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Abstract Inner city intersections are a challenging scenario for human drivers as 
well as for the development of autonomous vehicles. This is especially the case for 
unsignalized intersections where the right before left rule applies. At these inter-
sections, ambiguous situations can arise. In this chapter, we cover two aspects of 
this intersection type: First, we use driving data from a field study conducted in 
inner city traffic to analyze the relationship between intersections and human driving 
behavior. For that, we describe the intersection, its surrounding environment and 
the traffic there by features that constitute an intersection’s complexity (e.g. street 
width, visibility conditions, number of cooperation vehicles). With those we are able 
to predict features describing the driving behavior reliably. Second, we propose a 
decision making algorithm for unsignalized inner city T-junctions. The algorithm is 
modeled as a discrete event system and does not rely on any explicit communica-
tion. Instead, only the observable state is used. This includes the map, the positions 
and velocities of the cooperation vehicles and the driving pattern. We introduce the 
algorithm in detail and present results of a comprehensive simulation for validation. 
The algorithm is able to drive through all situations in the simulation safely. 
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1 Introduction 

The ongoing development of autonomous driving is a promising field of research. 
When autonomous vehicles are finally admitted onto public roads, one can expect 
several benefits from them. They have the potential to reduce the number and severity 
of traffic accidents. Additionally, it would enable people who are unable to drive for 
themselves access to individual mobility. There are, however, several aspects of 
autonomous driving that currently prohibit its introduction into real world traffic. 
Among them is driving through inner city traffic and especially at unsignalized 
intersections. This intersection type is common in Germany in areas with low or 
medium traffic density. At these intersections the right before left rule applies. It 
states that one has to yield to a driver approaching on the next street to one’s right 
and that one has priority over a driver approaching from the next street to the left. 
Oncoming traffic has priority over turning left. This rule does not, however, provide 
a defined driving order in all possible scenarios. Instead, situations can occur in 
which each driver has to yield to at least one other driver, thus creating a deadlock 
at the intersection. In this case the German traffic regulations for example only 
state that driving before someone who has priority may only occur after the drivers 
communicated and thus cooperated with each other [ 1]. This of course is problematic 
for an autonomous vehicle (A-V) as it has to interpret human behavior, make a 
decision based on potentially unreliable predictions and still drive safely and in a 
way that is acceptable to both its passengers and its human interaction partners. 

In this work we focus on two aspects of driving through unsignalized inner city 
intersections. The first aspect is how intersections influence driving behavior [42]. For 
that we describe an intersection by intersection complexity. We define intersection 
complexity based on features which describe an intersection. This includes both the 
static environment (e.g. visibility or the street width) and the dynamic environment, 
i.e. the traffic at the intersection. Driving behavior is described based on features 
obtained from the driven trajectory. We then predict the behavior features using the 
intersection features as inputs. The basis for that is data from a field study in real world 
traffic. The study, both the intersection and the behavior features and the prediction 
are described in detail in Sect. 3. The second aspect of this work focuses on the 
decision making at unsignalized intersections [ 43]. We present a decision making 
algorithm based on a discrete event system (DES) that is able to drive according to 
the traffic regulations. It is also able to cope with unclear situations like deadlocks or 
if a vehicle yields despite not having to. The strategy to solve these situations is based 
on the findings by [ 20]: They found that human drivers prefer not having to drive first 
in demanding situations such as a deadlock at a T-junction. Our approach does not 
require any explicit communication between the vehicles, the decisions are based 
only on the observable state of the cooperation vehicles, i.e. its position, velocity 
and acceleration. This is in line with findings from literature that state that human 
drivers rely on implicit communication when approaching such scenarios [ 19]. The 
algorithm, alongside a detailed validation, is presented in Sect. 4.
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2 Related Work 

Aspects of this work have been covered in literature before. We first present rele-
vant publications for the behavior analysis as described in Sect. 3, and then on the 
behavior generation (Sect. 4). The first aspect of this work focuses on the influence 
of intersection complexity on the driving behavior. There are previous publications 
that use features describing the environment of a driving task to define complexity. 
[ 9] assume inner city scenarios as most complex and driving on a highway as least 
complex. The type of scenario can also be used to discriminate between complex-
ity levels, [ 20] found a T-junction to be more complex than a symmetrical narrow 
passage. Further features that have been used before include the difference between 
signalized and unsignalized intersections [ 24], whether or not parked vehicles at the 
side of the road are present [ 8] and if a driver drove straight through an intersec-
tion or turned right or left [ 12]. Reference [ 45] uses satellite images and classifies 
intersections as complex if they have at least one street with multiple lanes, traf-
fic islands, sliplanes or more than four roads leading into the intersection. Another 
possible feature is visual clutter [ 14]. All these features so far describe stationary 
surroundings. However, one can also consider the dynamic environment, i.e. the traf-
fic, to describe the complexity of a situation. Reference [ 31] defines high complexity 
as situations that have high demands on both information processing and vehicle 
control and low complexity if there is low demand for either category. A medium 
complexity is assigned to scenarios that require high demand in one category and low 
demand in the other. Reference [ 21] uses the same definition but omits the medium 
class. Traffic density [ 28, 39, 44] can be considered for complexity as well as the 
occurrence of lane changes [ 39] or driving after a congestion compared to regular 
driving [ 23]. Further aspects of traffic and the environment of an intersection have 
also been studied, [ 44] included the number of vehicles from the left and whether or 
not a zebra crossing was present in their work. Reference [ 30] defines complexity by 
the grade of urbanization, the presence of oncoming traffic, leading traffic and the 
street geometry (straight road, tight corner, soft corner). Reference [ 4] considers a 
straight road as less complex than an intersection at which a stop is required or an 
overtaking maneuver. Reference [ 15] defines complexity by the number of adver-
tisement signs, buildings, oncoming vehicles and further infrastructure while driving 
on a highway. 

The second aspect of this work deals with decision making in the context of 
autonomous driving and has also been the focus of many authors. A common method 
for decision making at intersections and other traffic scenarios are partially observ-
able Markov decision processes (POMDP): [ 26] uses a POMDP for decision making 
at intersections and roundabouts. Reference [ 18] uses a POMDP for real-time deci-
sion making where other vehicles are treated as hidden variables to adapt the driving 
behavior to the most likely behavior of the other drivers. Reference [ 38] applies a 
POMDP for decision making at an intersection while turning left. The autors define 
several critical turning points from which a turn can be executed and select the 
most efficient one. Additionally, one can also consider limited visibility caused by
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both static and dynamic objects. A possible solution for that problem is to add vir-
tual vehicles at the edge of the obscured space [ 25]. Reference [ 2] uses POMDPs 
for decision making at intersections and pedestrian crossings with limited visibil-
ity. Besides POMDP, further methods for decision making have been employed as 
well. Reference [ 37] uses a mixed observability Markov decision process to pre-
dict the intention of cooperation partners and base the decision on that. Reference 
[ 29] presents a framework that combines prediction, threat detection and decision 
making. Using a Bayesian network the threat levels of other vehicles are classified 
and the decision is based on that. A decision can also be made by evaluating pos-
sible behavior policies and selecting the optimal one [ 5, 11]. Reference [ 6] selects 
the trajectory of an autonomous vehicle from a list of reference trajectories from 
human drivers during interaction with an additional vehicle. Finally, one can use a 
game theoretic approach by considering a game between the ego vehicle and the first 
oncoming vehicle [ 36]. 

All these works have in common that they do not rely on explicit communica-
tion between vehicles. Instead they rely on the vehicles’ states that are observable by 
onboard sensors. Alternatively, decision making at intersections can also be designed 
to use explicit communication between the vehicles themselves or between the vehi-
cles and a centralized coordination mechanism. Reference [ 27] presents an algorithm 
for coordination of autonomous vehicles at an intersection using model predictive 
control. This decentralized approach requires all vehicles to use the same algorithm 
and to share their current state. Reference [ 34] presents a centralized coordination 
algorithm for autonomous vehicles at unsignalized intersections. The vehicles are 
assigned arrival times and the problem is formulated as an absolute value prob-
lem. Reference [ 10] determines the driving order by centralized coordination using a 
mixed-integer linear problem. All vehicles transmit their state and receive their allot-
ted time to pass the intersection. They regulate their velocity accordingly. Versions 
for mixed traffic and traffic lights are also suggested. 

Certain aspects of inner city traffic have been modeled as DES before by using 
Petri-nets (PN). Reference [ 41] models an intersection with traffic lights using PNs 
for the traffic light control and to model the traffic flow. A PN can also be used to 
model the traffic light control mechanism at several connected intersections as well, 
using the largest intersection as the master control [16]. PN based traffic lights control 
can also be used to give arriving emergency vehicles green light at intersections [ 17]. 
Reference [ 7] models a city environment consisting of intersections with traffic lights 
and connecting streets using deterministic time-based PNs. Reference [ 33] controls 
intersections with traffic lights using deterministic and stochastic PNs. The model is 
adapted in case of incidents that would otherwise cause neighboring intersections to 
be blocked. 

In this work we do not rely on explicit communication with the cooperation vehi-
cles. Instead, the decision making is based only on the observable state of the other 
vehicles. We consider this to be more realistic, especially in the short term, as we 
cannot expect every vehicle to be equipped with such communication interfaces any-
time soon. We further rely on DES as decisions by the system are easily explainable 
and they are made using only basic operations.
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3 Intersection Complexity for Behavior Prediction 

In order to autonomously drive through unsignalized inner city intersections, it is 
helpful to understand why human drivers drive the way they do. This is important for 
two reasons: Autonomous vehicles will have to interact with human drivers for the 
foreseeable future. An understanding of human driving behavior might make these 
interactions more safe and efficient. It might enable autonomous vehicles to predict 
the driving behavior of their interaction partners more reliably. One can secondly 
make such systems behave similar to human drivers, this could improve their accep-
tance. The evaluation of this section is based on a field study that was conducted in the 
inner city of Karlsruhe in Germany [ 42]. In that study 34 participants drove through a 
predefined course during which they encountered several unsignalized intersections. 
At one of the intersections they were confronted with instructed drivers who created 
a deadlock situation. In this work we are investigating the interaction with regular 
traffic, therefore the runs through this intersection are not part of this work. The 
data set includes in total 1818 runs through 13 unsignalized T-intersections and 565 
runs through 4 unsignalized X-intersections. Four of the remaining T-intersections 
were specifically selected. This way we were able to include intersections with high 
and low traffic density and intersections with buildings close to and far from the 
street. The remaining intersections are included in the data set as they lie along the 
drive path between the selected intersections. The test vehicle was equipped with 
a 16 channel lidar, an inertial measurement unit (IMU) and two global navigation 
satellite system (GNSS) receivers. The data was recorded using the robotic operating 
system (ROS) [ 35] and the driven trajectory as well as the transformation of the point 
clouds to a global reference were generated using a simultaneous localization and 
mapping (SLAM) approach [ 13]. We then generated our data set by extracting the 
runs through the intersections which are included in the analysis. For that only those 
parts of the trajectory are included in a run that lie within a 35 m radius around the 
intersection center. Within the point clouds vehicles and pedestrians are detected and 
their trajectories are tracked. We have presented the work described in this section 
before in more detail [ 42]. 

3.1 Intersection and Behavior Features 

From the recorded and preprocessed data we then extract several features to describe 
both the intersection itself and its surroundings. As we additionally need a way to 
describe the driving behavior of the participants, behavior features are calculated from 
the driven trajectories as well. The intersection features include features describing 
properties of the driven path, the intersection itself and features about the traffic at 
the intersection the participant had to interact with. The set of all features can be seen 
as the complexity of an intersection.
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The driven path is described by the entry position and the turning direction. For the 
entry position.pe the T-intersection is rotated such that it resembles the letter “T”. The 
entry position can then either take the value left, bottom or right. The entry position is 
not considered in case of the X-intersections because of their symmetry. The turning 
direction .pt takes one of the values left, straight or right. At T-intersections not all 
turning directions are possible depending on the entry position. 

Further, we define features that describe the traffic at the intersection the partic-
ipants had to interact with. For that we use the number of pedestrians .np and the 
number of vehicles .nv as features. Both pedestrians and vehicles are counted if they 
are detected in the point clouds during the approach to the intersection. Please refer to 
[ 42] for further details on the detection and tracking. The visible vehicles are divided 
into further features: The number of interaction vehicles .nvi are those vehicles that 
are within 10 m from the intersection center at the same time as the test vehicle. 
In order to be counted their observed track has to pass the intersection center. The 
interaction vehicles are further analyzed if they have the right of way over the test 
vehicle or if they have to give way; the number of vehicles that fulfill these conditions 
are counted in .nrw and .ngw, respectively. 

The final class of intersection features is designed to describe the static envi-
ronment at the intersection. Among them is the number of trees .nt that are near 
the intersection and the road a participant uses to enter the intersection. To judge 
the occlusion of an intersection during the approach we include visibility distances. 
These are the distances at which reference points in the streets to the left and right 
of the street the vehicle enters the intersection from are visible for the first time. The 
reference points are placed on the center line of the streets at a distance of 

.dref = vmax tr + v2max

2|ab| (1) 

from the intersection center. This is the distance that is needed to stop when driving 
at the speed limit of.vmax = 30 km h−1. With a reaction time of.tr = 1 s and a braking 
deceleration of.ab = 6ms2, the distance of the reference points is.dref = 14.12m.We  
use two variants to calculate the visibility distance, an approach based on the point 
clouds and one based on object polygons. For the point clouds variant we merge the 
current and the two point clouds before and after to the merged point cloud .P(d). 
This represents the merged point cloud at distance. d from the intersection center. For 
that the current trajectory point is projected onto the center line of the current lane, 
the distance is then measured along the lane center. Within .P(d) cylinders .Cs,i with 
a radius of 0.6 m are placed between the current location and the reference points . i . 
If there is at least one point of .P(d) within .Cs,i , reference point . i is considered not 
visible at distance . d. The visibility distance .dv,c,i to each reference point is then the 
distance at which the reference point is visible for the first time. Alternatively, we 
use polygons of the buildings and tree trunks along the intersection to determine the 
visibility distance. For that we draw a sight line between the current location and 
the reference points. If this line does not intersect with any polygon, the reference 
point is visible. Again, the first distance . d for which this is true determines the
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visibility distance.dv,p,i of a reference point. The visibility distance of an intersection 
is the minimum visibility distance of all its reference points: .dv,· = mini

 
dv,·,i

 
. To  

include the actual and perceived narrowness of the road leading into the intersection, 
we define three widths that are calculated along the normal of each point of the 
trajectory. The street width .ws(d) is the distance from the intersection points of the 
normal at distance . d with the street curbs and is calculated based on the map of the 
intersection. For the visible range the point clouds are analyzed. It describes how 
far a driver can see to the left and right and is supposed to model the perceived 
narrowness of the street. For each trajectory position the lidar data is evaluated along 
the normal at sensor height. The first point within.±5◦ in vertical direction and. ±10◦
in horizontal direction determines the visual range. For the visual range .wv(d) this 
is performed both to the left and right of the trajectory. The available width . wa(d)
is a combination of the previous two widths and describes the space on the street 
that is available to drive on. At each trajectory point the smaller one of the street 
width .ws(d) and visual range .wv(d) determines the available width. For this the 
calculation of the available width is adapted such that it includes all points within 
.±15◦ in vertical direction. All three widths are averaged over the approach interval 
from 25 m to 7 m before the intersection center. A more detailed introduction into 
the features discussed here can be found in [ 42]. 

To describe the driving behavior at the intersections, we define three features 
based on the driven trajectory: the commit distance, the velocity drop and the min-
imum velocity. The commit distance is the distance from the intersection center at 
which, given the current velocity, stopping before the intersection center is no longer 
possible: 

.dc = max
d

 
d < v(d) tr + v(d)2

2|ab|
 
. (2) 

The commit distance can be interpreted as a measure for the distance at which the 
final decision to drive is made. The further from the intersection, the more offen-
sive the driving behavior. The minimum velocity is the minimum velocity that the 
driver assumed during the approach interval of .ds = 25m to .de = 0m distance to 
the intersection center: 

.vmin = min(v(d)), ds > d > de. (3) 

The final behavior feature is the velocity drop. It describes the ratio between the 
minimal velocity during the approach .vmin to the mean initial approach velocity . va
in the interval from 25 m to 20 m: 

.vd = vmin

va
. (4)
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3.2 Prediction of Driving Behavior 

Using the intersection and behavior features from above we can now predict the 
driving behavior. For that we train several Random Forest (RF) [ 3] regression models. 
RFs are employed because of their ease of use and because they can model non-linear 
dependencies [ 22]. Several other regression methods could be used here as well. 
We use the intersection features, or a subset of them, as predictors and predict the 
behavior features. For each combination of the three behavior features and the two 
intersection types (X- and T-intersections) 10 models are trained. For each of the 10 
models 70 % of the runs are used as the training set, the remaining 30 % are used as 
the test set. In Table 1 the average and standard deviation of the 10 models are given 
for all variants. The performance of the RF regression models is evaluated using the 
root mean squared error (RMSE): 

.RMSE =
    1

N

N 

k=1

 
ŷk − yk

 2
. (5) 

.N is the number of runs in the test set, .yk is the behavior feature of the .k-th run of 
the test set and .ŷk is the value of the behavior feature estimated by the regression 
model for the same run. A first analysis was performed using the entire feature set 
as introduced in Sect. 3.1. For the T-intersection models all 13 features were used. 
In the case of the X-intersections the entry position .pe was omitted as a feature. 
The results of that analysis are given in the first row of Table 1. The last row of this 
table contains the reference value, that is the results of a naive regression model that 
outputs the mean of the training set. The prediction error of the driving behavior 
for all three behavior features is well below the reference value with a low standard 
deviation for both the T-intersections and the X-intersections. The performance of 
this regression model is especially noteworthy given the fact that driving behavior 
might also be influenced by a driver’s personality or mood. 

Additionally, we investigate whether a dimensionality reduction of the feature set 
is feasible. For that we first select a subset of the most relevant complexity features. 
This selection is a compromise between the feature importance of all investigated 
model variants. The remaining features are the entry position .pe (only for the T-
intersections), the turning direction. pt , both visibility distance variants.dv,c and.dv,p, 
the street width .ws and the available width .wa, the number of trees .nt and the num-
ber of visible vehicles . nv. This means that there is only one feature describing the 
traffic. This might, at least in part, be explained by the fact that most runs did not 
include any cooperation partners as this study was conducted in regular traffic. The 
performance of the RF regression models with that feature set are given in the second 
row of Table 1. The regression is less accurate than with the full feature set, but the 
performance is very similar, indicating that these reduced complexity feature sets are 
sufficient to predict the driving behavior at intersections.
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Table 1 Mean RMSE regression results for T-intersections and X-intersections using different 
feature sets and all behavior features: commit distance . dc, minimum velocity .vmin and velocity 
drop. vd. The standard deviation is in brackets 

.dc inm .vmin inm s−1 . vd

T-int. X-int. T-int. X-int. T-int. X-int. 

Full feature 
set 

1.492 1.696 1.033 1.150 0.153 0.159 

(0.050) (0.093) (0.036) (0.057) (0.005) (0.008) 

Reduced 
feature set 

1.512 1.728 1.068 1.173 0.157 0.162 

(0.049) (0.110) (0.036) (0.069) (0.006) (0.008) 

Directions 
feature set 

1.800 2.590 1.298 1.686 0.187 0.209 

(0.068) (0.084) (0.041) (0.045) (0.006) (0.008) 

Reference 3.093 3.229 1.977 2.000 0.275 0.256 

(0.116) (0.135) (0.051) (0.075) (0.004) (0.011) 

As the entry position.pe and turning direction.pt are relevant factors to the driving 
behavior [ 42], we also train models with only these two complexity features. In case of 
the X-intersections we only use the turning direction. pt . The performance of these RF 
regression models is given in the third row of Table 1. The results show that prediction 
is still possible, the performance, however, decreases substantially compared to the 
full and reduced feature sets. This is especially true for the X-intersection. A possible 
explanation for the reduced performance might be that both features can only assume 
three distinct values each. Thus there are only six distinct value combinations possible 
in the case of the T-intersections and only three combinations for the X-intersections. 
This limits the number of possible regression values to the same numbers, thus 
causing a less accurate regression. 

4 Behavior Generation 

The second aspect of this work focuses on an approach to decide on the behavior 
of an A-V at a T-intersection, i.e. whether it drives first or waits for its cooperation 
vehicles (C-V) to pass the intersection before it. Both this high-level decision and the 
resulting longitudinal acceleration of the A-V is covered by our proposed decision 
making algorithm. There are several challenges associated with this problem: As 
the driving paths of the A-V and its C-Vs intersect, there oftentimes is no solution 
that guarantees safety from collisions in any possible scenario. This would only be 
possible if the A-V always waits for all other vehicles to drive first. This, however, 
is not a feasible option. It would firstly lead to a deadlock if there is another A-V 
with the same strategy. This behavior could secondly be more confusing than helpful
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when interacting with human drivers, especially given that human drivers prefer 
others to drive first in complex scenarios such as deadlocks at T-intersections [ 20]. 
In order to avoid these problems, a certain degree of risk has to be accepted. Also, 
another challenge is the number of possible interactions between the vehicles that 
are involved in the situation. If all pairwise interactions are explicitly modeled the 
model is dependent on the number of cooperation partners. Also, explicitly modeling 
all interactions would be challenging. 

4.1 Basic Setup 

The algorithm is modeled as a discrete event system (DES) and does not assume 
any communication between the vehicles. The only available information is the 
observable state of the C-Vs, i.e. their position, speed and acceleration and the map of 
the intersection. As soon as a C-V is closer than 10 m from the start of the intersection 
we assume that the turning direction is known, e.g. by observing the indicators or 
from the driven trajectory. There exist previous works from literature that support 
this assumption [ 32, 46]. In this work the vehicles follow the center line of their lane, 
so only the longitudinal acceleration has to be controlled. The map is a generic T-
intersection with a 90◦ angle between the bottom street and the street going straight, 
see Fig. 1 for a schematic. Additionally, we consider occlusions at the intersection. 
For that we define two points that specify the corners of obstacles between the 
streets that block the direct line of sight. These points are placed on the bisecting 
lines between the streets and the distance from the curb is used to parameterize the 
visibility conditions. 

To simplify the model and reduce the number of vehicles that have to be evaluated, 
we only consider those vehicles that are currently relevant to the A-V. Each of these 
vehicles is evaluated independently. With that strategy we avoid having to model 
the interaction between all possible pairs of vehicles as well. Each of the relevant 
C-Vs is assigned a virtual traffic light that is either red or green. The A-V only drives 
offensively if all traffic lights are green, a red light thus means that the A-V cannot 
drive due to that vehicle. The first relevant C-V is the vehicle that has priority (P-V) 
over the A-V, i.e. the vehicle closest to the intersection on the next street to the right. 
If the A-V will turn into the next street to the right itself, there is no P-V as the A-V 
does not have to yield to any vehicle in this case. Additionally, the vehicle that has 
to yield (Y-V) to the A-V has to be taken into consideration. The Y-V is the vehicle 
closest to the intersection that is approaching on the next street to the left. If its path 
does not intersect with the A-V’s path, the vehicle behind it is evaluated. To ensure 
a safe passage of the intersection, two more vehicles have to be considered. The 
blocking vehicle (B-V) is the closest vehicle that is leaving the intersection on the 
same road as the A-V will and the leading vehicle (L-V) is the vehicle driving directly 
in front of the A-V on its path. The B-V and the L-V can be the same vehicle. All 
these vehicles are relevant for the decision of the A-V as either their paths intersect 
with the A-V’s (this is the case for the P-V and the Y-V) or because they can hinder
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IC 

Fig. 1 Schematic representation of a scenario at a T-intersection. The visibility is determined by the 
visibility edges C1 and C2. These are placed on the bisecting lines between the streets originating 
from the intersection center IC. With that the visible street area can be calculated. In this case 
vehicles B, Y1 and L are visible, vehicles P and Y2 are not visible. The A-V enters the intersection 
from the bottom direction and turns left. It has to yield to vehicles from the right and has priority 
over vehicles from the left. Therefore, vehicle P is the P-V (as soon as it becomes visible). As both 
Y1 and Y2 are turning right, there is no Y-V. If Y2 were to drive straight it would be assigned 
the Y-V even before its preceding vehicle Y1 passes the intersection. Vehicle B is the B-V as it is 
driving on the road the A-V intends to enter and is potentially blocking this road if it is too close to 
the intersection. Vehicle L is driving directly in front of the A-V and is thus the L-V 

the A-V from leaving the intersection right away (in the case of the B-V or the L-V). 
We only consider the vehicles closest to the intersection as only those are directly 
relevant for the decision of the A-V. A vehicle behind e.g. the P-V is irrelevant as it 
cannot interact with the A-V as long as the P-V is before the intersection. The same 
is true for the L-V: The vehicle driving in front of the L-V does not directly affect 
the A-V. If one of the C-Vs passes the intersection the situation is re-evaluated, the 
labels are assigned anew and all considerations are based on the new assignments. In 
the case of limited visibility the A-V might currently not be able to see some of the 
vehicles, despite them existing. To cope with that possibility certain non-existence is 
only assumed if a reference point that is placed on the road center at a radius of 25 m 
from the intersection center is visible. In the case of the B-V the reference point is 
set to a distance of 15 m and the existence of the L-V is assumed to be known in any 
case. If the turning direction is not yet known, the worst case is assumed. Both the 
vehicle assignment and the visibility is showcased in Fig. 1. 

4.2 Decision Making Algorithm 

As the algorithm for decision making is modeled as a DES, the vehicle is described 
and controlled by its current state. The state only changes if an event occurs. For
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the definition of these events features that are based on the observable data are used. 
Based on the current state the behavior of the A-V, i.e. its acceleration, is determined. 

4.2.1 Features 

To indicate for which vehicle a feature is calculated, it is marked by a corresponding 
index: .(·)x , x ∈ {a, p, y, b, l}. All distances are measured along the drive path of a 
vehicle. The distance to scenario .dx

s (t) is positive before, zero within and negative 
after the intersection. The begin of an intersection is defined as the point where lanes 
diverge and the end is the point where lanes merge. All features are calculated for 
the current time. t . For better readability this dependence is omitted in the following. 

At an intersection, the drive paths of vehicles oftentimes intersect. The area where 
the lanes of two vehicles overlap is referred to as the common collision zone. For 
the algorithm only the distances to the collision zones of the A-V with its C-Vs are 
needed. .dx

c,xc,b and .d
x
c,xc,e are the distance of vehicle . x to the beginning and the end 

of the collision zone of the A-V with the C-V . xc. The distance of the A-V to the 
beginning of the collision zone with the P-V is then.da

c,p,b and the distance of the P-V 
to the beginning of the same zone is .dp

c,p,b. Based on the distance to collision zone 
the time to collision zone is calculated using the current velocity .vx of vehicle . x : 

.t xc,xc,· = dx
c,xc,·
vx

. (6) 

Additionally, the distance required to brake to a complete stop assuming the velocity 
.vxa and the acceleration .ax

a is used as a feature: 

.dx
b

 
vxa , a

x
a

 =

⎧
⎪⎪⎨

⎪⎪⎩

− (vxa )
2

2axa
, ax

a < 0ms−2

0 , ax
a = 0ms−2 ∧ vxa = 0ms−2

∞ , otherwise

. (7) 

The distance to the last stopping point .dx
l is the distance to the point a vehicle has 

to stop to not interfere with any other driving path through the intersection. The 
final feature is the free distance behind the B-V. This feature measures the distance 
between the end of the intersection and the rear of the B-V including the distance to 
break in an emergency (.ae = −7.5ms−2) from the current velocity: 

.db
f = db

i − 1

2
lv + db

b

 
vb, ae

 
, (8) 

where.db
i is the current distance along the driven path from the end of the intersection 

and .lv = 4.4m is the length of the vehicle.
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4.2.2 Events 

In our model the behavior is supposed to differ depending on the distance of the A-V 
to the intersection. Thus, the approach to the intersection is split into six zones. The 
current zone is determined by the A-V’s distance to scenario . da

s . In the first zone 
(.da

s > 40m) the A-V is not controlled by the decision making algorithm but drives 
freely. At the beginnings of the second (.40m ≥ da

s > 25m) and the third (. 25m ≥
da
s > 10m) zone a single prediction of the P-V is performed and the behavior of the 
A-V is adapted accordingly. The A-V adapts its behavior to show its intention as 
early as possible. The prediction is only run twice to avoid changing the behavior too 
often. The fourth zone is the area just before the intersection (.10m ≥ da

s > 1m). In 
it the A-V constantly monitors the behavior of its C-Vs and adapts its own behavior if 
necessary. Zone 5 is the area within the intersection itself (.1m ≥ da

s ≥ 0m). In these 
last two zones the final decision on the behavior has to be made and then executed 
accordingly. The final zone 6 is the street past the intersection where the vehicle is 
no longer controlled by the decision making algorithm. 

The model is based on events, most events are themselves a combination of so 
called base events. Their meaning and definition is shown in Table 2 and the events 
are presented in Table 3. Each of the four relevant C-Vs has a traffic light event 
assigned to it. The P-V is the only vehicle that has two variants of that event. In 

Table 2 Base events for the DES for decision making 

Name Description Condition 

.eb1 Certain non-existence of P-V Ref. point is visible and no P-V detected 

.eb2 No conflict expected with P-V . tac,p,e + tp < tpc,p,b ∧ dac,p,e + dp < dpc,p,b

.eb3 P-V stopped near intersection . vp < vs ∧ ap ≤ 0 m
s2

∧ dps < dn ∧ dpc,p,b >
0m

.eb4 P-V yields . tpw > ty

.eb5 Y-V inside collision zone . dyc,y,b < 0m ∧ dyc,y,e > 0m

.eb6 A-V can pass before Y-V . tac,y,e < tyc,y,b

.eb7 Stop possible (comfort dec.) . dal > dab (vi, ac)

.eb8 Y-V stops & A-V could brake . dal >
 
dab (vi, ah)+ 0.2m

 ∧ vy < vsl
. ∧ay < 0 m

s2
∧ dyc,y,b > dyb (v

y, ay)

.eb9 Y-V stopped near intersection . vy < vs ∧ ay ≤ 0 m
s2

∧ dys < dn ∧ dyc,y,b >
0m

.eb10 Certain non-existence of B-V Ref. point is visible and no B-V detected 

.eb11 Enough space behind B-V . dbf > lv + dmin

.eb12 L-V does not exist No L-V detected 

.eb13 L-V passed intersection . d ls < 0m

.eb14 Stop possible (emergency dec.) . dal > dab (v
a, ae)

.eb15 Deadlock possible A-V, P-V, Y-V: turning directions intersect 

.eb16 A-V stopped near intersection .va < vs ∧ aa ≤ 0m s−2∧ < das < dn
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Table 3 Events of the DES for decision making. Most events are a combination of base events 

Definition Description 

.e1,p,I = eb1 ∨ eb2 Green light from P-V in zones 2 and 3 

.e1,p,II = eb1 ∨ eb2 ∨ (eb3 ∧ eb4) Green light from P-V in zones 4 and 5 

.e1,y = ¬eb5 ∧ (eb6 ∨ eb7 ∨ eb8 ∨ eb9) Green light from Y-V 

.e1,b = eb10 ∨ eb11 Green light from B-V 

.e1,l = eb12 ∨ eb13 Green light from L-V 

.e2 Entered next zone 

.e3 = eb14 Emergency stop possible 

.e4 = eb15 Deadlock possible 

.e5 = eb3 ∧ eb9 ∧ eb16 Deadlock detected 

.e6 = eb3 ∧ eb9 Deadlock of C-V detected 

the prediction phase (zones 2 and 3) its light is green (event .e1,p,I) if the  A-V is  
either certain that no P-V exists (base event .eb1) or if it does not expect a conflict 
with its P-V (the A-V is predicted to enter the intersection at least . tp = 2.5 s and 
. dp = 10m earlier,.eb2). In zones 4 and 5 the light is additionally set to green (.e1,p,II) 
if the P-V is currently stopped close to the intersection (the velocity is below the stop 
threshold of.vs = 0.15m s−1, it does not accelerate and it is closer than the threshold 
.dn = 12m to the start of the intersection, .eb3) and the wait time .tpw has exceeded its 
.ty = 2 s limit (i.e. both vehicles stood for 2 s at the intersection and it is not due to 
a deadlock, .eb4). The parameters are either set to the authors considerations and are 
thus options to parameterize the model or are due to physical constraints. 

The traffic light of the Y-V (.e1,y) is green if the Y-V is currently not within the 
common collision zone (.¬eb5) and if at least one of these events is true: The A-V 
is predicted to be able to pass the collision zone before the Y-V (base event .eb6); 
the Y-V is stationary close before the intersection (.eb9); the distance to the last stop 
point of the A-V is still large enough so that it is able to stop before it without 
exceeding the comfort deceleration of .ac = −2.5m s−2 and assuming a velocity 
within the intersection of .vi = 6.5m s−1 if driving straight and .vi = 4.0m s−1 if 
turning (.eb7); the Y-V is slow (.vsl = 2m s−1), it currently brakes such that it will 
come to a complete stop before the beginning of the collision zone and the A-V 
has enough space remaining for a hard stop (.ah = −4.5m s−2) if it should become 
necessary (.eb8). The latter two base events allow the A-V to drive despite currently 
not being predicted to pass the intersection before the Y-V. With these conditions 
we avoid unnecessarily defensive behavior. Only if the A-V is very close to the 
intersection and still cannot drive first safely, it yields to the Y-V. 

The B-V gives green light (.e1,b) if the A-V is certain that it does not exist (base 
event.eb10) or if there is enough space (i.e. the length of a vehicle. lv and the minimum 
distance for a following vehicle during standstill .dmin = 1.5m) behind the B-V so 
that the A-V can pass the intersection without the risk of having to stop inside the



Analysis and Simulation of Driving Behavior at Inner City Intersections 103

intersection (.eb11). The L-V has a green traffic light assigned to it (.e1,l) in case it does 
not exist (.eb12) or after it has passed the intersection (.eb13). 

Additionally, some further events are needed for the model. If the A-V enters a 
new zone in the current time step, event .e2 is triggered. Event .e3 is triggered if an 
emergency stop before the intersection is still possible. If the turning patterns of the 
A-V, the P-V, and the Y-V all intersect with each other, a deadlock is possible (. e4). 
A deadlock occurs (. e5) if both the P-V (.eb3) and the Y-V (.eb9) as well as the  A-V  
(.eb16) are stopped before the intersection at the same time. If only the P-V and the 
Y-V are standing at the intersection, a deadlock of the C-Vs occurs (. e6). 

4.2.3 DES Model 

Each zone has states associated to it. The model can only be in a state that is associated 
with its current zone. In zones 1 and 6 there is only one state each (.s10 and .s60), as 
the model does not influence the behavior in these states. The remaining states each 
have a state for offensive driving (states .s21, .s31, .s41 and .s51) and defensive driving 
(.s22, .s32, .s42 and .s52). Offensive states prepare the A-V for driving directly through 
the intersection or are the state in which the vehicle actually passes the intersection. 
The defensive states correspond with waiting before the intersection or describe the 
waiting state directly. State .s53 describes offensive driving after waiting in state .s52. 
The model switches between states if certain events occur. The model and all its 
states and events are shown in Fig. 2. 

Fig. 2 DES of the A-V. If none of the events attributed to the current state occurs, the system 
remains in that state. These events have been omitted for better readability. The event. eg = e1,p,II ∧
e1,y ∧ e1,b ∧ e1,l describes the case that the traffic lights of all four relevant C-Vs are green in zones 
4 and 5. Event .edl = e4 ∧ e5 ∧ e1,b ∧ e1,l is true if a deadlock is possible, has occurred and both 
the L-V and the B-V do not obstruct the A-V from driving
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During the approach the model always starts in state .s10. It remains there until 
it leaves the first zone (event . e2). When this happens, the prediction of the P-V is 
evaluated for the first time. In the prediction phase only the P-V is considered as the 
A-V only has to yield to this vehicle. In case of green light (.e1,p,I) the A-V assumes 
its offensive state .s21, otherwise it drives more defensively in state .s22. When it 
eventually enters zone 3 the same evaluation is performed again. If the evaluation 
leads to a green light, it enters state .s31 that is associated with offensive behavior, 
otherwise it enters state .s32 and shows defensive behavior. When the A-V leaves 
zone 3 there is no prediction, it transitions from state .s31 to .s41 or from .s32 to .s42, 
thus keeping its offensive or defensive behavior, respectively. This can be done as 
the prediction is run constantly (i.e. in every time step) in zones 4 and 5. 

In addition to the constant prediction, all four relevant vehicles are now considered 
for decision making, as the A-V is close to or within the collision zones with its C-Vs 
in these zones and dangerous situations can thus occur easily. If the A-V is in the 
defensive state.s42 and all four lights are green (event.eg = e1,p,II ∧ e1,y ∧ e1,b ∧ e1,l) 
and if a deadlock cannot occur (.¬e4), it transitions to state.s41. If it is in the offensive 
state.s41 it switches to.s42 if at least one of the four lights is no longer green (.¬eg) and 
if there is still enough space for an emergency stop by the A-V (. e3). This does not 
pose a large risk as the parameterization for the green lights is rather conservative. 
Additionally, this strategy avoids a potentially dangerous stop within the intersection. 
If the vehicle reaches the end of zone 4 and enters zone 5 (event . e2), it progresses 
from.s41 to.s51 or from.s42 to.s52, respectively. If the vehicle is in state.s51 it remains in 
this offensive state unless at least one of the traffic lights is no longer green (.¬eg) and 
there is still enough space for an emergency stop (. e3). In this case it transitions to state 
.s52. There is no transition from.s52 to.s51. Instead, the A-V can only leave the waiting 
state .s52 to .s53 if all traffic lights are green again (. eg) while no deadlock is possible 
(.¬e4) or if there is a deadlock that the A-V tries to solve (.edl = e4 ∧ e5 ∧ e1,b ∧ e1,l). 
If a deadlock is detected by the A-V it always tries to drive first. An alternative 
strategy would be to drive after a certain waiting period. State .s53 is an offensive 
state that is assumed after the A-V was defensive. From it, the A-V either progresses 
to.s60 after it leaves the intersection (. e2) or it returns to the defensive state.s52 if it can 
no longer drive safely. The latter is the case if an emergency stop is still possible (. e3) 
and either a deadlock is possible (. e4) but the cooperation vehicles are not stopped 
(.¬e6) or a deadlock is not possible (.¬e4) and not all lights are green (.¬eg). State 
.s60 is the only state of zone 6. This state is not controlled by the algorithm as the 
interaction at the intersection is now over. 

4.2.4 Acceleration 

So far the DES only describes the current situation of the interaction. To actually 
control it, the behavior of the A-V has to be set depending on the current state of 
the DES. For that we set a target velocity for each state (see Table 4) and control the 
vehicle using the intelligent driver model (IDM) [ 40]:
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Table 4 Target velocities.vt in m s−1 for the states of the DES. Entries marked with an asterix are 
set in conjunction with a virtual vehicle to enforce stopping before the intersection 

State .s21 .s22 .s31 .s32 .s41, s51, s53 . s42, s52

.vt straight 8.3 6.0 7.5 6.0 6.5 6.5* 

.vt turning 8.3 6.0 6.0 6.0 4.0 4.0* 

.aa = am

 

1 −
 
va

vt

 4

−
 
d∗

 d

 2
 

with d∗ = dmin + va tmin + va  v

2
√
am ab

. (9) 

With the maximum acceleration .am = 2.5ms−2, the braking deceleration .ab = ac, 
the target velocity .vt as specified in Table 4, the distance along the drive path to the 
L-V . d, the difference in velocity . v = va − vl and the minimum time between 
following vehicles.tmin = 1.2 s. The acceleration.aa by the IDM is limited to a lower 
threshold of .amin = ac. If there is no L-V  . d is set to infinity and .vl = 0m s−1. In  
states .s42 and .s52 the A-V is supposed to stop .1m before the last stopping point. If 
this is not possible, the A-V brakes harder (.amin = ah) to still stop at that point. If 
this is also no longer possible, an emergency stop with.amin = ae is initiated and the 
A-V will stop directly at the last stopping point. To ensure that the A-V stops at its 
stopping point, a virtual vehicle is placed such that its rear is .dmin before the stop 
point. The virtual vehicle is not used if there is an L-V that is closer. .vt is set to the 
same value as in the offensive states .s41 or .s51. This approach ensures that the A-V 
proceeds to its stopping point if there is no L-V before the intersection and that the 
A-V is able to restart after waiting in a queue to proceed to its stop point. 

4.3 Simulation Results 

To test and validate our proposed decision making system we implemented a simu-
lation framework. To properly test the algorithm, also the C-Vs have to be simulated. 
For that a simplified version of the proposed algorithm is used because we are only 
interested in testing the A-V’s algorithm. In it, the conditions for driving depend on 
fewer features and events and zones 4 and 5 of the original algorithm are merged. 
In this zone the decision to drive first is not revised, i.e. once the algorithm decides 
to drive, it continues to do so regardless of any future development of its surround-
ings. In case of a deadlock, the C-V waits for a random duration before it tries to 
resolve the situation. The C-Vs detect a deadlock before the A-V does. That way, 
it is also possible for the C-Vs to drive first despite the A-V driving as soon as it 
detects a deadlock. That way it is possible to test the behavior of the A-V’s algorithm 
if someone else tries to resolve a deadlock. Additionally, visibility is not taken into 
consideration for the C-Vs, all vehicles are visible by the simplified algorithm at 
all times. Finally, the algorithm of the C-Vs can have some special behavior to test



106 H. Weinreuter et al.

certain aspects of the main algorithm: They can be set to drive first despite having 
to yield and alternatively they can be set to wait for an arbitrary duration if they are 
allowed to drive first. This behavior is only shown when the relevant cooperation 
partner from the C-V’s perspective is the A-V. With both variants we can test the 
A-V’s behavior towards unexpected behavior. Additionally, the target velocity inside 
and after the intersection can be reduced. With that one can further ensure that the 
A-V only drives once the intersection is cleared. 

Within the simulation framework, the simulation for a single run is performed as 
follows: First, the map for the simulation is loaded and all vehicles are initiated. Then 
each time step is simulated: The currently visible vehicles are determined and only 
the current states of these vehicles are presented to the algorithm. Then the C-Vs are 
identified and the features are calculated. Afterwards, the currently active events are 
checked and the DES is updated. Finally, the acceleration is calculated. These steps 
are performed for the A-V and all C-Vs. 

For the simulations we used the generic map as described above, the visibil-
ity distance was set to either .dv ∈ {7m, 14m, 21m} and there were either . nc ∈
{1, 2, 3, 4, 5, 6} cooperation vehicles present in the simulation. Each of these com-
binations was simulated 200 times, resulting in 3600 simulations in total. In each 
simulation run the distances to the intersection of all vehicles and their initial veloc-
ities and turning patterns were set randomly within a certain feasible range. The 
special behavior and the waiting durations were set randomly as well. 

None of the simulations resulted in a collision. One should note, however, that 
it is possible for two C-Vs to restart simultaneously after a deadlock. As the deci-
sion to drive is not revised, this would result in a collision. Such a run could safely 
be disregarded for evaluation as we are only interested in the performance of the 
A-V’s algorithm. For each run we also measured the time to drive through the 
intersection .td (time while the A-V was within .30m > da

s ≥ 0m). If we average 
over all runs with the same visibility distance, we get the following average dura-
tions and corresponding standard deviations: .td (dv = 7m) = 12.10 s (.σ = 6.03 s), 
.td (dv = 14m) = 12.14 s (.σ = 6.18 s) and .td (dv = 21m) = 12.16 s (.σ = 6.23 s). 
As these values are very similar, we did not analyze the results separately for each 
visibility distance. In Table 5 the time to drive through the intersection is averaged 
over all runs that have the same number of P-Vs and Y-Vs. The results from that 
table have to be interpreted with caution as there are some aspects that are not con-
sidered, e.g. a leading vehicle that has to wait can increase the duration even though 
the A-V would not have had to stop. Also, there are only a few runs with more than 
three vehicles of a kind, the average is thus less reliable. Nonetheless, the results 
indicate that the algorithm results in reasonable decisions: The average time to pass 
the intersection increases with the number of cooperation vehicles. The increase is 
more pronounced for the P-Vs than for the Y-Vs. This is to be expected as one has 
to yield to the P-Vs instead of the interaction with Y-Vs where one should have to 
wait less often.
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Table 5 Average time to clear the intersection by the number of P-Vs and Y-Vs for all visibility 
distances 

0 P-Vs 1 P-V 2 P-Vs 3 P-Vs 4 P-Vs 5 P-Vs 

0 Y-Vs 9.49 s 14.02 s 19.43 s 22.49 s 24.26 s 29.39 s 

1 Y-V 9.62 s 16.79 s 21.95 s 25.45 s 29.87 s 36.6s  

2 Y-Vs 13.53 s 19.83 s 25.28 s 27.31 s 36.87 s – 

3 Y-Vs 15.87 s 20.58 s 24.73 s – – – 

4 Y-Vs 26.87 s 15.22 s – – – – 

5 Conclusion 

The results from Sect. 3 show that the driving behavior of human drivers depends on 
the intersection. We can thus predict the driving behavior using features that describe 
the intersection itself, its surroundings and the traffic there. As these features can be 
considered as a description of an intersection’s complexity, one can conclude that the 
complexity of an intersection has an influence on the driving behavior. We further 
show that it is possible to predict the driving behavior using only a subset with the 
most relevant features. In future work we intend to directly ask human participants 
for a complexity rating of such situations. With that we hope to find a dependence 
between the perceived complexity and the resulting behavior. 

In Sect. 4 we further present a decision making algorithm that is able to reliably 
drive through an unsignalized T-intersection while interacting with other drivers. We 
validate our proposed algorithm with a simulation and the results indicate a reliable 
performance. Future work on this topic will include variants of this algorithm for 
further scenarios such as X-intersections, roundabouts or narrow passages. We further 
intend to run the algorithm on real world maps. 
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