
DDS Security+: Enhancing the Data Distribution Service With
TPM-based Remote Attestation

Paul Georg Wagner
Pascal Birnstill

paul-georg.wagner@iosb.fraunhofer.de
pascal.birnstill@iosb.fraunhofer.de

Fraunhofer IOSB
Karlsruhe, Germany

Jürgen Beyerer
juergen.beyerer@iosb.fraunhofer.de
Karlsruhe Institute of Technology

Karlsruhe, Germany

ABSTRACT
The Data Distribution Service (DDS) is a widely accepted industry
standard for reliably exchanging data over the network using a
publish-subscribe model. While DDS already includes basic secu-
rity features such as participant authentication and access control,
the possibilities of leveraging Trusted Platform Modules (TPMs)
to increase the security and trustworthiness of DDS-based appli-
cations have not been sufficiently researched yet. In this work, we
show how TPM-based remote attestation can be effectively inte-
grated into the existing DDS security architecture. This enables
application developers to verify the code integrity of remote DDS
participants during the operation of the distributed system. Our
solution transparently extends the DDS secure channel handshake,
while cryptographically binding the established communication
channels to the attested software stacks. We show the security prop-
erties of our proposal by formally verifying the resulting remote
attestation protocol using the Tamarin theorem prover. We also
implement our solution as a fork of the popular eProsima FastDDS
library and evaluate the resulting performance impact when con-
ducting TPM-based remote attestations of DDS applications.

CCS CONCEPTS
• Security and privacy→ Security protocols; Embedded sys-
tems security; Distributed systems security; • Computer sys-
tems organization → Embedded and cyber-physical systems;
Distributed architectures.

KEYWORDS
DataDistribution Service, DDS Security, RemoteAttestation, Trusted
Platform Modules, TPM, Integrity Measurement

ACM Reference Format:
Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer. 2024. DDS Secu-
rity+: Enhancing the Data Distribution Service With TPM-based Remote
Attestation. In The 19th International Conference on Availability, Reliability
and Security (ARES 2024), July 30–August 02, 2024, Vienna, Austria. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3664476.3670442

This work is licensed under a Creative Commons Attribution International
4.0 License.

ARES 2024, July 30–August 02, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1718-5/24/07
https://doi.org/10.1145/3664476.3670442

1 INTRODUCTION
In our modern interconnected world, securely and reliably exchang-
ing data over the network is a cornerstone of many applications.
The Data Distribution Service (DDS) is a widely accepted industry
standard maintained by the Object Management Group (OMG),
which aims to provide a network reference architecture for the
simple, reliable, and scalable transmission of data [18]. DDS follows
a data centric publish-subscribe communication model, which al-
lows distributed applications (also called domain participants) to
exchange arbitrary information by publishing messages to user-
defined topics. Applications interested in the data can receive it by
subscribing to the respective topics in the global data space. The
DDS middleware then takes care of transparently delivering mes-
sages from publishers to subscribers. It also handles the necessary
data serialization and the underlying network programming. Appli-
cation developers can configure the DDS middleware by specifying
quality-of-service parameters concerning delivery methods, mes-
sage reliability, and real-time constraints. SinceDDS offers a fast and
highly-configurable data exchange mechanism, it is currently used
for a multitude of different applications, including robotics [7, 20],
automotive communication [23], and sensor networks [4, 5].

In order to protect the confidentiality and integrity of critical
data during transmission, the DDS standard mandates various se-
curity features. Most importantly, DDS includes a certificate-based
authentication scheme for network participants, combined with
a data encryption layer for transmitted messages [19]. While the
DDS security model has been evaluated closely over the past few
years [10, 13, 15], so far there is not much research into leverag-
ing the advantages of trusted computing to enhance DDS security.
For example, hardware secure elements such as Trusted Platform
Modules (TPMs) could be used to protect DDS private keys against
software-based attackers. An evenmore interesting feature of TPMs,
which has recently gained traction, is remote attestation. Remote
attestation denotes the approach of cryptographically verifying the
integrity of a software stack that is being executed on a trusted plat-
form. This allows applications to detect the malicious manipulation
of a network peer’s code base (for example due to a malware attack)
before transmitting any critical information or trusting the provided
services. Especially in security-critical distributed applications, pro-
viding support for transparently verifying the code integrity of
individual DDS participants would greatly enhance the security
and resilience of the overall system. However, to our knowledge
no solution for conducting TPM-based remote attestations in DDS
infrastructures has been developed so far.

https://orcid.org/0000-0001-7081-4411
https://orcid.org/0000-0002-6883-6184
https://orcid.org/0000-0003-3556-7181
https://doi.org/10.1145/3664476.3670442
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3664476.3670442
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664476.3670442&domain=pdf&date_stamp=2024-07-30

ARES 2024, July 30–August 02, 2024, Vienna, Austria Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer

In this paper, we present our proposal for integrating TPM-based
remote attestation into the DDS security architecture. More con-
cretely, this work makes the following research contributions.

(1) We develop an extension of the DDS security architecture
that integrates TPM-based attestation evidence into the DDS
secure channel handshake. Our proposal cryptographically
binds the established secure channels to the attested soft-
ware stacks, while simultaneously preserving full backwards
compatibility with the DDS standard.

(2) We show how reference integrity measurements can be spec-
ified and disseminated using the DDS access control plugin.

(3) We validate our solution with a formal security analysis
using the Tamarin theorem prover.

(4) We implement our proposal in the eProsima FastDDS frame-
work and conduct a performance evaluation.

We begin this paper in section 2 with a summary of relevant pre-
vious work. Section 3 introduces background information regarding
the DDS security architecture and TPM-based remote attestation
protocols. In section 4, we first motivate a list of requirements for
the integration of remote attestation into DDS. Based on the identi-
fied requirements, we then present in detail our proposed extension
of the DDS secure channel handshake. Sections 5 and 6 contribute
the security analysis of our proposal, as well as a performance eval-
uation of our reference implementation. We conclude this paper in
section 7 with a brief summary and an outlook on future work.

2 RELATEDWORK
The security of DDS-based communication infrastructures has been
explored in several previous publications. Friesen et al. conduct
a conceptual comparison of the DDS security architecture with
classical TLS- and DTLS-based solutions [10]. Kim et al. evaluate
the performance impact of using DDS security features in various
configurations compared to VPNs [13]. Deng et al. follow a model-
checking approach to analyze the security of the Robot Operating
System (ROS2), which relies on DDS as underlying communication
framework [8]. Recently, Maggi et al. conducted a comprehensive
security analysis of the real-time publish-subscribe (RTPS) transport
protocol, which DDS uses for message delivery [15]. Using a fuzzing
approach, the authors found several vulnerabilities in six different
DDS implementations and proposed corresponding mitigations.

Securing the integrity of computing systems by means of TPM-
based remote attestation has been proposed for a wide variety of
applications, including cloud environments [22] and the IoT [25].
However, leveraging trusted computing technologies for the Data
Distribution Service is not yet well researched. While RTI Con-
next published a white paper outlining the use of TPM 2.0 as a
hardware-backed key store in their DDS implementation [21], this
proposal does not take advantage of the TPM’s remote attestation
capabilities. Indeed, to our knowledge the feasibility of integrating
TPM-based remote attestation into DDS infrastructures has not
been explored so far. Relating to this goal, however, there has been
previous work regarding the support of Trusted Execution Envi-
ronments (TEEs) in ROS. Mazzeo and Staffa describe how Intel’s
Software Guard Extensions (SGX) can be used to protect the exe-
cution of legacy ROS nodes [16]. Similarly, Beck et al. develop a
ROS2-based framework for privacy-compliant drones, which uses

ARM TrustZone as underlying TEE [3]. Nevertheless, neither of
these proposals integrate TPM-based remote attestation into DDS.

3 BACKGROUND
In this section, we briefly introduce the security architecture of
DDS, as well as the concept behind TPM-based remote attestation.

3.1 DDS Security Architecture
The DDS specification defines its security features by means of sev-
eral Service Plugin Interfaces (SPIs), which any DDS middleware
must implement against to provide data security for distributed
applications. In total, the DDS security architecture consists of
three mandatory plugin interfaces (authentication, access control,
and cryptography), as well as two optional plugins (data tagging
and logging) [19]. DDS users can independently activate and con-
figure these security plugins for their applications, depending on
the individual security needs. Hence, this plugin-based design in-
creases flexibility and optimizes resource utilization by allowing
applications to enable only the required security features. Further-
more, DDS users can also replace the default implementation of
the security plugins with customized versions. Figure 1 gives an
overview of the resulting DDS security model and the dependencies
between the different plugins.

«Plugin»
Authentication

«Plugin»
Cryptography

«Plugin»
Access Control

Identity
Handle

Shared
Secret

«Plugin»
Data Tagging«Plugin»

Logging

create

use

create use

use

use

Figure 1: The DDS security model. Simplified from [19].

At the center of the DDS security architecture lies the authen-
tication plugin, which uses digital certificates signed by a globally
trusted identity CA to mutually authenticate DDS participants dur-
ing channel establishment. The default authentication plugin is
called DDS:Auth:PKI-DH and supports X.509 certificates using ei-
ther RSA or ECDSA key pairs [19]. The identity details of an au-
thenticated DDS participant (most importantly its certified subject
name) is provided to other plugins in form of an identity handle.
Furthermore, the authentication plugin also conducts an ephemeral
(Elliptic Curve) Diffie-Hellman key exchange to establish a shared
secret with the authenticated DDS participants.

The access control plugin reads and enforces permission poli-
cies that are disseminated by DDS participants together with their
certificates. These policies must be digitally signed by a dedicated
permission CA in order to be trustworthy. System administrators can
use permission policies to selectively control the communication
capabilities of individual applications within the distributed system,
for example by restricting read and/or write access for topics that
are carrying sensitive data. The default access control plugin is
called DDS:Access:Permissions. It supports an XML-based pol-
icy format and uses the remote participant’s identity handle, which

DDS Security+: Enhancing the Data Distribution Service With TPM-based Remote Attestation ARES 2024, July 30–August 02, 2024, Vienna, Austria

has been generated during authentication, to identify the active
access rules for this participant.

The cryptography plugin is responsible for providing a transport
encryption layer in DDS. The default plugin implementation derives
a symmetric session key from the shared Diffie-Hellman secret
that has been established during the participant authentication
process [19]. It then uses AES in Galois Counter Mode (GCM) to
transparently encrypt all messages exchanged with the remote
participant. Finally, the data tagging plugin allows the addition of
sticky labels to transmitted data, while the logging plugin provides
a dedicated log environment for the security plugins. However,
both of these plugins are optional and of no further relevance for
the contributions presented in this paper.

3.2 Trusted Platform Modules
Trusted Platform Modules (TPMs) are cryptographic co-processors
that extend computing devices with trustworthy, hardware-based
security features [26]. While TPMs are almost ubiquitously avail-
able in modern server and desktop systems, in the field of embedded
devices and cyber-physical systems they became prominent only
recently. Similar in nature to smart cards, TPMs provide security
features such as management of cryptographic keys, symmetric
and asymmetric encryption, as well as digital signatures. By imple-
menting such mechanisms in a separate hardware module, TPMs
can isolate security-critical functions from the rest of the system.
As a result, private parts of TPM-generated keys are usable only by
the trusted hardware itself and are never released in plain text.

Platform Integrity Measurements. In addition to being useful as
cryptographic co-processors, TPMs also allow to safeguard the soft-
ware integrity of trusted platforms. This requires a trusted boot
process, which consecutively logs (i.e.,measures) a hash digest of all
boot stages that are loaded and executed on the device, including
the operating system kernel. Any malicious device modification or
malware infection will hence be reflected by a changed digest in the
measurement log. Kernel modules such as the Linux Integrity Mea-
surement Architecture (IMA) can extend the chain of measurements
to dynamically loaded user applications as well [12]. However, the
integrity of the collected measurement log itself must also be pro-
tected against tampering on the (potentially compromised) platform.
For this, the TPM offers a special region of volatile memory called
Platform Configuration Registers (PCRs). Each PCR stores a set of
measurement digests in the form of an extensible hash chain [1].
Since the TPM only allows the addition of new measurements to
a PCR hash chain, even attackers with privileged access to the de-
vice cannot hide the digests of compromised boot stages or user
applications after they have been measured.

Remote Attestation. The process of verifying integrity measure-
ments of a trusted platform over the network is called remote attes-
tation. Attestations are usually conducted in form of a challenge-
response protocol [24]. For this, a relying party generates a random
challenge and sends it to the attester (i.e., the trusted platform). The
attester then uses its TPM to generate an attestation report called a
quote. This quote contains the received challenge for freshness, as
well as the current PCR values that are stored inside the TPM. Since
the PCR values are aggregated digests of all previously conducted

integrity measurements, the resulting quote unambiguously repre-
sents the current software state of the attester’s trusted platform [1].
To prevent any tampering of the reported PCR values, the quote is
cryptographically signed by the TPM. After receiving the quote and
validating its signature, the relying party can establish the attester’s
trustworthiness by checking the PCR digests contained in the quote
against a list of expected reference values.

4 REMOTE ATTESTATION IN DDS
In this section, we present our proposal for extending the DDS
authentication protocol with TPM-based remote attestation. For
this, we first identify five functional requirements that shall guide
our protocol design. We also show how an enhanced version of
the DDS access control plugin can be used to validate the attested
integrity measurements against trustworthy reference values.

4.1 Requirements
We define five requirements R1 to R5 that our solution for integrat-
ing remote attestation into DDS must fulfill.
(R1) Code base attestation: Our extension of the DDS security

architecture must introduce support for the TPM-based at-
testation of remote participants’ code bases. The attestation
process should be transparently integrated into the existing
DDS authentication protocol. To allow flexible configurations
for different use cases, both uni- and bidirectional (i.e., mutual)
remote attestation must be supported.

(R2) Integrity verification: DDS participants must be able to
specify “golden” reference values for the expected PCR di-
gests of their trustworthy software stacks. The specified ref-
erence values should be used automatically by all peers for
the verification of transmitted attestation evidence.

(R3) Attested channels: The protocol extension must crypto-
graphically bind the established secure communication chan-
nels to the attested trusted platforms. This is necessary to
prevent masquerading attacks [24] and to ensure that trans-
mitted messages can only be encrypted by trustworthy DDS
participants with verified code bases.

(R4) Replay protection: Attackers must not be able to replay
previously intercepted attestation evidence to impersonate a
trusted platform.

(R5) Backwards compatibility: Since DDS is deployed in dis-
tributed systems, we cannot assume all participants to have
a platform TPM or to run an extended DDS implementation
with support for remote attestation. To prevent the partition-
ing of the DDS network and ensure seamless communication,
our protocol extension must provide full backwards compati-
bility with the standard non-TPM authentication process.

4.2 Extending DDS Authentication
Our goal in this work is to extend the DDS authentication plugin
with a TPM-based remote attestation process. To achieve this, we
need to solve two principal design challenges.

(1) Identify a remote attestation model that is suitable for inclu-
sion into the DDS architecture.

(2) Define a concrete attestation process that binds the secure
communication channels to the attested platforms.

ARES 2024, July 30–August 02, 2024, Vienna, Austria Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer

In the remainder of this section, we discuss how we solve these
two design issues, before presenting our proposed extension of the
DDS authentication handshake.

Selecting a Suitable Attestation Model. As introduced in section 3,
remote attestation protocols exchange TPM-signed quotes that re-
flect a trusted platform’s software state by means of the measured
PCR values. However, TPM quotes do not directly contain the at-
tested PCR values themselves. Instead, they include only a single
composite digest, which is generated by the TPM as the hashed con-
catenation over all relevant PCR registers [27]. One principal con-
cern when designing a remote attestation protocol is how to choose
the PCR banks and indices that should be quoted as part of the
composite digest. Most existing attestation protocols let the relying
party define a suitable PCR selection during the challenge-response
handshake, notably the CHARRA reference implementation for
TPM 2.0 [6, 9]. Figure 2 illustrates the resulting remote attestation
model. With this approach, the relying party must initially load the

Relying Party Attester

Verify signature of quoted
Check quoted contains challenge
Check quoted contains cpdigest

challenge, pcrSel[1…n]

Load reference values refVal

quoted, signature

cpdigest≔ H(refVal[1] ∥ ⋯ ∥ refVal[n])
TPM

TPM2_Quote()

Figure 2: Basic attestation with relying-party-chosen PCRs.

set of expected PCR reference values and transmit a corresponding
PCR selection (i.e., banks and register indices) to the attester. The
relying party also calculates the expected PCR composite digest
by concatenating and hashing the loaded reference values. On the
attester’s side, the TPM generates and signs a fresh quote for the
requested PCR selection. Finally, the trustworthiness of the attester
can be verified by checking the quote’s signature and comparing
the quoted PCR composite digest with the expected one.

Even though this attestation model is popular and requires only
a single TPM command per request, we find it to be infeasible for
integration into the DDS security architecture. This is because it
necessitates the relying party to determine the PCR selection in
advance of the attestation process. However, in order to look up the
expected reference values and retrieve the correct PCR selection
to request, the relying party must know the identity of the attester.
Since the identity of remote DDS participants (i.e., their certificate)
is established during authentication, including attestation into the
DDS authentication handshake would create a circular dependency.

To still achieve a practical remote attestation mechanism in DDS,
we propose an attester-chosen PCR selection approach instead. With
this model, the attesters themselves are responsible for selecting
adequate PCR registers to quote. Usually, the chosen PCR selection
depends on the capabilities of the attester’s TPM (e.g., the available
banks) as well as the local platform configuration (e.g., the individ-
ual PCR registers in use). As figure 3 shows, this approach avoids
the need for the relying party to identify expected PCR reference
values and pre-compute their composite digest before the actual

Relying Party Attester

Verify signature of quoted
Check quoted contains challenge and cpdigest

Load reference values refVal
Compare refVal against pcrVal

challenge

TPM

quoted, signature, pcrVal[1…n]

TPM2_Quote()

cpdigest≔ H(pcrVal[1] ∥ ⋯ ∥ pcrVal[n])

TPM2_PCRRead() for 1…n

Figure 3: Basic attestation with attester-chosen PCRs.

authentication process starts. On the other hand, the attester is now
forced to explicitly read and transmit the quoted PCR values for
verification, since they are not directly contained in the quote. The
relying party validates the authenticity of the received PCR values
by calculating their composite digest and comparing it with the
quoted value. The expected reference values can then be loaded and
verified against the received PCR list at a later time, for example as
part of the DDS access control process.

Establishing Trusted Channels. The second design challenge con-
sists of properly binding the established secure communication
channels to the attested trusted platforms. Since remote attesta-
tion protocols have been extensively researched in the past, there
are already solutions for this. Stumpf et al. propose to conduct a
Diffie-Hellman (DH) key exchange between attester and relying
party that is authenticated via the TPM quote [24]. This can be
achieved by combining a hash of the generated DH public keys
with the received challenge, and then using the result as qualifying
data for the TPM2_Quote command [24]. Similarly, established TLS
channels can also be bound to trusted platforms by hashing TLS
certificates into the quote [2, 31]. Mainly due to its simplicity and ef-
ficiency, this solution has since become a popular pattern to achieve
secure communication channels in remote attestation protocols.
However, this approach has also been identified as susceptible for
nonce-data attacks by malicious platform owners under certain
conditions [11]. Alternatively, it is also possible to authenticate DH
public keys and TLS certificates using the PCR registers instead
of the quote’s qualifying data field. For this, the key material that
established the secure channel must be extended into a resettable
PCR register (e.g., number 16 or 23) before generating the quote.
While this also cryptographically binds the secure channels to the
attested platform, it requires the system-wide synchronization of
remote attestation requests to prevent “overwriting” the used PCR
register before the channel is fully authenticated. Finally, conduct-
ing a Diffie-Hellman key exchange using the TPM hardware itself
has also been proposed [30]. The main downside of this approach
is the increased complexity and a substantial performance impact,
as TPMs are slow in performing asymmetric cryptography.

Since it is currently the most popular solution and also fits well
with the existing DDS security architecture, for our proposal we
follow the approach by Stumpf et al. [24] and authenticate the
Diffie-Hellman key exchange conducted by the DDS authentication
plugin via the generated TPM quotes.

Our Protocol Proposal. Based on the discussed design considera-
tions, in the remainder of this section we present our proposal for

DDS Security+: Enhancing the Data Distribution Service With TPM-based Remote Attestation ARES 2024, July 30–August 02, 2024, Vienna, Austria

Participant A Participant B

HandshakeRequest

HandshakeReply

Set pcrList2 ≔ {𝑇𝑃𝑀𝐿_𝐷𝐼𝐺𝐸𝑆𝑇}1…𝑛

DDS:Auth:PKI-DH

c1.id, c1.perm,
challenge1, dh1

q1.id,
q1.offer, q1.accept

DDS:Auth:TPM-RATLoad DDS:Auth:PKI-DH properties c1
Load DDS:Auth:TPM-RAT properties q1

Load DDS:Auth:PKI-DH properties c2
Load DDS:Auth:TPM-RAT properties q2

TPM

Esys_PCR_Read(pcrSelection2)
DDS:Auth:PKI-DH

c.id2, c.perm2,
challenge2, dh2,
signature2

q2.id, q2.offer, q2.accept,
pcrSelection2, pcrList2,
quoted2, qSignature2

DDS:Auth:TPM-RAT

Esys_Quote(q2.key, cdr2, pcrSelection2)

quoted2, qSignature2

HandshakeFinal

𝑇𝑃𝑀𝐿_𝐷𝐼𝐺𝐸𝑆𝑇

DDS:Auth:PKI-DH

challenge1,
challenge2,
signature1

pcrSelection1, pcrList1,
quoted1, qSignature1

DDS:Auth:TPM-RAT

for 1…n

TPM

Esys_PCR_Read(pcrSelection1)

Esys_Quote(q1.key, cdr1, pcrSelection1)

quoted1, qSignature1

𝑇𝑃𝑀𝐿_𝐷𝐼𝐺𝐸𝑆𝑇

for 1…m

Set pcrList1 ≔ {𝑇𝑃𝑀𝐿_𝐷𝐼𝐺𝐸𝑆𝑇}1…𝑚

Verify received c1.id and q1.id certificates
Create dh2 and challenge2
Set cdr2 ≔ H(c2.id∥challenge2∥dh2∥challenge1∥dh1∥c1.id)
Set signature2 ≔ 𝜎(c2.key, cdr2)

Verify received c2.id and q2.id certificates
Verify signature2 and qSignature2
Validate pcrList2 against quoted2

Store pcrList2 in remote identity handle

Create dh1 and challenge1

Verify signature1 and qSignature1
Validate pcrList1 against quoted1
Store pcrList1 in remote identity handle

Set cdr1 ≔ H(c1.id∥challenge1∥dh1∥challenge2∥dh2∥c2.id)
Set signature1 ≔ 𝜎(c1.key, cdr1)

Figure 4: Our proposed extension of the DDS:Auth:PKI-DH authentication handshake including mutual remote attestation.

integrating a TPM-based remote attestation process into the exist-
ing DDS authentication plugin. To maximize the interoperability of
our solution (c.f., requirement R5), we closely follow the standard-
ized protocol sequence as described in [19], but enhance the default
certificate-based authentication of DDS participants with additional
TPM-based attestation evidence. Figure 4 shows our proposed pro-
tocol handshake between two DDS participants. The introduced
attestation-specific steps and messages are displayed with blue
text. First, the authentication plugin is initialized by loading the
DDS quality-of-service parameters that have been configured. For
certificate-based authentication, the loaded properties include a
private identity key, a corresponding certificate, and an identity CA
that is used for certificate validation [19]. To support remote attesta-
tion, we additionally load a TPM-generated attestation key (usually
identified by a TPM handle), the certificate of the privacy CA that
is used to authenticate attestation keys, and the certificate of the
attestation key signed by the privacy CA. To keep the two configura-
tions separate, we introduce the DDS:Auth:TPM-RAT namespace for
attestation-related properties. A complete list of all new properties
in this namespace is given later in section 6.

The original DDS:Auth:PKI-DH plugin executes a three-message
handshake to mutually authenticate the two participants based on
their identity certificates [19]. For this, each participant generates

a new Diffie-Hellman key pair and draws a random 256-bit nonce
as challenge. During the initial HandshakeRequest and subsequent
HandshakeResponse messages, both participants’ DH public keys,
the challenges, the identity certificates (c.id), and the configured
permission files (c.perm) are exchanged. To set up a remote attes-
tation process, we extend these messages with the participants’
attestation key certificates (q.id) and two boolean flags that con-
trol the quote generation (q.offer, q.accept). The trustworthiness
of both received certificates is ensured by validating them against
the configured identity and privacy CAs. In addition, the Hand-
shakeResponse and HandshakeFinal messages must include a digital
signature that serves as proof-of-knowledge of the participants’
identity private keys. As specified in greater detail in the DDS
security architecture [19], these signatures are generated over a
so-called CDR buffer. This buffer includes (i) the transmitted chal-
lenges, (ii) the DH public keys, and (iii) the identity certificates of
both endpoints. As a result, signing the CDR buffer (i) ensures the
freshness of the exchanged signatures, (ii) binds the authentication
to the conducted Diffie-Hellman key exchange, and (iii) prevents
identity misbinding attacks [14]. After both participants verified the
received signature and its contents, the established Diffie-Hellman
shared secret is saved for later use by the DDS cryptography plugin.

ARES 2024, July 30–August 02, 2024, Vienna, Austria Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer

As figure 4 shows, we integrate remote attestation into the DDS
authentication protocol by creating, exchanging, and verifying
TPM-based quotes for both participants. The quotes are generated
using the Esys_Quote function provided by the Extended System
API of the official TPM 2.0 Trusted Software Stack [29]. To protect
the transmitted quotes against replay attacks (c.f., requirement R4)
and bind the secure communication channels to the attested plat-
forms (c.f., requirement R3), we use the previously assembled CDR
buffers as qualifying data for the Esys_Quote function. Analogous
to the certificate-based authentication process, this puts a hash di-
gest of the Diffie-Hellman public keys and both random challenges
into the signed quote data structure. It also binds the conducted
TPM attestation to the DDS identity certificates. To transmit the
resulting quotes and their signatures as part of a DDS handshake,
we extend the HandshakeResponse and HandshakeFinal messages
with the two additional binary fields quoted and qSignature. Follow-
ing the attestation model with attester-chosen PCR selection, the
list of quotable PCR banks and indices is taken directly from the lo-
cal plugin configuration. Furthermore, we use the Esys_PCR_Read
function to assemble a separate list of the current PCR values, which
is also transmitted as part of the DDS protocol messages.We achieve
the binary serialization of these TPM-specific message fields by
leveraging the TPM 2.0 Marshalling API [28]. Note that all TPM-
specific fields are seen as optional and may not always be set in the
transmitted handshake messages. To validate the exchanged quotes,
each participant first checks the correctness of the received quote
signature against the presented attestation key certificate. This also
includes verifying the quote’s qualifying data, which must match
the expected CDR buffer when re-calculating it using the locally
stored values for the random challenges and the DH public keys.
Furthermore, the received list of PCR values must be authenticated
by calculating the corresponding composite digest and comparing
it with the value stored inside the quote. Finally, each participant
saves the list of attested PCR values in the remote identity handle
for later use by the extended DDS access control plugin.

Supporting Unidirectional Attestations. Figure 4 shows our pro-
posal for realizing a mutual remote attestation process between two
DDS participants. However, we need to allow unidirectional attesta-
tions in DDS as well (c.f., requirement R1). This is because not every
device in the DDS network necessarily has a TPM and can generate
quotes. Furthermore, the attestation process causes a performance
overhead (see section 6) and may not always be necessary. In our
proposal, we achieve support for unidirectional remote attestation
using the two boolean control flags q.accept and q.offer, which are
transmitted in the HandshakeRequest and HandshakeResponse mes-
sages. These flags allow DDS participants to specify whether they
are configured to provide TPM-based attestation evidence (q.offer)
and whether they are able to verify received quotes (q.accept). If
a DDS participant is not set up to generate quotes (e.g., because
no suitable attestation key is configured), we set the q.offer flag
to false and simply omit the TPM-specific procedures and mes-
sage fields. The remote peer will then automatically skip the quote
verification steps, leading to an empty set of authenticated PCR
values in the remote identity handle. Similarly, if a DDS participant
cannot verify quotes (e.g., because no privacy CA is configured),
the q.accept flag will be set to false, causing the remote peer to

skip the quote generation. This design allows us to flexibly sup-
port both mutual and unidirectional attestations, depending on
the capabilities of the communicating DDS participants. Note that
these flags do not need to be authenticated, as they only facilitate
compatibility between different DDS stacks and are not security
critical. We discuss this further in our security analysis in section 5.

Achieving Backwards Compatibility. In addition to supporting
unidirectional attestations, we also need to ensure that our solu-
tion remains fully backwards-compatible with the original DDS
authentication process (c.f., requirement R5). This means that a
DDS participant executing the extended authentication handshake,
as shown in fig. 4, must also be able to authenticate a remote peer
that operates any other (unmodified) DDS implementation, and
vice-versa. We achieve this level of compatibility by taking care not
to modify the existing certificate-based authentication process at
all. For example, instead of defining new protocol messages for the
attestation part of the authentication handshake, we only introduce
additional binary fields to the existing three-message handshake.
If the contacted DDS participant does not implement support for
remote attestation, these fields will be simply ignored. Furthermore,
we introduce the q.accept flag to better control the generation and
transmission of quotes in such scenarios. Any network participant
with an unmodified DDS stack will not set this flag during the
authentication handshake, which in turn causes the remote peer
to skip the attestation process. This prevents the unnecessary gen-
eration and transmission of quotes to DDS participants that are
incapable of validating them anyway.

4.3 Extending DDS Access Control
Exchanging and validating signed quotes during the DDS authen-
tication handshake cryptographically ascertains the current PCR
values (and by extension the code bases) of remote DDS participants.
However, this process alone does not yet ensure that the remotely
attested software stacks are indeed trustworthy. To achieve this, we
must provide a mechanism that can automatically check the quoted
PCR values of remote DDS participants against a set of expected
reference values representing a good platform state. Furthermore,
we must define how these PCR reference values should be speci-
fied, disseminated, and protected against tampering by malicious
actors in a DDS network. Fortunately, we can accomplish these
goals rather easily by building on the existing DDS access control
plugin. This plugin is responsible for imposing restrictions on the
behavior of authenticated DDS participants. The default access
control plugin, which all DDS implementations must support, is
called DDS:Access:Permissions [19]. It uses an XML-based policy
format to represent individual access permissions for a set of DDS
participants. Participants can be granted permission for creating,
reading, and writing certain DDS topics, as well as for accessing
certain DDS domains. Access permissions are specified by means of
allow rules and deny rules, both of which can match either on DDS
topics or domains. A set of rules is then wrapped in a permission
grant, which is matched to a specific DDS participant using the sub-
ject name of the issued identity certificates. The resulting policies
are signed by a permission CA to ensure their authenticity, before
being automatically loaded and exchanged during the DDS authen-
tication handshake (c.f., fig. 4). After a successful authentication,

DDS Security+: Enhancing the Data Distribution Service With TPM-based Remote Attestation ARES 2024, July 30–August 02, 2024, Vienna, Austria

the DDS implementation queries the access control plugin for each
action requested by a participant, such as accessing a particular
data reader or writer in the network. The requested action is only
permitted if a matching grant for the implicated DDS participant is
found in the remote peer’s permission file.

To reach our goal of defining a practical remote attestation
process for DDS, we extend the default access control plugin to
(i) securely disseminate PCR reference values and (ii) transpar-
ently check the quoted digests against them. For this, we extend
the plugin’s XML permission schema with a new (but optional)
<platform_measurements> tag. This tag allows to specify one or more
sets of trustworthy PCR reference values for a particular DDS partic-
ipant, which will be verified by the extended access control plugin
as part of the remote attestation process. Analogous to the per-
mission grants, we match the expected platform measurements to
the received quotes using the subject name of the corresponding
attestation key certificate. Each acceptable software configuration
of a DDS participant is then represented by a single <pcr_selection>

tag. A PCR selection includes an attribute identifying the used
hash algorithm (i.e., the PCR bank) and the set of expected refer-
ence values. Listing 1 gives an example DDS permission file that
specifies reference values for a trustworthy software configuration
using PCR registers 0, 7, and 10. Multiple trustworthy configura-
tions for a single DDS participant can be specified by repeating
the <pcr_selection> tag. Similarly, participants using more than one
PCR bank can be represented by using multiple selections with
different bank attributes. The PCR values themselves are specified
as colon-separated tuples of register index and a digest in hexa-
decimal notation. This follows the PCR output format used by the
popular tpm2-tools1 library, which simplifies the inclusion of PCR
reference values into existing permission files via copy-and-paste.

Listing 1: DDS permission file with PCR reference values.
1 <dds xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:noNamespaceSchemaLocation="permissionsWithPcrExtension.xsd">

2 <permissions >

3 <grant name="ExamplePermissions">

4 <subject_name >CN=ExampleParticipant </subject_name >

5 <!-- Expected platform measurements (optional) -->

6 <platform_measurements >

7 <!-- Identify platform via attestation key name -->

8 <subject_name >CN=ExampleParticipant </subject_name >

9 <!-- List of trustworthy software configurations -->

10 <pcr_selection bank="sha1">

11 0 : 0xb9d349bbe15145e51db8950a6be0a590fe4fb176

12 7 : 0x4a145531060319557d4cfdc11feca52c01ef6db9

13 10 : 0x0fda683cac3484d1e7cebc615e05f67c52260cd4

14 </pcr_selection >

15 </platform_measurements >

16 <allow_rule >

17 <subscribe >

18 <topics >

19 <topic>ExampleTopic </topic>

20 </topics >

21 </subscribe >

22 </allow_rule >

23 <default >DENY</default >

24 </grant>

25 </permissions >

26 </dds>

Our proposed extension of the DDS permission schema allows
system administrators to specify the expected platform measure-
ments for their systems directly via access control policies. These
policies are then automatically disseminated by the DDS middle-
ware during the authentication handshake (c.f., fig. 4). Since valid
1https://tpm2-tools.readthedocs.io

DDS permission files must always be signed by a globally trusted
permission CA, the integrity of the included PCR reference values
is secured against malicious tampering. The transmitted permission
files are then evaluated and enforced by the remote peer’s access
control plugin. To facilitate this, our extended access control plugin
parses the received policies according to the updated XML schema
and extracts the specified platform measurements for each permis-
sion grant. Every time a DDS network operation is requested, the
access control plugin searches the received policy for a permission
that matches the authenticated remote participant [19]. We aug-
ment this permission finding process by additionally looking for
a matching PCR selection in the iterated grants. A PCR selection
matches if (i) the subject name of the used attestation key certifi-
cate matches and (ii) all expected PCR registers of this selection are
quoted and their digests match. If no matching permission grant
is found in the policy, the access control plugin will deny the com-
munication with the remote DDS participant. However, note that
specifying trustworthy platform measurements for a DDS partici-
pant is optional in our permission schema (c.f., listing 1). Hence, if
a permission grant does not demand any specific platform measure-
ments, it will match regardless of the remote participant’s attested
PCR values. This design ensures that the access control plugin can
also handle unidirectional attestations (c.f., requirement R1).

Finally, we must also ensure the backwards compatibility of our
modifications (c.f., requirement R5). Here the main issue is that
unmodified DDS stacks must still be able to parse and evaluate
our extended access control policies, even if they include PCR
reference values for certain participants. To ensure this, we define
a separate XSD schema for our updated policy model, which the
administrators of TPM-enabled DDS participants should reference
in their policies. This allows DDS participants that do not support
remote attestations to still parse the received access control policies.
The included PCR reference values are then simply ignored.

5 SECURITY ANALYSIS
In this section, we determine the security of our solution by infor-
mally showing that the requirements R1 to R5 are fulfilled. Fur-
thermore, we present our approach for a formal verification of the
proposed DDS authentication protocol using the Tamarin prover.

5.1 Threat Model
We consider malicious DDS participants to be the main adversaries
in our scenario. This includes (i) attacker-controlled DDS nodes
attempting to join the network, as well as (ii) legitimate nodes that
have been compromised by malware. In both cases, DDS nodes with
untrustworthy code bases must be excluded from communicating
with the rest of the distributed system. Furthermore, the communi-
cation between attested DDS participants must be protected against
evesdropping by general network attackers. Finally, we assume the
used identity, permission, and privacy CAs to be trustworthy.

5.2 Informal Security Analysis
The primary goal of our proposed DDS extension is to provide
support for the transparent cryptographic verification of remote
participants’ code bases (requirement R1). We achieve this by auto-
matically generating and exchanging TPM-based quotes as part of

https://tpm2-tools.readthedocs.io

ARES 2024, July 30–August 02, 2024, Vienna, Austria Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer

the DDS authentication handshake (c.f., fig. 4). These quotes unam-
biguously represent the underlying trusted software stacks of the
involved DDS participants and are digitally signed by TPM-internal
attestation keys to prevent forgery or tampering. We introduce an
additional privacy CA to authenticate the attestation keys in the
same manner as the existing DDS identity certificates. Furthermore,
our solution is designed to provide support for both unidirectional
and mutual remote attestations. The used attestation mode is dy-
namically selected depending on the capabilities and configuration
of the two communicating participants. We seamlessly integrate
the proposed attestation mechanism into the existing DDS security
architecture by piggybacking on the existing three-message secu-
rity handshake. This also ensures that our protocol extension does
not influence the certificate-based DDS authentication process.

The second important requirement concerns the validation of the
attested code bases’ trustworthiness (requirement R2). We achieve
this goal by extending the DDS access control policy schema to
specify PCR reference values for a set of DDS participants. The
augmented policies are then automatically exchanged, verified, and
enforced at the relying parties. As a result, communicating with
remotely attested DDS participants is permitted only if the attested
PCR values are authorized by the access control policies. We ensure
the integrity of the specified reference values using the existing
DDS permissions CAs. Note that our proposal of utilizing the DDS
access control plugin to automatically validate attested PCR values
also protects the remote attestation mechanism against downgrade
attacks. Because our solution needs to support both mutual and
unidirectional attestations, quotes are considered to be optional
fields in the extended DDS authentication handshake (c.f., fig. 4).
Hence, a network attacker could downgrade a bidirectional to a
unidirectional attestation by removing quotes from the transmitted
messages. Our extended DDS access control plugin prevents such
attacks, since the resulting empty set of attested PCR values will
not be authorized by the participant’s access control policy.

Besides verifying the integrity of remote code bases, our solution
also needs to establish secure communication channels between
the attested DDS participants (requirement R3). For this, we bind
the encrypted DDS communication channels to the attested plat-
forms by including a digest of both Diffie-Hellman public keys into
the signed quote. This authenticates the conducted key exchange
with the TPM-internal attestation keys, which are protected by
the trusted hardware. Since attackers cannot forge signatures for
self-chosen quotes, man-in-the-middle attacks on the established
communication channels are thus effectively prevented. This is true
even if the used DDS identity certificates are compromised, because
our remote attestation mechanism is completely independent of the
existing DDS authentication procedure. Note that we only propose
to add a second channel authentication to the existing protocol
handshake, but do not modify the underlying security mechanisms.
Hence, we still rely on the default DDS authentication plugin to
implement the Diffie-Hellman key exchange and on the DDS cryp-
tography plugin to establish the symmetric encryption layer. This
reduces the complexity of our solution and ensures that we do not
influence or weaken any existing DDS security features.

Considering the goal of replay protection (requirement R4), we
ensure quote freshness by including randomly drawn nonces into
the signed data structures. Furthermore, we achieve backwards

compatibility (requirement R5) by designing our DDS extension
such that all changes remain transparent to unmodified DDS partic-
ipants. For instance, our extended authentication handshake only
adds optional fields to existing protocol messages, which are ig-
nored by unmodified DDS software stacks. Similarly, our enhanced
access control policies can be parsed even by non-TPM participants
using the referenced XSD schema definition.

5.3 Formal Security Analysis
To verify the security of our proposed DDS authentication pro-
tocol extension, we modeled the handshake shown in fig. 4 with
the Tamarin theorem prover. Tamarin is a tool to formally verify
cryptographic protocols and their security properties using sym-
bolic analysis of first-order logic terms [17]. We modeled the three
protocol messages defined in fig. 4 as Tamarin rules, leveraging
the built-in equational theories for hashing, Diffie-Hellman key
exchanges, and digital signatures. The protocol’s security proper-
ties are then formalized as first-order logic terms quantifying over
time points [17]. In our case, successfully executing the protocol
handshake must imply that both endpoints are attested and have
established a shared secret, but no (active) network adversary may
have learned it. The resulting formal model of our proposed DDS
remote attestation protocol is given in appendix A.

6 IMPLEMENTATION AND EVALUATION
We implemented and tested our proposed extension of the DDS
security architecture as a fork of the popular eProsima FastDDS
middleware2. Our proof-of-concept implementation includes an
enhanced DDS authentication plugin that transparently conducts
TPM-based remote attestations between DDS participants as de-
scribed in section 4. Table 1 shows the additionally introduced
quality-of-service properties that administrators can use to config-
ure the participants’ remote attestation capabilities. If no properties
are set, the participant will not offer a remote attestation endpoint.

privacy_ca Root CA certificate used to verify attestation keys.
attestation_key TPM-internal attestation key to use for quoting.

Can be specified as TPM handle or as object file.
attestation_cert CA-signed certificate of the attestation key.
pcr_banks Comma-separated list of PCR banks to quote. Sup-

ported: sha1, sha256, sha384, sha512, sm3_256.
pcr_selection Comma-separated range of registers to quote.
tcti_options Additional options to initialize the TPM Com-

mand Transmission Interface (TCTI).

Table 1: New properties in the DDS:Auth:TPM-RAT namespace.

We also updated the FastDDS access control plugin to parse
extended permission policies and authorize attested remote plat-
forms based on the specified PCR reference values. However, since
FastDDS implements a naive XML parser that does not support XSD
schema validation, backwards compatibility of the access control
policies can be achieved only by specifying the reference values at
the end of the <grant> tag. Our complete proof-of-concept, including
several usage examples, is available under the Apache 2.0 license3.
2https://github.com/eProsima/Fast-DDS
3https://gitlab.cc-asp.fraunhofer.de/ros2-security/fast-dds-tpm

https://github.com/eProsima/Fast-DDS
https://gitlab.cc-asp.fraunhofer.de/ros2-security/fast-dds-tpm

DDS Security+: Enhancing the Data Distribution Service With TPM-based Remote Attestation ARES 2024, July 30–August 02, 2024, Vienna, Austria

Performance Evaluation. We demonstrate the practicality of our
proposal for integrating TPM-based remote attestation into DDS by
means of a performance evaluation. For this, we measured the mean
connection time of DDS participants using (i) no security, (ii) the de-
fault certificate-based authentication handshake, and (iii) both the
unidirectional as well as mutual attestation procedures as presented
in section 4. To determine the scalability of TPM-based remote at-
testation in DDS, we also tested the establishment of up to eight
parallel connections between individual DDS participants. Our eval-
uation platform consists of a Thinkpad T480s (Ubuntu 22.04 LTS,
16 GB memory) with an Infineon SLB9670 TPM 2.0 hardware mod-
ule. The used benchmark implementation is available online for
reproducibility purposes4.

1 2 3 4 5 6 7 8
0

500

1,000

1,500

2,000

2,500

3,000

Number of parallel connections

To
ta
lc
on

ne
ct
io
n
tim

e
[m

s]

No security
DDS:Auth:PKI-DH
TPM-RAT uni
TPM-RAT mutual

𝑛 = 10

Figure 5: Connection times of DDS participants.

Our results in fig. 5 show that establishing a single DDS connec-
tion takes about 100ms without security, and about 340ms using
certificate-based authentication. Conducting a TPM-based remote
attestation on top of that increases the mean connection time to
about 520ms unidirectionally and 710ms bidirectionally. This over-
head is caused almost exclusively by the time required to create and
sign quotes on the secure hardware. Furthermore, our evaluation
also shows an impact on the scalability compared to standard DDS
security. While the default DDS authentication only takes about
520ms to execute 8 handshakes in parallel, with TPMs this time
increases to about 1.8 and 3.2 seconds, respectively. The reason
for this is that the TPM, as a dedicated hardware resource, cannot
be parallelized. However, note that our proposal only affects the
initial connection time between two DDS participants. The data
transport layer, and hence the latency and throughput of messages
transmitted during system operation, is not impacted by this.

7 CONCLUSION
In this work, we present and evaluate a solution to integrate TPM-
based remote attestation into the Data Distribution Service (DDS).
We achieve this by extending the DDS authentication handshake
with TPM-based attestation evidence. While generic attestation
4https://gitlab.cc-asp.fraunhofer.de/ros2-security/fast-dds-tpm/-/tree/2.13.2-
tpm/examples/cpp/dds/PerformanceTestWithTPMExample

frameworks such as Keylime periodically scan the network to detect
compromised software stacks [22], our solution instead focuses
on transparently establishing secure and attested communication
channels between DDS participants. In addition, we propose an
enhanced DDS access control schema that can disseminate and
validate reference integrity measurements directly in the existing
DDS ecosystem. Our solution is transparent to DDS participants
and preserves full backwards compatibility with the DDS standard.
We validate our proposal by means of a security analysis including
the formal verification of our protocol, as well as a performance
evaluation using a popular hardware TPM.

As future work, we plan to integrate and evaluate our solution
in other DDS-based communication frameworks as well, most im-
portantly ROS2. For the contributions presented in this paper, we
simply assume TPM-based attestation keys to be available and prop-
erly authenticated on all DDS nodes. However, introducing remote
attestation to high-level frameworks such as ROS2 also necessitates
adequate tool support for administrators to properly provision TPM-
based attestation keys and handle certificate revocation. In addition,
since our evaluation in section 6 revealed a noticeable performance
impact, mitigating denial-of-service attacks on attested DDS infras-
tructures constitutes an important topic of future research as well.
Finally, we also plan to investigate the possibilities of other trusted
computing technologies, for example ARM TrustZone, to enhance
the security of DDS infrastructures even further.

ACKNOWLEDGMENTS
This work was funded by the Helmholtz Association (HGF) through
the Competence Center for Applied Security Technology (KASTEL),
subtopic 46.23.04 Engineering Security for Production Systems.

REFERENCES
[1] Will Arthur, David Challener, and Kenneth Goldman. 2015. A Practical Guide

to TPM 2.0: Using the New Trusted Platform Module in the New Age of Security.
Springer Nature.

[2] NorazahAbd Aziz, Nur Izura Udzir, and Ramlan Mahmod. 2014. Extending TLS
with Mutual Attestation for Platform Integrity Assurance. 9, 1 (2014), 63–72.

[3] Rakesh Rajan Beck, Abhishek Vijeev, and Vinod Ganapathy. 2020. Privaros: A
framework for privacy-compliant delivery drones. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 181–194.

[4] Kai Beckmann and Olga Dedi. 2015. sDDS: A portable data distribution service
implementation for WSN and IoT platforms. In 2015 12th International Workshop
on Intelligent Solutions in Embedded Systems (WISES). IEEE, 115–120.

[5] Kai Beckmann and Marcus Thoss. 2012. A wireless sensor network protocol
for the OMG data distribution service. In Proceedings of the 10th International
Workshop on Intelligent Solutions in Embedded Systems. IEEE, 45–50.

[6] Henk Birkholz, Dave Thaler, Michael Richardson, Ned Smith, and Wei Pan. 2023.
Remote ATtestation procedureS (RATS) Architecture. https://datatracker.ietf.
org/doc/rfc9334

[7] Jesús Martínez Cruz, Adrián Romero-Garcés, Juan Pedro Bandera Rubio, Re-
beca Marfil Robles, and Antonio Bandera Rubio. 2012. A DDS-based middleware
for quality-of-service and high-performance networked robotics. Concurrency
and Computation: Practice and Experience 24, 16 (2012), 1940–1952.

[8] Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang Liu. 2022. On the
(In)Security of Secure ROS2. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22).
Association for Computing Machinery, New York, NY, USA, 739–753. https:
//doi.org/10.1145/3548606.3560681

[9] Fraunhofer SIT. 2024. CHARRA: CHAllenge-Response Based Remote Attestation
with TPM 2.0. https://github.com/Fraunhofer-SIT/charra

[10] Maxim Friesen, Gajasri Karthikeyan, Stefan Heiss, Lukasz Wisniewski, and Hen-
ning Trsek. 2020. A comparative evaluation of security mechanisms in DDS,
TLS and DTLS. In Kommunikation und Bildverarbeitung in der Automation: Aus-
gewählte Beiträge der Jahreskolloquien KommA und BVAu 2018. Springer Berlin
Heidelberg, 201–216.

https://gitlab.cc-asp.fraunhofer.de/ros2-security/fast-dds-tpm/-/tree/2.13.2-tpm/examples/cpp/dds/PerformanceTestWithTPMExample
https://gitlab.cc-asp.fraunhofer.de/ros2-security/fast-dds-tpm/-/tree/2.13.2-tpm/examples/cpp/dds/PerformanceTestWithTPMExample
https://datatracker.ietf.org/doc/rfc9334
https://datatracker.ietf.org/doc/rfc9334
https://doi.org/10.1145/3548606.3560681
https://doi.org/10.1145/3548606.3560681
https://github.com/Fraunhofer-SIT/charra

ARES 2024, July 30–August 02, 2024, Vienna, Austria Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer

[11] Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger, and N Asokan.
2007. Beyond Secure Channels. In Proceedings of the 2007 ACM Workshop on
Scalable Trusted Computing (2007). 30–40.

[12] Gentoo Linux. 2021. Integrity Measurement Architecture. https://wiki.gentoo.
org/wiki/Integrity_Measurement_Architecture

[13] Jongkil Kim, Jonathon M Smereka, Calvin Cheung, Surya Nepal, and Marthie
Grobler. 2018. Security and performance considerations in ros 2: A balancing act.
arXiv preprint arXiv:1809.09566 (2018).

[14] Hugo Krawczyk. 2003. SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated
Diffie-Hellman and Its Use in the IKE Protocols. In Advances in Cryptology -
CRYPTO 2003, Dan Boneh (Ed.). Vol. 2729. Springer Berlin Heidelberg, 400–425.
https://doi.org/10.1007/978-3-540-45146-4_24

[15] Federico Maggi, Rainer Vosseler, Mars Cheng, Patrick Kuo, Chizuru Toyama, T
Yen, and E Boasson V Vilches. 2022. A Security Analysis of the Data Distribution
Service (DDS) Protocol. Trend Micro Research (2022).

[16] Giovanni Mazzeo and Mariacarla Staffa. 2020. TROS: Protecting Humanoids ROS
from Privileged Attackers. International Journal of Social Robotics 12, 3 (2020),
827–841.

[17] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The
TAMARIN Prover for the Symbolic Analysis of Security Protocols. In 25th Inter-
national Conference on Computer Aided Verification (2013). Springer, 696–701.

[18] Object Management Group. 2015. OMG Data Distribution Service (DDS). https:
//www.omg.org/spec/DDS/1.4/PDF

[19] Object Management Group. 2018. DDS Security. https://www.omg.org/spec/
DDS-SECURITY/1.1/PDF

[20] Jesús Rodríguez-Molina, Sonia Bilbao, Belén Martínez, Mirgita Frasheri, and
Baran Cürüklü. 2017. An optimized, data distribution service-based solution for
reliable data exchange among autonomous underwater vehicles. Sensors 17, 8
(2017), 1802.

[21] RTI Connext. 2019. Using TPM 2.0 with RTI Connext DDS Se-
cure. https://d2vkrkwbbxbylk.cloudfront.net/sites/default/files/using_tpm_
2.0_with_dds_secure.pdf

[22] Nabil Schear, Patrick T. Cable, Thomas M. Moyer, Bryan Richard, and Robert
Rudd. 2016. Bootstrapping and Maintaining Trust in the Cloud. In Proceedings of
the 32Nd Annual Conference on Computer Security Applications (2016). 65–77.

[23] Claudio Scordino, Angela Gonzalez Mariño, and Francesc Fons. 2022. Hardware
acceleration of data distribution service (DDS) for automotive communication
and computing. IEEE Access 10 (2022), 109626–109651.

[24] Frederic Stumpf, Omid Tafreschi, Patrick Röder, Claudia Eckert, et al. 2006. A
Robust Integrity Reporting Protocol for Remote Attestation. In Proceedings of the
Workshop on Advances in Trusted Computing (WATC) (2006). 65.

[25] Hailun Tan, Gene Tsudik, and Sanjay Jha. 2019. MTRA: Multi-Tier randomized
remote attestation in IoT networks. Computers & Security 81 (2019), 78–93.

[26] Trusted Computing Group. 2019. Trusted Platform Module Library Part 1: Archi-
tecture. https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_
r1p59_Part1_Architecture_pub.pdf

[27] Trusted Computing Group. 2019. Trusted Platform Module Library Part 3: Com-
mands. https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_
r1p59_Part3_Commands_pub.pdf

[28] Trusted Computing Group. 2020. TCG TSS 2.0 Marshalling/Unmarshalling API
Specification. https://trustedcomputinggroup.org/wp-content/uploads/TCG_
TSS_Marshaling_Unmarshaling_API_v1p0_r07_pub.pdf

[29] Trusted Computing Group. 2021. TCG TSS 2.0 Enhanced System API (ESAPI)
Specification. https://trustedcomputinggroup.org/wp-content/uploads/TSS_
ESAPI_v1p0_r14_pub10012021.pdf

[30] Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer. 2020. Establishing
Secure Communication Channels Using Remote Attestation with TPM 2.0. In
Security and Trust Management (2020). 73–89.

[31] Robert Walther, Carsten Weinhold, and Michael Roitzsch. 2022. RATLS: Integrat-
ing Transport Layer Security with Remote Attestation. In Applied Cryptography
and Network Security Workshops: ACNS 2022 Satellite Workshops (2022). 361–379.

A APPENDIX: PROTOCOL FORMALIZATION
1 theory DDSAuthTPM

2 begin

3 builtins: hashing , signing , diffie -hellman

4
5 // Define two DDS participants (Alice and Bob)

6 rule Participants: [] --> [Participant('A'), Participant('B')]

7
8 // Create identity keys and certificates

9 rule CreateIdentityKey:

10 [Fr(~key), Participant(X)]

11 --[

12 OnlyOnceFor(<'CreateIdentityKey ', X>), IsIdentityKey(X, ~key)

13]->[Id(X, ~key), !IdCert(X, pk(~key))]

14
15 rule IdentityCertsArePublic:

16 [!IdCert('A', idCertA), !IdCert('B', idCertB)]

17 -->[Out(idCertA), Out(idCertB)]

18
19 // Create attestation keys and certificates

20 rule CreateAttestationKey:

21 [Fr(~ak), Participant(X)]

22 --[

23 OnlyOnceFor(<'CreateAttestationKey ', X>), IsAk(X, ~ak)

24]->[Ak(X, ~ak), !AkCert(X, pk(~ak))]

25
26 rule AkCertsArePublic:

27 [!AkCert('A', akCertA), !AkCert('B', akCertB)]

28 -->[Out(akCertA), Out(akCertB)]

29
30 // Execute DDS authentication protocol between Alice and Bob

31 rule HandshakeRequestMessage:

32 [Fr(~ nonceA) // Choose fresh nonce for Alice

33 , Fr(~a) // Choose fresh DH private key for Alice

34 , !IdCert('A', idCertA) // Load Alice 's identity certificate

35 , !AkCert('A', akCertA) // Load Alice 's quoting certificate

36]--[

37 AuthRequest('A', 'B', ~nonceA) // Note Alice 's authentication request

38]->

39 [// Send message to Bob:

40 // c.id = idCertA , q.id = akCertA , challenge1 = nonceA , dh1 = g^a

41 Out(<'HandshakeRequestMessage ', 'A', idCertA , akCertA , ~nonceA , 'g'^~a>)

42 , Alice_('B', ~nonceA , ~a) // Save Alice 's session

43]

44
45 rule HandshakeReplyMessage:

46 // According to the DDS security specification , the signature contains:

47 // hash_c2 , challenge2 , dh2 , challenge1 , dh1 , and hash_c1 (in that order)

48 let cdrbuf = <h(idCertB), ~nonceB , 'g'^~b, challenge1 , dh1 , h(idCertA)>

49 sigB = sign(cdrbuf , keyB)

50 quoteB = sign(<cdrbuf , 'PCRB'>, akB)

51 in

52 [In(<'HandshakeRequestMessage ', A, c_id , q_id , challenge1 , dh1 >)

53 , Fr(~ nonceB) // Choose fresh nonce for Bob

54 , Fr(~b) // Choose fresh DH key

55 , Id('B', keyB), !IdCert('B', idCertB) // Load Bob's identity key

56 , Ak('B', akB), !AkCert('B', akCertB) // Load Bob's quoting key

57 , !IdCert(A, idCertA), !AkCert(A, akCertA) // Load Alice 's certificates

58]

59 --[

60 Neq(dh1 , 'g')

61 , Eq(idCertA , c_id), Eq(akCertA , q_id) // Verify certificates

62 , AuthResponse('B', A, ~nonceB , sigB , quoteB) // Note Bob's response

63]->

64 [// Send message to Alice: c.id = idCertB , q.id = akCertB , challenge1 ,

65 // challenge2 = nonceB , dh2 = g^b, signature = sigB , qSignature = quoteB

66 Out(<'HandshakeReplyMessage ', 'B', idCertB , akCertB , challenge1 ,

67 ~nonceB , 'g'^~b, sigB , quoteB >)

68 , Bob_(A, ~nonceB , ~b, dh1) // Save Bob's session

69]

70
71 rule HandshakeFinal:

72 // According to the DDS security specification , the signature contains:

73 // hash_c1 , challenge1 , dh1 , challenge2 , dh2 , and hash_c2 (in that order)

74 let cdrbuf = <h(idCertA), nonceA , 'g'^a, challenge2 , dh2 , h(idCertB)>

75 sigA = sign(cdrbuf , keyA)

76 quoteA = sign(<cdrbuf , 'PCRA'>, akA)

77 in

78 [In(<'HandshakeReplyMessage ', B, c_id , q_id , challenge1 , challenge2 ,

79 dh2 , signature , qSignature >)

80 , Alice_(B, nonceA , a) // Load Alice 's session

81 , Id('A', keyA), !IdCert('A', idCertA) // Load Alice 's identity key

82 , Ak('A', akA), !AkCert('A', akCertA) // Load Alice 's quoting key

83 , !IdCert(B, idCertB), !AkCert(B, akCertB) // Load Bob's certificates

84]--[

85 Neq(dh2 , 'g')

86 , Eq(idCertB , c_id), Eq(akCertB , q_id) // Verify certificates

87 , Eq(nonceA , challenge1) // Verify nonce matches

88 , Eq(verify(signature , // Verify the signature

89 <h(idCertB), challenge2 , dh2 , challenge1 , 'g'^a, h(idCertA)>,

90 idCertB), true)

91 , Eq(verify(qSignature , // Verify the quote

92 <<h(idCertB), challenge2 , dh2 , challenge1 , 'g'^a, h(idCertA)>,

93 'PCRB'>, akCertB), true)

94 , AuthFinal('A', B, sigA , quoteA) // Note Alice 's auth finish

95 , Attested('A', B, challenge1 , akCertB) // Note Alice attested Bob

96 , EstablishedSecret('A', dh2^a) // Note Alice 's shared secret

97]->

98 [// Send message to Bob:

99 // challenge1 , challenge2 , signature = sigA , qSignature = quoteA

100 Out(<'HandshakeFinal ', 'A', challenge1 , challenge2 , sigA , quoteA >)

101]

102
103 rule HandshakeFinal2:

104 [In(<'HandshakeFinal ', A, challenge1 , challenge2 , signature , qSignature >)

https://wiki.gentoo.org/wiki/Integrity_Measurement_Architecture
https://wiki.gentoo.org/wiki/Integrity_Measurement_Architecture
https://doi.org/10.1007/978-3-540-45146-4_24
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF
https://d2vkrkwbbxbylk.cloudfront.net/sites/default/files/using_tpm_2.0_with_dds_secure.pdf
https://d2vkrkwbbxbylk.cloudfront.net/sites/default/files/using_tpm_2.0_with_dds_secure.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TSS_Marshaling_Unmarshaling_API_v1p0_r07_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TSS_Marshaling_Unmarshaling_API_v1p0_r07_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1p0_r14_pub10012021.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1p0_r14_pub10012021.pdf

DDS Security+: Enhancing the Data Distribution Service With TPM-based Remote Attestation ARES 2024, July 30–August 02, 2024, Vienna, Austria

105 , Bob_(A, nonceB , b, dh1) // Load Bob's session

106 , !IdCert('B', idCertB) // Load Bob's certificate

107 , !IdCert(A, idCertA), !AkCert(A, akCertA) // Load Alice 's certificates

108]

109 --[

110 Eq(nonceB , challenge2) // Verify nonce matches

111 , Eq(verify(signature , // Verify the signature

112 <h(idCertA), challenge1 , dh1 , challenge2 , 'g'^b, h(idCertB)>,

113 idCertA), true)

114 , Eq(verify(qSignature , // Verify the quote

115 <<h(idCertA), challenge1 , dh1 , challenge2 , 'g'^b, h(idCertB)>,

116 'PCRA'>, akCertA), true)

117 , Attested('B', A, challenge2 , akCertA) // Note Bob attested Alice

118 , EstablishedSecret('B', dh1^b) // Note Bob's shared secret

119]->[]

120
121 restriction Equality:

122 "All x y #i. Eq(x,y) @i ==> x = y"

123 restriction InEquality:

124 "All x y #i. Neq(x,y) @i ==> not(x = y)"

125 restriction OnlyOnceFor:

126 "All X #i #j. OnlyOnceFor(X)@#i & OnlyOnceFor(X)@#j ==> #i = #j"

127
128 /* Prove that Alice and Bob mutually authenticate each other and establish

129 * a shared secret. This lemma ensures that the model is fully executed. */

130 lemma HonestProtocol:

131 exists -trace

132 Ex c1 c2 dh1 dh2 idCertA idCertB keyA keyB akA akB secret #i #j #k #l #m.

133 AuthRequest('A', 'B', c1) @ #i

134 & AuthResponse('B', 'A', c2,

135 sign(<h(idCertB), c2, dh2 , c1, dh1 , h(idCertA)>, keyB),

136 sign(<<h(idCertB), c2, dh2 , c1, dh1 , h(idCertA)>, 'PCRB'>,akB)) @ #j

137 & AuthFinal('A', 'B',

138 sign(<h(idCertA), c1, dh1 , c2, dh2 , h(idCertB)>, keyA),

139 sign(<<h(idCertA), c1, dh1 , c2, dh2 , h(idCertB)>, 'PCRA'>, akA)) @ #k

140 & EstablishedSecret('A', secret) @ #l

141 & EstablishedSecret('B', secret) @ #m

142
143 /* Prove that an attacker cannot intercept the established secret. This

144 * lemma is reduced to the security of an authenticated DHKE. */

145 lemma EstablishedKeySecrecy:

146 not(/* It cannot be that */

147 Ex c1 c2 sigA sigB quoteA quoteB secret #i #j #k #l #m #n.

148 /* Alice and Bob authenticated each other , */

149 AuthRequest('A', 'B', c1) @ #i

150 & AuthResponse('B', 'A', c2, sigB , quoteB) @ #j

151 & AuthFinal('A', 'B', sigA , quoteA) @ #k

152 /* they established a shared secret , */

153 & EstablishedSecret('A', secret) @ #l

154 & EstablishedSecret('B', secret) @ #m

155 /* and the adversary knows the secret */

156 & K(secret) @ #n)

157
158 /* Prove that Alice and Bob mutually attest to each other during the

159 * authentication , while establishing a single shared secret. */

160 lemma MutualAttestation:

161 exists -trace

162 Ex akA akB nonceA nonceB secret #i #j #k #l.

163 IsAk('A', akA) @ #i & IsAk('B', akB) @ #j

164 & Attested('A', 'B', nonceA , pk(akB)) @ #k

165 & EstablishedSecret('A', secret) @ #k

166 & Attested('B', 'A', nonceB , pk(akA)) @ #l

167 & EstablishedSecret('B', secret) @ #l

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 DDS Security Architecture
	3.2 Trusted Platform Modules

	4 Remote Attestation in DDS
	4.1 Requirements
	4.2 Extending DDS Authentication
	4.3 Extending DDS Access Control

	5 Security Analysis
	5.1 Threat Model
	5.2 Informal Security Analysis
	5.3 Formal Security Analysis

	6 Implementation and Evaluation
	7 Conclusion
	Acknowledgments
	References
	A Appendix: Protocol Formalization

