, it 
divides the dataset into k subsets. k-1 subsets are used for training and the remaining subset 
is used for testing. This procedure is repeated k times, with each subset being assigned the 
role of test set exactly once. By averaging the error metrics over these k iterations, a more 
reliable model performance is obtained. The use of k-Fold cross-validation offers several ad-
vantages. It helps to reduce variance in the performance metrics as it is based on multiple 
training and test splits. It also enables an assessment across the entire dataset, as each data 
point is used once for validation. This method allows the model to generalize better to different 
datasets and thus demonstrates its robustness to different conditions and data [21]. 

The common metrics of time series forecasting are used to evaluate the models. The 
RMSE measures the deviation between the actual and predicted values in a time series. To 
calculate the RMSE, the differences between the actual and predicted values are squared, the 
average of these squared differences is taken and finally the square root is formed. The nor-
malized RMSE (nRMSE) is a variant of the RMSE in which the error is set in relation to the 
installed capacity (10 kW). This makes it possible to compare the errors across different da-
tasets. Also, the R2 measure is used to evaluate the performance of the models. R2 is easy to 
interpret as it ranges between 0 and 1. The closer the value is to 1, the better the predicted 
values match the actual values. Both metrics are crucial to evaluate the performance of time 
series prediction models and to ensure that the predictions are accurate and consistent. 

2.2. Experimental Setup 

Each PV array of the solar park uses a string inverter which can provide three MPPTs. The 
10 kWp installation capacity of one array is made up of two strings with an output of 5 kWp 
each. The PV arrays examined used Solarwatt Blue modules with a peak output of 250 W 
according to STC conditions. 20 modules are installed per string and 40 modules in total per 
array. In order to collect sufficient shading data for the data-driven methods, two shading sce-
narios have been selected at the solar park from which measurement data has been collected 
since July 2023 (see Figure 1). 
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Figure 1. PV tables of the solar park on the north campus of the KIT. Selected PV tables for the inves-
tigation of shading are circled in red with their respective shading scenarios. 

Shading and soiling scenarios were reproduced at the test arrays (see Table 1), with gen-
erated power being recorded and stored in a database. A simulation model is used to quantify 
the shading and soiling losses.  

Table 1. Used PV Arrays to investigate shading and soiling at the solar park of KIT 

Array Tilt angle Orientation 
A 15° 30° 
B 30° (East) 0° (South) 

The validation of the simulation model is explained more briefly in a previous paper [22]. 
The model provides the power of a PV array that does not experience any shading or soiling 
and is able to simulate the generated power on a real system. A 1-diode model is used for this 
purpose [9], which is taken from the data sheet of the corresponding PV modules. The irradi-
ation and module temperature are available as input data. The data are taken from the irradi-
ation and temperature sensors installed on the PV array. The losses simulated due to shading 
and utilization can be compared with the actual losses by comparing them with reference 
strings. However, the quantified power losses cannot be used to correct the prediction values 
as they depend on the fluctuations of the clouds. Therefore, the power losses are converted 
into ratios that do not change significantly over the different days. The more meaningful ratios 
for the forecast algorithms were converted by dividing the actual power by the simulated power 
of the PV array. 

Afterwards, the study looks at the extent to which the reduction of the forecast values by 
the ratios contributed to a reduction of the RMSE. The machine learning methods already 
mentioned are then trained on the dataset determined and tested under soiling and shading.  

Lastly more detailed comparison of the PINN network with regard to the prediction error 
under shadowing and soiling was also carried out. Here, two-layer neural networks were com-
pared with each other. Both used two layers with 50 and 25 neurons. The MLP referred to a 
classic two-layer neural network, while the PINN used the same configuration but also used 
the physical prior knowledge.  

3. Results 

3.1. Feature Selection 

As relevant input characteristics for the PV forecast, the Pearson feature selection and the 
mutual information index were calculated of the training dataset. The most promising features 
are shown in Table 2. The features GHIForecasted, PT-1d and ΘSun are characterized by particularly 
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high significance. The number of minutes of sunshine, azimuth and air temperature are mod-
erately significant. The current hour, day of the year and wind speed are only very slightly 
significant and therefore not included in the dataset. The azimuth angle should be mentioned, 
which has a low linear correlation with the PV power but a high non-linear correlation with the 
PV power. 

Table 2. Pearson feature selection and mutual information index. Features were kept with correlation 
coefficient above 0.5 or mutual information index above 0.6 

Feature Description |𝝆𝑪𝒐𝒓𝒓(𝑿, 𝒀)| MI(X,Y) Relevant 
Feature 

tH Hour 0.05 0.07 No 
DoY Day of the Year 0.04 0.01 No 
ΘSun Elevation Angle of the sun 0.72 0.91 Yes 
PT-1d Power value yesterday 0.81 0.91 Yes 
TAmb Air temperature  0.50 0.15 Yes 

GHIForecasted Global Horizontal Irradiance  0.88 0.91 Yes 
NSun Sunny Minutes per hour  0.79 0.50 Yes 
vWind Windspeed  0.14 0.05 No 
φSun Azimuth  0.04 0.70 Yes 

3.2. Correction of the forecast 

The results of the test error are listed in Table 3-7 together with the respective parameters 
of the models. The PINN network has the lowest validation error with an nRMSE of 7.17 % and 
a coefficient of determination of 0.90. Neural networks and decision tree methods achieved 
the best results on average, followed by SVR and kernel approximation methods. The GPR 
models performed the worst with an nRMSE between 7.61 % and 14.1 %. 

Table 3. Parameter for Decision tree based algorithms 

Name Method Min size Number 
regressor 

Learn-
rate 

nRMSE 
/ % 

R2 

FineTree Decision Tree 12 1 - 9.35 0.84 

BoostedTree Decision Tree 8 30 0.1 7.67 0.89 

BaggedTree Decision Tree 8 30 - 7.79 0.89 

Table 4. Parameter for SVR based algorithms 

Name Method Kernel Kernel-
size 

Box 
Constant 

Epsi-
lon 

nRMSE 
/ % 

R2 

LinearSVM SVR Linear 1 Auto Auto 11.5 0.77 
QuadraticSVM SVR Quadratic 30 Auto Auto 8.11 0.89 

CubicSVM SVR Cubic 30 Auto Auto 7.74 0.90 
GaussianSVM SVR Gauß 12 Auto Auto 7.61 0.90 
CoarseGaussi-

anSVM 
SVR Gauß 30 Auto Auto 8.51 0.87 

Table 5. Parameter for kernel-based algorithms 

Name Method Kernel-
size 

Epsilon Iteration 
limit 

nRMSE 
/ % 

R2 

SVMKernel SVR 1 Auto 1000 8.34 0.88 
LRKernel LS Kernel 30 Auto 1000 8.19 0.88 
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Table 6. Parameter for neural net-based algorithms 

Name Method NLayers NNeurons Epochs Acti-
vation 

nRMSE 
/ % 

R2 

Bilayered Neural Net 2 20 1000 ReLu 7.48 0.90 
MediumNet Neural Net 1 50 1000 ReLu 7.56 0.90 

WideNeuralNet-
work 

Neural Net 1 100 500 ReLu 7.48 0.90 

PINN Neural Net 2 20 500 SciActi
vation 

7.17 0.90 

Table 7. Parameter for GPR-based algorithms 

Name Method Basisfunc-
tion 

Kernel-
function 

Kernel-
size 

Sigm
a 

nRMSE 
/ % 

R2 

Exponen-
tialGPR 

GPR Constant Exponential Auto Auto 7.61 0.90 

5/2GPR GPR Constant Matern 5/2 Auto Auto 9.56 0.84 
SquaredGPR GPR Constant Squared 

Exponential 
Auto Auto 14.1 0.66 

RationalGPR GPR Constant Rational 
Quadratic 

Auto Auto 13.8 0.67 

Figure 2 shows the quantified power losses after shading and soiling using the structures 
described in section 2.2. The measured power loss is calculated so that one string remains 
unshaded and unsoiled while the other is shaded by the structure. The same procedure applies 
to the soiling measurement. This power loss is due to the fact that the simulated power is 
compared with the actual power based on the irradiation and temperature data. This resulted 
in an RMSE of 0.03 kW for soiling and 0.12 kW for shading for the simulation model over the 
observation timeframe of one month. Both errors are negligibly small in relation to the 10 kW 
system (0.3% nRMSE and 1.2% nRMSE). The two power losses from measurement and sim-
ulation are therefore in good agreement. When the soiling occurred on 8th September, a re-
duction in the soiling ratio from 0.97 to around 0.91 can be seen in Figure 3. This is due to the 
soiling, as the soiling loss increases according to Figure 2. This means that 6 % of the output 
on this day has been lost due to the soiling. 

 

Figure 2. Estimated power loss by simulation of the PV array model for shading and soiling compared 
to the measured power loss compared to the unshaded and unsoiled PV string (Measure) 
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It can also be seen in Figure 2 and Figure 3 that there was a clean-up on September 13 
due to the onset of rain. This was followed by a further soiling of the same PV string, which 
was also removed after three days. Figure 2 shows that the shading can be clearly recognized, 
especially in the morning. This is due to the low position of the sun, which leads to wide shad-
ows being cast. Figure 3 shows the shading ratio, which leads to a reduction of the shading 
ratio to up to 0.2 in the corresponding morning hours. This means that 80% of the power is lost 
due to the shadow in relation to an unshaded table at these times.  

 

Figure 3. Soiling and Shading ratio for correcting the existing forecast values 

The results for the improvement in the forecast under the two scenarios for shading and 
pollution are shown in Figure 4. The forecast error under pollution (left) and shading (right) is 
shown in red throughout the day. The forecast error was evaluated over the entire pollution 
period from 31st August to 30th September and the forecast error was calculated for each 
hour. Using the calculated shading and soiling conditions, a reduction in the forecast error can 
be recognized at the corresponding times as shown in Figure 4. A reduction can be seen for 
soiling over the entire day, while it can only be seen with the shading structure at the corre-
sponding shading time points. These shading points are the times at which the shading ratio 
was reduced. As the quotient is calculated daily for soiling, the value here is a constant with a 
value of 0.95, as in addition to the actual reduction in the quotient, there are also reductions 
due to rain. In the case of shading, a change in the shading ratio can be seen throughout the 
day. In contrast, the deviation from the value of 1 between 5 and 8 a.m. (UTC) is particularly 
noticeable as this is when the shading is most significant. During the night hours the ratio is 
zero throughout the day. 

   

Figure 4. Improvement of the RMSE by correcting the predicted values using the shading and soiling 
ratio 

It can be seen in both graphs that the forecast error is reduced at the times when the effects 
occur depending on the value of the corresponding loss ratio. The parameters of the neural 
network used are listed in Table 8. 

Table 8. Used parameters of the neural network 

NLayers NNeurons Optimizer Learn 
rate 

Epochs Batch size 
 

2 15 Adam 1e-3 300 24∙7 
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Validation by use of shading and soiling can be seen in Figure 5. The reduction in the 
forecast error at 8 o'clock as a result of the correction using the shading ratio can be seen 
here. This can also be seen from the curve through the loss ratio (black). The remaining re-
duction in the forecast error is due to the soiling ratio. Here the overall RMSE could be reduced 
by 16%. 

   

Figure 5. Comparison of calculated output due to shading and soiling on a sunny winter day. The 
comparison is made with an unshaded and unsoiled string of the same PV-array 

It was shown what effect the individual effects (soiling and shading) have on the reduction 
of the RMSE. Once only the soiling ratio was used for correction and another time only the 
shading ratio. Then, the entire ratio was used and it can be seen in Figure 6 that there is no 
negative influence of the two ratios, as the corresponding curves can be added together. It is 
also evident that the machine learning methods are not able to correct the error completely 
because they cannot obtain enough information about the shading. 

A list of all parameters of the investigated models is provided in Table 3-7. It should be 
emphasised here that the improvement under soiling, was similarly good for all methods. This 
is in contrast to shading, where model and configuration-dependent models improve the pre-
diction error to a greater and sometimes to a lesser extent. 

  

Figure 6. Comparison of the error reduction of different machine learning methods with different con-
figurations 

3.3. Prediction error of the PINN network 

The parameters for the Evans equation and the Faiman model are determined to be 
𝐶1 =  4.2 ∙ 10−4,𝐶2 = 0.9 and 𝑈1 = 9.8 with the training dataset. Since the forecast values are 
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used and the wind speed data show no correlation with the PV data, the 𝑈2 Parameter is 
omitted from the Faiman equation and only the influence of irradiation is considered. It can be 
seen in Figure 7 that the PINN performs best here in terms of the RMSE and also provides 
better forecast values at times of low irradiation, which can be attributed to the Evans equation. 
The PINN was able to show comparable results to the reference model in the noon hours when 
the soiling is strongest, based on a one-month timeframe. In summary, the PINN was able to 
outperform the previous state-of-the-art solutions in this study by 6.6 %. The forecast RMSE 
over the entire period was 0.775 kW for the MLP, 0.633 kW for the corrected MLP and 0.591 
kW for the PINN. 

Figure 7. Comparison of MLP, corrected MLP and PINN 

4. Conclusion and discussion

The method was tested for the first time using several yield-reducing effects simultaneously 
(shading and soiling). The model, which had already been extensively validated on shading 
scenarios, was further validated and successfully quantified soiling to improve the forecasting 
error. Using these data, various machine learning methods were trained and compared. A k-
fold procedure was used to ensure robustness. 

The dataset was split in such a way that a whole year could be used to validate the models 
in order to be able to include seasonal effects. As the model is based only on weather data 
and power data, it can also be used for other PV systems. Important here are the high-resolu-
tion irradiation and temperature data, which can accurately record the POA irradiation using 
appropriate sensors and thus enable the simulation of the PV power. The method was able to 
reduce the forecast error in day-ahead forecasts under shaded and soiled conditions for all 
machine learning methods examined. It should be emphasized that the physically informed 
networks were able to achieve a similar improvement in both soiling and shading as was 
achieved when correcting the forecasts. In contrast to the other models, no subsequent cor-
rection of the models was necessary here, as the loss ratios are directly included in the model. 
The PINN outperformed other machine learning models and configurations by 6.6 % in a shad-
ing setup, also under shaded and soiled conditions. Since the correction lowers the forecast 
output, there may be some negative influences on the prediction, for example if the forecast 
model generally underestimates the output. In this case, a retrospective correction would not 
lead to an increase in the forecast error, even under shading and soiling. In addition, the sim-
ulation model is also dependent on an accurate irradiation measurement. Shading of the irra-
diation sensor would result in the shading not being recognized and therefore not being cor-
rected. As an outlook, further combination measurements of shading and soiling will be col-
lected in order to validate the method even better. An extension to include other degrading 
effects is also planned. 
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