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Abstract

This thesis studies the design of journey planning algorithms for multimodal passenger trans-

port networks. In particular, we consider the combination of public transit (e.g., trains, buses,

trams) with one or several transfer modes that represent road-based individual transport (e.g.,

walking, cycling, e-scooters). Currently, there is a significant performance gap between mul-

timodal journey planning algorithms and their unimodal counterparts. One major reason for

this is that state-of-the-art multimodal algorithms combine existing techniques for exploring

the individual network parts, but the fastest available techniques for road networks are not

usable within this context. The second major reason is that multimodal journey planning

requires the simultaneous optimization of multiple criteria. However, existing approaches can

only efficiently handle Pareto optimization for two criteria: the arrival time and the number

of used trips. With additional criteria, the number of Pareto-optimal solutions becomes

excessively large, which slows down the algorithms and causes an overwhelming amount of

different choices to be presented to the user.

This thesis employs the Algorithm Engineering methodology to develop techniques that

close this performance gap. The first major contribution is ULTRA (UnLimited TRAnsfers), a

speedup technique that allows any public transit algorithm to operate onmultimodal networks

without incurring a performance loss. It is based on the shortcut hypothesis, which states

that the number of paths in the transfer graph that are required to bridge the gap between

two public transit vehicles in at least one optimal journey is small. ULTRA exploits this by

precomputing these paths and condensing them into a set of shortcut edges. We first present

ULTRA for a basic scenario with one transfer mode and two optimization criteria: arrival

time and number of trips. Afterward, we extend it to a variety of extended scenarios to show

that the shortcut hypothesis still holds in them. The extensions include queries with multiple

target locations, additional criteria, multiple transfer modes, and vehicle delays.

The second focus of this thesis is on designing new, efficient query algorithms for multi-

modal scenarios. Currently, the fastest public transit algorithm that does not require expensive

preprocessing is Trip-Based Routing (TB), which achieves its good performance by operating

on the level of individual events (i.e., departures and arrivals of public transit vehicles at

stations) rather than vehicle routes and stations. Already in a public transit context, TB

requires a short preprocessing step that computes relevant transfers between vehicles. We

show that ULTRA can replace this preprocessing step in a multimodal context. Starting

from there, we extend the event-based concept of TB to scenarios with additional criteria.

We show that under certain conditions, Pareto-optimizing a third criterion in addition to

the arrival time and the number of trips can be done in polynomial time. In particular, we



Abstract

iv

demonstrate that considering the time spent in the transfer modes as the third criterion

is crucial in order to achieve a good solution quality. Our approach yields the new query

algorithms McTB (Multicriteria Trip-Based Routing) and HydRA (Hybrid Routing Algorithm),

which can efficiently handle scenarios with three or more criteria, respectively. Furthermore,

we integrate our algorithms with restricted Pareto sets, a state-of-the-art approach for reducing

the size of the Pareto sets in a methodical manner.

The combination of ULTRA with the event-based query algorithms and restricted Pareto

sets closes the performance gap in all considered scenarios, which we show through extensive

experiments on real-world networks representing metropolitan areas and countries of varying

sizes. On all networks, our algorithms are fast enough for interactive applications. Depending

on the scenario, they outperform the state of the art by one to three orders of magnitude.
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1 Introduction

One of the greatest challenges facing urban development today is car dependency. Private

cars offer fast and convenient travel for the individual passenger, but they also produce many

negative externalities. These include noise and air pollution, a high energy consumption per

capita, CO2 emissions, congestion, a demand for parking space that cannot be used otherwise,

and an increased risk of traffic accidents [WBN17, Tig+11, Mar07]. For these reasons, there

is a broad consensus that a shift toward more sustainable modes of transportation, such as

public transit, walking or cycling, is needed [vB04, Tig+11, SGv14, WBN17]. For example, the

Greater London Authority is aiming for 80% of all journeys to be traveled on foot, by bicycle

or with public transport by 2041, up from 63% in 2015 [Gre18].

These ambitious goals cannot be achieved by treating the different modes as separate

entities. This is because, on their own, none of them can compete with the speed and

flexibility of car-based travel. Sustainable individual transport modes, such as walking and

cycling, are too slow and cumbersome for long journeys. Public transit has a greater spatial

reach, but it is not as flexible. Outside of densely populated areas and peak hours, service

tends to be sporadic. Because of the resulting waiting times and the time overhead for access

and egress, public transit on its own cannot replace a private car for many passengers.

These shortcomings can be addressed by integrating the different modes into a multimodal

transport system. This has the potential of combining their strengths while mitigating their

weaknesses [SGv14, KBB16, OCC20]. Individual transport modes can help to bridge gaps in

public transit service and vastly improve its door-to-door accessibility [vB04, Mar07, KBB16,

OCC20]. In addition, recent years have seen the rapid adoption of micromobility services,

such as bicycle sharing or e-scooters, which give passengers more flexibility and a greater

range of options to choose from [ALD21, OCC20]. Together with more traditional modes,

these services can help turn multimodal travel into a serious alternative for all passengers.
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While the greater range of options is beneficial, it also means that multimodal journeys

have a higher planning overhead for the passenger. Therefore, the shift toward multimodality

requires integrated journey planning services that offer access to the different modes within

a single user interface [WBN17]. This thesis focuses on the design of multimodal journey

planning algorithms for such services. We consider a transport network to be multimodal if

it combines public transit with at least one individual transport mode. In particular, we treat

the different types of schedule-based public transit (e.g., train, tram, bus) as the same mode.

From an algorithmic view, there is no distinction between them because they all serve a fixed

sequence of locations according to a fixed timetable. By contrast, individual transport modes

allow the passenger to move freely within the road network. We assume that the movement

in these modes is largely unrestricted; if a system only accounts for walking between nearby

public transit stops, we do not consider it to be truly multimodal. Some modes, such as

ridesharing and dial-a-ride services, are hybrids that combine aspects of both schedule-based

and individual transport. We consider such modes to lie outside the scope of this thesis.

Some authors (e.g., [WBN17, OCC20]) make a distinction between multimodal and inter-

modal travel. In this case, “multimodal” merely means that passengers have a choice between

multiple transport modes. If the modes can be combined within a single journey, the system

is called intermodal. When designing integrated journey planning algorithms, the intermodal

case is the default one, so the distinction is unnecessary. Therefore, we follow most existing

literature on journey planning algorithms [Bas+16] and use the term “multimodal” exclusively.

1.1 State of the Art
Most journey planning algorithms are designed for the use case of a server application, which

responds to queries by many different users on the same network. The application should

be interactive, so response times must be sufficiently fast. Ideally, this means that the time

for answering a query is lower than the network latency, so that users do not notice a delay.

Because Dijkstra’s algorithm [Dij59] is too slow for this purpose, state-of-the-art approaches

employ speedup techniques [Bas+16]. These compute auxiliary data in a preprocessing phase,
which is then used to speed up the query phase. This is possible because the network topology
changes only rarely (e.g., once per day).

Unimodal Journey Planning. Road networks exhibit various structural properties

that have proven useful in the design of speedup techniques. Most notably, they can be

efficiently decomposed into smaller components of roughly equal size [EG08, DSW16] and

shortest paths between far-away locations tend to pass through a small subset of the network

(e.g., highways) [BFSS07, Abr+16]. Likely the most widely used technique is Contraction

Hierarchies (CH) [GSSV12]. Even on the road network of Europe, CH can answer queries

in well below a millisecond with a few minutes of preprocessing time and little additional

space. Unfortunately, public transit networks do not exhibit these properties to the same

degree [Bas09]. As a result, speedup techniques that offer comparable query times to those on
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road networks require very expensive preprocessing phases, in terms of both running time

and memory consumption [Bas+10, DDPW15].

More recently, research has focused on exploiting a different set of structural features that

are unique to public transit networks, which has resulted in faster query algorithms that

require little or no preprocessing. Because the timetable can be represented as a directed

acyclic graph (DAG), finding shortest paths does not require Dijkstra’s algorithm. Instead, the

fastest algorithms explore the graph in topological order [DPSW18] or use variants of breadth-

first search (BFS) [DPW15a, Wit15]. Another useful feature is that vehicle routes form long

uninterrupted paths. State-of-the-art algorithms exploit modern hardware architecture by

exploring these paths with array-based scanning operations. These achieve a high degree of

memory locality, leading to faster query times [DPW15a, Wit15].

Another aspect that is especially relevant in public transit journey planning is multicriteria

optimization. In addition to the arrival time, many algorithms also consider the number of

trips (i.e., the number of vehicles used) [PSWZ08, Bas+10, DPW15a, Wit15]. This serves

as a measure for the discomfort associated with a journey: because changing vehicles is

cumbersome, many passengers will accept a slightly later arrival time if it allows them to save

a trip. To reflect this, these algorithms compute the Pareto set, which includes all solutions

that are not dominated by another solution in both criteria.

The fastest public transit algorithms that do not require preprocessing are the Connection

Scan Algorithm (CSA) [DPSW18], which optimizes only the arrival time, and RAPTOR (Round-

bAsed Public Transit Optimized Router) [DPW15a], which supports two-criteria optimization.

Trip-Based Routing (TB) [Wit15] is even faster but requires a short preprocessing phase

that computes transfers between vehicles. These algorithms achieve query times of a few

milliseconds on metropolitan networks and 100–300ms on the network of Germany.

Methodology. The established methodology for journey planning research is Algorithm

Engineering [San09, MS10]. This method addresses some of the shortcomings of the classical

approach to algorithm design, which is based on theoretical analysis: given (simplified) input

and machine models, performance guarantees are proven that hold for all possible inputs.

Theoretical analysis yields results that are more robust than merely evaluating an algorithm’s

performance for some benchmark instances. However, if the models are too heavily simplified,

the guarantees may not be tight enough to accurately predict the performance on real inputs.

On the other hand, more sophisticated models make the analysis more challenging.

Journey planning is a classic example of an application in which simple models often fail

to provide useful results. Most successful journey planning algorithms are tailored toward

the structural properties of real-world transportation networks, so analyzing the worst-case

performance across all possible input graphs rarely offers interesting insights. For road

networks, some progress has been made toward formalizing these structural features and

incorporating them into the theoretical analysis [Abr+16, KV17, BFS21], but public transit

or multimodal networks are not as well understood. Another issue is that many algorithms

exploit features of modern hardware architectures that are not captured by the random-access
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Figure 1.1: The Algorithm Engineering cycle as intro-

duced by Sanders [San09] and Müller-Hannemann and

Schirra [MS10]. Figure kindly provided by Tobias Zün-

dorf [Zün20].

machine (RAM) model, which is still commonly used for performance analysis. Factors

such as cache locality and branch prediction greatly influence the practical performance

of public transit algorithms such as CSA, RAPTOR and TB, but also of algorithms for road

networks [DGNW13]. Therefore, analyzing the worst-case running time in the RAM model

is not sufficient to determine whether an algorithm meets the goal of offering “interactive”

query times on real-world networks.

Algorithm Engineering acknowledges that theoretical analysis is not a substitute for prac-

tical implementation and experimental evaluation on real inputs. Instead, the two approaches

should complement each other. The central process of Algorithm Engineering (visualized

in Figure 1.1) is a cycle consisting of five steps: modeling, design, analysis, implementation,

and experiments. The modeling step includes tasks such as choosing representative bench-

mark inputs and formulating a suitable problem statement. An algorithm for the problem

is then designed and analyzed from a theoretical perspective. Afterward, the algorithm is

implemented, and finally, experiments are performed on the chosen inputs to evaluate the

algorithm’s practical performance. A crucial aspect of the Algorithm Engineering cycle is the

feedback loop: later phases can influence earlier ones. For example, analysis and experiments

can offer insights that lead to new algorithmic ideas or more refined models, prompting a new

iteration of the cycle. Each iteration is driven by a falsifiable hypothesis, and the experiments

are designed to falsify or support it.

Public Transit with Limited Walking. None of the state-of-the-art algorithms for

public transit networks can be easily adapted to multimodal scenarios. At best, they can

handle a limited amount of walking. The typical model is that of one-hop transfers: the
footpaths are modeled as a graph in which every shortest path is represented by a single

edge. An unrestricted footpath network cannot be modeled efficiently in this way because

the resulting graph would be too dense. Instead, one-hop transfer graphs typically consist of

a set of small, disjoint cliques representing nearby stops.

To evaluate how far this model can be stretched, Wagner and Zündorf [WZ17] construct

one-hop transfer graphs that are guaranteed to preserve all paths whose walking duration
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does not exceed a specified limit 𝜏 . They achieve this by connecting all pairs of stops whose

walking distance is at most 𝜏 and then building the transitive closure of the resulting graph.

Their experiments show that if 𝜏 is higher than a few minutes, the graph becomes so dense

that queries are massively slowed down. For even faster transport modes, such as bicycles

or e-scooters, the guaranteed travel time would be so low that the modes become virtually

useless. For example, on the network of Greater London, around four minutes of walking

can be guaranteed. If we assume that a bicycle is about three times as fast as walking, this

corresponds to only 80 seconds of cycling.

On the other hand, Wagner and Zündorf also show that the availability of unrestricted

walking significantly improves travel times compared to one-hop transfers with a guaranteed

walking duration. To measure the impact, they evaluate random queries between points with

a fixed distance, which corresponds to an average travel time of two hours. For each query,

they compare the travel times of the fastest journey with unrestricted and with one-hop

transfers. On the network of Germany (with a guaranteed walking duration of eight minutes),

the travel times differ for almost half of all daytime queries, and even more frequently during

the night. In 10–20% of all cases, the travel time difference exceeds one hour. The authors

note that if arrival time and number of trips are Pareto-optimized, the effect is even stronger

because journeys with fewer transfers require more walking. Phan and Viennot [PV19]

perform similar experiments that support the same conclusion, although they note that the

impact of unrestricted walking is smaller in dense metropolitan networks. Note that both

experiments consider walking as the only additional mode besides public transit. We expect

the impact of faster modes to be much greater.

Multimodal Performance Gap. Algorithms that can handle fully multimodal scenarios

typically combine existing approaches for each network type. Unfortunately, most speedup

techniques for road networks are not applicable in this context because they are designed

for one-to-one queries, i.e., queries between a fixed source and target location. However,

multimodal journeys may use the road-based modes to transfer between any two points in

the public transit network, which requires many-to-many queries. Currently, the fastest

multimodal algorithm is MCR (Multimodal Multicriteria RAPTOR) [Del+13], which combines

RAPTOR on the public transit network with Dijkstra’s algorithm on a contracted version of

the road network. For two-criteria optimization, MCR is slower than RAPTOR on its own by a

factor of two to three. TB, which is faster than RAPTOR, has not been adapted to multimodal

networks so far because its preprocessing phase requires one-hop transfers.

Another challenge is that multicriteria optimization plays an even greater role inmultimodal

journey planning because the additional transport modes produce more potential tradeoffs.

For example, users may want to minimize the walking duration or the costs for rental vehicles.

RAPTOR can be extended to an arbitrary number of criteria. However, when adding a third

criterion, the running times already increase by an order of magnitude [DPW15a]. For TB, no

such extension has been proposed yet. One of the reasons for the slowdown is that Pareto

sets tend to become very large for a high number of criteria [Han80, Del+13]. Besides causing
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performance issues, the abundance of different options can also be overwhelming for users

of a journey planning application. Many Pareto-optimal solutions are extremely similar

to each other (e.g., adding a minute of walking to save a minute of travel time), whereas

others represent undesirable tradeoffs (e.g., adding three hours of walking to save a minute of

travel time). Therefore, a more practical approach is to present the user with a small, diverse

selection of “reasonable” Pareto-optimal journeys [Del+13]. Several definitions for a small,

representative subset of the Pareto set have been proposed [Del+13, BBS13], but no efficient

algorithms are known for computing them exactly, so existing approaches rely on heuristics.

Recently, the restricted Pareto set [DDP19] was proposed to address these shortcomings, but

it has not been applied to multimodal scenarios so far.

Overall, there is a significant performance gap between algorithms for public transit

and multimodal journey planning. There are two main reasons for this: Firstly, the fastest

public transit algorithms are not easily adaptable to more complex scenarios. Secondly, the

existing approaches for extending public transit algorithms to multimodal networks incur a

performance loss.

Shortcut Hypothesis. A promising approach for the problem of efficient multimodal

extension was discovered by Sauer [Sau18]. Building on the experiments by Wagner and

Zündorf [WZ17], the author shows that the impact of unrestricted footpaths depends on their

position in the journey. Transfers can be divided into three categories: Initial transfers connect
the source location to the stop where the first vehicle is entered, whereas final transfers lead
from the last vehicle to the target location. Finally, intermediate transfers connect two public

transit trips. Sauer shows that an algorithm with access to unrestricted initial and final

transfers but one-hop intermediate transfers almost always finds the fastest journey.

Based on this finding, the author hypothesizes that the number of intermediate transfers

that appear in at least one optimal journey is small. We call this the shortcut hypothesis because
it implies an algorithmic solution for handling intermediate transfers: precompute all optimal

intermediate transfers and condense them into a set of shortcut edges between stops. Then,

existing approaches for one-to-many searches on road networks can be leveraged for the initial

and final transfers. To test the hypothesis, Sauer presents a prototypical shortcut computation

algorithm and a variant of RAPTOR that uses the resulting shortcuts. Experimental results

offer preliminary support for the hypothesis, but the scope of the experiments is limited: the

algorithm is evaluated on only one network, only for the combination of public transit and

walking, and only for the two criteria arrival time and number of trips.

1.2 Main Contributions

Recall that there are two reasons for the performance gap between public transit and multi-

modal journey planning: the performance loss of existing approaches formultimodal extension

and the lack of efficient query algorithms that can be applied in more complicated settings.
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In this thesis, we close the gap by developing solutions for both problems and showing that

they are applicable to a wide range of multimodal scenarios.

Multimodal Extension. To tackle the first issue, we present ULTRA (UnLimited TRAns-

fers), a speedup technique that exploits the shortcut hypothesis in a more rigorous fashion

than the prototypical algorithm by Sauer [Sau18]. ULTRA decomposes the complexity of

multimodal journey planning into modular algorithmic components, each of which can be

treated as a black box. The preprocessing phase computes a set of shortcuts that are provably

sufficient to reconstruct an optimal set of journeys for every possible query. Initial and final

transfers are handled with an existing algorithm for one-to-many search in road networks.

Using ULTRA, any public transit algorithm that requires one-hop transfers can be turned

into a multimodal algorithm. If the shortcut hypothesis holds, i.e., the number of shortcuts is

small, then this algorithm is just as fast as its public transit counterpart.

We do not expect the shortcut hypothesis to hold in all possible multimodal scenarios; there

are simply too many of them, with vastly different characteristics. We only consider scenarios

that fit the following assumption: Public transit is the “main” mode, which is typically used

for all or most of a journey. Individual transport modes serve as transfer modes that allow
passengers to bridge gaps in areas with poor service or during off-peak hours. We discuss the

limits of this assumption throughout the thesis. While many multimodal scenarios conform

to it, some do not, such as certain combinations of public transit with car-based modes.

To test the shortcut hypothesis, we follow the iterative approach of Algorithm Engineering.

We start with a simple multimodal problem setting that includes only one transfer mode and

optimizes the two most common criteria: arrival time and number of trips. Starting from

there, we gradually introduce extensions that make the problem more realistic and thereby

more challenging. These include one-to-many queries, additional criteria, multiple transfer

modes, and delays in the vehicle schedules. For each extended scenario, we adapt ULTRA

and examine whether it produces a small set of shortcuts by conducting experiments on four

representative real-world networks of varying sizes and types.

Throughout the thesis, we keep to a simple model for the transfer modes: we provide

a road network (including pedestrian zones) and assume that it can be explored freely at

a constant speed, obeying speed limits where applicable. This model ignores several real-

world restrictions. However, it is useful for investigating the shortcut hypothesis because it

maximizes the availability of the transfer mode and therefore provides an upper bound on

the number of required shortcuts. Modes with rental vehicles, such as bicycles and e-scooters,

require additional modeling for pickup and dropoff points, but this is not the focus of this

thesis (we refer, for example, to [SWZ20b]).

It may not be immediately clear why it is necessary to support unrestricted intermediate

transfers in practice, especially if this requires a potentially expensive preprocessing phase.

For walking as the transfer mode, the experiments by Sauer [Sau18] indicate that one-hop

intermediate transfers are almost always enough to find the fastest journey. Furthermore,

many passengers will not want to walk for long distances even if it improves the travel time.
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However, one-hop intermediate transfers are not satisfactory for several reasons. Firstly, the

walking duration that can be guaranteed with one-hop transfers is often very low, especially

in metropolitan networks. For the network of London, only four minutes of walking can be

guaranteed, which is clearly less than what many passengers are willing to accept. Ultimately,

the decision on how much walking is reasonable should be made by the user based on the

output of the journey planning algorithm, not by the input model. Secondly, as mentioned

above, one-hop transfers cannot represent faster transfer modes, such as bicycles and e-

scooters, in a useful manner. Finally, even in scenarios with one-hop transfers, a shortcut

precomputation algorithm may be useful because it can reduce the number of transfers

compared to the transitive closure, thereby speeding up the query algorithm.

Query Algorithms. Our second main contribution is the design of more efficient multi-

modal query algorithms. We achieve this by carrying recent advances in public transit journey

planning over to the multimodal setting and by devising new algorithms to handle additional

criteria. TB achieves its performance improvements compared to previous algorithms by

operating on the level of individual events (i.e., departures and arrivals) rather than stations

and vehicle routes. The downside is that in order to do this, it must precompute possible

transfers between events. We show that ULTRA can serve as a multimodal version of this

precomputation step, allowing TB to operate on multimodal networks for the first time.

Because other ULTRA-based algorithms also require this preprocessing phase, TB loses its

main disadvantage and becomes the algorithm of choice for multimodal journey planning.

For the more complex problem settings, which include one-to-many queries and additional

criteria, we design query algorithms that preserve as many of the advantages of TB as possible.

We observe that some advantages are limited to particular contexts, whereas others are more

broadly applicable. Additionally, we integrate ULTRA and TB with restricted Pareto sets,

which enables the optimization of more criteria without bloating the solution size. The

combination of these approaches allows us to close the performance gap to public transit

journey planning in all considered scenarios. The resulting algorithms are the first ones that

are fast enough for interactive applications even on country-scale networks.

1.3 Thesis Outline
The remainder of this thesis is structured as follows.

Chapter 2 introduces basic terminology and notation.

Chapter 3 reviews the literature on journey planning algorithms in road, public transit and

multimodal networks.

Chapter 4 details existing journey planning algorithms that we build upon throughout this

thesis. Section 4.1 presents variants of Dijkstra’s algorithm and CH for journey planning

in road networks. In Section 4.2, we discuss public transit algorithms, including CSA,
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RAPTOR and TB. Finally, Section 4.3 outlines the experimental setup that we use

throughout the thesis, including the four real-world multimodal networks that we use

in our experiments.

Chapter 5 presents ULTRA for a simple multimodal problem setting with one transfer mode

and two optimization criteria. Section 5.1 presents the shortcut computation algorithm

and proves its correctness. In Section 5.2, we show how ULTRA can be combined with

any existing public transit algorithm and re-engineer the TB query algorithm to support

multimodal networks more efficiently. In Section 5.3, we evaluate the combination

of ULTRA with CSA, RAPTOR and TB. We show that the shortcut hypothesis holds

regardless of the speed of the transfer mode and that the ULTRA-based query algorithms

fully close the performance gap compared to their public transit counterparts, offering

a speedup of an order of magnitude compared to the state of the art. This chapter

is based on joint work with Moritz Baum, Valentin Buchhold, Dorothea Wagner and

Tobias Zündorf [Bau+19, SWZ20c, Bau+23].

Chapter 6 extends ULTRA to one-to-many and one-to-all queries. This requires us to replace

the component that handles final transfers, which relies on a many-to-one search from

all public transit stop to a single target vertex. Section 6.1 outlines our approach, which

is inspired by the PHAST algorithm [DGNW13]. In Section 6.2, we describe how the TB

query algorithm can be adjusted for one-to-many search. Experiments are presented

in Section 6.3. This chapter is based on joint work with Dorothea Wagner and Tobias

Zündorf [SWZ20a].

Chapter 7 revisits the criteria that are considered for Pareto optimization. We show that in

multimodal networks, the two-criteria approach with arrival time and number of trips

tends to produce journeys that use the transfer mode excessively, even when it is not

necessary. To prevent this, we include the time spent in the transfer mode as a third

criterion. In Section 7.1, we investigate the problem of computing the full three-criteria

Pareto set. We show that under certain assumptions about the third criterion, this

problem can be solved in polynomial time. We present three-criteria extensions of

ULTRA and TB. Because the full Pareto set is too large for practical usage, we integrate

our approaches with restricted Pareto sets in Section 7.2. Our experiments in Section 7.3

show that the restricted Pareto set with transfer time as a third criterion significantly

improves the solution quality compared to the two-criteria Pareto set. We show that

the shortcut hypothesis still holds in the three-criteria setting if the transfer mode has

a low to moderate speed. Finally, we show that our algorithms offer interactive query

times and a speedup of up to two orders of magnitude compared to the state of the art.

This chapter is based on joint work with Moritz Potthoff [PS22b].

Chapter 8 extends ULTRA to multiple competing transfer modes. This requires careful

modeling decisions, which we discuss in Section 8.1. In particular, we prohibit switching

between modes in the middle of a transfer, except to pick up or drop off rental vehicles.
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Additionally, we optimize the time spent in each transfer mode as a separate criterion.

In Section 8.2, we show that the ULTRA shortcut computation can be run independently

for each mode, which means that the preprocessing effort is only linear in the number

of modes. Section 8.3 extends existing RAPTOR-based query algorithms to our scenario.

Because the number of criteria is variable, the Pareto set can now have exponential

size, unlike in Chapter 7. While this means that it is not possible to carry over all of the

benefits of TB to this scenario, we propose a hybrid of RAPTOR and TB in Section 8.4

that retains some of them. We evaluate our approach in Section 8.5. When integrated

with restricted Pareto sets, the solution set remains small and query times are only

slightly higher than with a single transfer mode. This chapter is based on joint work

with Moritz Potthoff [PS22a].

Chapter 9 extends ULTRA to handle delays in the vehicle schedules. We observe that

the shortcut hypothesis no longer holds if the shortcuts are required to account for

every possible combination of delays. Instead, we consider the problem of computing

shortcuts for all delays up to a specified limit (e.g., five minutes). We analyze this

problem theoretically in Sections 9.2 and 9.3. Based on these findings, we present a

delay-robust variant of ULTRA in Section 9.4. To handle larger delays, Section 9.5

proposes a heuristic update phase that adds missing shortcuts based on the current

delay information. Our experiments in Section 9.6 show that these approaches, when

taken together, offer extremely low error rates while mostly retaining the performance

benefits of ULTRA. This chapter is based on joint work with Dominik Bez [BS24].

Chapter 10 recapitulates the main findings of this thesis and gives an outlook on potential

future applications and open problems.
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2 Preliminaries

This chapter introduces the basic terminology and notation that are used throughout this

thesis. First, we cover definitions related to graphs and shortest-path problems. Afterward,

we define public transit networks, journeys and journey planning problems.

Graph. A directed graph is a tuple 𝐺 = (𝑉 , 𝐸) consisting of a set 𝑉 of vertices and a

set 𝐸 ⊆ 𝑉 × 𝑉 of directed edges connecting pairs of vertices. An edge (v, 𝑤) ∈ 𝐸 is called

an incoming edge of 𝑤 and an outgoing edge of v . It is incident to both v and 𝑤, and the two

vertices are neighbors of each other. The degree of a vertex is the number of edges incident to

it. The graph is called weighted if there is a cost function 𝑐 : 𝐸 → R that assigns a cost (also

called weight or length) to each edge. In this work, we only consider integral, non-negative

cost functions 𝑐 : 𝐸 → N0.

A path 𝑃 = ⟨v1, . . . , v𝑘⟩ is a sequence of vertices such that each pair v𝑖 , v𝑖+1 of consecutive
vertices is connected by an edge (v𝑖 , v𝑖+1) ∈ 𝐸. If the sequence consists of a single vertex, we
call the path empty. If v1 = v𝑘 , we call 𝑃 a cycle. Given source and target vertices vs, vt ∈ 𝑉 ,
we call 𝑃 an vs-vt-path if vs = v1 and vt = v𝑘 . The cost of 𝑃 is the sum of its edge costs:

𝑐 (𝑃) := ∑𝑘−1
𝑖=1 𝑐 ((v𝑖 , v𝑖+1)). We call an vs-vt-path 𝑃 a shortest path if there is no vs-vt-path with a

lower cost than 𝑃 . We call𝐺 connected if for each pair of vertices v, 𝑤 ∈ 𝑉 , the graph contains

a path from v to 𝑤 or vice versa, and strongly connected if it contains both.

Given a graph 𝐺 = (𝑉 , 𝐸), a source vertex vs ∈ 𝑉 and target vertex vt ∈ 𝑉 , the one-to-one
(or single-pair) shortest path problem asks for a shortest path between vs and vt. Several more

general variants of this problem are also of interest. The one-to-all (or single-source) problem
only specifies the source vertex and asks for a shortest path to every possible target vertex

in 𝑉 . In the one-to-many problem, a set 𝑉t ⊆ 𝑉 of target vertices is given as part of the input.

The many-to-many problem asks for pairwise shortest paths between a set 𝑉s ⊆ 𝑉 of source
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vertices and a set 𝑉t ⊆ 𝑉 of target vertices. Finally, the all-to-all (or all-pairs) shortest path
problem asks for shortest paths between all pairs of vertices in the graph.

The following special classes of graphs are of interest:

• A subgraph of a graph 𝐺 = (𝑉 , 𝐸) is a graph 𝐺 ′ = (𝑉 ′, 𝐸′) with 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆
𝐸 ∩ (𝑉 ′ ×𝑉 ′). For a subset 𝑉 ′ ⊆ 𝑉 of vertices, we call the graph (𝑉 ′, 𝐸 ∩ (𝑉 ′ ×𝑉 ′))
the subgraph of 𝐺 induced by 𝑉 ′. A (strongly) connected component of 𝐺 is a (strongly)

connected subgraph of 𝐺 that is not part of any larger (strongly) connected subgraph

of 𝐺 .

• A graph 𝐺o = (𝑉 o, 𝐸o) is called an overlay graph for another graph 𝐺 = (𝑉 , 𝐸) if 𝑉 o ⊆
𝑉 and 𝐺o

preserves shortest path distances in 𝐺 . This means that for each pair of

vertices vs, vt ∈ 𝑉 o
, the cost of the shortest vs-vt-path in 𝐺 is equal to the cost of the

shortest vs-vt-path in 𝐺o
.

• A directed graph 𝐺 = (𝑉 , 𝐸) is called a directed acyclic graph (DAG) if it contains no
cycles. A graph is a DAG if and only if it admits a topological ordering of its vertices.

This is an ordering such that for every edge 𝑒 = (v, 𝑤), the vertex v comes before 𝑤 in

the ordering.

Network. A public transit network is a 6-tuple (S,Π, E, T ,R,𝐺) consisting of a set

of stops S , a service period Π, a set of stop events E , a set of trips T , a set of routes R, and

a directed, weighted transfer graph 𝐺 = (𝑉 , 𝐸). A stop v ∈ S is a location in the network

where passengers can board or disembark a vehicle (such as buses, trains, ferries, etc.). The

service period Π ⊆ N0 defines the times at which vehicles can depart from or arrive at a

stop. Throughout this thesis, we represent times by the number of elapsed seconds since

midnight of the first day included in the timetable. For example, 5:30:02AM on the second

day is represented as 106 202. A stop event 𝜀 =
(
𝜏arr (𝜀), 𝜏dep (𝜀), v (𝜀)

)
∈ E represents a visit

of a vehicle at the stop v (𝜀) ∈ S , arriving at the arrival time 𝜏arr (𝜀) ∈ Π and departing with

the departure time 𝜏dep (𝜀) ∈ Π. A trip 𝑇 = ⟨𝜀0, . . . , 𝜀𝑘⟩ ∈ T represents the ride of a vehicle as

a sequence of stop events. The 𝑖-th stop event in 𝑇 is denoted as 𝑇 [𝑖]. The length |𝑇 | := 𝑘 + 1
is the number of stop events in 𝑇 . The trip of a stop event 𝜀 is denoted as 𝑇 (𝜀). A trip
segment 𝑇 [𝑖, 𝑗] := ⟨𝜀𝑖 , . . . , 𝜀 𝑗 ⟩ is the contiguous subsequence of 𝑇 that begins at 𝑇 [𝑖] and ends

at 𝑇 [ 𝑗].
The set of routes R is a partition of T such that two trips that are part of the same route

visit the same sequence of stops and do not overtake each other. A trip 𝑇𝑎 overtakes another

trip 𝑇𝑏 with the same stop sequence if there is an index 𝑖 such that 𝜏arr (𝑇𝑎 [𝑖]) ≥ 𝜏arr (𝑇𝑏 [𝑖])
or 𝜏dep (𝑇𝑎 [𝑖]) ≥ 𝜏dep (𝑇𝑏 [𝑖]) and another index 𝑗 > 𝑖 such that 𝜏arr (𝑇𝑎 [ 𝑗]) ≤ 𝜏arr (𝑇𝑏 [ 𝑗])
or 𝜏dep (𝑇𝑎 [ 𝑗]) ≤ 𝜏dep (𝑇𝑏 [ 𝑗]). Note that this implies that two trips of the same route may not

have the same arrival or departure time at any stop along the route. Due to the non-overtaking

property, we can define a total ordering ≺ on the set of trips of a route 𝑅: For two trips 𝑇𝑎,𝑇𝑏
of 𝑅, we write 𝑇𝑎 ≺ 𝑇𝑏 if 𝜏arr (𝑇𝑎 [0]) < 𝜏arr (𝑇𝑏 [0]). It follows that 𝑇𝑎 has a lower arrival and
departure time than 𝑇𝑏 at every stop along the route. We write 𝑇𝑎 ⪯ 𝑇𝑏 if 𝑇𝑎 ≺ 𝑇𝑏 or 𝑇𝑎 = 𝑇𝑏 .
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Note that trips from different routes are not comparable via ≺ and ⪯. For a given trip 𝑇 , the

route of 𝑇 is denoted as 𝑅(𝑇 ). The trip that immediately precedes 𝑇 in 𝑅 according to ≺ is

denoted as pred(𝑇 ). If𝑇 is the earliest trip of 𝑅, then pred(𝑇 ) = ⊥. The length |𝑅 | of a route 𝑅
is the length of any trip belonging to the route.

The cost function 𝜏tra : 𝐸 → N0 of the transfer graph 𝐺 = (𝑉 , 𝐸) represents the time that

it takes to traverse an edge (measured in seconds); we call this the transfer time. For two
vertices v, 𝑤 ∈ 𝑉 , we denote by 𝜏tra (v, 𝑤) the transfer time of a shortest v-𝑤-path, or ∞ if

none exists. We distinguish between pure public transit networks and multimodal networks.

In a pure public transit network, the transfer graph only represents footpaths between nearby

stops, so𝑉 = S must hold. Furthermore, we require that𝐺 is transitively closed and fulfills the

triangle inequality: for each pair of edges 𝑒1 = (v, 𝑤), 𝑒2 = (𝑤, 𝑥) ∈ 𝐸, an edge 𝑒3 = (v, 𝑥) ∈ 𝐸
with 𝜏tra (𝑒3) ≤ 𝜏tra (𝑒1) + 𝜏tra (𝑒2) must exist. By contrast, multimodal networks impose no

restrictions on𝐺 . It may contain vertices that are not stops, it does not need to be transitively

closed or fulfill the triangle inequality, and it may represent any non-schedule-based mode

of travel (e.g., walking, cycling, e-scooter). An example of a public transit network with an

unrestricted transfer graph is shown in Figure 2.1.

Journeys. A journey describes the movement of a passenger through the network from

a source vertex vs ∈ 𝑉 to a target vertex vt ∈ 𝑉 . Each ride of the passenger in a public

transit vehicle can be described by a trip segment, whereas the transfers between the rides

are represented by paths in the transfer graph. An intermediate transfer between two trip

segments 𝑇𝑎 [𝑖, 𝑗] and 𝑇𝑏 [𝑚,𝑛] is a path 𝑃 in 𝐺 with the following properties:

1. The path begins with the last stop of 𝑇𝑎 [𝑖, 𝑗], i.e., v (𝑇𝑎 [ 𝑗]).

2. The path ends with the first stop of 𝑇𝑏 [𝑚,𝑛], i.e., v (𝑇𝑏 [𝑚]).

3. The transfer time of the path is sufficient to reach 𝑇𝑏 [𝑚,𝑛] after vacating 𝑇𝑎 [𝑖, 𝑗].

This can be expressed formally as 𝜏arr (𝑇𝑎 [ 𝑗]) + 𝜏tra (𝑃) ≤ 𝜏dep (𝑇𝑏 [𝑚]). An initial transfer
before a trip segment 𝑇 [𝑖, 𝑗] is a path in 𝐺 from the source vs to the first stop of 𝑇 [𝑖, 𝑗].
Correspondingly, a final transfer after a trip segment 𝑇 [𝑖, 𝑗] is a path in 𝐺 from the last stop

of 𝑇 [𝑖, 𝑗] to the target vt.
A journey 𝐽 = ⟨𝑃0,𝑇0 [𝑖, 𝑗], . . . ,𝑇𝑘−1 [𝑚,𝑛], 𝑃𝑘⟩ is an alternating sequence of transfers and

trip segments. Note that some or all of the transfers may be empty. Given source and target

vertices vs, vt ∈ 𝑉 , we call journey 𝐽 an vs-vt-journey if 𝑃0 begins with vs and 𝑃𝑘 ends with vt.
The departure time of the journey is defined as 𝜏dep (𝐽 ) := 𝜏dep (𝑇0 [𝑖]) − 𝜏tra (𝑃0) and the arrival
time as 𝜏arr (𝐽 ) := 𝜏arr (𝑇𝑘−1 [𝑛]) + 𝜏tra (𝑃𝑘 ). The transfer time 𝜏tra (𝐽 ) of the journey is the total

time spent traversing the transfer graph, i.e., 𝜏tra (𝐽 ) =
∑𝑘

𝑖=0 𝜏tra (𝑃𝑖 ). The number of trips

used by the journey is denoted as |𝐽 | := 𝑘 . An important special case is a journey 𝐽 = ⟨𝑃0⟩
that consists solely of a path in the transfer graph. Because such a journey does not use

any trips, it can be traversed at any time. Thus, its departure time 𝜏dep (𝐽 ) has to be stated

separately, and its arrival time is then given by 𝜏arr (𝐽 ) := 𝜏dep (𝐽 ) + 𝜏tra (𝑃0). The vertex
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Figure 2.1: An example of a public transit network with an unrestricted transfer graph.

Stop events are shown as colored nodes and trips as colored lines between them. Trips and

stop events of the same color belong to the same route. Each stop event is labeled with its

index along the respective trip. Each connection between two consecutive stop events 𝜀𝑎
and 𝜀𝑏 is labeled with their departure and arrival times, in the format 𝜏dep (𝜀𝑎) → 𝜏arr (𝜀𝑏).
Stops are displayed as gray boxes enclosing the associated stop events, other vertices as gray

nodes. Edges in the transfer graph (gray) are labeled with their transfer time. Throughout

this thesis, we only indicate the direction of a transfer edge with an arrow if the reverse

edge does not exist or has a different weight. For a query from vs to vt with departure

time 0, a Pareto set with respect to arrival time and number of trips consists of the jour-

neys 𝐽0 =
〈
⟨vs, v, 𝑤, 𝑦, vt⟩

〉
with arrival time 10, 𝐽1 =

〈
⟨vs, v, 𝑤⟩,𝑇𝑟 [0, 1], ⟨z , vt⟩

〉
with arrival

time 8, and 𝐽2 =
〈
⟨vs⟩,𝑇𝑏1 [0, 2], ⟨𝑥⟩,𝑇𝑔1 [0, 1], ⟨vt⟩

〉
with arrival time 7.

sequence of 𝐽 is the concatenation of its transfers: 𝑉 (𝐽 ) = 𝑃0 ◦ 𝑃1 ◦ · · · ◦ 𝑃𝑘 . A subjourney
of 𝐽 is a journey 𝐽𝑠 = ⟨𝑃 ′𝑥 ,𝑇𝑥 [𝑔, ℎ], . . . ,𝑇𝑦−1 [p, 𝑞], 𝑃 ′𝑦⟩ such that ⟨𝑇𝑥 [𝑔, ℎ], . . . ,𝑇𝑦−1 [p, 𝑞]⟩ is a
contiguous subsequence of 𝐽 , 𝑃 ′𝑥 is a suffix of 𝑃𝑥 and 𝑃 ′𝑦 is a prefix of 𝑃𝑦 . If 𝑥 = 0 and 𝑃 ′𝑥 = 𝑃0,

we call 𝐽𝑠 a prefix of 𝐽 . Conversely, if 𝑦 = 𝑘 and 𝑃 ′𝑦 = 𝑃𝑘 , we call 𝐽𝑠 a suffix of 𝐽 . Note

that a subjourney may start or end in the middle of a transfer but never in the middle of a

trip segment. Given two vertices v, 𝑤 ∈ 𝑉 (𝐽 ), the subjourney of 𝐽 from v to 𝑤 is denoted

as 𝐽 [v, 𝑤].

Journey Planning Problems. Depending on the studied problem, different criteria are

used to evaluate the usefulness of a journey 𝐽 . In this thesis, we consider four criteria: the

arrival time 𝜏arr (𝐽 ), the departure time 𝜏dep (𝐽 ), the transfer time 𝜏tra (𝐽 ), and the number of

trips |𝐽 |. With all criteria except for departure time, the objective is to minimize them, whereas

departure time should be maximized. Given a set of criteria, a journey 𝐽 weakly dominates
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another journey 𝐽 ′ if 𝐽 is not worse than 𝐽 ′ in any criterion. Moreover, 𝐽 strongly dominates 𝐽 ′

if 𝐽 is strictly better than 𝐽 ′ in at least one criterion, and not worse in the others. Given a

query consisting of source and target vertices vs, vt ∈ 𝑉 and an earliest departure time 𝜏dep,

a journey is called feasible if it is an vs-vt-journey that does not depart earlier than 𝜏dep. A

feasible journey 𝐽 is called Pareto-optimal if no other feasible journey exists that strongly

dominates 𝐽 . A Pareto set is a set J containing a minimal number of Pareto-optimal journeys

such that every feasible journey is weakly dominated by a journey in J .

A journey planning problem for a public transit network (S,Π, E, T ,R,𝐺) depends on
three parameters: the sets of source and target locations, the considered departure times, and

the optimized criteria. The simplest problem is the one-to-one, fixed departure time, earliest
arrival query: given a source vertex vs ∈ 𝑉 , a target vertex vt ∈ 𝑉 and an earliest departure

time 𝜏dep, the objective is to find a vs-vt-journey that is feasible for 𝜏dep and minimizes the

arrival time among all such journeys. A Pareto optimization query instead requests a Pareto

set of feasible journeys for the given set of criteria. In most parts of this thesis, we focus on

Pareto optimization queries for the two criteria arrival time and number of trips. Figure 2.1

depicts a Pareto set for these two criteria in the shown example network. In Chapters 7 and 8,

we add transfer time as a third criterion.

As with the shortest path problem on graphs, we also consider one-to-many and one-to-all
queries, which replace the single target vertex with a set 𝑉t ⊆ 𝑉 of target vertices or all of 𝑉 ,

respectively. For each target vertex vt ∈ 𝑉t, the corresponding one-to-one query must be

answered. We study these types of queries in Chapter 6. Finally, a profile (or range) query
replaces the earliest departure time with an interval [𝜏min

dep
, 𝜏max

dep
] of possible departure times.

It asks for a set J of journeys such that for each fixed departure time query with departure

time 𝜏dep ∈ [𝜏min

dep
, 𝜏max

dep
], J contains a subset that answers the query. This type of query occurs

in the preprocessing phases of many speedup techniques, including ULTRA. In this case, the

interval of departure times spans the entire service period Π of the network.

Departure Buffer Times. Manyworks on public transit journey planning (e.g., [PSWZ08,

DDPW15]) include a minimum change time in their model, which is specified for each stop.

This is the minimum amount of time that must elapse between exiting a trip and entering

a different trip at the same stop. However, it does not have to be observed when taking an

intermediate transfer to a different stop, nor when entering the first trip at the start of the

journey. The minimum change time is useful when a larger station with multiple platforms is

modeled as a single stop. In this case, it represents the time that is needed to change between

platforms. Note that if the minimum change times differ between pairs of platforms belonging

to the same station, this can be represented by modeling each platform as its own stop. For

settings with one-hop transfers, minimum change times are a reasonable modeling choice.

However, with an unrestricted transfer graph, they can lead to inconsistencies. Consider

a stop v with minimum change time 𝜏 . If there is a cycle 𝑃 in 𝐺 that starts and ends at v
and whose transfer time is less than 𝜏 , then taking 𝑃 allows passengers to circumvent the

minimum change time.
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To prevent this, we use departure buffer times as an alternative modeling approach. Each

stop v ∈ S has a departure buffer time 𝜏buf (v) ≥ 0, which is the minimum amount of time

that has to pass after arriving at v before a trip can be boarded. Unlike the minimum change

time, the departure buffer time always has to be observed when a trip is entered, even if

the stop was reached via a transfer or if the trip is the first one in the journey. Departure

buffer times can be integrated into the network implicitly by reducing the departure times

of the stop events accordingly. For each stop event 𝜀 = (𝜏arr (𝜀), 𝜏dep (𝜀), v (𝜀)) ∈ E , this yields
a modified stop event 𝜀′ = (𝜏arr (𝜀), 𝜏dep (𝜀) − 𝜏buf (v (𝜀)), v (𝜀)). Note that this may cause stop

events to appear as if they depart before they arrive. However, because the departure time is

only relevant when entering the trip at the current stop and not when remaining seated in

the trip, this does not lead to trips that travel backward in time. In the following, we will not

discuss departure buffer times explicitly and instead assume that they are integrated into the

departure times as described here.
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3 Literature Overview

This section gives an overview of prior work on journey planning in transportation networks.

We cover road networks in Section 3.1, public transit networks in Section 3.2 and multimodal

combinations of the two in Section 3.3. For a more comprehensive overview of literature

published until January 2015, we refer to a survey article by Bast et al. [Bas+16].

3.1 Road Networks

A road network can be modeled as a graph 𝐺 = (𝑉 , 𝐸), in which intersections are modeled

as vertices and roads as edges. The edge cost function 𝑐 : 𝐸 → R+
0
represents a metric that

should be optimized along a path, such as travel time or geographical distance. Finding an

optimal path between two locations then reduces to solving the one-to-one shortest path

problem on𝐺 . The two classical algorithms for this problem are Dijkstra’s algorithm [Dij59]

and the Bellman-Ford algorithm [Bel58, For56]. For non-negative edge costs, Dijkstra’s

algorithm has a running time of O( |𝑉 | log |𝑉 | + |𝐸 |). This relies on the label-setting property:

every vertex is scanned at most once. With negative edge costs, Dijkstra’s algorithm loses

this property and becomes label-correcting. Consequently, the worst-case running time

becomes exponential [Joh73]. By contrast, the running time of Bellman-Ford [Bel58, For56] is

always in O( |𝑉 | |𝐸 |). Negative edge costs occur in some practical settings, for example when

optimizing the energy consumption of electric vehicles [EFS11]. However, in the context of

this thesis, edge costs always represent travel times, which are non-negative.
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3.1.1 Speedup Techniques
For the purpose of answering a single query, Dijkstra’s algorithm is the fastest known algo-

rithm. On large networks, however, it is too slow for interactive applications: on a commonly

used benchmark instance representing Western Europe, a query takes two seconds on aver-

age [Bas+16]. To answer many queries on the same network quickly, speedup techniques

precompute auxiliary data in a preprocessing phase. This data is then used to speed up

individual queries. Because the network topology rarely changes, this phase is allowed to

take up to a few hours. The three main criteria to evaluate a speedup technique are the

preprocessing time, the size of the precomputed data, and the query speed. Over the last two

decades, many speedup techniques for road networks have been proposed. For this overview,

we focus on those with applications in public transit or multimodal journey planning.

A simple improvement for Dijkstra’s algorithm that does not require preprocessing is

bidirectional search [Dan63, Nic66]. Instead of running one search from the source vertex

that is stopped once the target is reached, searches are run from the source and target vertex

simultaneously and they are stopped once they meet. This cuts the search space and therefore

the query time roughly in half. While this is not enough on its own to achieve interactive

query times, bidirectional search is used as a component in more sophisticated techniques.

Goal-Directed Search. Speedup techniques can be broadly divided into goal-directed
and hierarchical approaches. Goal-directed techniques guide the search space of Dijkstra’s

algorithm towards the target. The oldest example is A
∗
search [HNR68]. It assigns a po-

tential to each vertex, which is a lower bound for its distance to the target. This is used to

change the order in which Dijkstra’s algorithm explores the vertices of the graph. Instead

of advancing in increasing order of distance from the source, A
∗
adds the potential to this

distance, which ensures that vertices that are closer to the target are explored earlier. On road

networks, a successful method for computing the potentials is ALT (A
∗
, landmarks, triangle

inequality) [GH05]. A small number of vertices are chosen as landmarks, and shortest path

distances are computed between each landmark and all other vertices in the graph. Given

a target vertex, these are combined into a vertex potential based on the triangle inequality.

This yields a speedup of up to two orders of magnitude over Dijkstra’s algorithm.

A goal-directed technique that invests more preprocessing effort to achieve faster query

times is Arc-Flags [HKMS09, Lau09, Möh+06]. Here, the graph is partitioned into 𝑘 cells, and

each edge is labeled with 𝑘 bits, called flags. The flag for a cell 𝑖 indicates whether the edge
lies on at least one shortest path whose target is located in cell 𝑖 . Dijkstra’s algorithm can

then skip edges whose flag for the target cell is not set. The preprocessing step is performed

by computing a reverse shortest path tree from every vertex that lies on a cell boundary.

Arc-Flags achieves a speedup of three to four orders of magnitude over Dijkstra’s algorithm.

Hierarchical Techniques. A second class of speedup techniques is based on the obser-

vation that road networks are hierarchical: shortest paths between points that are sufficiently

far away from each other tend to pass through a small subset of important roads. This
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hierarchy exists at multiple levels, from local arterial roads to highways spanning entire

countries. An early approach for exploiting this hierarchy is the overlay graph [SWW00], as

defined in Chapter 2. It can be constructed by selecting a subset of very important vertices

and inserting shortcut edges between them to preserve shortest path distances. This concept

was later extended to multi-level overlays (MLO) to capture multiple levels of the hierarchy.

Overlays can be explored with a bidirectional variant of Dijkstra’s algorithm that only ex-

plores edges to more or equally important vertices. In these early techniques, the importance

of vertices was given as part of the input [SWW00] or based on rough estimates, such as

the vertex degree [SWZ02]. Later approaches, such as Highway Hierarchies (HH) [SS12]

and Highway-Node Routing (HNR) [SS07], employed sophisticated preprocessing algorithms

to compute the hierarchy in a systematic fashion.

These techniques were later subsumed by Contraction Hierarchies (CH) [GSSV12], which

achieve better performance with a simpler preprocessing algorithm based on vertex contraction.
The idea is to rank the vertices according to a simple importance estimate (e.g., vertex degree)

and then contract them in order of least to most important. A vertex is contracted by

removing it from the graph, inserting shortcut edges between its neighbors and updating their

importance estimate. After each contraction step, the remaining graph forms an overlay, so

CH can be seen as an extreme version of MLO. The output of the CH preprocessing phase is

an augmented graph, which only contains edges from less to more important vertices. Queries

are answered with a bidirectional search on the augmented graph, thereby quickly guiding the

search upwards in the hierarchy. CH outperforms older techniques, such as ALT, Arc-Flags,

MLO, HH and HNR, in all respects: on the network of Western Europe, it requires a few

minutes of preprocessing time, a few hundred megabytes of space, and achieves query times

of around 100 microseconds. Perhaps more crucially, because it is built on simple ingredients,

it has proven to be easily adaptable to extended scenarios, as discussed below.

Separator-Based Techniques. An alternative method of obtaining a network hierarchy

is via separators. A vertex separator is a subset of the vertices that, when removed, divides

the graph into two or more disconnected components. If the components are of roughly

equal size, the separator is called balanced. An edge separator, also called a cut, uses a set
of edges instead of vertices to divide the graph. Planar graphs are known to have small,

balanced vertex separators that can be computed efficiently [LT79]. By recursively separating

the leftover components, one can obtain a separator decomposition of the graph. Although

road networks are not planar due to over- and underpasses, it has been demonstrated both

experimentally [DSW16] and theoretically [EG08] that they also admit efficient separator

decompositions. Alternatively, the set of vertices can be partitioned into cells of roughly

equal size by repeatedly computing small, balanced cuts. It has been shown experimentally

that road networks exhibit such cuts due to natural obstacles such as rivers and mountain

ranges [DGRW11]. Furthermore, because the vertices in a road network have low degrees

(rarely more than four), any small, balanced vertex separator can be transformed into a small,

balanced cut by choosing the incident edges for the cut.
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If a vertex belongs to a vertex separator or is incident to an edge separator, it is likely

to lie on many shortest paths between different components. For this reason, separator

decompositions and partitions are well suited as a basis for MLO [Del+09, HSW09]. Compared

to other hierarchy-based approaches, they have the advantage that they are based solely

on the graph topology, not on the edge costs. This observation has given rise to a class

of customizable techniques. These are able to handle frequently changing edge costs (e.g.,

to incorporate traffic information or different user preferences) by dividing the algorithm

into three phases: The first preprocessing phase, which may be slow, builds data structures

that depend only on the graph topology, such as a separator decomposition. Edge costs are

incorporated in a second customization phase. To allow for frequent updates, this phase

should take no more than a few seconds. Finally, queries are answered in a third phase. The

earliest example of such a technique is Customizable Route Planning (CRP) [DGPW17], which

constructs a multi-level partition of the graph and builds a clique between the boundary

vertices of each cell. The customization phase is responsible for computing the edge costs

for these cliques. Customizable Contraction Hierarchies (CCH) [DSW16] extend CH to

the customizable setting by using separator decompositions instead of node contraction to

construct the vertex hierarchy. In general, separator-based hierarchies are slightly weaker

than their metric-dependent counterparts, so these techniques have slightly longer query

times.

Bounded-Hop Techniques. The versatility of CH is showcased by the fact that it can

be used as a building block in speedup techniques that invest even more preprocessing

effort to achieve query times of a few microseconds or less. One such technique is Hub

Labeling (HL) [CHKZ03], also known as two-hop labeling. The basic idea is that each vertex

stores shortest path distances to a small set of hubs. These hubs must fulfill the cover property:
given any shortest path 𝑃 , at least one vertex on 𝑃 must be a hub for both endpoints of 𝑃 .

Using this property, a query can be answered by intersecting the hub sets of the source and

target vertices to find the shared hub. The upward CH search space of a vertex forms a valid

set of hubs for HL, which can be thinned out by removing redundant entries [ADGW11].

Various other HL precomputation algorithms have been proposed, some of which also perform

well on graph classes other than road networks [ADGW12, DGPW14]. HL yields extremely

fast queries that only require a few memory accesses on average, albeit at the cost of a very

high memory consumption.

A similar approach that requires less memory but can still answer queries in a few mi-

croseconds is Transit-Node Routing (TNR) [BFSS07, BFM09, SS09]. It exploits the inherent

hierarchy of road networks by selecting a small set of transit nodes that cover all long-distance
shortest paths. A full distance table is computed between the transit nodes. For each ver-

tex in the graph, the algorithm identifies its access nodes, i.e., the transit nodes that occur
in long-distance shortest paths from or to that vertex. A long-distance query can then be

answered by identifying the correct pair of access nodes for the source and target vertex and

combining the distances to the access nodes with the precomputed distance between them.



Road Networks Section 3.1

21

Note that a fallback routine is required for short-range queries that do not pass through a

transit node. Again, CH enable an elegant implementation of TNR [ALS13] by choosing the

most important vertices in the hierarchy as the set of transit nodes. In this case, CH also

serves as the fallback routine for short-range queries.

Theoretical Models. To explain the good performance of techniques such as CH, TNR

and HL from a theoretical perspective, several models have been proposed that capture the

hierarchical nature of road networks. Graph parameters such as highway dimension [Abr+16]

and skeleton dimension [KV17] are measures for the number of vertices that are needed

to cover all shortest paths between vertices that are sufficiently far away from each other.

In graphs with low highway and/or skeleton dimension, CH, TNR and HL have signifi-

cantly better worst-case running times than Dijkstra’s algorithm. Recently, bounded-growth

graphs [BFS21] have been proposed as an alternative model that is better suited for graphs

with grid-like substructures (which occur in road networks). It can be shown that the search

spaces of CH, TNR and HL are sublinear in bounded-growth graphs.

Combinations. Finally, goal-directed and hierarchical techniques can be combined for

even faster queries. An early example of such a combination is SHARC (Shortcuts + Arc-

Flags) [BD10], which achieves an additional order of magnitude of speedup over Arc-Flags

by combining it with ideas from MLO. A crucial advantage of this approach is that it does

not require bidirectional search. This makes it easier to use in time-dependent networks,

where the arrival time at the target is not known in advance. Bauer et al. [Bau+10] evaluate

several other combinations of existing speedup techniques, the most notable of which are

Core-ALT and CHASE (CH + Arc-Flags + HNR). Core-ALT uses vertex contraction to compute

an overlay and then applies ALT only within the overlay, which reduces the preprocessing

effort and improves query times. CHASE is a combination of CH and Arc-Flags, which yields

query times of only a few microseconds on Western Europe.

3.1.2 Extended Scenarios
The techniques discussed so far are designed for one-to-one queries in graphs with a single,

scalar edge cost function. However, many of them have also been extended to more complex

scenarios. We give a brief overview in the following.

One-to-Many Search. Several journey planning applications require one-to-many or

many-to-many searches. Notable examples include building distance tables for vehicle routing

and traveling salesman problems [Kno+07, DW15], point-of-interest (POI) queries (e.g., finding

the 𝑘 nearest stores) [DW15], and computing isochrones, which are regions of the network

that are reachable from a given point within a specified time limit [EP14, Bau+16, BBDW19].

Furthermore, several speedup techniques for one-to-one queries, such as Arc-Flags, employ

one-to-many searches in their preprocessing step.
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PHAST (PHAST Hardware-Accelerated Shortest Path Trees) [DGNW13] is an extension

of CH for one-to-all searches that exploits the fact that the augmented graph is a DAG.

After an upward search from the source vertex, distances to all vertices are computed by

a downward sweep through the augmented graph in a topological order. This sweep can

be made highly cache-efficient by reordering the vertices in memory. RPHAST (Restricted

PHAST) [DGW11] extends this approach to one-to-many searches by adding a target selection
phase that discards irrelevant parts of the augmented graph. GRASP (Graph Separators,

Range, Shortest Paths) [EP14] applies similar ideas to CRP instead of CH. For one-to-many

searches, an alternative to the sweep-based algorithms is a bucket-based approach, which was

originally proposed for HH [Kno+07] and later adapted for CH [GSSV12]. For each vertex,

it stores a bucket consisting of reachable targets and the distances to them. A one-to-many

query can then be answered by performing an upward search in the augmented graph and

combining the distances to the reached vertices with the distances stored in the buckets.

Time-Dependent Edge Costs. In reality, travel times are not static but vary throughout

the day due to predictable traffic patterns. These can be modeled by replacing the scalar edge

costs with functions that map departure time to travel time. Several speedup techniques have

been adapted to this scenario, including ALT [NDSL12, DN12], CRP [BDPW16], CH [BGSV13],

SHARC [Del11] and CCH [SWZ21]. An issue with shortcut-based techniques is that the

complexity of the edge cost functions grows dramatically for shortcuts that represent longer

paths. As a result, many exact approaches suffer from expensive preprocessing and slow

queries. CATCHUp (Customizable Approximated Time-Dependent Contraction Hierarchies

Through Unpacking) [SWZ21] is an extension of CCH that remedies this shortcoming. It is

based on the observation that while the cost of the shortest path tends to change frequently

throughout the day, the path itself does not. To exploit this, CATCHUp does not compute

entire travel time functions for each shortcut but rather pointers to the edges from which it

was constructed. By unpacking these pointers on the fly during the query phase, the exact

travel time can be reconstructed.

Multiple Criteria. The standard approach for handling scenarios with multiple com-

peting criteria (e.g., travel time and distance) is Pareto optimization. A variant of Dijkstra’s

algorithm that computes Pareto sets was first proposed for two criteria [Han80] and later

generalized to an arbitrary number of criteria [Mar84]. Already for two criteria, the number

of Pareto-optimal solutions can be exponential in the size of the network [Han80], so the

algorithm no longer runs in polynomial time. However, if the values of the criteria are highly

correlated, the Pareto set may be small enough in practice that computing it remains tractable.

One speedup technique that has been successfully adapted to Pareto optimization is SHARC,

achieving a speedup of up to four orders of magnitude over Dijkstra’s algorithm [DW09].

A related problem setting is that of personalized routing [FS15]. Here, the objective is to

minimize a convex combination of multiple criteria, i.e., the value of every criterion is assigned

a non-negative weight such that all weights sum up to 1. The weights are individual to each
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user and are only revealed at query time, so the preprocessing phase must remain oblivious

to them. Several speedup techniques have been adapted to this setting, including CH [GKS10,

FS13], CCH and CRP [FS15]. In the original personalized routing model, users must specify

the weights directly, which may be challenging to do [BFP21]. An alternative approach is to

compute a set of solutions that are optimal for a wide range of possible preferences and allow

users to choose from this set [BFS19]. This has the advantage of producing fewer journeys

than the full Pareto set: for a fixed number of criteria, Barth et al. [BFP22] show that the

number of paths that are optimal for at least one convex combination is subexponential.

3.2 Public Transit Networks
Public transit networks differ from road networks in that they are inherently time-dependent:

vehicles depart and arrive according to a fixed schedule. This time dependency can be handled

in different ways. Early approaches modeled the network as a graph and applied Dijkstra’s

algorithm or speedup techniques that were originally developed for road networks. However,

because public transit networks do not exhibit some of the structural properties that these

techniques rely on, their success has been limited [Bas09]. Instead, more recent approaches

have moved away from modeling the network as a graph and instead employ tailor-made

data structures that can be explored with cache-efficient scanning operations.

3.2.1 Graph-Based Models
For a thorough overview of graph-based modeling techniques, we refer to an article by

Müller-Hannemann et al. [MSWZ07]. The two main modeling approaches are time-dependent
and time-expanded graphs. In a time-dependent graph, vertices represent stops. Two stops

are connected by an edge if they are visited consecutively by at least one trip. The time

dependency is modeled via the edge costs, which are functions that map departure time

to travel time or arrival time. The function associated with an edge incorporates all trips

that travel along the edge. This approach is similar to the way that time-dependent edge

costs are handled for road networks. However, the functions are quite different. In road

networks, travel time functions are typically continuous and the slope varies throughout the

day. In public transit networks, if departure time is mapped to arrival time, the functions

are piecewise constant. Each constant segment represents one departing trip. After the

trip has departed, the fastest remaining option is to wait for the next one, which causes a

discontinuity in the function. The time-dependent graph model was first introduced by Brodal

and Jacob [BJ04]. Later versions incorporate additional features such as footpaths [DMS08]

and minimum change times [PSWZ08]. To model the latter, each stop is split into multiple

vertices, one for each route. Recently, a more compact model called REX (REalistic eXchange

times) [KMPZ22] was proposed that does not require these additional vertices. In order to

properly handle trips from different routes that overtake each other, the authors present a

new query algorithm called TRIPLA.
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In time-expanded graphs, the time dependency is encoded directly in the graph topology.

Each stop event is represented by three vertices: a departure node, an arrival node and a transfer
node. Trips are modeled as paths that alternate between arrival and departure nodes, whereas

transfers are represented from arrival to departure nodes that pass through transfer nodes.

Early versions of the time-expanded model [PS98, MW01] did not include the transfer nodes,

which were introduced to handle minimum change times [MS07, PSWZ08]. Extensions that

incorporate footpaths have also been proposed [MSWZ07]. Because the time-expanded graph

includes several nodes per stop event, it is much larger than the time-dependent model.

However, its size can be reduced by contracting some types of nodes [DPW09b].

3.2.2 Basic Algorithms
In graph-based models, the earliest arrival problem can be solved with Dijkstra’s algorithm.

On time-expanded graphs, it can be applied directly, whereas time-dependent graphs require

a variant that can handle functions as edge costs [PSWZ08]. The time-dependent variant of

Dijkstra’s algorithm is about four times faster than the time-expanded one [Bas+16]. For the

latter, an additional pruning rule called node blocking [DPW09b] can be applied to ensure

that only the earliest reachable trip of each route is explored.

In public transit journey planning, multiple optimization criteria arise naturally. In addition

to arrival or travel time, most algorithms also consider the number of used trips or, equivalently,

the number of transfers between trips. Pyrga et al. [PSWZ08] observe that for this particular

pair of criteria, a Pareto set can be found in polynomial time: Because each node in the

time-expanded graph is associated with a fixed arrival time, there may be at most one Pareto-

optimal solution per node. Hence, it suffices to run Dijkstra’s algorithm with the number of

transfers as the optimization criterion and then collect the Pareto-optimal solutions at the

transfer nodes representing the target stop. In time-dependent graphs, the number of transfers

can be Pareto-optimized implicitly by creating multiple copies of the network and moving to

a new copy every time a trip is exited. In practice, it is faster not to create the copies explicitly

but to maintain multiple labels at each node, one for each number of trips [PSWZ08].

Pareto optimization with more than these two criteria has also been considered in a number

of works. Multicriteria variants of Dijkstra’s algorithm have been applied to both time-

expanded [MS07] and time-dependent graphs [DMS08]. For the three criteria travel time,

number of transfers and fare, Müller-Hannemann and Weihe [MW01] observe that the Pareto

sets are small in practice, with fewer than ten journeys on average. Other considered criteria

include transfer reliability [DMS08], walking duration, and the number of used buses [DDP19].

Also of practical interest are profile queries, for which the departure time may lie in a

specified interval. This gives users more flexibility in choosing their departure time, which

may allow them to select a better (e.g., faster) journey overall [DKP12]. Furthermore, profile

searches are used as an ingredient in speedup techniques [Bas+10]. In time-dependent graphs,

profile queries can be answered with a variant of Dijkstra’s algorithm that maintains travel

time functions instead of scalar distances per vertex [Nac95]. Because travel time functions do

not admit a total ordering, this variant loses the label-setting property and may scan vertices
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more than once. The Self-Pruning Connection-Setting (SPCS) algorithm [DKP12] improves

upon this by exploiting the fact that the only possible departure times of a valid journey are

those of trips departing at the source stop. SPCS therefore performs one run of Dijkstra’s

algorithm for each such departure time in descending order. Distance labels are not reset

between runs, which allows journeys from previous runs to dominate suboptimal ones in the

current run. This method, which is known as self-pruning, restores the label-setting property

for each run. Another approach called frequency-based search [BS14] exploits the periodicity

of timetables to compress the data structures and thereby speed up the profile search.

3.2.3 Speedup Techniques
Various speedup techniques for Dijkstra’s algorithm that are successful on road networks have

also been applied to public transit. The earliest example are multi-level overlays [SWZ02],

which were in fact originally developed for public transit networks. Other examples include

Arc-Flags [BDGM09, DPW09b], SHARC [BDGM09, Del11] and CH [Gei10]. A commonly used

technique is to obtain a potential for A
∗
by constructing a lower-bound graph that assumes

that every trip can be taken immediately without a waiting time. Since the resulting travel

times are lower bounds for the actual travel time, they yield valid potentials. Compared to

Dijkstra’s algorithm, this version of A
∗
achieves a speedup of about two, which indicates that

the lower bounds are not particularly tight. Nevertheless, this technique has been employed in

various settings, including two-criteria Pareto optimization in both time-expanded [MS07] and

time-dependent graphs [DMS08]. It has also been combined with other techniques, notably

Arc-Flags [DPW09b, BDGM09].

Even when combining multiple speedup techniques, none of these approaches manage to

achieve a speedup of more than 30 compared to Dijkstra’s algorithm. A number of techniques

were evaluated in simplified, unrealistic settings. These include Core-ALT, CH and CHASE

in [Bau+10] as well as ALT and Arc-Flags in [BDW11]. Even in these simplified scenarios,

the achieved speedups are much lower than for road networks. This discrepancy has been

explained by the fact that public transit networks do not exhibit some of the favorable

properties that make the techniques successful on road networks [Bas09]. Some of the known

issues include the following:

• An issue that already occurs in time-dependent road networks is that the arrival time at

the target vertex is not known in advance. Thus, bidirectional search cannot be applied

in a straightforward manner.

• Techniques based on overlays suffer from the fact that public transit networks contain

many high-degree vertices (e.g., large train stations). Accordingly, the overlays quickly

become very dense.

• The strong multi-level hierarchy exhibited by road networks does not exist to the same

degree in public transit networks. Especially on the local scale (e.g., bus services),

almost no hierarchy is apparent.
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• Local searches (e.g., in order to construct shortcut edges) tend to have larger search

spaces due to waiting times caused by the vehicle schedules: a vertex that is geographi-

cally nearby may still take a long time to reach if the service frequency is low, whereas

far-away vertices connected to high-frequency lines may be reachable much faster.

Thus far, speedups of two orders of magnitude and more have only been achieved by tech-

niques that employ very expensive preprocessing phases. Public Transit Labeling [DDPW15]

is an adaptation of HL for time-expanded graphs that supports Pareto optimization of arrival

time and number of trips. On metropolitan and mid-sized country networks, it offers query

times in the microsecond range, albeit at the expense of over ten gigabytes of memory con-

sumption. Furthermore, this does not include the significant additional space that would be

required to store and retrieve descriptions of the computed journeys.

A technique that was specifically designed for public transit networks and also supports

two-criteria Pareto optimization is Transfer Patterns (TP) [Bas+10]. Its preprocessing phase

performs a one-to-all profile query spanning the entire service duration of the network

from each possible source stop. To keep the memory consumption reasonable, journeys are

condensed into their transfer patterns, which are the sequences of stops where trips are entered
or exited. For each source stop, the transfer patterns of all computed journeys are merged

into a DAG. Because many journeys share parts of the same transfer patterns, this DAG is

comparatively small. During the query phase, a search graph is extracted from the DAG and

explored with a variant of Dijkstra’s algorithm. For each edge in the search graph, the used

trip is reconstructed on the fly. Unfortunately, no comparisons of TP to other algorithms

on the same benchmark instances are available. On the network of Germany, query times

below one millisecond are reported [BS14]. Scalable Transfer Patterns [BHS16] reduce the

preprocessing time and memory consumption of TP by grouping the stops into clusters.

The preprocessing phase is divided into computing local (intra-cluster) and long-distance

(inter-cluster) transfer patterns, the latter of which only require searches from the border

stops of each cluster. Query times are significantly slower at 30ms on the Germany network.

3.2.4 Timetable-Based Approaches
A recent group of algorithms improves upon the performance of the graph-based approaches

by employing tailor-made data structures. These resemble the time-expanded graph but are

designed to be explored with operations that scan large blocks of data in a single sweep, which

reduces the rate of cache misses. The Connection Scan Algorithm (CSA) [DPSW18] is based on

the observation that the time-expanded graph is a DAG and thus shortest paths can be found

by scanning the stop events in topological order. This yields a very cache-efficient algorithm

that is up to an order of magnitude faster than Dijkstra’s algorithm on the time-dependent

graph. The original CSA only optimizes the arrival time, although an extension for profile

queries adds the number of trips as a second criterion.

RAPTOR (Round-bAsed Public Transit Optimized Router) [DPW15a] Pareto-optimizes

arrival time and the number of trips by exploring the network in rounds. In each round,
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RAPTOR scans all reachable routes in order to extend the previously found journeys by

another trip. The resulting algorithm is similar to a BFS in which the routes correspond

to vertices and the transfers between them to edges. Compared to the fastest Dijkstra-

based algorithm for the same two criteria, RAPTOR offers a speedup of five. Trip-Based

Routing (TB) [Wit15] improves upon RAPTOR by computing transfers between pairs of stop

events in a preprocessing phase. This allows the query phase to skip the step of identifying

the earliest reachable trip of a route. Accordingly, the TB query scans trip segments instead

of entire routes. Thus far, RAPTOR and TB have not been evaluated on the same machine; a

comparison across different machines but with nearly identical networks suggests that TB

is faster by a factor of four to five [Wit15]. Both RAPTOR and TB have been extended for

profile queries by incorporating the self-pruning method.

McRAPTOR (Multicriteria RAPTOR) [DPW15a] extends RAPTOR to support Pareto op-

timization for an arbitrary number of criteria in addition to arrival time and number of

trips. Thus far, no such extension has been proposed for TB. With three or more criteria,

the Pareto set may become excessively large, which in turn slows down the algorithm. A

possible solution to this problem is the restricted Pareto set [DDP19], which only contains

journeys that make improvements in the additional criteria if they do not arrive much later or

use significantly more trips. The restricted Pareto set can be computed with an extension of

McRAPTOR called BM-RAPTOR (Bounded McRAPTOR). For walking duration and number

of buses as the two additional criteria, BM-RAPTOR is twice as slow as two-criteria RAPTOR

and up to 65 times faster than McRAPTOR.

Several speedup techniques have been proposed for the timetable-based algorithms. Con-

nection Scan Accelerated [DPSW18] applies the concept of multi-level overlays to CSA. On

country-scale networks, it achieves a speedup of up to seven over CSA, although it offers

no improvement on dense metropolitan networks. HypRAPTOR [DDPZ17] is a speedup

technique for RAPTOR that partitions the set of routes by representing it as a hypergraph in

which the routes are vertices and the visited stops are hyperedges. The preprocessing phase

computes a fill-in, which is the set of routes that are needed to travel between different cells.

The query phase then only explores routes from the source and target cells as well as the

fill-in. Because the fill-in is fairly large, HypRAPTOR only achieves a speedup of two over

RAPTOR. Finally, Trip-Based Routing with Condensed Search Trees (TB-CST) [Wit16] applies

the ideas behind TP to TB [Wit16]. As with TP, the preprocessing phase performs all-to-all

profile searches. The computed journeys are stored as search trees in which the used route

segments are vertices and the used transfers are edges. To reduce the memory consumption,

shared suffixes are extracted from the search trees and re-attached during the query phase.

3.3 Multimodal Networks
Many public transit algorithms support walking in a limited capacity and are therefore

sometimes referred to as multimodal algorithms. Graph-based models support footpaths in

the form of direct edges between pairs of stops [MSWZ07, DMS08]. If a full footpath network
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were to be encoded in this manner, the number of edges would be quadratic in the number of

stops. To ensure that the graph size remains reasonable, footpaths are typically restricted to

small connected components of nearby stops [DKP12], for example by limiting the maximal

duration (e.g., five minutes of walking) or distance (e.g., 400m) [BS14, BHS16, GPZ19] of the

footpaths. Timetable-based algorithms, including CSA, RAPTOR and TB, also allow footpaths

in the form of direct edges between stops. Additionally, they require that the set of transfer

edges is transitively closed and fulfills the triangle inequality. We refer to transfers with this

restriction as one-hop transfers because it is never necessary to use more than one edge in

succession. This removes the need to explore the transfer graph with Dijkstra’s algorithm;

instead, footpaths are handled by exploring the outgoing edges of each visited stop.

Amodification of RAPTOR has been proposed that uses one-hop transfers without requiring

a transitive closure [DDP19]. In this case, journeys with multiple consecutive transfer edges

are prohibited and the algorithm finds optimal journeys among those that remain. This

can lead to counterintuitive journeys that take detours to avoid using two transfer edges in

succession. On the other hand, computing the transitive closure significantly increases the

size of the transfer graph. As shown by Wagner and Zündorf [WZ17], limiting the maximal

walking duration to 20 minutes before computing the transitive closure already leads to a

graph that is too large for practical applications. Therefore, we do not classify algorithms

with one-hop transfers as proper multimodal algorithms.

The most straightforward approach to multimodal journey planning is to model each

network individually as a graph and then combine the graphs with link edges. Note that

the combined graph includes both time-dependent (public transit) and time-independent

(road) components. Therefore, the time-dependent graph model is more suitable for this

use case than the time-expanded model because it makes linking between the components

easier [Paj09]. For flight networks, special time-dependent graph models have been designed

that more closely reflect the structure of these networks [DPWZ09].

3.3.1 Label-Constrained Shortest Path Problem
Merely computing the shortest path in a combined multimodal network can lead to unrealistic

journeys with impossible mode combinations (e.g., using a private car in between two public

transit trips). The label-constrained shortest path problem (LCSPP) [BJM00] overcomes this

issue by allowing mode restrictions to be specified as part of the input. Each edge is labeled

with the used mode; concatenating these labels along a path yields the mode sequence of the
path. The set of valid mode sequences can be described as a formal language. The objective of

LCSPP is to find the shortest path among those whose mode sequence is valid. If the language

is regular, it can be described with a finite automaton. Then the problem can be solved

by applying Dijkstra’s algorithm to the product graph of the network and the automaton.

Alternatively, the product graph can be represented implicitly by allowing the algorithm to

maintain multiple labels at each vertex, up to one per state in the automaton.

Various speedup techniques have been adapted to LCSPP, including bidirectional search

and A
∗
[Bar+09]. Access Node Routing (ANR) [DPW09a] adapts TNR to a special case of
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LCSPP in which the road network may only be used for initial and final transfers and the

public transit network in-between. ANR has only been evaluated on instances in which the

public transit network is much smaller than the road network. On these instances, it offers

a speedup of more than four orders of magnitude. State-Dependent ALT [KLPC11, KLC12]

is an adaptation of ALT that computes a potential for each combination of vertex and state

in the mode sequence automaton. Note that this requires the mode sequence constraints to

be known at preprocessing time. A technique that allows the constraints to be specified at

query time is User-Constrained Contraction Hierarchies (UCCH) [DPW15b]. It performs a

partial CH precomputation but leaves vertices that are incident to link edges uncontracted.

The query algorithm performs a CH upward search until it reaches the uncontracted core

graph, which is explored with LCSPP-Dijkstra.

3.3.2 Multicriteria Optimization
The downside of LCSPP is that it optimizes only a single criterion. MCR (Multimodal Mul-

ticriteria RAPTOR) [Del+13] is a multimodal extension of McRAPTOR that allows for the

Pareto optimization of an arbitrary number of criteria. It operates similarly to UCCH but

explores the public transit network with McRAPTOR instead of Dijkstra’s algorithm. MCR

has been evaluated on multimodal networks combining public transit, walking, cycling and

taxis. Up to four criteria are optimized: arrival time, number of trips, walking duration and

taxi cost. With four criteria, the full Pareto set becomes so large that a single MCR query

takes over half an hour to answer. To filter the Pareto set, the authors use a weakened

definition of Pareto dominance called fuzzy dominance. Unfortunately, there seems to be

no way of obtaining the exact filtered set without computing the full Pareto set first. The

authors therefore propose several heuristics to approximate the Pareto set. However, in the

four-criteria setting, these heuristics still require several seconds to answer a single query.

Another approach for filtering the Pareto set is TNT (Types aNd Thresholds) [BBS13], which

prohibits journeys with unreasonable mode combinations (e.g., long car drives followed by

long footpaths). As with MCR, an exact algorithm is too slow for practical use, so the authors

apply several heuristics. Restricted Pareto sets [DDP19] may offer a more efficient solution

for pruning the Pareto set, but so far they have not been applied to multimodal networks.

A few algorithms have been proposed for more restricted multimodal problem settings.

For a scenario with walking as the only transfer mode, HL-RAPTOR and HL-CSA [PV19]

interleave RAPTOR and CSA, respectively, with two-hop searches based on HL. The authors

report a speedup of 1.7 over the two-criteria variant of MCR and 3.4 over the three-criteria

variant with walking duration as the third criterion. Giannakoupoulou et al. [GPZ19] study a

variant of the time-expanded graph model that allows for fast updates, for example to handle

delays or trip cancellations. They Pareto-optimize arrival time and number of trips but only

allow journeys that do not exceed the travel time of the fastest journey by a specified factor.

However, in a scenario with unlimited walking, query times are not competitive with the

two-criteria variant of MCR.
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4

Basic Algorithms and Experimental
Setup

As we saw in the previous chapter, approaches for multimodal journey planning typically use

existing algorithms for public transit and road networks as building blocks. These are then

modified and combined to handle a more complex problem setting. The algorithms presented

in this thesis are no exception. In this chapter, we therefore give in-depth explanations of

these basic building blocks and discuss crucial implementation details. Section 4.1 focuses

on algorithms for road networks, including variants of Dijkstra’s algorithm and CH. Public

transit and multimodal algorithms are discussed in Section 4.2. In addition to presenting the

algorithms, we identify concepts that recur in multiple algorithms or are further developed

from one algorithm to the next. Finally, Section 4.3 gives an overview of our experimental

setup, including the real-world networks on which we evaluate our algorithms.

4.1 Road Networks

4.1.1 Dijkstra’s Algorithm
Given a graph 𝐺 = (𝑉 , 𝐸) with an edge cost function 𝑐 : 𝐸 → R+

0
and a source vertex vs ∈ 𝑉 ,

Dijkstra’s algorithm [Dij59] solves the one-to-all shortest path problem. For each vertex v ∈ 𝑉 ,

it maintains a tentative distance dist[v], which is initialized with∞, and a parent pointer p[v],
which is initialized with a dummy value⊥. At each point during the execution of the algorithm,

dist[v] is the length of the shortest vs-v-path found so far, and p[v] is the predecessor of v
on that path. Additionally, the algorithm maintains a priority queue 𝑄 of vertices ordered by

their key, which is the tentative distance. Initially, vs is inserted into 𝑄 with key dist[vs] = 0

and p[vs] is set to vs. Then vertices are extracted from 𝑄 in increasing order of key. Each

extracted vertex v is settled by relaxing its outgoing edges. An edge 𝑒 = (v, 𝑤) ∈ 𝐸 is relaxed
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by comparing the tentative distance dist[𝑤] to the distance dist[v] +𝑐 (𝑒) that is achieved by
traversing 𝑒 . If the latter is smaller, dist[𝑤] is updated, p[𝑤] is set to v , and𝑄 is updated: If it

already contains 𝑤, its key is changed to dist[𝑤]. Otherwise, 𝑤 is inserted with key dist[𝑤].
Once the queue is empty, dist[v] is the length of the shortest vs-v-path for each vertex v . The
path can be reconstructed by iteratively following the parent pointer p[v] until vs is reached.

The correctness of Dijkstra’s algorithm follows from the label-setting property: Because the
edge costs are non-negative, the smallest key in𝑄 does not decrease throughout the execution

of the algorithm. Thus, when a vertex v is settled, we know that dist[v] is equal to the length
of the shortest vs-v-path. Dijkstra’s algorithm can be adapted to solve the single-pair shortest

path problem for a target vertex vt ∈ 𝑉 by adding a stopping criterion: once vt is settled, the
search is stopped. Once again, the correctness follows from the label-setting property.

Dijkstra’s algorithm has a running time in O( |𝑉 | log |𝑉 | + |𝐸 |) if the priority queue is

implemented with a Fibonacci heap [FT87]. In practice, implementations using 𝑘-ary heaps

are faster [CGR96], although their worst-case running time is higher at O(( |𝑉 | + |𝐸 |) log |𝑉 |).
In this thesis, we use an implementation with 4-ary heaps.

A speedup of approximately a factor of two can be achievedwith bidirectional search [Dan63,

Nic66]. In addition to the forward Dijkstra search from vs with queue

−→
𝑄 and tentative

distances

−−−→
dist[·], a backward search is run from vt with queue

←−
𝑄 and distances

←−−−
dist[·].

Different strategies have been proposed for alternating between the two searches, such as

always continuing with the queue that currently has the smaller minimum key [Nic66]. In

our implementation, they alternate after each settling step. To find the shortest path, the

algorithm maintains a tentative overall distance 𝜇, which is initialized with ∞. Whenever

the forward or backward distance of a vertex v is updated, the tentative distance 𝜇 is set to
the minimum of itself and

−−−→
dist[v] + ←−−−dist[v]. Let 𝜅 (𝑄) denote the smallest key in a queue 𝑄 .

Then the search can be stopped once 𝜅 (−→𝑄 ) + 𝜅 (←−𝑄 ) ≥ 𝜇 holds.

Optimizing Multiple Criteria. Dijkstra’s algorithm can be extended to Pareto-optimize

multiple criteria [Han80, Mar84]. With 𝑘 criteria, the edge cost function 𝑐 : 𝐸 → (R+
0
)𝑘

maps each edge 𝑒 to a 𝑘-dimensional cost vector 𝑐 (𝑒) = (𝑐1, . . . , 𝑐𝑘 ). Given source and target

vertices vs, vt ∈ 𝑉 , the objective is to compute a Pareto set of vs-vt-paths.
Instead of a single tentative distance, each vertex v now stores a bag 𝐵(v) of labels. Each

label ℓ ∈ 𝐵(v) represents a path 𝑃 = ⟨vs, . . . , 𝑤, v⟩ with the cost vector 𝑐 (ℓ) = 𝑐 (𝑃). For path
unpacking, the label also stores a pointer to the label representing the prefix ⟨vs, . . . , 𝑤⟩ in the

bag 𝐵(𝑤) of the predecessor vertex 𝑤. Within a bag, no label may weakly dominate another

label. When a new label is added to the bag, this invariant is upheld by comparing the label

to all other labels in the bag and removing dominated ones.

The priority queue 𝑄 now operates on individual labels instead of vertices. The labels

are ordered according to a key function 𝜅 (·) that assigns a scalar value to each label. The

total ordering induced by the key function must be consistent with the partial ordering

induced by strong Pareto dominance, i.e., if a label ℓ1 is strongly dominated by another label ℓ2,

then 𝜅 (ℓ1) > 𝜅 (ℓ2) must hold. Orderings with this property include lexicographical ordering
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(i.e., initially comparing according to the first criterion, then according to the second one in

case of equality, then the third one and so forth) or a linear combination of the criteria. When

a label ℓ belonging to a vertex v is extracted from 𝑄 , it is settled in a similar manner to the

single-criterion algorithm. Each outgoing edge 𝑒 = (v, 𝑤) is relaxed by creating a new label ℓ ′

with cost 𝑐 (ℓ) + 𝑐 (𝑒). If ℓ ′ is not weakly dominated by any labels in the bag 𝐵(𝑤), it is added
to 𝐵(𝑤), weakly dominated labels are removed and ℓ ′ is added to 𝑄 .

If the key function is consistent with Pareto dominance, then the algorithm remains label-

setting in the sense that once a label is settled, it is known to be Pareto-optimal. However, it

is no longer label-setting in the sense that each vertex is only settled once, since there may be

multiple Pareto-optimal labels per vertex. As a result, the stopping criterion no longer works:

once the first label at vt is settled, the search cannot be stopped because the full Pareto set

at vt may not have been found yet. Instead, target pruning [DMS08] can be applied: When an

edge is relaxed and a new label is created, the algorithm checks whether it is dominated by

any of the labels in 𝐵(vt). If so, the label is discarded. This ensures that once a Pareto set at vt
has been found, no more labels will be added to 𝑄 .

To reduce the number of elements in the priority queue, our implementation uses the

following optimization [Bau17]: Instead of individual labels, the global priority queue 𝑄

operates on vertices. The key of a vertex v is the smallest key among the unsettled labels

in 𝐵(v). To keep track of this, each vertex maintains a local priority queue of unsettled labels.

In each step of the algorithm, the vertex v with the smallest key is settled by extracting the

label with the smallest key from the local queue of v and settling it. Afterward, if 𝐵(v) still
contains unsettled labels, then the key of v is recalculated and v is reinserted into 𝑄 .

4.1.2 Contraction Hierarchies
We now present several variants of CH [GSSV12] that are used throughout this work.

Basic Algorithm. The basic building block of CH is vertex contraction: A vertex v is

contracted by removing v and its incident edges from the graph and building an overlay

graph for the vertex set 𝑉 \ {v}. This requires inserting shortcut edges between the (former)

neighbors of v in order to preserve shortest path distances. The simplest approach is to iterate

over every pair of incoming edge 𝑒1 = (𝑤, v) and outgoing edge 𝑒2 = (v, 𝑥) and insert the

shortcut (𝑤, 𝑥) with cost 𝑐 (𝑒1) + 𝑐 (𝑒2). If such an edge already exists, its cost is set to the

minimum of the shortcut cost and its previous cost. To avoid inserting superfluous shortcuts,

a witness search can be performed, which is a bidirectional Dijkstra search from 𝑤 to 𝑥 . If this

search finds a shorter 𝑤-𝑥-path than the one via v , the shortcut is not inserted.
The CH preprocessing phase for a graph 𝐺 = (𝑉 , 𝐸) iteratively contracts the vertices in a

heuristically determined order. This condenses the original graph into progressively smaller

overlay graphs until the overlay finally becomes empty. The position of a vertex in this

contraction order is called its rank. The final output is an augmented graph 𝐺+ = (𝑉 , 𝐸+)
containing 𝐸 and all inserted shortcuts. The augmented graph can be split into an upward
graph 𝐺↑ = (𝑉 , 𝐸↑) containing only edges from lower-ranked to higher-ranked vertices, and
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a corresponding downward graph 𝐺↓ = (𝑉 , 𝐸↓) with edges from higher- to lower-ranked

vertices. Note that𝐺↑ and𝐺↓ are DAGs, with the contraction order (or the inverse contraction

order for 𝐺↓) as one possible topological ordering.
For every pair vs, vt of source and target vertices, it can be shown that𝐺+ contains a shortest

vs-vt-path that is an up-down path. This is a path that can be split into a prefix with all edges

in𝐺↑ and a suffix with all edges in𝐺↓. To find an up-down path, the query algorithm performs

a bidirectional Dijkstra search, in which the forward search explores 𝐺↑ and the backward

search explores 𝐺↓. The stopping criterion is slightly different from a regular bidirectional

search: the search is stopped once min(𝜅 (−→𝑄 ), 𝜅 (←−𝑄 )) ≥ 𝜇 holds. To obtain a corresponding

path in the original graph 𝐺 , the shortcuts in the up-down path are unpacked. Each shortcut

stores its via vertex, i.e., the vertex whose contraction created it. From this, the two edges

that the shortcut represents can be reconstructed. The original path can then be obtained by

recursively unpacking all shortcuts until only original edges remain.

Implementation Details. Our implementation of CH uses a greedy heuristic to deter-

mine the contraction order. It maintains a priority queue of the vertices in which the key

represents the estimated importance. In each step, the vertex with minimal key is contracted

and the keys of its neighbors are recalculated. Vertices with a degree of at most two are

assigned the lowest possible importance, since contracting them decreases the number of

edges in the graph. Otherwise, the key is a linear combination of the edge difference (weighted
with factor 4) and the level (weighted with factor 1). The edge difference of a vertex v is

the number of shortcuts that would be inserted if v were contracted next, divided by the

number of edges that are currently incident to v . This value is determined by simulating

the contraction of v . The level of a vertex is initially set to 0. When a vertex with level ℓ is

contracted, the levels of its neighbors are set to the maximum of their current value and ℓ + 1.
This ensures that the height of 𝐺↑ and 𝐺↓ (i.e., the length of a longest path) remains low. To

limit the time that is spent on witness searches, each search is terminated once 200 vertices

have been settled. This may cause the search to miss shorter paths and insert superfluous

shortcuts, but this does not affect the correctness of the query algorithm.

Core-CH. Multimodal algorithms, such as UCCH and MCR, employ a special variant

of the CH precomputation that we call Core-CH [Bau+10, DPW15b, Del+13]. Here, the

precomputation is not allowed to contract vertices that coincide with stops. As a conse-

quence, the iterative contraction is interrupted at some point, leaving an uncontracted overlay

graph 𝐺o = (𝑉 o, 𝐸o) with S ⊆ 𝑉 o ⊆ 𝑉 , which is called the core graph. The augmented

graph𝐺+ = (𝑉 , 𝐸+ ∪ 𝐸o) is then formed by the edges in the core graph as well as the inserted

shortcuts. The core edges 𝐸o are included in both the upward and downward graphs.

If we enforce 𝑉 o = S , then |𝐸o | becomes quadratic in |S |. This slows down the precompu-

tation and query algorithms to the point of being impractical. In practice, the contraction

process is therefore stopped once the average vertex degree in the core graph surpasses a

specified threshold. As a result, the core graph may contain vertices that are not stops.
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Bucket-CH. Bucket-CH [Kno+07, GSSV12] is an extension of CH for one-to-many

queries. It operates in three phases. First, given the graph𝐺 = (𝑉 , 𝐸), the CH precomputation

is performed. Second, given the set 𝑉t ⊆ 𝑉 of targets, a bucket containing distances to the

targets is computed for every vertex. This is done by performing a backward search in𝐺↓ from
every target vertex vt ∈ 𝑉t. For each vertex v settled by this searchwith distance dist(v, vt), the
entry (vt, dist(v, vt)) is added to the bucket of v . Finally, given a query with source vertex vs,
the algorithm performs a forward search on 𝐺↑. For each vertex v settled by this search with

distance dist(vs, v), the bucket of v is evaluated. For each bucket entry (vt, dist(v, vt)), the
shortest distance to vt found so far is compared with dist(vs, v) + dist(v, vt) and updated if

it is improved.

(R)PHAST. PHAST [DGNW13] extends CH for one-to-all queries. A PHAST query

begins with an upward search from vs in𝐺↑. This is followed by a downward sweep that scans
the vertices of 𝐺↓ in some topological order (e.g., the inverse contraction order). For each

scanned vertex v and each incoming downward edge 𝑒 = (𝑤, v) ∈ 𝐸↓, the distance dist(v) is
set to the minimum of itself dist(𝑤) + 𝜏tra (𝑒). To make the downward sweep cache-efficient,

the vertices of 𝐺↓ are stored in memory in the same order in which they are scanned. In

a many-to-all scenario with multiple source vertices, the memory locality of PHAST can

be further improved by combining 𝑘 one-to-all searches into a single sweep (for a fixed 𝑘).

Instead of one distance value per vertex, the algorithm then stores an array of 𝑘 values, one

for each of the 𝑘 sources, which are updated consecutively during each edge relaxation.

For the one-to-many problem with a target set 𝑉t ⊆ 𝑉 that does not change between

queries, RPHAST improves on PHAST by performing a target selection phase before queries

are run. This involves running a backward BFS on 𝐺↓, initializing the queue with all target

vertices at once. The downward sweep is then run on the subgraph of 𝐺↓ induced by the

vertices that were visited by the BFS.

4.2 Public Transit Networks
Unless otherwise noted, the algorithms in this section are designed for pure public transit

networks with one-hop transfers, i.e., the transfer graph must be transitively closed and fulfill

the triangle inequality.

4.2.1 Time-Expanded Graph
Although none of the algorithms in this thesis operate directly on the time-expanded graph,

we describe its construction because it aids in understanding the structural features of public

transit networks and how the timetable-based algorithms exploit them. There are multiple

different definitions of the time-expanded graph in the literature. Ours is based on the realistic
time-expanded digraph proposed by Pyrga et al. [PSWZ08], which was designed to incorporate

minimum change times. The version presented here uses departure buffer times instead.
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Figure 4.1: Modeling of a time-expanded graph for two example stops. Arrival nodes in

blue, transfer nodes in red, and departure nodes in green. Stops are depicted as gray boxes

enclosing the associated nodes. Trip edges are thick and in black, transfer edges are thin and

in gray. Edge weights have been omitted for clarity.

An example of a time-expanded graph is shown in Figure 4.1. Each stop event is represented

by three nodes: an arrival node, a departure node, and a transfer node. Associated with each

node is its event time. For the arrival and departure node, this is the arrival and departure

time of the stop event, respectively. For the transfer node, it is the departure time minus the

departure buffer time of the stop. A trip is represented by a path of trip edges that alternate
between the arrival and departure nodes of the corresponding stop events. Entering and

exiting vehicles is modeled via transfer edges. Each transfer node has a transfer edge to the

corresponding arrival node, which represents entering the vehicle. The transfer nodes of a

stop are sorted in increasing order of event time and connected by a chain of transfer edges;

these represent waiting at the stop for later trips. Finally, from each arrival node, a transfer

edge leads to the earliest transfer node at the stop that can be reached while respecting the

departure buffer time; this represents exiting the trip. The cost of an edge is the difference in

the event times of the nodes that it connects.

An earliest arrival query with source stop vs, target stop vt and departure time 𝜏dep can be

solved with Dijkstra’s algorithm as follows. The source vertex is the earliest transfer node

of vs whose event time is not before 𝜏dep. There is no single target vertex; rather, the objective

is to find the earliest reachable transfer node of vt. This is achieved with a modified stopping

criterion: as soon as the first transfer node of vt is settled, the search is stopped.

Discussion. Amajor downside of the time-expanded graphmodel is that it obscures some

structural features of public transit networks that can be used to prune the search. For example,

when optimizing the two criteria arrival time and number of trips, it is sufficient to only explore

the earliest reachable trip of each route, as using a later trip will not yield an improvement in

either criterion. We refer to this insight as route-based pruning. Because it is not encoded in
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the time-expanded graph, Dijkstra’s algorithm also explores these redundant later trips. This

is in contrast to the time-dependent model, which handles different trips of the same route

via the time-dependent edge cost function. When a trip edge is explored and the function is

evaluated, the earliest reachable trip is chosen automatically. Delling et al. [DPW09b] propose

two approaches for employing route-based pruning in the time-expanded graph. The first

is to identify and remove redundant arcs to later trips in a preprocessing step. The other

approach, node blocking, is applied dynamically at query time. Whenever a departure node is

settled, later departure nodes of the same trip are blocked, which means that their outgoing

edges are no longer relaxed.

Another disadvantage of the time-expanded model is that footpaths between stops cannot

be integrated in a straightforward manner. Müller-Hannemann et al. [MSWZ07] discuss two

solutions for modeling a footpath from stop v to 𝑤: The naive approach is to create a copy of

the footpath for each transfer node of v , which leads to the earliest reachable transfer node

of 𝑤. The alternative is to find the first reachable transfer node at 𝑤 on the fly whenever a

transfer node of v is settled. In both cases, the footpath is explored anew every time a transfer

node at v is settled, even though it would be sufficient to explore it only once when the first

transfer node of v is reached. On the other hand, an advantage of the time-expanded graph is

that it does not require one-hop transfers: because it is explored with Dijkstra’s algorithm,

footpaths consisting of multiple edges can be found without issues.

4.2.2 Connection Scan Algorithm
CSA [DPSW18] solves the one-to-one (or one-to-all), fixed departure time, earliest arrival

problem. It exploits the fact that the time-expanded graph is a DAG and that the event time

yields a topological ordering of the nodes. Hence, shortest paths can be found with a single

sweep across the nodes in increasing order of event time, relaxing the outgoing edges of

each node. This has two advantages over Dijkstra’s algorithm: Firstly, it removes the need

for a priority queue and the running time (excluding the sorting by event time, which is a

preprocessing step) therefore becomes linear. More importantly, by reordering the nodes in

memory according to the topological ordering, the sweep becomes highly cache-efficient.

CSA does not operate directly on the time-expanded graph. Rather, it uses its own data

structures based on the notion of the connection, which is a 5-tuple

𝑐 :=
(
vdep (𝑐), varr (𝑐), 𝜏dep (𝑐), 𝜏arr (𝑐),𝑇 (𝑐)

)
.

It represents the trip𝑇 (𝑐) departing from stop vdep (𝑐) at time 𝜏dep (𝑐) and traveling to the next
stop varr (𝑐), which is reached at time 𝜏arr (𝑐). A connection is equivalent to a trip edge from

a departure node to an arrival node in the time-expanded graph, and to a trip segment of

length two. For a trip 𝑇 := ⟨𝜀0, . . . , 𝜀𝑘⟩, the associated set of connections is given by

C (𝑇 ) := {
(
v (𝜀𝑖 ), v (𝜀𝑖+1), 𝜏dep (𝜀𝑖 ), 𝜏arr (𝜀𝑖+1),𝑇

)
| 0 ≤ 𝑖 < 𝑘}.

The set of all connections in the network is given by C :=
⋃

𝑇 ∈T C (𝑇 ). In a preprocessing

step, the connections are sorted in ascending order of departure time.
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The query algorithm uses two data structures: For each stop v , the tentative arrival time is

given by 𝜏arr (v), which is initialized with∞. Additionally, the algorithm maintains a boolean

flag 𝑟 (𝑇 ) (initialized with false) for each trip 𝑇 , which indicates whether the search has

reached 𝑇 yet. A query with source stop vs and departure time 𝜏dep starts by setting 𝜏arr (vs)
to 𝜏dep and relaxing all outgoing footpaths: for each edge 𝑒 = (vs, v) ∈ 𝐸, the arrival time 𝜏arr (v)
is set to 𝜏dep + 𝜏tra (𝑒). Then, the earliest connection 𝑐0 with 𝜏dep (𝑐0) ≥ 𝜏dep is found with

a binary search. Starting from 𝑐0, the connections in C are scanned in increasing order of

departure time. A connection 𝑐 is scanned as follows: First, the algorithm tests whether 𝑐 is

reachable. This is the case if its trip has already been reached, i.e., 𝑟 (𝑇 (𝑐)) = true, or if the

search has reached its departure stop in time to enter it, i.e., 𝜏arr (vdep (𝑐)) ≤ 𝜏dep (𝑐). If 𝑐 is not
reachable, it is skipped. Otherwise, the flag 𝑟 (𝑇 (𝑐)) is set to true and the arrival time 𝜏arr (𝑐)
is compared to the tentative arrival time 𝜏arr (varr (𝑐)) at the arrival stop. If the former is lower,

then the latter is updated and all outgoing footpaths of varr (𝑐) are relaxed. In the one-to-one

problem setting with a target stop vt, the sweep is stopped once it reaches a connection 𝑐

with 𝜏dep (𝑐) ≥ 𝜏arr (vt), since none of the following connections can improve the best found

solution.

Discussion. The main advantage of CSA is that it is extremely simple and highly cache-

efficient. This makes up for the fact that its search space is unoptimized, especially for local

queries. If 𝜏dep is the departure time of the query and 𝜏arr is the arrival time of the fastest

journey, then CSA scans all connections in the network that depart within [𝜏dep, 𝜏arr], even
if they are far away from the source stop and therefore unreachable. Moreover, CSA does

not apply any route-based pruning rules; a connection is scanned even if a corresponding

connection of an earlier trip has already been reached. This lack of pruning rules becomes an

issue in more complex problem settings. While it is possible to design a variant of CSA that

Pareto-optimizes arrival time and number of trips, preliminary experiments have shown that

it is not competitive with RAPTOR. This is mainly because the stopping criterion becomes

weaker and therefore the search space becomes even larger.

Note that CSA only relaxes the outgoing footpaths of a stop v if its tentative arrival time was

improved by the incoming connection. This solves the issue with time-expanded graphs, in

which the same footpath is explored anew for each transfer node. However, this optimization

requires one-hop transfers. Consider an outgoing edge (v, 𝑤). If the shortest path to v ends
with an edge (𝑥, v), then CSA may not relax (v, 𝑤). Therefore, in order to reach 𝑤, the

algorithm requires the transitive edge (𝑥, 𝑤).

4.2.3 RAPTOR
RAPTOR addresses the main shortcoming of CSA by only exploring parts of the network

that are reachable from the source stop. It resembles a BFS in which the routes correspond

to vertices and the transfers between them to edges. Because the depth of a node in the

BFS tree equals the number of trips used to reach it, this approach naturally supports Pareto

optimization for the two criteria arrival time and number of trips.
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Algorithm 4.1: RAPTOR query algorithm.

Input: Public transit network (S,Π, E, T ,R,𝐺),
source stop vs, departure time 𝜏dep, target stop vt

Output: Earliest arrival time 𝜏arr (vt, 𝑛) at vt for each number of trips 𝑛

1 for each v ∈ S do
2 𝜏arr (v, 0) ← ∞
3 𝜏∗

arr
(v) ← ∞

4 𝜏arr (vs, 0) ← 𝜏dep
5 𝜏∗

arr
(vs) ← 𝜏dep

6 S ′ ← RelaxTransfers({vs}, 0)
7 for 𝑛 ← 1, 2, . . . do
8 if S ′ = ∅ then break
9 for each v ∈ S do 𝜏arr (v, 𝑛) ← ∞

10 R′ ← CollectRoutes(S ′)
11 S ′ ← ScanRoutes(R′, 𝑛)
12 S ′ ← RelaxTransfers(S ′, 𝑛)

Algorithm 4.2: RAPTOR transfer relaxation procedure.

1 Procedure RelaxTransfers(S ′, 𝑛)
2 for each v ∈ S ′ do
3 for each 𝑒 = (v, 𝑤) do
4 𝜏 ← 𝜏arr (v, 𝑛) + 𝜏tra (𝑒)
5 if 𝜏 < min(𝜏∗

arr
(𝑤), 𝜏∗

arr
(vt)) then

6 𝜏arr (𝑤,𝑛) ← 𝜏

7 𝜏∗
arr
(𝑤) ← 𝜏

8 S ′ ← S ′ ∪ {𝑤}
9 return S ′

Basic Algorithm. The basic RAPTOR algorithm [DPW15a] solves the one-to-one (or

one-to-all), fixed departure time, Pareto optimization problem. It operates in rounds, in which

the 𝑛-th round finds journeys with 𝑛 trips by appending an additional trip to journeys found in

the previous round. For each stop v ∈ S and each round 𝑛, the algorithm maintains a tentative
arrival time 𝜏arr (v, 𝑛), which is the earliest arrival time among all journeys to v with 𝑛 trips

found so far. Additionally, it maintains an earliest arrival time 𝜏∗
arr
(v) for each stop v , which is

the minimum of the tentative arrival times across all rounds.

Pseudocode for a RAPTOR query with source stop vs, target stop vt and departure time 𝜏dep
is given in Algorithm 4.1. Lines 1–5 initialize the tentative and earliest arrival times with 𝜏dep
for vs and∞ otherwise. Afterward, the RelaxTransfers procedure (detailed in Algorithm 4.2)
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is called in line 6 to relax the outgoing transfer edges of vs. This returns a set S ′ of stops that
were marked because their tentative arrival time was improved. The remainder of the algo-

rithm (lines 7–12) performs rounds until S ′ is empty. At the start of round 𝑛, line 9 initializes

the tentative arrival time 𝜏arr (v, 𝑛) of each stop v with∞. Afterward, the algorithm performs

a route scanning phase, consisting of the procedures CollectRoutes and ScanRoutes (detailed

in Algorithm 4.3), followed by a transfer relaxation phase consisting of RelaxTransfers.

The procedure CollectRoutes collects the set R′ of routes that visit a marked stop. For

each route 𝑅, it also identifies the index of the first marked stop along 𝑅. For each collected

tuple (𝑅, 𝑗) ∈ R′ with route 𝑅 and index 𝑗 , the procedure ScanRoutes scans 𝑅 by iterating

across its stops from index 𝑗 onwards. While doing so, it rebuilds the set S ′ of marked stops

for the next round. During the scan, the algorithm maintains an active trip 𝑇min, which is the

earliest trip of 𝑅 that can be entered at any of the already processed stops. For each stop v
along the route, two steps are performed. First, line 17–20 test whether exiting 𝑇min improves

the arrival time at v with 𝑛 trips. Two pruning rules are applied here: Local pruning compares

the arrival time 𝜏arr (𝑇min [𝑖]) to the earliest arrival time 𝜏∗
arr
(v) at v found so far. For one-to-

one queries, target pruning additionally compares it to the earliest arrival time at vt. If it is
earlier than both, 𝜏∗

arr
(v) and 𝜏arr (v, 𝑛) are updated accordingly and v is marked. In the second

step, lines 21–22 test whether an earlier trip than 𝑇min can be entered at v when arriving

with 𝑛 − 1 trips. Line 21 checks whether the predecessor trip pred(𝑇min) can be entered at v
when arriving at 𝜏arr (v, 𝑛 − 1). If so, the procedure FindEarliestTripFrom finds the earliest
reachable trip with a backward linear search through the trips of 𝑅, starting with pred(𝑇min).
Once all collected routes have been scanned, the procedure RelaxTransfers is called. For

every marked stop v ∈ S ′, each outgoing transfer edge 𝑒 = (v, 𝑤) ∈ 𝐸 is relaxed. Once again,

local and target pruning are applied to test whether the arrival time 𝜏arr (v, 𝑛) + 𝜏tra (𝑒) is an
improvement. If so, then 𝜏∗

arr
(𝑤) and 𝜏arr (𝑤,𝑛) are updated and 𝑤 is marked.

As outlined thus far, RAPTOR only computes the earliest arrival time 𝜏arr (v, 𝑛) for each
stop v and number of trips 𝑛. To retrieve the corresponding journeys, this is augmented with a

parent pointer p(v, 𝑛). If v was reached via a transfer (𝑤, v), this points to 𝑤. If v was reached
via a trip segment 𝑇 [𝑖, 𝑗], it points to the stop v (𝑇 [𝑖]) at which the trip segment was entered.

Additionally, the algorithm stores a boolean flag that indicates whether v was reached via a

transfer or a trip segment. The journey can then be retrieved by repeatedly unwinding the

parent pointers, decreasing the number of trips if the stop was reached via a trip segment.

Discussion. Unlike CSA, RAPTOR implements a route-based pruning rule bymaintaining

the active trip𝑇min during the route scan and updating it via FindEarliestTripFrom. To make

the route scanning procedure as cache-efficient as possible, a special memory layout is used for

the arrival and departure times of the stop events. For each route 𝑅 with 𝑘 trips and |𝑅 | stops,
they are stored in an array StopTimes[·] of size𝑘 ·|𝑅 |, where index StopTimes[𝑖 ·|𝑅 |+ 𝑗] contains
the arrival and departure times of the 𝑗-th stop event along the 𝑖-th trip of 𝑅. Advancing

to the next stop along the route is then done by stepping one index to the right, whereas

switching to the next-earliest trip is done by stepping back |𝑅 | entries to the left.



Public Transit Networks Section 4.2

41

Algorithm 4.3: RAPTOR route collection and scanning procedures.

1 Procedure CollectRoutes(S ′)
2 R′ ← ∅
3 for each v ∈ S ′ do
4 for each route 𝑅 ∈ R visiting v do
5 𝑖 ← index of v in 𝑅

6 if R′ contains (𝑅, 𝑗) then
7 R′ ← R′ \ {(𝑅, 𝑗)} ∪ {(𝑅,min(𝑖, 𝑗))}
8 else
9 R′ ← R′ ∪ {(𝑅, 𝑖)}

10 return R′

11 Procedure ScanRoutes(R′, 𝑛)
12 S ′ ← ∅
13 for each (𝑅, 𝑗) ∈ R′ do
14 𝑇min ← ⊥
15 for 𝑖 from 𝑗 to |𝑅 | − 1 do
16 v ← 𝑖-th stop of 𝑅

17 if 𝑇min ≠ ⊥ and 𝜏arr (𝑇min [𝑖]) < min(𝜏∗
arr
(v), 𝜏∗

arr
(vt)) then

18 𝜏arr (v, 𝑛) ← 𝜏arr (𝑇min [𝑖])
19 𝜏∗

arr
(v) ← 𝜏arr (𝑇min [𝑖])

20 S ′ ← S ′ ∪ {v}
21 if pred(𝑇min [𝑖]) ≠ ⊥ and 𝜏arr (v, 𝑛 − 1) ≤ 𝜏dep (pred(𝑇min) [𝑖]) then
22 𝑇min ← FindEarliestTripFrom(pred(𝑇min), 𝑖, 𝜏arr (v, 𝑛 − 1))
23 return S ′

Additional Criteria. McRAPTOR [DPW15a] extends RAPTOR to Pareto-optimize an

arbitrary number of additional criteria besides arrival time and number of trips. For each stop v
and round 𝑛, the tentative arrival time 𝜏arr (v, 𝑛) is replaced with a bag 𝐵𝑛 (v) of labels that
represent Pareto-optimal journeys to v with 𝑛 trips. Likewise, the earliest arrival time 𝜏∗

arr
(v)

is replaced with a best bag 𝐵∗ (v), which contains all labels at v that are Pareto-optimal if the

number of trips ignored as a criterion. When a new label is found at a stop v in round 𝑛, it is

compared with the labels in 𝐵∗ (v). If it is not dominated, it is merged into 𝐵∗ (v) and 𝐵𝑛 (v),
removing labels that are dominated by it.

During the scan of a route 𝑅, the algorithm maintains a route bag 𝐵route, which contains

labels representing journeys that end with a trip of 𝑅. Instead of one active trip for the entire

route, each label in 𝐵route maintains its own active trip, which is the trip of 𝑅 used by the

corresponding journey. When the route scan visits a stop v , journeys exiting the route at v
are found by merging 𝐵route into 𝐵

𝑛 (v). Then, for each label in 𝐵𝑛−1 (v), the algorithm finds

the earliest trip 𝑇 that can be entered at v , creates a label with active trip 𝑇 and merges it
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into 𝐵route. Note that this step still employs route-based pruning. This is only correct if the

additional criteria conform to the condition that it is never useful to enter a later trip than the

earliest reachable one. Criteria for which this is not the case (e.g., vehicle occupancy) are not

handled correctly by McRAPTOR.

Multimodal Networks. In turn, McRAPTOR can be extended to support multimodal

scenarios with unlimited transfers. The resulting algorithm, MCR [Del+13], replaces the

transfer relaxation phase of (Mc)RAPTORwith a Dijkstra search on a core graph𝐺o = (𝑉 o, 𝐸o)
computed with Core-CH. The two-criteria variant of MCR was originally proposed under the

name MR-∞. We refer to it as MR (Multimodal RAPTOR) for the sake of simplicity. MR/MCR

maintains arrival times or bags for every vertex in 𝑉 o
, not just for stops. In MR, the transfer

relaxation phase for round 𝑛 runs Dijkstra’s algorithm on the core graph, using 𝜏arr (·, 𝑛) as the
tentative distances. MCR does the same with the multicriteria variant of Dijkstra’s algorithm

and the bags 𝐵(·, 𝑛). The priority queue is initialized with all marked stops, and all stops that

are settled by the search are themselves marked. Note that the Dijkstra search on the core

graph can only guarantee finding shortest paths between pairs of stops. Because the source

and target vertices are not necessarily stops themselves, initial and final transfers are explored

with searches on the upward and downward graph produced by Core-CH, respectively.

Profile Search. Profile queries can be answered with another RAPTOR extension, rRAP-

TOR (Range RAPTOR) [DPW15a]. rRAPTOR exploits the observation that every Pareto-

optimal journey (except for a direct transfer from vs to vt) starts by entering a trip at vs or
a stop reachable via a transfer from vs. This limits the number of possible departure times

to a small set of discrete values. For each of these departure times, rRAPTOR performs a

run of the basic RAPTOR algorithm. The departure times are processed in descending order,

and the arrival times 𝜏arr (·, ·) are not reset between runs. As a result, journeys found during

the current run are implicitly pruned by journeys that depart later and neither arrive later

nor have more trips. This property is called self-pruning. The output of rRAPTOR can be

interpreted as a Pareto set with departure time as a third criterion that is maximized.

4.2.4 Trip-Based Routing
TB is a faster alternative to RAPTOR for one-to-one queries [Wit15]. It features a preprocessing

phase that computes a set 𝐸s ⊆ E × E of relevant intermediate transfers between pairs of

stop events. These transfers are used to speed up the query phase. Unlike in RAPTOR, it

is no longer necessary to identify the earliest reachable trip when entering a route, since

the precomputed transfers already provide that information. TB exploits this by scanning

individual trip segments instead of entire routes.

Transfer Precomputation. Initially, the preprocessing phase generates all transfers 𝑒 =

(𝑇𝑎 [𝑖],𝑇𝑏 [ 𝑗]) with 𝑖 > 0 and 𝑗 < |𝑇𝑏 | − 1 such that 𝑇𝑏 is the earliest trip of its route that can
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Algorithm 4.4: TB query algorithm.

Input: Public transit network (S,Π, E, T ,R,𝐺), event-to-event transfers 𝐸s,
source stop vs, departure time 𝜏dep, target stop vt

Output: Labels L representing Pareto set of vs-vt-journeys for departure time 𝜏dep

1 Initialize()
2 RelaxInitialTransfers()
3 𝜏min ← 𝜏dep + 𝜏tra (vs, vt)
4 if 𝜏min < ∞ then L← {(𝜏min, 0)}
5 𝑄1 ← ∅
6 CollectInitialTrips(𝑄1)
7 for 𝑛 ← 1, 2, . . . do
8 if 𝑄𝑛 = ∅ then break
9 𝑄𝑛+1 ← ∅

10 ScanTrips(𝑄𝑛, 𝑄𝑛+1)

be entered at v (𝑇𝑏 [ 𝑗]) when arriving at 𝜏arr (𝑇𝑎 [𝑖]) + 𝜏tra (v (𝑇𝑎 [𝑖]), v (𝑇𝑏 [ 𝑗])). An exception to

this is if 𝑇𝑎 and 𝑇𝑏 belong to the same route, 𝑇𝑎 ⪯ 𝑇𝑏 and 𝑖 ≤ 𝑗 , In this case, it is preferable to

remain seated in 𝑇𝑎 , so 𝑒 is not generated.

Afterward, two reduction rules are applied to discard unnecessary transfers. These are not

exhaustive, so 𝐸s may still contain transfers that do not occur in any Pareto-optimal journey.

The U-turn reduction rule removes transfers 𝑒 = (𝑇𝑎 [𝑖],𝑇𝑏 [ 𝑗]) with v (𝑇𝑎 [𝑖−1]) = v (𝑇𝑏 [ 𝑗 +1])
and 𝜏arr (𝑇𝑎 [𝑖 − 1]) ≤ 𝜏arr (𝑇𝑏 [ 𝑗 + 1]). The second reduction rule removes transfers that can be

replaced with another outgoing transfer from the same trip. For each trip 𝑇 , the algorithm

scans its stop events in reverse order and maintains an earliest arrival time 𝜏arr (v) at each
stop v , which is initialized with ∞. For each stop event 𝑇 [𝑖], the outgoing footpaths are

relaxed and the arrival times of the reached stops are updated accordingly. Afterward, the

outgoing transfers are relaxed. For each transfer 𝑒 = (𝑇 [𝑖],𝑇𝑏 [ 𝑗]), the algorithm scans the

trip 𝑇𝑏 starting from index 𝑗 . At each reached stop v , the arrival time of v is updated and the

outgoing footpaths are relaxed. If this improves the arrival time of any stop, the transfer 𝑒 is

kept; otherwise, it is discarded.

Lehoux and Loiodice [LL20] propose an alternative transfer generation step that avoids

generating some superfluous transfers, thereby improving the preprocessing time. If a trans-

fer (𝑇𝑎 [𝑖],𝑇𝑏 [ 𝑗]) exists, then all other transfers of the form (𝑇𝑎 [𝑘],𝑇𝑐 [ℓ]) with 𝑘 ≤ 𝑖 , ℓ ≥ 𝑗

and 𝑇𝑐 ⪰ 𝑇𝑏 are not generated.

Query Algorithm. Pseudocode for the TB query algorithm is given in Algorithms 4.4

(outline) as well as 4.5 and 4.6 (details). The procedure Initialize (lines 1–7 of Algorithm 4.5)

initializes the used data structures. Instead of tentative arrival times at stops, TB maintains

a reached index 𝑟 (𝑇 ) for each trip𝑇 . This is the index𝑘 of the first stop event𝑇 [𝑘] that has been
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Algorithm 4.5: TB initialization procedures.

1 Procedure Initialize()

2 for each v ∈ S do
3 𝜏tra (vs, v) ← ∞
4 𝜏tra (v, vt) ← ∞
5 for each 𝑇 ∈ T do
6 𝑟 (𝑇 ) ← |𝑇 |
7 L← ∅
8 Procedure RelaxInitialTransfers()

9 𝜏tra (vs, vs) ← 0

10 𝜏tra (vt, vt) ← 0

11 for each 𝑒 = (vs, v) ∈ 𝐸 do 𝜏tra (vs, v) ← 𝜏tra (𝑒)
12 for each 𝑒 = (v, vt) ∈ 𝐸 do 𝜏tra (v, vt) ← 𝜏tra (𝑒)

reached by the search. Initially, it is set to |𝑇 |. Additionally, TBmaintains a setL of labels repre-

senting Pareto-optimal journeys at the target stop vt. The procedure RelaxInitialTransfers
(lines 8–12) relaxes the outgoing transfers of the source stop vs and the incoming transfers

of vt. For every reached stop v , this yields the minimum transfer times 𝜏tra (vs, v) for an initial

transfer from vs and 𝜏tra (v, vt) for a final transfer to vt. Line 3 of Algorithm 4.4 initializes the

earliest arrival time 𝜏min at vt found so far. Initially, this represents the direct transfer from vs
to vt. If 𝜏min < ∞, a label representing this journey is added to the result set L in line 4.

Like RAPTOR, TB operates in rounds. Each round scans trip segments collected in a first-in,

first-out (FIFO) queue. The procedure CollectInitialTrips (lines 1–8 of Algorithm 4.6) fills

the queue 𝑄1 for the first round by processing stops that are reachable from vs with an initial

transfer. For each stop v and each route 𝑅 visiting v , the algorithm finds the earliest trip𝑇 of 𝑅

that can be entered at v . To find the corresponding trip segment and add it to𝑄1, the Enqueue

procedure is called for the first stop event at which 𝑇 can be exited. If v is the 𝑖-th stop

of 𝑅, this is 𝑇 [𝑖 + 1]. Pseudocode for the Enqueue procedure of a stop event 𝑇 [ 𝑗] is shown in

lines 21–26. If 𝑟 (𝑇 ) ≤ 𝑗 , the trip has already been reached from index 𝑗 onwards. Otherwise,

the trip segment𝑇 [ 𝑗, 𝑟 (𝑇 ) − 1] is added to the queue for the next round. Then, for each trip𝑇 ′

of the route 𝑅(𝑇 ) that does not depart before𝑇 , the reached index 𝑟 (𝑇 ′) is set to min(𝑟 (𝑇 ′), 𝑗).
Once the first queue has been filled, TB performs rounds until the current queue is empty.

For round 𝑛, the ScanTrips procedure (lines 9–20 of Algorithm 4.6) scans all trip segments

in𝑄𝑛 and adds newly reached ones to𝑄𝑛+1. A trip segment𝑇 [ 𝑗, 𝑘] is scanned by iterating over
the stop events from𝑇 [ 𝑗] to𝑇 [𝑘]. For each stop event𝑇 [𝑖], this requires two steps: Lines 12–
15 check whether exiting at 𝑇 [𝑖] and taking a final transfer (if necessary) to vt improves the

best journey with at most 𝑛 trips found so far. This is the case if the corresponding arrival

time is smaller than 𝜏min. If so, 𝜏min is updated and a label representing the newly found

journey is added to the result set L. If L already contains a label with 𝑛 trips (note that
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Algorithm 4.6: TB trip collection, scanning and enqueuing procedures.

1 Procedure CollectInitialTrips(𝑄1)

2 S ′ ← {vs}
3 for each 𝑒 = (vs, v) ∈ 𝐸 do S ′ ← S ′ ∪ {v}
4 for each v ∈ S ′ do
5 for each route 𝑅 ∈ R visiting v do
6 𝑖 ← index of v in 𝑅

7 𝑇 ← FindEarliestTrip(𝑅, 𝑖, 𝜏dep + 𝜏tra (vs, v))
8 if 𝑇 ≠ ⊥ then Enqueue(𝑇 [𝑖 + 1], 𝑄1)
9 Procedure ScanTrips(𝑄𝑛, 𝑄𝑛+1)

10 for each 𝑇 [ 𝑗, 𝑘] ∈ 𝑄𝑛 do
11 for 𝑖 from 𝑗 to 𝑘 do
12 if 𝜏arr (𝑇 [𝑖]) ≥ 𝜏min then break
13 if 𝜏arr (𝑇 [𝑖]) + 𝜏tra (v (𝑇 [𝑖]), vt) < 𝜏min then
14 𝜏min ← 𝜏arr (𝑇 [𝑖]) + 𝜏tra (v (𝑇 [𝑖]), vt)
15 L← L ∪ {(𝜏min, 𝑛)}, removing dominated labels

16 for each 𝑇 [ 𝑗, 𝑘] ∈ 𝑄𝑛 do
17 for 𝑖 from 𝑗 to 𝑘 do
18 if 𝜏arr (𝑇 [𝑖]) ≥ 𝜏min then break
19 for each (𝑇 [𝑖],𝑇 ′ [𝑖′]) ∈ 𝐸s do
20 Enqueue(𝑇 ′ [𝑖′ + 1], 𝑄𝑛+1)
21 Procedure Enqueue(𝑇 [ 𝑗], 𝑄)

22 if 𝑟 (𝑇 ) ≤ 𝑗 then return
23 𝑄 ← 𝑄 ∪ {𝑇 [ 𝑗, 𝑟 (𝑇 ) − 1]}
24 for each 𝑇 ′ ⪰ 𝑇 do
25 if 𝑟 (𝑇 ′) ≤ 𝑗 then break
26 𝑟 (𝑇 ′) ← 𝑗

a Pareto set can only contain one such label), this label is replaced. The second step is to

relax the outgoing intermediate transfers of 𝑇 [𝑖], which is done in lines 18–20. For each

transfer (𝑇 [𝑖],𝑇 ′ [𝑖′]) ∈ 𝐸s, the Enqueue procedure is called for 𝑇 ′ [𝑖′ + 1], which adds the

relevant segment of 𝑇 ′ to 𝑄𝑛+1. Target pruning is applied during both trip segment scans (see

lines 12 and 18): if the arrival time of 𝑇 [𝑖] is not earlier than 𝜏min, then the remainder of the

trip segment is skipped since it cannot produce a journey that improves upon 𝜏min.

Note that the trip segments in 𝑄𝑛 are scanned twice: once to evaluate the final transfers

and then again to relax intermediate transfers. This is done with two scans instead of one for

two reasons. First, it improves memory locality because 𝜏tra (·, vt) is only accessed by the first

scan and 𝐸s is only accessed by the second scan. Second, because 𝜏min is improved throughout

the first scan, the target pruning check in line 18 becomes stricter.
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Memory Layout. The TB query algorithm relies on a streamlined memory layout to

achieve its performance. In the network instances used throughout this thesis, all trips have

fewer than 2
8
stops. Accordingly, we use 8 bits to store the reached index of a trip. The FIFO

queues 𝑄𝑛 are combined into a single array whose size is preallocated to the number |E | of
stop events. This ensures that the array does not need to be reallocated during an Enqueue

call. The size of |E | cannot be exceeded because the reached indices ensure that the algorithm
does not enqueue multiple trip segments with the same initial stop event. During each round,

pointers are used to track the position of the first and last element in the current queue.

The intermediate transfers 𝐸s are stored in an array such that all outgoing transfers of

a stop event 𝑇 [𝑖] are consecutive in memory and the outgoing transfers of the next stop

event 𝑇 [𝑖 + 1] follow directly afterward. As a result, the outgoing transfers of a trip segment

form a continuous range. To exploit this, the for-loop in lines 16–20 of Algorithm 4.6 is split

into two parts. The first part evaluates the target pruning condition from line 18 for each trip

segment 𝑇 [ 𝑗, 𝑘]. The result is a (potentially shorter) trip segment 𝑇 [ 𝑗, 𝑘 ′] with 𝑘 ′ ≤ 𝑘 . The

second part relaxes all outgoing transfers of 𝑇 [ 𝑗, 𝑘 ′]. Since these are consecutive in memory,

this can be done with a single for-loop instead of two nested for-loops.

Finally, note that the trip scanning step only needs access to the arrival time 𝜏arr (𝑇 [𝑖]) and
the stop v (𝑇 [𝑖]) of a stop event 𝑇 [𝑖]. Therefore, these values are stored separately from the

departure time 𝜏dep (𝑇 [𝑖]) of the stop event, which improves memory locality.

Journey Retrieval. To retrieve journey descriptions, each trip segment in a queue 𝑄𝑛

stores a pointer to the trip segment in 𝑄𝑛−1 from which it was reached. Because the queues

are combined into a single array, this pointer can be implemented as an index into the array.

Likewise, each target label in L stores a pointer to the last trip segment in the corresponding

journey. The sequence of scanned trip segments can be reconstructed by repeatedly following

these pointers. What remains to be done is to identify for each trip segment the index at

which it is exited to reach the next trip segment (or the target). This is done by rescanning

the segment and searching for a matching outgoing transfer.

Discussion. Unlike RAPTOR, TB does not maintain any arrival times at stops in order

to perform local pruning. This is because the reduction in the search space gained by local

pruning does not outweigh the additional effort of maintaining these data structures. In

RAPTOR, local pruning at a stop v serves two purposes: If v is reached via a route but the

arrival time is not improved, it prevents the unnecessary relaxation of its outgoing transfers.

If it is reached via a transfer without improving the arrival time, then local pruning ensures

that the routes visiting v are not unnecessarily scanned in the next round. In TB, the latter

purpose is already achieved by the reached indices. Besides providing a route-based pruning

rule, they also ensure that no stop event is scanned more than once, which is not the case in

RAPTOR. This only leaves the unnecessary exploration of transfers. However, because most

irrelevant transfers are already pruned in the precomputation step, the potential savings from

this are small.
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Table 4.1: Sizes of the public transit networks and the accompanying transfer graphs. Also

reported is the number of edges in the transitively closed transfer graphs, which are used for

comparisons with unimodal algorithms.

Stuttgart London Switzerland Germany

Stops 13 584 19 682 25 125 243 167

Routes 12 351 1 955 13 786 230 255

Trips 91 304 114 508 350 006 2 381 394

Stop events 1 561 972 4 508 644 4 686 865 48 380 936

Transfer graph vertices 1 166 604 181 642 603 691 6 870 496

Transfer graph edges 3 682 232 575 364 1 853 260 21 367 044

Transitive edges (4.5 km/h) 1 369 928 3 212 206 2 639 402 22 571 280

Transitive edges (15 km/h) 1 558 234 2 374 294 2 432 366 20 057 494

4.3 Experimental Setup
To evaluate the algorithms presented in this thesis, we implemented them in C++17 and

measured their performance on four real-world multimodal networks representing Stuttgart,

London, Switzerland, and Germany. This section gives an overview of the network sources,

how the networks were prepared and how the experiments were conducted.

Network Sources. An overview of the four networks is given in Table 4.1. The Stuttgart

instance was originally built as part of a macroscopic traffic model [SHP11]; it was previously

used to study travel demand modeling [MKV13] and traffic assignment [Bri+17]. Although

it has not been used to evaluate journey planning algorithms so far, we include it because

it was used in the evaluation of an ULTRA-based traffic assignment algorithm [SWZ19a].

The network contains local transport in the Stuttgart metropolitan area as well as long-

distance trains within the greater Stuttgart region, which comprises most of the state of

Baden-Württemberg. It covers the schedule of two successive identical business days; the

second day is included in order to capture overnight journeys.

The other three networks have all been previously used to evaluate journey planning

algorithms; see Table 4.2 for an overview. The public transit timetable of Greater London was

obtained from Transport for London
1
. Unlike the other networks, which encompass two days,

the London network only covers a single Tuesday in the periodic summer schedule of 2011.

We decided not to add a second day to allow for easier comparisons with experiments in other

publications. The Switzerland network was extracted from a publicly available GTFS (General

Transit Feed Specification) feed
2
and comprises two successive business days (30th and 31st

1https://data.london.gov.uk
2http://gtfs.geops.ch/

https://data.london.gov.uk
http://gtfs.geops.ch/
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Table 4.2: List of algorithms that were previously evaluated on our benchmark networks.

Additionally, the Switzerland and Germany networks were used for the unrestricted walking

experiments by Wagner and Zündorf [WZ17]. Note that the methods of network preparation

differ slightly between publications, so the reported network sizes are not always identical.

London Switzerland Germany

Time-dependent Dijkstra [DPW15a, DPSW18] – [DPSW18]

Time-expanded Dijkstra [Bas+16, DPSW18] – [DPSW18]

Connection Scan Algorithm [DPSW18] – [DPSW18]

RAPTOR [DPW15a, DPSW18] [DDPZ17] [DPSW18]

McRAPTOR [DPW15a] – –

Trip-Based Routing [Wit15] – [Wit15]

Connection Scan Accelerated [DPSW18] – [DPSW18]

HypRAPTOR – [DDPZ17] –

TB-CST [Wit16] [Wit16] [Wit16]

Transfer Patterns – [Bas+10] [BS14]

Scalable Transfer Patterns – – [BHS16]

Public Transit Labeling [DDPW15] [DDPW15] –

MCR [Del+13] – –

HL-RAPTOR/HL-CSA [PV19] [PV19] –

of May, 2017). Finally, the Germany network was kindly provided to us by Deutsche Bahn for

research purposes. It is based on data from bahn.de for Winter 2011/2012, comprising two

successive identical days. To ensure comparability with experiments on the same network in

other works, both days include all trips that are listed in the timetable, regardless of their actual

days of operation. Note that some older publications (e.g., [BDGM09, DPW15a]) use much

smaller Germany instances that only include trains or even only long-distance trains; our

network covers most public transit in Germany, including regional trains and local transport.

Unrestricted transfer graphs for all four networks were obtained by extracting road graphs,

including pedestrian zones and staircases, from OpenStreetMap (OSM)
3
. To aid reproducibility,

we make the London and Switzerland networks publicly available
4
. Unfortunately, we cannot

provide the Germany and Stuttgart networks as they are based on proprietary data.

The combined multimodal networks are depicted in Figure 4.2. Our selection of networks

intentionally covers a range of different sizes and structural features. We note that the

complexity of a network does not depend only on its geographical size; other important

factors include service frequency and how the density of the public transit network compares

to that of the road network. For example, the London network represents a dense metropolitan

3https://download.geofabrik.de/
4https://i11www.iti.kit.edu/PublicTransitData/ULTRA/

bahn.de
https://download.geofabrik.de/
https://i11www.iti.kit.edu/PublicTransitData/ULTRA/
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(a) Stuttgart (b) Germany

(c) Switzerland (d) London

Figure 4.2: The four networks used in our experiments. Relative sizes of the networks are

not to scale. Road networks are depicted in gray, public transit routes in blue.
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area with a high service frequency. The Stuttgart network has a smaller metropolitan area

in its center but also covers much of the state of Baden-Württemberg, including many rural

areas. Furthermore, because the network does not cover local transport outside of the center,

many regions are only reachable via the transfer graph. This makes the network a useful

example of scenarios in which public transit availability is limited. The Germany network is

by far the largest of the four and contains a mixture of densely and sparsely populated areas.

Finally, the Switzerland network represents a mid-sized country that is very inhomogeneous,

with densely connected areas in the north and very remote Alpine regions in the south.

Network Preparation. To turn the input data into usable multimodal networks, we

mostly follow the procedure outlined by Wagner and Zündorf [WZ17]. Minimum change

times for each stop are supplied in the input data. We interpret these as departure buffer

times by reducing the departure times of the associated stop events, as outlined in Chapter 2.

Because the groupings of the trips into routes are not part of the input data, we compute them

ourselves with a greedy approach that iterates across the set T of trips: For each trip 𝑇 , we

check if a route 𝑅 with the same stop sequence as 𝑇 has already been generated such that 𝑇

does not overtake any trips in 𝑅 and is not overtaken by any of them itself. If so, we add 𝑇

to 𝑅. Otherwise, we generate a new route for 𝑇 . Note that this approach does not generate a

minimal number of routes for all possible inputs. A minimal set of routes can be found in

polynomial time [Ste23]. However, because few trips actually overtake each other in practice,

the greedy approach produces optimal results on all four benchmark networks.

To represent different transfer modes, we use the same transfer graph but vary the travel

speed. For the sake of simplicity, we assume that every transfer mode is able to traverse all

edges. While this assumption is not realistic (e.g., cars may not enter pedestrian zones), it is

sufficient for our primary objective, which is to test the limits of the shortcut hypothesis. If

usage of a mode is restricted to certain areas, this tends to decrease the number of intermediate

transfers in which it can be used and thereby the number of required shortcuts. The OSM

input data specifies the geographical distance and speed limit associated with each edge. From

these, we calculate the travel time by assuming a constant speed along all edges, which is only

reduced to obey the speed limit (unless otherwise noted). For roads without a speed limit,

we assume a maximum speed of 140 km/h. In most experiments, we assume that the transfer

mode represents walking, for which we use a speed of 4.5 km/h. For bicycles or e-scooters,

we use a speed of 15 km/h.

We use the following procedure to connect the public transit network with the OSM transfer

graph. For each stop v ∈ S , we locate its (geographically) nearest neighbor 𝑤 ∈ 𝑉 in the

transfer graph. If v and 𝑤 are less than five meters apart and v is also the nearest neighbor
of 𝑤, we identify v with 𝑤. Otherwise, we add a new vertex for v . Additionally, if the two
vertices are less than 100 meters apart, we insert edges (v, 𝑤) and (𝑤, v) to connect them.

Note that the input data for the public transit networks already contains some transfer edges

between stops, which we retain. These mostly represent footpaths between stops that model

different platforms of the same station or are otherwise very close to each other.
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After the two networks have been connected, we contract all vertices with degrees one

and two except for those that coincide with stops. These vertices are mainly included for

visualization purposes. For routing purposes, they are superfluous, except as source and target

locations of queries. Removing them is a common practice for graphs sourced from OSM.

This allows for a more accurate comparison to graphs obtained from other sources, which

often include fewer of these vertices [DSW15]. Note that in order to obtain accurate travel

times, they must be computed before this contraction step. Finally, we remove remote and

isolated parts of the network by applying a bounding box and removing everything except

the largest connected component.

One-Hop Transfers. To evaluate whether our algorithms achieve the goal of closing the

multimodal performance gap, we benchmark them against existing public transit algorithms,

which require one-hop transfers. A perfect comparison is not possible because the two

problem settings are different. Most obviously, a multimodal network allows for queries

between a larger selection of source and target locations. However, even if the source and

target vertices are limited to stops, the number of possible transfers between stops impacts

both the query performance and the result size. If more transfers are included, the search

space and therefore the query time increases, but so does the number of Pareto-optimal

journeys. In order to make the comparison as fair as possible, we evaluate the public transit

algorithms on one-hop transfer graphs that are as large as possible without sacrificing too

much query speed. We follow the methodology of Wagner and Zündorf [WZ17], which is to

insert edges between all stops whose distance in the unrestricted transfer graph lies below a

certain threshold and then compute the transitive closure. The threshold is chosen so that

the resulting graph has an average vertex degree of approximately 100. This represents a

good tradeoff between preserving as many transfers as possible and keeping query times

reasonable. For walking, this yields limits of 9 minutes for Stuttgart and Switzerland, 8 minutes

for Germany, and 4 minutes for London. For bicycles and scooters, the limits are much lower

at 180 s for Stuttgart and Switzerland, 150 s for Germany, and 80 s for London. This is hardly

enough to allow for realistic usage of these faster transfer modes. The numbers of edges in

the resulting transitively closed graphs are listed in Table 4.1.

PerformanceMeasurements. All algorithms were implemented in C++17 and compiled

with GCC, using the optimization flag -O3. Parallelization was done with OpenMP. The

source code for all algorithms is publicly available at https://github.com/kit-algo/ULTRA.

Experiments were performed on the following machines:

Xeon: Amachine with two 8-core Intel Xeon Skylake SP Gold 6144 CPUs clocked at 3.50 GHz,

with a boost frequency of 4.2 GHz, 192GiB of DDR4-2666 RAM, and 24.75MiB of L3

cache.

Epyc: A machine with two 64-core AMD Epyc Rome 7742 CPUs clocked at 2.25 GHz, with a

boost frequency of 3.4 GHz, 1024GiB of DDR4-3200 RAM, and 256MiB of L3 cache.

https://github.com/kit-algo/ULTRA
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Generally, experiments that benefit from heavy parallelization were run on the Epyc

machine, whereas the Xeon machine was used for experiments that focus on single-core per-

formance (including all queries) and those that only require light parallelization. Throughout

this thesis, we indicate the machine used for each experiment.

Unless otherwise noted, we measure the performance of our algorithms on randomly

generated queries. For these, we choose the source and target vertices uniformly at random,

and the departure time uniformly at random within the first day covered by the timetable.

Note that the resulting queries do not match realistic usage patterns: they are skewed towards

sparsely populated areas and off-peak hours. This is a deliberate choice. One of the advantages

ofmultimodal transportation systems is that they can serve rare travel requestsmore efficiently

than any single mode can on its own. However, because today’s transportation systems still

have limited multimodal capabilities, current usage patterns mostly reflect unimodal transport.

Queries for which multimodal transport would be useful are often those that are cumbersome

to complete with public transit alone because they fall into areas or times of day for which

service is low. Currently, passengers often use their private car for these. Therefore, queries

based on real public transit usage patterns tend to be those that benefit the least from the

presence of an unrestricted transfer mode. By contrast, uniformly random queries are more

challenging to answer and require combinations of different modes more frequently.
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5

ULTRA: UnLimited TRAnsfers for Ef-
ficientMultimodal Journey Planning

In order to study the shortcut hypothesis and exploit it algorithmically, we start with the

simplest problem setting that can still be considered multimodal. In addition to public transit,

we allow for one unrestricted transfer mode, which may represent any road-based mode of

transport (e.g., walking, e-scooter, car). The objective is to answer one-to-one queries, either

minimizing the arrival time or Pareto-optimizing the arrival time and the number of trips.

Our main baseline algorithm for this scenario is MR, the two-criteria variant of MCR. As

the experiments in Section 5.3 will show, MR is about two to three times slower on most

networks than RAPTOR with the one-hop transfer graphs constructed in Chapter 4.3. The

slowdown is due to the Core-CH search that is used to explore the transfer graph. In turn,

RAPTOR is slower by another factor of two to four than TB, of which no multimodal variant

currently exists. The goal of this chapter is to obtain a multimodal algorithm that matches

the performance of TB on public transit networks.

Previous Approaches. Two different methods for replacing the Core-CH search of MR

have been proposed in the literature: the HL-based approach by Phan and Viennot [PV19]

and the shortcut-based one by Sauer [Sau18]. The method by Phan and Viennot runs the HL

preprocessing step on the transfer graph and uses its output to perform two-hop searches.

For each vertex, HL computes a set of outgoing and incoming hub vertices. These must fulfill

the cover property: for each pair vs, vt of vertices, there is a vertex v that lies on a shortest vs-
vt-path such that v is an outgoing hub of vs and an incoming hub of vt. The approach by Phan

and Viennot partially inverts the vertex-hub relation: each stop stores edges to its outgoing

hubs, and each hub stores edges to the stops for which it is an incoming hub. This allows

intermediate transfers to be explored with two hops: For each reached stop, relax the edges

to the outgoing hubs. Then, for each reached hub, relax the edges to the outgoing stops.
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The authors combine their approach with CSA and RAPTOR, yielding the multimodal

variants HL-CSA and HL-RAPTOR. They report preprocessing times between one and two

hours for computing the hubs. For HL-RAPTOR in the two-criteria setting, they report a

speedup of 1.7 over MR. However, this figure is based on a comparison to the MR query times

reported by Delling et al. [Del+13], which were measured on an older machine and likely

for a different set of queries. HL-CSA is the only multimodal variant of CSA proposed so far.

However, the reported experiments indicate that it is only barely faster than HL-RAPTOR on

most networks and slower on London.

The shortcut hypothesis suggests another way to replace the Core-CH search of MR: If

the set of intermediate transfers that occur in Pareto-optimal journeys is small and a set of

shortcuts representing them can be precomputed efficiently, then intermediate transfers can

be explored simply by relaxing the outgoing shortcuts of each reached stop. Initial and final

transfers can then be handled with an existing one-to-many algorithm.

Sauer proposes a prototypical speedup technique for RAPTOR that exploits this observation.

The shortcuts are computed by running a one-to-all profile search from each stop. This is done

with a multimodal variant of rRAPTOR that replaces the RAPTOR search in each run with MR.

A crucial aspect that allows the algorithm to achieve practical performance is that each MR

search is stopped after the first two rounds. This is based on the observation that it is always

possible to construct a Pareto-optimal journey with more than two trips by concatenating

Pareto-optimal journeys with exactly two trips. However, the correctness of this approach is

not proven by Sauer. In fact, we will see in Section 5.1 that it is possible to construct examples

in which it fails to find required shortcuts, although these rarely occur in real-world networks.

After each run, all Pareto-optimal journeys with empty initial and final transfers are unpacked

and shortcuts are generated for their intermediate transfers. To decrease the preprocessing

time at the expense of computing superfluous shortcuts, Sauer proposes to prune the search

once the initial transfer exceeds a specified length.

The query algorithm is identical to MR with one exception: instead of running Dijkstra’s

algorithm on the core graph to explore intermediate transfers, it relaxes the outgoing shortcuts

of all marked stops. Sauer conducts an experimental study of this approach on the Switzerland

network, using walking as the transfer mode. The number of shortcuts is manageable at

around two million. The highest achieved speedup over MR is 1.8, which approximately

matches the performance of RAPTOR on the transitively closed transfer graph. The exact

shortcut precomputation takes over three hours when parallelized with 16 cores. This can be

reduced to 50 minutes by pruning the initial transfers, but this vastly increases the number of

shortcuts, reducing the speedup to 1.2.

Chapter Outline. We revisit the idea of a shortcut-based speedup technique but re-

engineer it from the ground up. We name the resulting technique ULTRA (UnLimited TRAns-

fers). In Section 5.1, we describe the ULTRA shortcut computation algorithm and prove

that the computed set of shortcuts is sufficient for answering all possible queries correctly.

Section 5.2 explains how the ULTRA shortcuts can be integrated into any query algorithm that
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requires one-hop transfers. To explore the initial and final transfers, we replace Core-CH with

a more efficient one-to-many algorithm, Bucket-CH. In order to integrate ULTRA with TB, we

show that only minor changes are necessary to make ULTRA compute shortcuts between stop

events instead of stops. This allows ULTRA to replace the TB preprocessing phase, resulting

in the first multimodal variant of TB. We demonstrate that this significantly reduces the

number of required shortcuts and the query time compared with a naive approach, i.e., using

the output of ULTRA as input for the TB preprocessing. We also present modifications to the

TB query algorithm to make it more efficient in a multimodal setting.

We evaluate the performance of our preprocessing and query algorithms on the four

benchmark networks in Section 5.3. Compared to the prototypical algorithm by Sauer, ULTRA

reduces both the preprocessing time and the number of shortcuts by more than an order of

magnitude. We evaluate the combination of ULTRA with RAPTOR, CSA and TB. The resulting

multimodal algorithms have roughly the same query performance as the original restricted

algorithms, regardless of the speed of the considered transfer mode. The fastest algorithm,

ULTRA-TB, outperforms MR, which was previously the fastest multimodal algorithm, by

about an order of magnitude. This yields query times of a few milliseconds on metropolitan

networks and less than 100ms on the much larger network of Germany. Finally, we summarize

our results in Section 5.4.

5.1 Shortcut Computation
The ULTRA preprocessing phase computes a set 𝐸s of shortcut edges that represent inter-

mediate transfers between trips. These shortcuts must be sufficient for answering every

point-to-point query correctly. This is achieved if every query can be answered with a Pareto

set of journeys in which all intermediate transfers are represented by shortcuts. On the other

hand, the number of shortcuts should be as small as possible to allow for fast queries.

We present two variants of the ULTRA preprocessing, which differ in the granularity of the

computed shortcuts: In the stop-to-stop variant, the shortcuts 𝐸s ⊆ S×S connect pairs of stops.

This yields a one-hop transfer graph, which is sufficient for most public transit algorithms,

including RAPTOR and CSA. By contrast, TB requires shortcuts 𝐸s ⊆ E × E between stop

events, which are computed by the event-to-event variant of ULTRA. Both variants are identical
except for a few crucial details, which are discussed explicitly as appropriate.

ULTRA works by enumerating a set of journeys J c
with exactly two trips such that all

required shortcuts occur as intermediate transfers in J c
. For each enumerated journey, the

intermediate transfer is unpacked and a shortcut is generated for it. Before we describe

the algorithm, Section 5.1.1 establishes a definition for J c
that is sufficient for answering

all queries while keeping the number of shortcuts as low as possible. We then provide a

high-level overview of the ULTRA shortcut computation and prove that it enumerates J c

in Section 5.1.2. Afterward, Section 5.1.3 discusses running time optimizations to make the

algorithm efficient in practice. Finally, Section 5.1.4 compares event-to-event ULTRA to the

TB transfer generation phase and explains why it discards more unnecessary transfers.
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5.1.1 Enumerating a Sufficient Set of Journeys
Consider the subproblem in which only queries between fixed source and target vertices vs, vt
must be answered. Then the following naive algorithm computes a sufficient set of shortcuts:

enumerate the set J opt
of all vs-vt-journeys 𝐽 that are Pareto-optimal for the departure

time 𝜏dep (𝐽 ) and generate a shortcut for every intermediate transfer that occurs in J opt
. This

produces more shortcuts than necessary: if there are multiple Pareto-optimal journeys that

are equivalent in both criteria, only one of them is required to answer a query. The goal is

therefore to find a set J canon ⊆ J opt
of journeys that excludes such duplicates but is still

sufficient for answering all queries correctly. We observe that every journey in J canon
with

more than two trips can be decomposed into subjourneys with two trips each. Every shortcut

that occurs in J canon
also occurs in the much smaller set containing only these subjourneys.

To exploit this algorithmically, wewant to defineJ canon
such that it is closed under subjourney

decomposition, i.e., every subjourney of a journey in J canon
is itself contained in J canon

.

Tiebreaking Sequences. To achieve closure under subjourney decomposition, we define

a consistent set of rules for breaking ties between equivalent journeys. These are modeled

after the rules employed by MR, with additional ones for cases in which the choice made by

MR is not clearly defined. For this purpose, we define total orderings on the sets of routes and

vertices with a route index function idR : R→ N and a vertex index function id𝑉 : 𝑉 → N.

Then ties between equivalent journeys are broken as follows (see Figure 5.1 for examples):

Journeys that end with trip segments are preferred over journeys that end with (non-empty)

transfers. For journeys that end with a trip segment 𝑇 [𝑖, 𝑗], the index of the route 𝑅(𝑇 ) and
the index 𝑖 at which the trip segment starts are used as tiebreakers in this order. For journeys

that end with an edge (𝑤, v), ties are broken by first considering the arrival time at 𝑤 and

then the vertex index id𝑉 (𝑤). If two journeys share a non-empty suffix, it is ignored and

the respective prefixes of the journeys are compared instead. To formalize these rules, we

assign a unique tiebreaking sequence to each non-empty journey. For a journey 𝐽 with vertex

sequence 𝑉 (𝐽 ) = ⟨vs = v1, . . . , v𝑘 = vt⟩ and 𝑘 > 1, the route tiebreaking sequence is given by

𝑋r (𝐽 ) :=
{
⟨idR (𝑅(𝑇 )), 𝑖 ⟩ if 𝐽 ends with a trip segment 𝑇 [𝑖, 𝑗],
⟨∞ ,∞⟩ if 𝐽 ends with an edge (v𝑘−1, v𝑘 ),

and the edge tiebreaking sequence by

𝑋e (𝐽 ) :=
{
⟨∞ ,∞ ⟩ if 𝐽 ends with a trip segment 𝑇 [𝑖, 𝑗],
⟨𝜏arr (𝐽 [vs, v𝑘−1]), id𝑉 (v𝑘−1)⟩ if 𝐽 ends with an edge (v𝑘−1, v𝑘 ).

These are combined into the local tiebreaking sequence

𝑋ℓ (𝐽 ) := ⟨𝜏arr (𝐽 )⟩ ◦ 𝑋r (𝐽 ) ◦ 𝑋e (𝐽 ) .

The overall tiebreaking sequence is the concatenation of the local sequences in reverse order:

𝑋 (𝐽 ) := 𝑋ℓ (𝐽 [vs, v𝑘 ]) ◦ · · · ◦ 𝑋ℓ (𝐽 [vs, v2]).
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(f) Final transfer; same parent arrival times.

Figure 5.1:An illustration of the choices between journeys that are enforced by the tiebreaking
sequences. Shared suffixes are disregarded for the comparison. In each example, the upper

journey is preferred over the lower journey. In Subfigure a, this is due to a lower arrival time.

In all other examples, the arrival times are equal. Journeys with an empty final transfer are

preferred (b). If both journeys have an empty final transfer (c), the one with the lower route

ID according to idR is preferred. If they use the same final trip (d), the one that enters it

earlier is preferred. In Subfigures e and f, both journeys have a non-empty final transfer and

vertices are labeled with their ID according to id𝑉 . If the arrival times at the parent vertex

differ (e), the one with the lower arrival time is preferred. Otherwise (f), the one with the

lower parent vertex ID is preferred.

This sequence is unique among all vs-vt-journeys. In particular, if two journeys 𝐽 and 𝐽 ′

end with trip segments 𝑇𝑎 [𝑖, 𝑗] ≠ 𝑇𝑏 [𝑚,𝑛], then their tiebreaking sequences are different.

If 𝜏arr (𝐽 ) = 𝜏arr (𝐽 ′) and 𝑅(𝑇𝑎) = 𝑅(𝑇𝑏), then 𝑇𝑎 = 𝑇𝑏 and 𝑗 = 𝑛 must hold because the trips

cannot overtake each other. Then it follows that 𝑖 ≠ 𝑚 and the tiebreaking sequences are

different. Sequences are ordered lexicographically: for sequences 𝐴 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑘⟩ and 𝐵 =

⟨𝑏1, 𝑏2, . . . , 𝑏𝑘⟩ of equal length, 𝐴 < 𝐵 if 𝑎1 < 𝑏1, or 𝑎1 = 𝑏1 and ⟨𝑎2, . . . , 𝑎𝑘⟩ < ⟨𝑏2, . . . , 𝑏𝑘⟩.
For sequences of different lengths, the shorter one is padded with −∞ on the right side before

they are compared.
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Canonical Journeys. Because tiebreaking sequences are strictly ordered, ambiguities

between equivalent journeys can be resolved by replacing the criterion arrival time with

the tiebreaking sequence. We say that an vs-vt-journey 𝐽 canonically dominates another
vs-vt-journey 𝐽 ′ if𝑋 (𝐽 ) < 𝑋 (𝐽 ′) and |𝐽 | ≤ |𝐽 ′ |. Because the two tiebreaking sequences cannot
be equal, there is no need to distinguish between strong and weak canonical dominance.

A vs-vt-journey 𝐽 is called canonical if it is Pareto-optimal with respect to tiebreaking sequence

and number of trips for the departure time 𝜏dep (𝐽 ), i.e., if no other vs-vt-journey exists that is

feasible for 𝜏dep (𝐽 ) and canonically dominates 𝐽 . Because no two journeys can be equivalent in

both criteria, the set that consists of all feasible canonical journeys for a given query is the only

Pareto set. We call this the canonical Pareto set. The set J canon
is the union of the canonical

Pareto sets for all possible vs-vt-queries. It is closed under subjourney decomposition:

Lemma 5.1. For every canonical vs-vt-journey 𝐽 and every pair v, 𝑤 ∈ 𝑉 (𝐽 ) of vertices visited
by 𝐽 , the subjourney 𝐽 [v, 𝑤] is canonical.
Proof. Assume that 𝐽 [v, 𝑤] is not canonical. Then there is another journey 𝐽 ′ [v, 𝑤] that is
feasible for 𝜏dep (𝐽 [v, 𝑤]) and for which 𝑋 (𝐽 ′ [v, 𝑤]) < 𝑋 (𝐽 [v, 𝑤]) and |𝐽 ′ [v, 𝑤] | ≤ |𝐽 [v, 𝑤] |
hold. Because 𝐽 ′ [v, 𝑤] does not depart earlier or arrive later than 𝐽 [v, 𝑤], replacing 𝐽 [v, 𝑤]
with 𝐽 ′ [v, 𝑤] in 𝐽 yields a feasible journey 𝐽 ′ with |𝐽 ′ | ≤ |𝐽 |. Adding the prefix 𝐽 [vs, v]
to 𝐽 ′ [v, 𝑤] and 𝐽 [v, 𝑤] adds identical suffixes to both tiebreaking sequences. This does not

change their relative order, so𝑋 (𝐽 ′ [vs, 𝑤]) < 𝑋 (𝐽 [vs, 𝑤]). Similarly, adding the suffix 𝐽 [𝑤, vt]
to 𝐽 ′ [vs, 𝑤] and 𝐽 [vs, 𝑤] adds identical prefixes to both tiebreaking sequences, which does

not change their relative order. Therefore, 𝑋 (𝐽 ′) < 𝑋 (𝐽 ) and 𝐽 is not canonical. □

Candidate Journeys. We exploit the fact that J canon
is closed under subjourney decom-

position by defining a suitable set of subjourneys that need to be enumerated. A candidate is
a journey that consists of two trips connected by an intermediate transfer but with empty

initial and final transfers. For a canonical journey 𝐽 that uses at least two trips, consider

the set of subjourneys of 𝐽 that are candidates. Every intermediate transfer of 𝐽 appears

in exactly one candidate subjourney. Furthermore, by Lemma 5.1, these subjourneys are

themselves canonical. Accordingly, every shortcut that occurs in J canon
also occurs in the

set J c ⊆ J canon
of canonical candidate journeys. A sufficient set of shortcuts can therefore

be computed by enumerating J c
.

Canonical MR. Canonical Pareto sets can be computed by making slight modifications

to MR in order to ensure proper tiebreaking: First, at the start of each round, the collected

routes are sorted according to idR before they are scanned. The second change concerns the

keys of vertices in the priority queue of Dijkstra’s algorithm. In standard MR, the key of a

vertex v in round 𝑛 is the tentative arrival time 𝜏arr (v, 𝑛) at v with 𝑛 trips. This is now replaced

with ⟨𝜏arr (v, 𝑛), id𝑉 (v)⟩. The resulting implementation of MR, which we call canonical MR,
finds equivalent journeys in increasing order of tiebreaking sequence. Hence, canonical

journeys are found first and all other equivalent journeys are discarded because they are

weakly dominated by them. This is proven by the following lemma.
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Lemma 5.2. Canonical MR returns the canonical Pareto set for every query.

Proof. It follows from the correctness of MR that canonical MR returns a valid Pareto set.

We show that this is the canonical Pareto set. Consider a query with source and target

vertices vs, vt ∈ 𝑉 and departure time 𝜏dep. Let 𝐽 be a journey in the canonical Pareto set for

this query and 𝐽 ′ another journey that is feasible for 𝜏dep, with 𝜏arr (𝐽 ) = 𝜏arr (𝐽 ′), |𝐽 | = |𝐽 ′ |
and 𝑋 (𝐽 ) < 𝑋 (𝐽 ′). Let v be the vertex at which the longest shared suffix of 𝐽 and 𝐽 ′ starts.
We show that canonical MR discards the corresponding prefix 𝐽 ′ [vs, v] in favor of 𝐽 [vs, v].

Because 𝐽 [vs, v] does not share a suffix with 𝐽 ′ [vs, v], its local tiebreaking sequence must

be smaller, i.e.,

⟨𝜏arr (𝐽 [vs, v])⟩ ◦ 𝑋r (𝐽 [vs, v]) ◦ 𝑋e (𝐽 [vs, v]) < ⟨𝜏arr (𝐽 ′ [vs, v])⟩ ◦ 𝑋r (𝐽 ′ [vs, v]) ◦ 𝑋e (𝐽 ′ [vs, v]) .

If 𝜏arr (𝐽 [vs, v]) < 𝜏arr (𝐽 ′ [vs, v]), then it follows from the correctness of MR that canonical

MR discards 𝐽 ′ [vs, v] in favor of 𝐽 [vs, v]. Assume therefore that 𝜏arr (𝐽 [vs, v]) = 𝜏arr (𝐽 ′ [vs, v]).
Then the comparison depends on whether the journeys end with a trip segment or an edge:

Case 1a: 𝐽 [vs, v] ends with a trip segment𝑇𝑎 [𝑖, 𝑗] and 𝐽 ′ [vs, v] ends with an edge. Then the

route scanning phase of round |𝐽 [vs, v] | finds 𝐽 [vs, v], and 𝐽 ′ [vs, v] is discarded
when it is found in the subsequent transfer relaxation phase.

Case 1b: 𝐽 [vs, v] ends with a trip segment 𝑇𝑎 [𝑖, 𝑗] and 𝐽 ′ [vs, v] ends with a different trip

segment 𝑇𝑏 [𝑚,𝑛]. Then 𝑋r (𝐽 [vs, v]) < 𝑋r (𝐽 ′ [vs, v]), which is equivalent to

⟨idR (𝑅(𝑇𝑎)), 𝑖⟩ < ⟨idR (𝑅(𝑇𝑏)),𝑚⟩.

If 𝑅(𝑇𝑎) ≠ 𝑅(𝑇𝑏), it follows that idR (𝑅(𝑇𝑎)) < idR (𝑅(𝑇𝑏)). Then the route scan-

ning phase of round |𝐽 [vs, v] | scans 𝑅(𝑇𝑎) before 𝑅(𝑇𝑏), finds 𝐽 [vs, v] first and
discards 𝐽 ′ [vs, v]. If both journeys use the same route, then it follows from the

fact that their arrival times are equal that 𝑇𝑎 = 𝑇𝑏 , 𝑗 = 𝑛 and 𝑖 < 𝑚. Then the

scan of route 𝑅(𝑇𝑎) finds 𝐽 [vs, v] when it enters at the 𝑖-th stop of 𝑅(𝑇𝑎) and
discards 𝐽 ′ [vs, v] because it does not improve the active trip at the𝑚-th stop.

Case 2: 𝐽 [vs, v] ends with an edge (𝑤, v). Then 𝑋r (𝐽 [vs, v]) = ⟨∞,∞⟩, so 𝐽 ′ [vs, v] must

also end with an edge (𝑥, v). Because the local tiebreaking sequence of 𝐽 [vs, v] is
smaller and its first two components are identical, the edge tiebreaking sequence

must be smaller as well, i.e.,

⟨𝜏arr (𝐽 [vs, 𝑤]), id𝑉 (𝑤)⟩ < ⟨𝜏arr (𝐽 ′ [vs, 𝑥]), id𝑉 (𝑥)⟩.

These are the keys of 𝑤 and 𝑥 in the priority queue when they are extracted during

the Dijkstra search in round |𝐽 [vs, v] |. Thus, the search extracts 𝑤 before 𝑥 , the

edge (𝑤, v) is relaxed before (𝑥, v), 𝐽 [vs, v] is found first and 𝐽 ′ [vs, v] discarded.
In all cases, canonical MR discards 𝐽 ′ [vs, v] and therefore also 𝐽 ′. Because this is the case for
every journey 𝐽 ′ that is equivalent to 𝐽 but has a higher tiebreaking sequence, it follows that

canonical MR finds the canonical journey 𝐽 . □
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Figure 5.2: An example network in which the set of journeys computed by MR

is not closed under subjourney decomposition. There are two equivalent Pareto-

optimal vs-vt-journeys: 𝐽 =
〈
⟨vs⟩,𝑇𝑏 [0, 1], ⟨𝑎, 𝑏⟩,𝑇𝑔 [0, 1], ⟨𝑐, 𝑑⟩,𝑇𝑦 [0, 1], ⟨vt⟩

〉
and 𝐽 ′ =〈

⟨vs⟩,𝑇𝑏 [0, 1], ⟨𝑎, 𝑏⟩,𝑇𝑟1 [1, 2], ⟨𝑐, 𝑑⟩,𝑇𝑦 [0, 1], ⟨vt⟩
〉
. Let 𝑅𝑔 denote the route of 𝑇𝑔 and 𝑅𝑟 the

route of𝑇𝑟1 and𝑇𝑟2. Assume that idR (𝑅𝑔) < idR (𝑅𝑟 ). Then an MR query from 𝑏 for the depar-

ture time 3 scans 𝑅𝑔 first and consequently finds 𝐽 [𝑏, vt] =
〈
⟨𝑏⟩,𝑇𝑔 [0, 1], ⟨𝑐, 𝑑⟩,𝑇𝑦 [0, 1], ⟨vt⟩

〉
.

However, a query from vs reaches 𝑥 and collects 𝑅𝑟 there before it reaches 𝑏 and collects 𝑅𝑔.

Note that

〈
⟨vs⟩,𝑇𝑏 [0, 1], ⟨𝑎, 𝑥⟩,𝑇𝑟1 [0, 2], ⟨𝑐, 𝑑⟩,𝑇𝑦 [0, 1], ⟨vt⟩

〉
is not a valid journey because 𝑅𝑟

departs too early at 𝑥 to be entered. However, 𝑅𝑟 is still collected at 𝑥 because there is a

later trip departing at 5, which can be entered. Thus, a query from vs scans 𝑅𝑟 before 𝑅𝑔 and
therefore finds 𝐽 ′ and its subjourney 𝐽 ′ [vs, 𝑐] =

〈
⟨vs⟩,𝑇𝑏 [0, 1], ⟨𝑎, 𝑏⟩,𝑇𝑟1 [1, 2], ⟨𝑐⟩

〉
. Overall,

the set of journeys output by MR includes 𝐽 ′ and 𝐽 [𝑏, vt], but not 𝐽 and 𝐽 ′ [𝑏, vt], so it is not

closed under subjourney decomposition.

Issues with Non-Canonical MR. Note that the journeys returned by a straightforward

(non-canonical) implementation of MR are not closed under subjourney decomposition. This

is because the order in which two equivalent journeys are explored by MR can flip if the

same prefix is added to both journeys. An example of this is shown in Figure 5.2. The two

vs-vt-journeys 𝐽 and 𝐽 ′ are equivalent and differ only in the route that is used for the second

trip. The order in which the journeys are found depends on the order in which these routes

are scanned. At the start of each round, RAPTOR iterates over all stops that were marked in

the previous round and collects all routes that visit them. The order in which these routes

are then scanned is not specified in the original description of RAPTOR [DPW15a], but it is

natural to scan them in the order in which they were collected. Routes visiting the same stop

are collected in the order defined by idR. However, if multiple stops were updated, the order

in which the routes are collected and scanned depends on the order in which the stops were

reached in the previous round.

In Figure 5.2, if the search is started from vs, the stop 𝑥 is reached before 𝑏. Therefore, the

route 𝑅𝑟 is collected before the route 𝑅𝑔, which does not visit 𝑥 , and 𝐽 ′ is explored before 𝐽 .

However, if the shared prefix 𝐽 [vs, 𝑏] is omitted and the search is started at 𝑏, then 𝑅𝑔 is

preferred and 𝐽 [𝑏, vt] is found. Thus, if the ULTRA preprocessing used non-canonical MR, it
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would generate event-to-event shortcuts for the intermediate transfers of 𝐽 ′ [vs, 𝑐] and 𝐽 [𝑏, vt],
but not for those of 𝐽 [vs, 𝑐] and 𝐽 ′ [𝑏, vt]. As a result, neither 𝐽 nor 𝐽 ′ could be reconstructed

from these shortcuts.

5.1.2 Algorithm Overview

We now describe how J c
can be enumerated efficiently. Directly applying the definition

of J c
yields a simple but wasteful approach: For every possible source stop and every

possible departure time, a one-to-all canonical MR search restricted to the first two rounds is

performed. A candidate 𝐽 c is canonical if there is no feasible journey 𝐽w with at most two trips

that canonically dominates 𝐽 c (and is therefore found before 𝐽 c by the respective canonical

MR search). If such a journey 𝐽w exists, we call it a witness because its existence proves

that 𝐽 c is not canonical. Unlike candidates, witnesses may have non-empty initial or final

transfers, and they may use fewer than two trips. If there is no witness for a candidate 𝐽 c, the

corresponding canonical MR search will include 𝐽 c in its Pareto set. A shortcut representing

the intermediate transfer of 𝐽 c is then generated.

Adapting rRAPTOR. The reason this approach is wasteful is that it does not exploit the

self-pruning property of rRAPTOR: if journeys with later departure times are explored first,

they can be used to dominate worse journeys with an earlier departure time. We therefore

adapt rRAPTOR to the ULTRA setting: the RAPTOR search that is performed in each run is

replaced with a canonical two-round MR search. This version of rRAPTOR is then invoked

for each possible source stop vs ∈ S with a departure time interval that covers the entire

service period Π of the timetable.

We can make further improvements by carefully choosing the departure times for which

runs are performed. rRAPTOR performs a run for every possible departure time 𝜏dep at vs. A
departure time 𝜏dep is possible if there is a stop v (which may be vs itself) that is reachable
from vs via an initial transfer of length 𝜏tra (vs, v) and a trip that departs from v at 𝜏dep+𝜏tra (vs, v).
If transfers are unrestricted, the number of possible departure times is very high because,

typically, most stops in the network will be reachable from vs. Accordingly, a straightforward
multimodal adaptation of rRAPTOR performs many runs and is therefore slow. In the context

of ULTRA, however, most possible departure times require a non-empty initial transfer, which

means that the corresponding runs would not find any candidates. The prototypical shortcut

computation algorithm by Sauer exploits this by imposing a limit 𝜏 on the length of initial

transfers. As a result, runs in which all journeys have initial transfers longer than 𝜏 can be

skipped. However, because the corresponding witnesses from these runs are not found, they

are not available to dominate suboptimal candidates. As a result, many superfluous shortcuts

are generated.

For ULTRA, we employ a different optimization that has the same purpose but does not

lead to superfluous shortcuts. Only the runs for departure events that occur directly at vs are
performed, since only these can find candidates. LetD = {𝜏0

dep
, . . . , 𝜏𝑘

dep
} be the set of departure
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Algorithm 5.1: ULTRA transfer shortcut computation.

Input: Public transit network (S,Π, E, T ,R,𝐺), core graph 𝐺o = (𝑉 o, 𝐸o)
Output: Shortcut edges 𝐸s

1 for each vs ∈ S do
2 Clear all arrival labels and priority queues

3 𝜏tra (vs, ·) ← Compute transfer times in 𝐺o
from vs to all stops

4 D← Collect departure times of trips at vs
5 for each 𝜏𝑖

dep
∈ D in descending order do // Canonical MR run

6 Collect and sort routes reachable within [𝜏𝑖
dep

, 𝜏𝑖+1
dep
) // first round

7 Scan routes

8 Relax transfers

9 Collect and sort routes serving updated stops // second round

10 Scan routes

11 𝐸s
new
← Relax transfers, thereby collecting shortcuts

12 𝐸s ← 𝐸s ∪ 𝐸s
new

times of trips departing directly at vs, sorted in ascending order. The run for 𝜏𝑖
dep

explores

candidates departing at 𝜏𝑖
dep

and witnesses with departure times in the interval [𝜏𝑖
dep

, 𝜏𝑖+1
dep
). We

define 𝜏𝑘+1
dep

:= ∞ to ensure that the run for 𝜏𝑘
dep

explores all witnesses that depart after 𝜏𝑘
dep

. By

integrating the witness search into the candidate runs, the algorithm is guaranteed to find the

canonical journeys for each possible candidate departure time, regardless of whether these

journeys are candidates or witnesses. However, it skips witnesses that are only canonical

for other departure times that occur in between, since these are irrelevant for dominating

candidates. Thus, the ULTRA preprocessing is much faster than a straightforward multimodal

adaptation of rRAPTOR.

Pseudocode. High-level pseudocode for the ULTRA shortcut computation scheme is

given by Algorithm 5.1. For each source stop vs ∈ S , the algorithm performs the modified

multimodal rRAPTOR search described above. To avoid redundant invocations of Dijkstra’s

algorithm, initial transfers to all other stops are explored only once per source stop (line 3)

and the results are then reused for each run in line 6. The departure times at vs for which
runs need to be performed are collected in line 4. The runs are performed in lines 6–12. Each

run consists of two canonical MR rounds, which are subdivided into three phases: collecting

routes and sorting them according to idR (lines 4 and 6), scanning routes (lines 7 and 10), and

relaxing transfers with Dijkstra’s algorithm (lines 8 and 11). After the final transfer relaxation

phase in line 11, the remaining candidates that have not been dominated by witnesses are

canonical, so shortcuts representing their intermediate transfers are added to the result set 𝐸s

in line 12.
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Extracting Shortcuts. The final transfer relaxation phase in line 11 identifies canonical

candidates and extracts their shortcuts. Whenever a stop is settled during the Dijkstra search,

the algorithm checks whether the corresponding journey 𝐽 is a candidate, i.e., has an empty

initial and final transfer. If so, we know that 𝐽 is canonical because anywitness that canonically

dominates it would have been found already. Therefore, an edge representing the intermediate

transfer of 𝐽 is added to the shortcut set 𝐸s. In order to extract the intermediate transfer,

each vertex v maintains two parent pointers p
1
[v] and p

2
[v], where p𝑘 [v] is the parent for

reaching v using 𝑘 trips (i.e., within the 𝑘-th MR round). If the journey to v ends with a trip,

p𝑘 [v] points to the stop at which this trip was entered. If the journey ends with a transfer, it

points to the stop at which the transfer starts. For a candidate ending at a stop vt, the shortcut
representing its intermediate transfer is given by (p

1
[p

2
[vt]], p2 [vt]). Because intermediate

transfers only need to be extracted for candidates, the parent pointer is set to a dummy

value ⊥ if the corresponding journey has a non-empty initial or final transfer. Then the final

Dijkstra search in line 11 can check whether the journey ending at a stop v is a candidate or a
witness by inspecting p

2
[v].

The event-to-event variant of ULTRA generates shortcuts not between stops, but between

stop events. The parent pointer definitions are changed accordingly: If the journey to a

vertex v ends with a trip, p𝑘 [v] now points to the stop event at which this trip was entered.

If the journey ends with a transfer, it points to the stop event at which the preceding trip

was exited. Because only candidates have valid parent pointers and candidates have empty

initial transfers, this preceding trip always exists. For a candidate that ends at a stop vt, the
corresponding shortcut is now given by (p

1
[v (p

2
[vt])], p2 [vt]).

Repairing Self-Pruning. Using a rRAPTOR-based approach with self-pruning allows

ULTRA to discard many irrelevant candidates early on. However, self-pruning can also cause

the algorithm to discard canonical journeys. By exploring journeys with later departure times

first, rRAPTOR implicitly maximizes departure time as a third criterion. With this additional

criterion, there may be queries for which all Pareto-optimal journeys include suboptimal

subjourneys. An example of this is shown in Figure 5.3. In this case, some canonical candidates

are suboptimal for three criteria and therefore not found by the rRAPTOR-based scheme.

Moreover, in the depicted network, there is no Pareto set for two criteria that is closed

under subjourney decomposition and only includes journeys that are Pareto-optimal for three

criteria. To solve this issue, we modify the dominance criterion to ensure that canonical

journeys are not discarded.

For a journey 𝐽 , let run(𝐽 ) be the highest 𝑖 with 𝜏𝑖
dep
∈ D such that 𝜏dep (𝐽 ) ≥ 𝜏𝑖

dep
. This is

the run in which our modified rRAPTOR finds 𝐽 . For each vertex v and round 𝑛, the algorithm
maintains a label ℓ (v, 𝑛) = (𝜏arr (v, 𝑛), p𝑛 [v], run(v, 𝑛)), in which 𝜏arr (v, 𝑛) is the tentative

arrival time, p𝑛 [v] is the parent pointer, and run(v, 𝑛) is the run of the journey corresponding

to this label, which we denote as 𝐽 (v, 𝑛). Let ℓ = (𝜏arr, p, 𝑗) be the label of a new journey 𝐽

that is found by the algorithm at v in round 𝑛. Normally, rRAPTOR discards 𝐽 if it is weakly

dominated by 𝐽 (v, 𝑛), i.e., 𝜏arr (v, 𝑛) ≤ 𝜏arr. Otherwise, it replaces ℓ (v, 𝑛) with ℓ . Our modified
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Figure 5.3: An example network in which every vs-vt-journey that is Pareto-

optimal with respect to the three criteria arrival time, number of trips, and

departure time includes a suboptimal subjourney. The two Pareto-optimal

journeys are 𝐽 =
〈
⟨vs⟩,𝑇𝑏 [0, 1], ⟨𝑎, 𝑏⟩,𝑇𝑟 [0, 1], ⟨𝑐, 𝑑, 𝑒⟩,𝑇𝑔 [0, 1], ⟨vt⟩

〉
and 𝐽 ′ =〈

⟨vs⟩,𝑇𝑏 [0, 1], ⟨𝑎, 𝑏, 𝑐′⟩,𝑇𝑦 [0, 1], ⟨𝑑, 𝑒⟩,𝑇𝑔 [0, 1], ⟨vt⟩
〉
. The subjourney 𝐽 [𝑏, vt] of 𝐽 is not

Pareto-optimal because it has an earlier departure time than 𝐽 ′ [𝑏, vt] and is otherwise

equivalent. Likewise, the subjourney 𝐽 ′ [vs, 𝑑] is suboptimal because it has a later arrival time

than 𝐽 [vs, 𝑑].

algorithm discards 𝐽 if it is weakly dominated by 𝐽 (v, 𝑛) and one of the following conditions

is fulfilled:

1. 𝐽 is not a prefix of a candidate, i.e., p = ⊥.

2. 𝐽 is strongly dominated by 𝐽 (v, 𝑛), i.e., 𝜏arr (v, 𝑛) < 𝜏arr or 𝜏arr (v, 𝑛 − 1) ≤ 𝜏arr.

3. 𝐽 (v, 𝑛) was found in the current run, i.e., run(v, 𝑛) = 𝑗 .

With this modified dominance condition, we can prove that the ULTRA preprocessing com-

putes a sufficient set of shortcuts:

Theorem 5.3. Let 𝐽 = ⟨𝑃0,𝑇0 [𝑖, 𝑗], . . . ,𝑇𝑘−1 [𝑚,𝑛], 𝑃𝑘⟩ be a canonical journey. ULTRA generates
a shortcut for every intermediate transfer in 𝐽 .

Proof. Consider an intermediate transfer 𝑃𝑥+1 of 𝐽 and the corresponding candidate sub-

journey 𝐽 c = ⟨𝑇𝑥 [𝑔, ℎ], 𝑃𝑥+1,𝑇𝑥+1 [p, 𝑞]⟩. We show that the modified rRAPTOR search for the

source stop v (𝑇𝑥 [𝑔]) finds this candidate in the run for 𝜏dep (𝐽 c) and generates a shortcut for

it. Assume 𝐽 c is not found. Then some prefix 𝐽 ′ of 𝐽 c is discarded by the search in favor of a

witness 𝐽w. By Lemma 5.1, 𝐽 ′ is canonical and therefore not strongly dominated by 𝐽w. Then

by our modified dominance criterion, 𝐽w must have been found in the same canonical MR run

as 𝐽 ′. However, by Lemma 5.2, canonical MR discards 𝐽w in favor of 𝐽 ′, a contradiction. □

5.1.3 Optimizations
We now discuss running time optimizations that are not mentioned in the high-level overview

given by Algorithm 5.1 but are crucial for achieving fast preprocessing times.
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Initial Route Collection. An rRAPTOR run with departure time 𝜏𝑖
dep

explores journeys

that depart at the source stop vs within the interval [𝜏𝑖
dep

, 𝜏𝑖+1
dep
). Line 6 collects the set R(𝜏𝑖

dep
)

of routes that must be scanned in the first round of this run. This set consists of all routes 𝑅 for

which there is a stop v visited by𝑅 and a trip𝑇 of𝑅 such that 𝜏dep (𝑇, v)−𝜏tra (vs, v) ∈ [𝜏𝑖
dep

, 𝜏𝑖+1
dep
).

In order to speed up this step, the set R(𝜏𝑖
dep
) is precomputed when 𝜏𝑖

dep
is added to the set D

of candidate departure times in line 4. This leads to the following procedure for calculating D
and R(·): First, the algorithm collects all departure triplets (v, 𝜏dep, 𝑅) of departure stop v ,
departure time 𝜏dep, and route 𝑅 that occur in the network. They are then sorted by their

departure time at vs, which is 𝜏dep − 𝜏tra (vs, v), and processed in descending order. The

algorithm maintains a tentative set R′ of routes for the next candidate departure time that is

added to D. For each triplet (v, 𝜏dep, 𝑅), the algorithm checks whether v = vs. If v ≠ vs, 𝑅 is

added to R′. Otherwise, 𝜏dep is a candidate departure time. If 𝜏dep is already contained in D,

the algorithm already found another route departing from vs at 𝜏dep, so 𝑅 is added to R(𝜏dep).
Otherwise, 𝜏dep is added to D, R(𝜏dep) is set to R′ ∪ {𝑅}, and R′ is cleared.

Limited Dijkstra Searches. The algorithm can be sped up by introducing a stopping

criterion to the Dijkstra search for final transfers in line 11. For this purpose, the preceding

route scanning phase in line 10 counts the number of stops that are marked because their

tentative arrival time is improved by a candidate. Whenever such a stop is settled in line 11,

the counter is decreased. Once the counter reaches zero, we know that the Dijkstra search

has processed all candidates that have been found in this run, so it is stopped.

A similar stopping criterion is applied to the intermediate Dijkstra search in line 8. Here, the

first route scanning phase in line 7 counts the stops whose tentative arrival time is improved

by a candidate prefix, i.e., a journey with an empty initial transfer. As in line 11, the Dijkstra

search is stopped as soon as no such stops are left in the priority queue. This does not affect

the correctness of the computed shortcut set 𝐸s because all candidates are still processed.

However, some of the witnesses that are pruned might be required to dominate non-canonical

candidates. In this case, superfluous shortcuts will be added to 𝐸s. This can be counteracted by

continuing the Dijkstra search for some time after the last candidate prefix has been extracted.

We introduce a parameter 𝜆w called the witness limit that determines how long the search

continues. Let 𝜏c be the arrival time of the last extracted candidate prefix. Instead of stopping

the Dijkstra search immediately, it continues until the smallest element in the queue has an

arrival time greater than 𝜏c + 𝜆w.
Once a Dijkstra search is stopped, the remaining witness labels are kept in the queue

because they may dominate candidates in later runs. This requires that the two Dijkstra

searches in lines 8 and 11 use separate queues, so that labels from the final Dijkstra search of

a previous run do not interfere with the intermediate Dijkstra search of the current run. As a

consequence, if a label is discarded because it is dominated, it must be explicitly removed from

any queues that still contain it. Moreover, the run in which a label is settled may no longer be

the same one in which it was enqueued. Accordingly, the run in which a journey 𝐽 is found

may no longer equal run(𝐽 ). To ensure that the dominance condition is applied correctly, the
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run of a newly created label is carried over from its parent label, rather than setting it to the

currently performed run.

With these changes, the only remaining part of the algorithm that performs an unlimited

Dijkstra search on the core graph is the initial transfer relaxation in line 3. Unlike the searches

for the intermediate and final transfers, this search is only performed once for every source

stop instead of once per run, so its impact on the overall running time is small.

Pruning with Found Shortcuts. Once a shortcut is found and added to the shortcut

set 𝐸s, it is no longer necessary to find candidates that produce the same shortcut. We

exploit this by further restricting the definition of candidates: a journey is only classified as a

candidate if its intermediate transfer is not contained in the set of already computed shortcuts.

Because this reduces the number of candidates, the stopping criterion for the Dijkstra searches

in lines 8 and 11 may be applied earlier, further saving preprocessing time.

Whenever a potential candidate is found during the second route scanning phase in line 10,

the stop-to-stop variant of ULTRA checks if the corresponding shortcut is already contained

in 𝐸s. If so, the journey is classified as a witness by setting its parent pointer to ⊥. In the

event-to-event variant, this check is more expensive because the number of shortcuts is

much larger. Furthermore, because an event-to-event shortcut typically occurs in many

fewer candidate journeys than its stop-to-stop counterpart, it is much less likely that the

shortcut is already contained in 𝐸s. Our preliminary experiments showed that the benefit

of potentially dismissing a candidate no longer outweighs the work required to look up the

shortcut. Therefore, the check is skipped in the event-to-event variant.

When a candidate is extracted from the Dijkstra queue in line 11 and a shortcut is inserted

for it, there may be other candidates remaining in the queue that use the same intermediate

transfer. These must be turned into witnesses by setting the respective parent pointers to ⊥.
This requires keeping track of all candidates belonging to a particular shortcut. Within a

single canonical MR run, the search can find at most one intermediate transfer ending at a

particular stop or stop event. In stop-to-stop ULTRA, each stop v therefore maintains a list

of all non-dominated candidates whose intermediate transfer ends at v . The event-to-event
variant does the same for each stop event. When a shortcut is inserted, all candidates in the

corresponding list are turned into witnesses.

Transfer Graph Contraction. As with MR, the Dijkstra searches are performed on a

core graph, which is constructed by the Core-CH preprocessing step. Because ULTRA only

needs to compute journeys between pairs of stops rather than arbitrary vertices in the transfer

graph, only transfers that start and end at stops are relevant. Accordingly, the initial and final

transfer searches that MR performs on the upward and downward CH graphs can be omitted.

Another type of contraction is performed for cliques of stops that have a pairwise distance

of 0 in the transfer graph. These cliques typically occur when different platforms of a larger

station are modeled as individual stops. Each such clique is contracted into a single stop. This

decreases the number of canonical MR runs that need to be performed: The number of runs
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for a source stop vs is equal to the number of unique departure times at vs. If a departure
time occurs at multiple stops within a clique with transfer distance 0, then the algorithm

performs one run for this departure time at each stop. The journeys found by these runs

are identical, save for initial transfers of length 0. By contracting the clique into a single

stop, these redundant runs are merged into one. This does not affect the correctness of the

algorithm because it is conceptually equivalent to allowing candidates to begin with an initial

transfer of length 0.

Parallelization. Finally, we observe that ULTRA allows for trivial parallelization. The

preprocessing algorithm searches for candidates once for every possible source stop (line 1

of Algorithm 5.1). As these searches are mostly independent of each other, they can be

distributed to parallel threads and the results are then combined in a final sequential step.

The only aspect of the algorithm that introduces a dependency between the searches for

different source stops is the restricted candidate definition: a journey is only considered a

candidate if no shortcut has yet been added for its intermediate transfer. If a shortcut was

added by a different thread, the algorithm does not notice this. However, because this is

merely a performance optimization, the algorithm remains correct if only shortcuts added by

the current thread are considered.

5.1.4 Integration with Trip-Based Routing
Unlike other public transit algorithms, TB on its own already requires a preprocessing step,

even when used without ULTRA. One possible approach for enabling unlimited transfers in TB

is with a sequential three-phase algorithm: First, shortcuts between stops are generated with

the stop-to-stop variant of the ULTRA preprocessing. These are then used as input for the TB

preprocessing, which generates event-to-event transfers that can be used by the ULTRA-TB

query. However, we show that an integrated two-phase approach is superior. Here, the TB

preprocessing is replaced entirely by the event-to-event variant of the ULTRA preprocessing.

The resulting shortcuts between stop events are then used as input for the ULTRA-TB query.

The advantage of the integrated approach is that it produces fewer shortcuts because

ULTRA applies stricter pruning rules than the TB preprocessing. Both algorithms enumerate

journeys with at most two trips in order to find witnesses that prove that a potential shortcut

is not necessary. The TB preprocessing does this in a transfer reduction step, after all potential

shortcuts have been generated. Because the latter is no longer feasible with unlimited transfers,

ULTRA interleaves the generation and pruning of shortcuts. Furthermore, ULTRA examines

a larger set of witnesses. In the TB preprocessing, witnesses must start with the same stop

event as the candidate, whereas ULTRA also considers witnesses that start with a non-empty

initial transfer or a different initial trip. Furthermore, because the TB preprocessing explores

intermediate transfers by iterating along the stop sequence of the initial trip in reverse, a

candidate cannot be pruned by witnesses that exit the initial trip before the candidate. Overall,

this means that ULTRA has more options for pruning candidates and thus produces fewer

shortcuts.
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5.2 Query Algorithms
ULTRA shortcuts can be combined with any public transit query algorithm that requires

one-hop transfers. The idea is to replace the original transfer graph𝐺 = (𝑉 , 𝐸) with a shortcut

graph 𝐺s = (S, 𝐸s) consisting of the precomputed stop-to-stop shortcuts. Then the original

query algorithm can be run on the resulting network. Note that although the ULTRA shortcut

graph is not transitively closed, it is still a valid one-hop transfer graph: Theorem 5.3 proves

that journeys with two consecutive shortcut edges are never required to answer a query

correctly. Accordingly, if a transitive edge is missing in the shortcut graph, we know that it is

never required as part of an optimal journey.

The shortcut graph covers intermediate transfers between two trips, but it does not provide

any information for transferring from the source to the first trip or for transferring from the last

trip to the target. In Section 5.2.1, we describe how initial and final transfers can be integrated

into the query algorithms efficiently. Additionally, Section 5.2.2 outlines optimizations for the

TB query algorithm that make it more efficient in a scenario with unlimited transfers.

5.2.1 Query Algorithm Framework
The ULTRA query algorithm exploits the fact that, for initial and final transfers, one endpoint

of the transfer is fixed. All initial transfers start at the source vertex vs of the query, whereas all
final transfers end at the target vertex vt. Therefore, initial and final transfers can be explored

with two additional one-to-many searches on the original transfer graph: a forward search to

compute distances from vs to all stops and a backward search for the distances from all stops

to vt. Possible algorithms for performing the one-to-many searches include Bucket-CH and

PHAST. ULTRA uses Bucket-CH because it allows for additional search space pruning if the

source and target are close to each other. Thus, ULTRA requires three preprocessing steps in

total: First, a core graph is constructed with the Core-CH precomputation. This is then used

as an input for the transfer shortcut computation outlined in Section 5.1. The third step is the

Bucket-CH preprocessing for the original transfer graph 𝐺 . The query algorithm then takes

as input the public transit network, the shortcut graph, and the Bucket-CH data. Pseudocode

for the query algorithm is shown in Algorithm 5.2.

A query begins with a bidirectional CH search from vs to vt in line 1. This yields the

travel time 𝜏tra (vs, vt) for a direct transfer from vs to vt (which may be∞ if no direct transfer

is possible). A naive approach would then perform a forward Bucket-CH search from vs
and a reverse Bucket-CH search from vt, yielding for every stop v the initial transfer dis-

tance 𝜏tra (vs, v) and the final transfer distance 𝜏tra (v, vt). However, not all of these distances
are actually needed. An initial transfer to a stop v cannot be part of an optimal journey

if 𝜏tra (vs, v) ≥ 𝜏tra (vs, vt) because any journey containing the initial transfer is dominated by

the direct transfer from vs to vt. Likewise, no optimal journey can include a final transfer to

a stop v with 𝜏tra (v, vt) ≥ 𝜏tra (vs, vt). The algorithm exploits this by using the forward and

backward search spaces 𝑉s and 𝑉t of the bidirectional CH search. Because the CH search

is stopped once the shortest vs-vt-path has been found, these contain no vertices whose
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Algorithm 5.2: ULTRA query algorithm framework.

Input: Public transit network (S,Π, E, T ,R,𝐺),
shortcut graph 𝐺s = (S, 𝐸s), Bucket-CH data for 𝐺 ,

source vertex vs, departure time 𝜏dep, target vertex vt
Output: Pareto set J of vs-vt-journeys for departure time 𝜏dep

1 (𝜏tra (vs, vt),𝑉s,𝑉t) ← Run a CH query from vs to vt with departure time 𝜏dep
2 𝜏tra (vs, ·) ← Evaluate the vertex-to-stop buckets for vertices in 𝑉s
3 𝜏tra (·, vt) ← Evaluate the stop-to-vertex buckets for vertices in 𝑉t

4 𝐺̃ ← (S ∪ {vs, vt}, 𝐸s)
5 Add edge (vs, vt) with transfer time 𝜏tra (vs, vt)
6 for each v ∈ S \ {vs, vt} with 𝜏tra (vs, v) < 𝜏tra (vs, vt) do
7 Add edge (vs, v) to 𝐺̃ with transfer time 𝜏tra (vs, v)
8 for each v ∈ S \ {vs, vt} with 𝜏tra (v, vt) < 𝜏tra (vs, vt) do
9 Add edge (v, vt) to 𝐺̃ with transfer time 𝜏tra (v, vt)

10 Run black-box public transit algorithm on (S ∪ {vs, vt}, T ,R, 𝐺̃)

distance from vs and to vt, respectively, is greater than 𝜏tra (vs, vt). Therefore, it is sufficient

to scan the forward buckets of all vertices in 𝑉s (line 2) and the backward buckets of all

vertices in 𝑉t (line 3). Additional query time can be saved by sorting the entries of each

bucket in ascending order of distance during the preprocessing phase. Then the scan for

the forward bucket of a vertex v can be stopped once it reaches a stop 𝑤 within the bucket

with 𝜏tra (vs, v) + 𝜏tra (v, 𝑤) ≥ 𝜏tra (vs, vt) (and analogously for backward buckets). Doing so

drastically improves local queries, as they do not need to evaluate all stops, but only stops

that are close to the source or target.

After the distances for the initial and final transfers have been computed, the algorithm

creates a temporary copy 𝐺̃ of the shortcut graph 𝐺s
, which contains vs and vt as additional

vertices. Lines 5–9 augment 𝐺̃ with edges for the initial and final transfers, and the direct

transfer from vs and vt, using the distances obtained from the Bucket-CH searches. Finally, a

public transit algorithm of choice is invoked as a black box on the public transit network with

the temporary graph 𝐺̃ in line 10. The temporary graph is sufficient for obtaining correct

results, as it contains edges for all necessary initial, intermediate and final transfers, and an

edge for a direct transfer from source to target.

If the public transit algorithm is not treated as a black box, its performance can be improved

further by skipping the construction of 𝐺̃ . Most algorithms, including RAPTOR and CSA,

maintain a tentative arrival time at each stop, which is improved as new journeys are found.

For each edge (vs, v) ∈ 𝐺̃ , the tentative arrival time of v can be initialized with 𝜏dep +𝜏tra (vs, v).
To incorporate final transfers, whenever the tentative arrival time at a stop v is set to some

value 𝜏 , the algorithm can try to improve the tentative arrival time at vt with 𝜏 + 𝜏tra (v, vt).
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Algorithm 5.3: Modified procedures for the ULTRA-TB query algorithm.

1 Procedure RelaxInitialTransfers()

2 (𝜏tra (vs, vt),𝑉s,𝑉t) ← Run a CH query from vs to vt with departure time 𝜏dep
3 𝜏tra (vs, ·) ← Evaluate the vertex-to-stop buckets for vertices in 𝑉s
4 𝜏tra (·, vt) ← Evaluate the stop-to-vertex buckets for vertices in 𝑉t

5 Procedure CollectInitialTrips(𝑄1)

6 R′ ← ∅
7 for each v ∈ S with 𝜏tra (vs, v) < 𝜏tra (vs, vt) do
8 R′ ← R′ ∪ {Routes from R that visit v}
9 for each 𝑅 ∈ R′ do

10 𝑇min ← ⊥
11 for 𝑖 from 0 to |𝑅 | − 1 do
12 v ← 𝑖-th stop of 𝑅

13 if 𝜏dep + 𝜏tra (vs, v) ≥ 𝜏min then continue
14 𝑇 ′min ← FindEarliestTripFrom(𝑇min, 𝑖, 𝜏dep + 𝜏tra (vs, v))
15 if 𝑇 ′min ≺ 𝑇min then
16 𝑇min ← 𝑇 ′min
17 Enqueue(𝑇min [𝑖 + 1], 𝑄1)
18 if pred(𝑇min) = ⊥ then break

5.2.2 Improved TBQuery
TB already distinguishes between initial/final and intermediate transfers, exploring different

graphs for both. The original transfer graph𝐺 is only used for the initial and final transfers,

whereas intermediate transfers are explored using the precomputed event-to-event transfers.

In the context of ULTRA, this requires a modification to the query framework shown in

Algorithm 5.2: The temporary graph 𝐺̃ now only contains the edges added for the initial and

final transfers but not the ULTRA shortcuts. The query then uses 𝐺̃ for the initial and final

transfers, and the event-to-event shortcuts 𝐸s for the intermediate transfers.

Additionally, we optimize the TB query algorithm for networks with unlimited transfers.

The original algorithm is optimized for a use case in which only a few stops are reachable

with an initial or final transfer. However, with unlimited transfers, almost all stops are

usually reachable. Therefore, we reorganize the algorithm in order to process the huge

number of possible initial and final transfers more efficiently. Algorithm 5.3 shows the

modified RelaxInitialTransfers and CollectInitialTrips procedures. The remainder of

the query algorithm remains unchanged from Algorithms 4.4, 4.5 and 4.6 in Chapter 4.2.4.

The RelaxInitialTransfers procedure (lines 1–4) now performs a Bucket-CH search,

in the same manner as the generic ULTRA query framework. For every reached stop v ,
this yields the minimum transfer times 𝜏tra (vs, v) from vs and 𝜏tra (v, vt) to vt. The proce-

dure CollectInitialTrips (lines 5–18) identifies trip segments that are reachable via an
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initial transfer. In the original TB algorithm, this is done by iterating over all stops that are

reachable via an initial transfer. For each such stop v and each route 𝑅 visiting v , the algorithm
identifies the earliest trip of 𝑅 that can be entered at v after taking the initial transfer. This
approach is efficient as long as the number of stops reachable via an initial transfer is small.

However, in a scenario with unlimited transfers, in which almost all stops are reachable,

consecutive stops of a route often share the same earliest reachable trip. In this case, the

algorithm performs redundant work by searching for the same trip multiple times. To avoid

this, we use a different approach for evaluating the initial transfers, which is based on two

steps of the RAPTOR algorithm: collecting updated routes and scanning routes.

Lines 7 and 8 collect all routes visiting a stop that is reachable via an initial transfer. This

is analogous to the CollectRoutes procedure of RAPTOR, which collects routes that visit

marked stops (cf. Algorithm 4.3 in Chapter 4.2.3). Then, all collected routes are scanned in a

similar manner to the ScanRoutes procedure of RAPTOR. As in RAPTOR, a route 𝑅 is scanned

by processing its stops in the order in which they are visited by 𝑅. The algorithm maintains

an active trip 𝑇min, which is the earliest trip of 𝑅 that is reachable from any of the already

processed stops. Initially,𝑇min is set to a dummy value ⊥ (line 10). Let v be the next stop to be

processed during the scan of 𝑅. To check if 𝑇min can be improved, line 14 finds the earliest

trip 𝑇 ′min of 𝑅 that can be boarded when arriving at v with the arrival time 𝜏dep + 𝜏tra (vs, v). If
no reachable trip has been found for any of the previous stops in 𝑅 (i.e., 𝑇min = ⊥), then 𝑇 ′min
is found with a binary search. Otherwise, the algorithm starts a linear search from 𝑇min and

looks backward for earlier trips. Because𝑇 ′min is often not much earlier than𝑇min, this is faster

than a binary search in practice. Note that 𝑇 ′min will not be found if it is later than 𝑇min, but

in this case entering 𝑇 ′min at v does not produce an optimal journey, so it can be discarded.

If 𝑇 ′min is earlier than 𝑇min, then 𝑇min is updated and the Enqueue procedure is called for the

corresponding stop event in line 17. The Enqueue procedure itself is unchanged from the

original TB algorithm (see Algorithm 4.6 in Chapter 4.2.4). If 𝑇 ′min is the earliest trip in 𝑅, the

remainder of the route scan can be skipped.

5.3 Experiments
We evaluate the performance of ULTRA on the four networks presented in Chapter 4.3.

Section 5.3.1 evaluates the preprocessing, including the shortcut computation. Our ULTRA-

based query algorithms are evaluated in Section 5.3.2. Finally, we compare ULTRA to the

HL-based approach of Phan and Viennot [PV19] in Section 5.3.3. Unless otherwise noted, we

use walking with a speed of 4.5 km/h as the transfer mode. All queries were evaluated on the

Xeon machine. For the preprocessing experiments, we list the used machine individually.

5.3.1 Preprocessing
In this section, we evaluate the performance of the ULTRA preprocessing phase, which

includes the Core-CH transfer graph contraction, the shortcut computation, and the Bucket-
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Table 5.1: Overview of the stop-to-stop ULTRA preprocessing results. All running times

were measured on the Xeon machine and are displayed as (hh:)mm:ss. The Core-CH and

Bucket-CH computations were run sequentially. The shortcut computation used all 16 cores.

Stuttgart London Switzerland Germany

Core-CH time 1:45 0:19 1:09 20:16

Number of core vertices 25 631 23 860 33 219 313 351

Number of core edges 358 842 334 112 465 067 6 267 050

Shortcut computation time 4:27 18:01 8:54 8:01:25

Number of shortcuts 83 086 190 388 170 713 2 907 691

Bucket-CH time 2:13 0:11 0:43 14:49

CH computation. We analyze the effects of the parameters core degree, witness limit, and

transfer speed in detail for the Switzerland network, and then discuss more general results

for all four networks.

Core Degree and Witness Limit. The two main parameters influencing the perfor-

mance of the ULTRA preprocessing are the average vertex degree of the contracted core graph

and the witness limit 𝜆w. Figure 5.4 shows the impact of these parameters on the Switzerland

network. The lowest preprocessing times are achieved with a core degree of 14. Although

the actual shortcut computation is slightly faster for higher core degrees, this is offset by

the increased time required to contract the transfer graph. The witness limit 𝜆w has a larger

impact on the preprocessing time. Choosing a witness limit of 0 instead of∞ nearly cuts the

preprocessing time in half. Regardless of core degree or witness limit, the event-to-event

variant takes about one minute longer than the stop-to-stop variant. Both parameters have

a negligible effect on the number of computed shortcuts. For all following experiments, we

therefore choose a core degree of 14 and a witness limit of 0 to minimize the preprocessing

time. The only exception is the Germany network, for which we use a core degree of 20. This

is because the share of the Core-CH computation in the overall running time is significantly

lower for this network, due to its much larger size. Preprocessing results for the stop-to-stop

variant on all four networks are listed in Table 5.1.

ULTRA-TB Preprocessing. To evaluate the effectiveness of the event-to-event ULTRA

shortcut computation, we compare it to the original TB preprocessing, using the transitively

closed transfer graphs presented in Chapter 4.3 as input, and to a naive sequential approach,

i.e., using stop-to-stop ULTRA shortcuts as input for the TB preprocessing. The results are

shown in Table 5.2. The integrated ULTRA preprocessing drastically reduces the amount of

shortcuts compared with the sequential approach. This reduction ranges from a factor of 6

for the London network to over 15 for Germany. Furthermore, the sequential approach using
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Figure 5.4: Impact of the core degree and the witness limit on the running time of the

ULTRA preprocessing and the number of computed shortcuts, measured for the Switzerland

network on the Xeon machine. Preprocessing time includes both contracting the transfer

graph and computing the shortcuts. The time required for the Bucket-CH computation, which

is independent of both parameters, is excluded.

the optimized TB preprocessing proposed by Lehoux and Loiodice [LL20] is only marginally

faster than the integrated approach. Overall, the integrated preprocessing is clearly preferable

because it produces many fewer shortcuts with only a minor overhead in running time.
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Table 5.2: Number of shortcuts and preprocessing times for different TB preprocessing

variants. “Transitive” refers to the original TB preprocessing on the transitively closed

transfer graph presented in Chapter 4.3. “Sequential” uses stop-to-stop ULTRA shortcuts as

input for the TB preprocessing, whereas “integrated” uses event-to-event ULTRA shortcuts

directly. “Optimized” refers to the improved TB preprocessing algorithm of Lehoux and

Loiodice [LL20]. Running times were measured on the Xeon machine with 16 cores and are

displayed as (hh:)mm:ss.

Stuttgart London Switzerland Germany

Shortcuts (transitive) 7 387 445 50 242 519 31 507 264 458 826 534

Shortcuts (transitive, optimized) 7 387 586 50 240 558 31 507 543 458 763 050

Shortcuts (sequential) 19 361 708 53 179 082 65 485 696 1 195 573 925

Shortcuts (sequential, optimized) 19 361 129 53 181 238 65 484 976 1 195 509 797

Shortcuts (integrated) 1 973 321 8 576 120 6 938 012 77 515 291

Time (transitive) 9:30 1:42:35 1:01:54 73:43:07

Time (transitive, optimized) 0:37 13:12 4:41 2:55:06

Time (sequential) 4:41 18:43 9:40 8:57:46

Time (sequential, optimized) 4:37 18:28 9:24 8:22:37

Time (integrated) 4:42 20:43 9:40 8:37:49

Remarkably, event-to-event ULTRA significantly outperforms the original TB preprocessing

in both the number of shortcuts and the computation time, despite operating on an unrestricted

transfer graph instead of a transitively closed one. This underscores that the original TB

preprocessing was only designed for very small transfer graphs and confirms the findings

of Lehoux and Loiodice that it does not scale well for larger graphs. Compared with the

optimized TB preprocessing, ULTRA is slower by a factor of two to three on most networks.

On the Stuttgart network, it is about eight times slower. The difference is explained by the

fact that Stuttgart is the only network for which the transitively closed transfer graph has

fewer edges than the full transfer graph. Overall, the preprocessing results show that ULTRA

is much more effective than the TB preprocessing at identifying necessary transfers, at the

cost of a somewhat higher preprocessing time.

Parallelization. The previous experiments used all 16 cores of the Xeon machine for the

shortcut computation. To assess the impact of parallelization on the preprocessing time, we

evaluate the running time of the stop-to-stop shortcut computation for different numbers of

threads. Additionally, we compare running times of the Epyc machine, which has a worse

single-core performance but more cores. Running times on both machines are listed in

Table 5.3. Overall, the parallelized shortcut computation achieves good speedups for all

networks on both machines. For the Switzerland network, the highest speedup is 13.5 on
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Table 5.3: Impact of parallelization on the running time of the stop-to-stop ULTRA shortcut

computation. Running times are displayed as (hh:)mm:ss.

Machine Cores Stuttgart London Switzerland Germany

Xeon

1 59:28 4:00:31 2:00:29 100:02:46

2 30:42 2:05:06 1:02:24 54:12:12

4 15:49 1:06:24 32:17 29:02:18

8 8:28 34:52 17:13 15:26:13

16 4:27 18:01 8:54 8:01:25

Epyc

1 1:14:37 4:53:01 2:25:26 122:35:42

2 40:38 2:43:33 1:21:57 72:42:27

4 20:10 1:19:21 40:39 37:56:49

8 10:03 39:54 20:23 19:11:35

16 5:05 19:54 10:08 9:49:56

32 2:37 10:08 5:11 4:57:06

64 1:29 5:52 2:55 2:56:49

128 0:54 3:44 1:57 2:53:57

the Xeon machine and 74.6 on the Epyc machine. The speedup for the entire preprocessing

phase, including the sequential Core-CH and Bucket-CH computation times on the Xeon

machine, drops to 11.4 and 38.6, respectively. Independently of the network, we observe

the smallest speedup when switching from 64 to 128 threads on the Epyc machine. In this

case, the performance is likely limited by the memory bandwidth. The results are similar for

the event-to-event variant. On the Switzerland network, the single-threaded performance

on the Xeon machine is 2:07:00 for the sequential approach and 2:10:10 for the integrated

approach. This corresponds to speedup factors of 13.1 and 13.5, respectively, which matches

the speedups observed for the stop-to-stop variant and the TB preprocessing.

Transfer Speed. To test the impact of the transfer mode on the shortcut computation, we

change the transfer speed in the Switzerland network from 4.5 km/h to values between 1 km/h

and 140 km/h. We consider two ways of applying the transfer speed: In the first version, the

speed on an edge is not allowed to exceed the speed limit given in the road network. This

models fast transfer modes, such as cars, fairly realistically. In the second version, speed limits

are ignored and the same constant speed is assumed for every edge. This allows us to analyze

the extent to which the effects observed in the first version are caused by the speed limit

data. Figure 5.5 reports the preprocessing times and number of shortcuts (both stop-to-stop

and event-to-event) measured for each configuration. In all measurements, the preprocessing

time remains below 15 minutes. The number of stop-to-stop shortcuts initially increases

with the transfer speed until it peaks at about 300 000 between 10 and 20 km/h (roughly the
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Figure 5.5: Impact of transfer speed on preprocessing time and number of shortcuts, measured

on the Switzerland network with a core degree of 14 and a witness limit of 0. Speed limits

were obeyed for the red lines and ignored for the blue lines. For the two lines at the bottom

of the right plots, shortcuts were only added if the source and target of the candidate journey

are connected by a path in the transfer graph.
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speed of a bicycle). In the event-to-event variant, the behavior is the opposite: the number

of shortcuts is highest for 1 km/h and decreases from there. Above 20 km/h, both variants

exhibit a slight increase in the number of shortcuts, which is more pronounced if speed limits

are obeyed. Overall, the results show that ULTRA is practical for all transfer speeds both in

terms of preprocessing time and the number of shortcuts.

To explain the difference in behavior between the two variants, consider how the transfer

speed affects Pareto-optimal journeys. As the transfer mode becomes faster, it becomes

increasingly feasible to cover large distances in the transfer graph quickly. This has two effects:

On the one hand, more witnesses that require long initial or final transfers become feasible

and start dominating slower candidates. Accordingly, the number of canonical candidates

decreases, from 409 million for 1 km/h to 114 million for 10 km/h. This explains the decrease

in the number of event-to-event shortcuts. On the other hand, longer intermediate transfers

between trips also become feasible. This means that, although there are fewer canonical

candidates for higher transfer speeds, their shortcuts tend to cover greater distances in the

transfer graph. The number of stop pairs within a certain distance of each other grows roughly

quadratically with the distance. This explains why the number of stop-to-stop shortcuts rises

with the transfer speed even as the number of event-to-event shortcuts declines.

Once the transfer speed becomes faster than public transit, the direct transfer from source

to target dominates all other journeys, including all candidates. Accordingly, we should expect

the number of shortcuts to eventually reach zero for very high transfer speeds. The reason

why this is not observed in our measurements is that not all stops in our network instances are

reachable from each other in the transfer graph. For example, in the Switzerland network, 624

stops are isolated in the transfer graph, usually as a result of incomplete or imperfect data.

Consider what happens in the shortcut computation for journeys between stops vs and vt that
are isolated in the transfer graph. In this case, a direct transfer is not possible regardless of

the transfer speed. In fact, unless there is a route that serves both vs and vt, all vs-vt-journeys
with at most two trips are candidates and the shortcut computation will add shortcuts for

the canonical ones. If we omit shortcuts for candidates whose source and target stop are not

connected in the transfer graph, the number of shortcuts behaves as expected: If speed limits

are obeyed, a few shortcuts remain even for the highest transfer speed. If they are ignored, a

direct transfer is always the fastest option and thus no shortcuts are required.

Shortcut Graph Structure. The stop-to-stop shortcut graph computed by ULTRA for

Switzerland is structurally very different from the transitively closed transfer graph that we

created for comparison with pure public transit algorithms in Chapter 4.3. This is already

evidenced by the fact that the shortcut graph is much less dense, containing only 6% as many

edges as the transitively closed graph. Furthermore, the transitive graph consists of many

small, fully connected components, with the largest one containing only 1 004 vertices. By

contrast, the largest strongly connected component in the shortcut graph contains 10 891

vertices, which corresponds to 43% of all stops. Accordingly, a transitive closure of the shortcut

graph would contain more than 100 million edges.
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Figure 5.6: Transfer time distribution of the ULTRA shortcuts for the Switzerland network.

The bar for 2
𝑖
corresponds to the number of shortcuts with a transfer time in the inter-

val [2𝑖−1, 2𝑖 ). An exception is the first bar, which represents all shortcuts with a transfer

time below one second. The dark blue portion of each bar represents shortcuts for which the

source and the target of the corresponding candidate are connected by a path in the transfer

graph.

Figure 5.6 (left) shows the distribution of transfer times for the ULTRA shortcuts. Note

that the high number of shortcuts with transfer time 0 is caused by cases in which multiple

stops model the same physical location. Most of the shortcuts have a transfer time of more

than 9minutes (≈ 2
9
seconds), which is the guaranteed walking duration for the transitively

closed graph. In fact, only 26 826 edges are shared between the two graphs, which consti-

tute 1.0% of all transitive edges and 15.7% of all shortcuts. Altogether, this shows that the

transitively closed graph fails to represent most of the relevant intermediate transfers at the

expense of many superfluous ones.

As with the transfer speed experiment, Figure 5.6 distinguishes between shortcuts generated

by candidates whose source and target stop are connected in the transfer graph (dark blue)

and shortcuts for which source and target are isolated (light blue). We observe that most of

the very long shortcuts are produced by candidates with isolated stops. To analyze how often

longer shortcuts are required, we examine the distribution of the event-to-event shortcuts in

Figure 5.6 (right). Because stop events occur at a fixed point in time, a stop-to-stop shortcut

that is required at several times throughout the day corresponds to multiple event-to-event

shortcuts. Thus, the number of event-to-event shortcuts of a certain length reflects more

accurately how frequently intermediate transfers of that length are required. Approximately

one third of all event-to-event shortcuts have a transfer time of 0. Most of these connect pairs
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of trips at the same stop and therefore have no stop-to-stop counterpart. Among the remaining

shortcuts, most have a transfer time between 1 minute (≈ 2
6
s) and 34 minutes (≈ 2

11
s). This

is in contrast to the stop-to-stop shortcuts, most of which have a transfer time of more than

one hour (≈ 2
12
s). This shows that very long shortcuts are only rarely required. Furthermore,

the fraction of shortcuts that are generated by candidates with isolated source and target is

much lower in the event-to-event variant than in the stop-to-stop variant.

5.3.2 Queries

To evaluate the impact of ULTRA on the query performance, we test its combination with

CSA, RAPTOR, and TB. For CSA and RAPTOR, we compare our new ULTRA variant to the

original algorithm on the transitively closed transfer graph and to a multimodal variant with

Dijkstra searches. For TB, no multimodal variants have been proposed thus far. We therefore

compare the original TB algorithm on the transitively closed transfer graph to ULTRA-TB

with sequential and integrated preprocessing.

CSA. Unlike the other algorithms we evaluate, CSA only supports optimizing arrival time

as the sole criterion. Although the CSA variant for profile queries also supports optimizing

the number of trips as a second criterion, no two-criteria variant for the fixed departure time

problem has been published thus far. We conducted preliminary experiments that showed

that a two-criteria variant of CSA is in fact outperformed by RAPTOR. Therefore, we only

consider single-criterion optimization for CSA. Furthermore, no Dijkstra-based multimodal

variant of CSA has been proposed thus far. We therefore implemented a naive multimodal

version of CSA, which we call MCSA (Multimodal CSA), as a baseline for our comparison.

Normally, after scanning a connection arriving at a stop v , CSA relaxes the outgoing transfer

edges of v . MCSA instead performs a Dijkstra search on a contracted transfer graph built with

Core-CH, in a similar manner to MR. Once the smallest key in the priority queue exceeds

the departure time of the next connection, the Dijkstra search is interrupted and the next

connection is scanned. Query times for all three CSA variants are reported in Table 5.4.

On all networks, ULTRA-CSA has a similar running time to CSA with transitively closed

transfers. Caution has to be taken when comparing these running times because CSA does not

support fully multimodal vertex-to-vertex queries and was therefore evaluated on a different

set of stop-to-stop queries. Nonetheless, our experiments demonstrate that ULTRA enables

CSA to use unrestricted transfers without performance loss. Compared with MCSA, the

ULTRA approach is faster by a factor of three to four on most networks and even more on the

Stuttgart network, which has a particularly large transfer graph. By replacing the Core-CH

search ofMCSAwith Bucket-CH, ULTRA speeds up the exploration of initial and final transfers

by a factor of six to eight. The time required for the exploration of intermediate transfers is

difficult to measure directly because it is interleaved with the individual connection scans.

Nevertheless, we observe that using ULTRA shortcuts speeds up the connection scanning

phase in its entirety by a factor of two to four compared with MCSA.
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Table 5.4: Query performance for CSA, MCSA, and ULTRA-CSA. Query times are divided

into two phases: initialization including initial transfers (Init.), and connection scans including

intermediate transfers (Scan). All results are averaged over 10 000 random queries. Note that

CSA (marked with
∗
) only supports stop-to-stop queries with transitive transfers. The other

two algorithms have been evaluated for vertex-to-vertex queries on the full graph.

Network Algorithm
Full

graph

Scans [k] Time [ms]

Connection Edge Init. Scan Total

Stuttgart

CSA
∗ ◦ 52.6 281 0.0 1.4 1.4

MCSA • 113.7 238 10.1 6.4 16.5

ULTRA-CSA • 113.4 42 1.2 1.7 2.9

London

CSA
∗ ◦ 83.9 663 0.0 3.0 3.0

MCSA • 58.2 182 4.6 4.5 9.1

ULTRA-CSA • 57.7 53 0.8 1.9 2.7

Switzerland

CSA
∗ ◦ 135.2 787 0.1 4.9 4.9

MCSA • 88.2 241 8.4 8.1 16.4

ULTRA-CSA • 87.6 59 1.1 2.9 4.0

Germany

CSA
∗ ◦ 2 587.8 6 351 1.3 144.3 145.5

MCSA • 1 662.1 3 191 142.8 195.2 338.0

ULTRA-CSA • 1 657.3 877 22.4 107.4 129.8

On all networks except Stuttgart, the multimodal variants scan significantly fewer con-

nections than CSA on the transitively closed transfer graph. This is a direct result of the

fact that fully multimodal journeys usually have a shorter travel time [WZ17]. Because CSA

scans connections in chronological order, the number of scanned connections correlates

directly with the earliest arrival time of the query. The Stuttgart network exhibits the opposite

behavior because the transfer graph covers a much larger geographical area than the public

transit network. Therefore, when the source and target are picked among all vertices instead

of only stops, the average query distance increases and the search space becomes larger.

RAPTOR. To evaluate RAPTOR, we use MR as the multimodal baseline algorithm. The

results of our comparison are shown in Table 5.5. The share of the overall running time

spent exploring the transfer graph (i.e., the Init and Relax phases) is reduced from 50–75%

for MR to 20–40% for ULTRA-RAPTOR. Because RAPTOR explores intermediate transfers

in a separate phase, the impact of using ULTRA shortcuts can now be measured directly.

Compared with the Dijkstra searches on the core graph performed by MR, exploring the

transfer shortcuts is up to an order of magnitude faster. Overall, ULTRA-RAPTOR is two to

three times as fast as MR and has a similar running time to RAPTOR with transitive transfers.
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Table 5.5: Query performance for RAPTOR, MR, and ULTRA-RAPTOR. Query times are

divided into phases: initialization, including scanning initial transfers (Init.), collecting
routes (Coll.), scanning routes (Scan), and relaxing transfers (Relax). All results are averaged
over 10 000 random queries. Note that RAPTOR (marked with

∗
) only supports stop-to-stop

queries with transitive transfers, whereas the other three algorithms support vertex-to-vertex

queries on the full graph and have been evaluated accordingly.

Network Algorithm
Full

graph

Scans [k] Time [ms]

Route Edge Init. Coll. Scan Relax Total

Stuttgart

RAPTOR
∗ ◦ 19.8 756 0.2 1.6 2.1 2.1 5.9

MR • 35.6 687 12.3 5.2 5.2 11.1 33.5

ULTRA-RAPTOR • 37.9 105 1.4 3.5 3.5 1.0 9.6

London

RAPTOR
∗ ◦ 4.4 2 573 0.3 1.1 2.2 5.4 8.9

MR • 5.0 500 6.4 1.9 2.7 7.0 18.0

ULTRA-RAPTOR • 5.4 179 1.2 1.5 2.3 1.2 6.2

Switzerland

RAPTOR
∗ ◦ 26.2 2 115 0.4 2.4 5.0 5.0 12.8

MR • 33.0 731 10.6 4.8 7.2 11.7 34.1

ULTRA-RAPTOR • 35.9 177 1.6 3.3 6.2 1.4 12.5

Germany

RAPTOR
∗ ◦ 472.9 26 420 7.0 102.6 120.4 74.2 304.2

MR • 541.4 12 359 154.2 187.5 153.5 236.2 731.4

ULTRA-RAPTOR • 599.7 3 165 33.0 144.0 151.7 33.3 362.1

TB. We continue with evaluating our improved ULTRA-TB query algorithm. Table 5.6

compares the query performance for ULTRA-TB with sequential and integrated preprocessing,

as well as the original TB query algorithm on the transitively closed transfer graph. ULTRA-

TB with integrated preprocessing achieves significantly lower query times than the state of

the art. Depending on the network, it offers a speedup of 2–5 over ULTRA-RAPTOR and 5–10

over MR, which was previously the fastest multimodal algorithm (cf. Table 5.5). As with

RAPTOR and CSA, ULTRA-TB is able to match the query performance of the original TB

algorithm despite solving a harder multimodal problem. Furthermore, ULTRA-TB achieves a

similar performance to ULTRA-CSA, despite optimizing an additional criterion.

Although ULTRA-TB with sequential preprocessing still outperforms other algorithms,

it is slower than the integrated version by a factor of two. This is because the integrated

preprocessing reduces the number of relaxed shortcuts by around an order of magnitude. This

in turn reduces the overall search space and thereby the number of scanned trips. Overall,

the trip scanning phase is sped up by a factor of three to four and only takes up around half

of the overall query time. The remaining half is spent performing the Bucket-CH searches

and evaluating initial trips, both of which are unaffected by the number of transfer shortcuts.
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Table 5.6:Query performance for TB and ULTRA-TB (sequential and integrated). Query times

are divided into phases: the Bucket-CH query (B-CH), the initial transfer evaluation (Initial),
and the scanning of trips (Scan). All results are averaged over 10 000 random queries. Note

that TB (marked with
∗
) only supports stop-to-stop queries with transitive transfers, whereas

the other two algorithms support vertex-to-vertex queries on the full graph.

Network Algorithm
Full

graph

Scans [k] Time [ms]

Trip Shortcut B-CH Initial Scan Total

Stuttgart

TB
∗ ◦ 10.9 223 0.0 0.0 1.5 1.6

ULTRA-TB (seq.) • 25.1 1 417 1.2 1.0 5.8 7.9

ULTRA-TB (int.) • 15.3 112 1.1 0.8 1.7 3.6

London

TB
∗ ◦ 15.3 830 0.0 0.0 3.7 3.7

ULTRA-TB (seq.) • 23.5 1 021 0.8 0.7 5.1 6.6

ULTRA-TB (int.) • 14.5 153 0.8 0.6 1.9 3.3

Switzerland

TB
∗ ◦ 23.4 662 0.0 0.0 4.5 4.5

ULTRA-TB (seq.) • 34.9 1 620 1.0 1.2 7.1 9.3

ULTRA-TB (int.) • 19.5 138 1.0 1.0 2.2 4.3

Germany

TB
∗ ◦ 389.1 16 331 0.0 0.0 106.6 106.9

ULTRA-TB (seq.) • 467.5 43 219 19.9 19.3 162.6 202.0

ULTRA-TB (int.) • 196.5 2 057 19.6 19.3 37.9 77.0

Impact of Transfer Speed. In addition to the overall query performance, we also

measure how the query times of MR, ULTRA-RAPTOR and ULTRA-TB are impacted by

the transfer speed. The results are shown in Figure 5.7 (left). The performance gains of

ULTRA-RAPTOR over MR are similar for all transfer speeds and, in fact, slightly better for

higher speeds. To explain this, we observe that the route scanning phase becomes faster as

the transfer speed increases. This is because the total number of rounds and thus the number

of scanned routes decreases for higher transfer speeds. Because ULTRA-RAPTOR increases

the share of the route scanning phase in the overall running time compared to MR, it benefits

more from this effect. For all speeds, the entire query time for ULTRA-RAPTOR is similar to or

lower than the time that MR takes for the route scanning phases only. ULTRA-TB achieves its

highest speedup over the other two algorithms for medium transfer speeds, which yields the

lowest number of event-to-event shortcuts. For high transfer speeds, the Bucket-CH search

for the initial and final transfers starts to dominate the running time of both ULTRA-based

algorithms. Accordingly, the speedup of ULTRA-TB over ULTRA-RAPTOR decreases.

The impact of the transfer speed on the travel time of the fastest journey is shown in

Figure 5.7 (right). As the transfer speed increases, the overall travel time decreases. The time

that is spent on an initial or final transfer also decreases at first, but its share in the overall
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Figure 5.7: Impact of transfer speed on query times and travel times, measured on the

Switzerland network with a core degree of 14 and a witness limit of 0. All results were

averaged over 10 000 random queries. Left: Query performance of MR, ULTRA-RAPTOR

and ULTRA-TB. Speed limits were obeyed during the construction of the transfer graph. For

MR and ULTRA-RAPTOR, query times are divided into route collecting/scanning, transfer

relaxation, and remaining time. Right: Total travel time and time spent on initial/final and

intermediate transfers for the journey with minimal arrival time. The travel time of a direct

transfer from source to target is shown for reference. For this comparison, we only chose

random queries for which the source and target vertex are connected in the transfer graph.

travel time becomes larger. From 10 km/h onward, transferring directly from the source

to the target starts becoming the best option for more queries, and consequently the time

spent on initial and final transfers starts increasing. For very high transfer speeds, a direct

transfer is almost always the fastest option. This matches our observation that intermediate

transfers become useless for high transfer speeds unless the source and target are isolated

from each other in the transfer graph. In contrast to initial and final transfers, intermediate

transfers have a very small impact on the overall travel time, further demonstrating that long

intermediate transfers are rarely needed.

Impact ofQuery Distance. Figure 5.8 compares the running times of the two-criteria

algorithms (MR, ULTRA-RAPTOR, and ULTRA-TB) depending on the query distance. We use

the geo-rank as a measurement for the distance. Geo-rank queries are generated by picking a
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Figure 5.8: Comparison of query times depending on the geo-rank for the Germany network.

For each geo-rank, we evaluated 10 000 random vertex-to-vertex queries. We compare the

previously fastest multimodal algorithm (MR) to ULTRA-RAPTOR and ULTRA-TB.

source vertex vs uniformly at random and sorting all vertices by their geographical distance

to vs. The 𝑖-th vertex in this order is then the target of the geo-rank query for rank 𝑖 . For our

comparison in Figure 5.8, we generated and evaluated 10 000 of these queries for the Germany

network. For all geo-ranks, ULTRA-TB is an order of magnitude faster than MR. ULTRA-

RAPTOR lies between these two algorithms; it is closer to ULTRA-TB for local queries and

closer to MR for long-range queries. Furthermore, we observe that many short-range queries

can be solved in less than one millisecond by ULTRA-TB with integrated preprocessing.

A geo-rank-based evaluation on the Germany network was also performed for the original

TB algorithm by Witt [Wit15]. The results are similar to ours but contain significantly more

outliers, especially for low ranks. Across all geo-ranks, the evaluation for the original TB

algorithm shows a considerable number of queries that take more than 10 milliseconds. These

can be attributed to queries for which the source vertex is located in particularly sparse parts

of the public transit network. In these regions, the correlation between geo-rank and actual

distance is poor, and thus a query can be a long-range query despite having a low geo-rank.

Adding an unrestricted transfer graph improves the correlation between geo-rank and query

complexity, which explains why we observe fewer outliers in comparison.



Experiments Section 5.3

85

Table 5.7: Overview of the HL preprocessing results. Running times were measured on the

Xeon machine with a single core and are displayed as (hh:)mm:ss. Only the outgoing hub

edges are reported. Because all evaluated transfer graphs are symmetrical, the number of

incoming hub edges is identical.

Stuttgart London Switzerland Germany

Preprocessing time 1:07:14 3:56 21:14 52:48:23

Outgoing hub edges of vertices 153 323 291 13 314 082 53 744 836 1 320 767 674

Outgoing hub edges of stops 1 898 414 1 363 960 1 952 586 45 075 714

Average vertex out-degree 131.4 73.3 89.0 192.2

5.3.3 Comparison to HL-Based Approach
We conclude with a comparison of ULTRA to the HL-based algorithms proposed by Phan and

Viennot [PV19]. Recall that the speedups reported by the authors are based on a comparison

between experiments performed on different machines. To allow for a fair comparison, we

re-implemented the HL-RAPTOR query, building on the same RAPTOR code that we also

used for MR and ULTRA-RAPTOR.

Preprocessing. For the HL preprocessing, we used the HL implementation provided

by the authors
1
. Results for the preprocessing phase are reported in Table 5.7. Note that

Phan and Viennot only compute hubs between pairs of stops because they only evaluate

their algorithms for stop-to-stop queries. In order to support vertex-to-vertex queries on

the full transfer graph, we compute hubs between all pairs of vertices. Unlike ULTRA,

the HL preprocessing is not easily parallelizable and was therefore run on a single core.

Although the HL preprocessing has a lower single-core preprocessing time, ULTRA becomes

significantly faster with parallelization. An exception to this is the London network, which

has a particularly small transfer graph but a large and complex public transit network. Because

the HL preprocessing operates only on the transfer graph whereas ULTRA has to consider

both, ULTRA is outperformed here even when parallelized. Regarding memory consumption,

ULTRA clearly outperforms HL because the number of shortcuts is much smaller than the

number of hub edges.

Queries. Table 5.8 compares the query performance of HL-RAPTOR to MR and ULTRA-

RAPTOR. We choose not to evaluate HL-CSA because the results reported by Phan and

Viennot indicate that it is only marginally faster than HL-RAPTOR, and therefore slower than

MCSA. This was confirmed by our preliminary experiments. We observe that HL-RAPTOR

only slightly outperforms MR on the three smaller networks and is slower on Germany. Its

speedup comes entirely from the initial transfer exploration. In the intermediate transfer

1https://github.com/lviennot/hub-labeling/

https://github.com/lviennot/hub-labeling/
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Table 5.8: Query performance for MR, HL-RAPTOR, and ULTRA-RAPTOR. Query times

are divided into phases: initialization, including scanning initial transfers (Init.), collecting
routes (Coll.), scanning routes (Scan), and relaxing transfers (Relax). All results are averaged
over 10 000 random queries.

Network Algorithm

Scans [k] Time [ms]

Route Edge Init. Coll. Scan Relax Total

Stuttgart

MR 35.6 687 12.3 5.2 5.2 11.1 33.5

HL-RAPTOR 39.3 3 068 1.9 5.3 5.1 18.2 30.7

ULTRA-RAPTOR 37.9 105 1.4 3.5 3.5 1.0 9.6

London

MR 5.0 500 6.4 1.9 2.7 7.0 18.0

HL-RAPTOR 5.6 1 599 0.9 1.8 2.7 8.0 13.4

ULTRA-RAPTOR 5.4 179 1.2 1.5 2.3 1.2 6.2

Switzerland

MR 33.0 731 10.6 4.8 7.2 11.7 34.1

HL-RAPTOR 38.4 2 337 1.6 5.0 7.8 17.8 32.1

ULTRA-RAPTOR 35.9 177 1.6 3.3 6.2 1.4 12.5

Germany

MR 541.4 12 359 154.2 187.5 153.5 236.2 731.4

HL-RAPTOR 629.4 41 773 28.8 214.8 183.4 381.4 808.3

ULTRA-RAPTOR 599.7 3 165 33.0 144.0 151.7 33.3 362.1

phase, using the precomputed hubs is actually slower than the Dijkstra search performed by

MR. This is due to the very high number of edges in the hub graph. The first few rounds of

a query typically reach most stops in the network, so most hub edges that are incident to a

stop need to be relaxed. This causes HL-RAPTOR to relax more than three times as many

edges as MR. HL-RAPTOR performs best on the London network, achieving a speedup of 1.3

over MR. By comparison, ULTRA-RAPTOR is faster than the HL-based approach by a factor

of more than two on all networks.

5.4 Conclusion
We revisited the shortcut hypothesis for a simple setting with one transfer mode and two-

criteria Pareto optimization and presented a more sophisticated speedup technique, ULTRA,

to exploit it. The centerpiece of ULTRA is a redesigned shortcut computation algorithm

that provably identifies all necessary intermediate transfers. Compared to the prototypical

approach by Sauer, ULTRA employs more effective optimizations to reduce the preprocessing

time while keeping the number of shortcuts low. With parallelization, the shortcut compu-

tation takes only a few minutes for metropolitan and mid-sized country networks. Because

the computational effort is quadratic in the number of stops, the preprocessing times are
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higher for Germany but still manageable at about three hours. Our experiments offer strong

support for the shortcut hypothesis in this problem setting. Regardless of the speed of the

transfer mode, the shortcut graph is much smaller than the transitively closed transfer graph

constructed in Chapter 4.3, even though it supports unrestricted transfers.

We proposed a generalized query framework that allows ULTRA shortcuts to be employed

by any public transit algorithm that requires one-hop transfers. This enables the computation

of unrestricted multimodal journeys without incurring the performance losses of existing

algorithms. In particular, combining ULTRA with CSA yields the first efficient multimodal

variant of CSA. To combine ULTRA with TB, we developed tailored versions of the ULTRA

preprocessing and the TB query. The resulting ULTRA-TB algorithm closes the performance

gap for the two-criteria setting and outperforms MR, the fastest previously known multimodal

algorithm for two-criteria optimization, by an order of magnitude.
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6 One-to-Many Search

The ULTRA framework as presented so far does not support one-to-all or one-to-many

searches. This is because the final transfers are explored with a backward Bucket-CH search,

which requires a single target vertex fromwhich it is run. A naive solution [SWZ19b, SWZ19a]

for one-to-many searches would be to perform one Bucket-CH search for each target vertex.

However, this is only viable for very small target sets, as the running time is proportional to

the number of targets. In this chapter, we therefore present a more sophisticated approach to

adapt ULTRA for one-to-many queries.

Related Work and Applications. Although studied extensively for road networks, one-

to-all and one-to-many problems have received little attention on multimodal networks. One

application that has been studied in a multimodal context is the computation of isochrones,

which are regions that are reachable from a given point within a specified time limit. Thus far,

algorithmic approaches for multimodal isochrones have been limited to applying Dijkstra’s

algorithm to a graph representation of the network [GBCI11, GBI12, KSSG17]. Another

application is simulation-based traffic assignment for public transit, such as the CSA-based

algorithm by Briem et al. [Bri+17]. Here, many-to-many routing is used to simulate the

movement of individual agents. An ULTRA-based multimodal variant of this algorithm has

already been proposed [SWZ19b, SWZ19a]. However, it relies on a naive adaptation of ULTRA

to a many-to-one setting, which is only feasible if the number of origin locations for the

passenger demand is fairly small. A scalable multimodal one-to-all algorithm would enable

the computation of full door-to-door assignments.

Isochrones, traffic assignment and other potential applications, such as POI queries, often

only require optimization of a single criterion. An area that requires one-to-many Pareto

optimization is the design of speedup techniques for one-to-one queries. Examples of public
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transit algorithms that employ one-to-many searches in a preprocessing phase are Transfer

Patterns [Bas+10] and Access Node Routing [DPW09a]. So far, no comparable speedup

technique has been developed for multimodal networks, partly due to prohibitively high

preprocessing costs. A more efficient algorithm for multimodal one-to-many search could be

a first step towards developing such a technique.

Chapter Outline. We present our extension of the ULTRA framework to one-to-many

queries in Section 6.1. The resulting algorithm scheme, ULTRA-PHAST, is the first efficient

approach for multimodal one-to-many search. In order to explore the final transfers to the

target vertices, ULTRA-PHAST adopts ideas from the RPHAST algorithm. Note that this

requires us to solve a more challenging problem than a regular one-to-many query because

every stop reached via the public transit network is a potential source vertex of a final transfer.

Similarly to ULTRA, ULTRA-PHAST can be combined with any public transit algorithm

that supports one-to-all search. We demonstrate this for three such combinations: For queries

optimizing only arrival time, we evaluate UP-CSA, the combination of ULTRA-PHAST and

CSA. For the Pareto optimization of arrival time and number of trips, we propose an additional

optimization that groups the final transfer searches for different numbers of trips. We evaluate

this in combination with RAPTOR, yielding UP-RAPTOR. Additionally, in Section 6.2 we

propose a one-to-many variant of TB, which previously only supported one-to-one queries,

and combine it with ULTRA-PHAST. We present experimental results in Section 6.3. For a

small to moderate number of targets, our algorithms are almost as fast as their public transit

counterparts. For large target sets, we achieve a speedup of up to an order of magnitude

compared with naive baseline algorithms. Finally, we offer concluding remarks and discuss

potential applications in Section 6.4.

6.1 ULTRA-PHAST
To handle multiple target vertices, ULTRA-PHAST replaces the Bucket-CH backward search

for the final transfers with a forward search inspired by PHAST. We first outline our ap-

proach for the earliest arrival problem in Section 6.1.1. Afterward, we extend it to the Pareto

optimization problem in Section 6.1.2.

6.1.1 Earliest ArrivalQueries
The naive approach of performing one Bucket-CH search per target solves a many-to-many

problem, computing the distances between all stops and all targets. This is more information

than is required in our case: For each target vt, we only need the distance from a single stop,

namely the stop at which the last used trip is exited in the optimal journey to vt. The difficulty

lies in the fact that we do not know this stop in advance. However, we can reformulate the final

transfer search as a one-to-many problem and solve it using PHAST in the following manner:

First, we compute the earliest arrival time at each stop v ∈ S , using a standard ULTRA query



ULTRA-PHAST Section 6.1

91

Algorithm 6.1: ULTRA-PHAST query algorithm.

1 Dijkstra search from vs in 𝐺↑, initialized with 𝜏dep

2 Downward sweep in 𝐺↓ [S]
3 Initialize the public transit algorithm with the stop arrival times found in line 2

4 Run the public transit algorithm without target pruning

5 Upward sweep in 𝐺↑ [S], initialized with the arrival times found in line 4

6 Downward sweep in 𝐺↓ [𝑉t]

without the backward Bucket-CH search and without target pruning. Afterward, we insert

a temporary edge (vs, v) with transfer time 𝜏arr (v) − 𝜏dep into the PHAST upward graph 𝐺↑.
We can then find the earliest arrival time at every target with a single PHAST search on our

augmented graph 𝐺↑. If we are also interested in the corresponding journey, we can simply

substitute the temporary edge (vs, v) with the journey to v found by the ULTRA query. In

practice, we do not actually insert temporary edges into 𝐺↑. Instead, we initialize the priority
queue used for the search in 𝐺↑ by directly inserting each stop v with 𝜏arr (v) as its distance.
As presented thus far, our approach still has a performance issue: The efficiency of the

upward search in 𝐺↑, which comprises the first phase of PHAST, relies on the fact that the

upward search space of a single source vertex is small. However, we perform an upward

search from all reached stops simultaneously. Hence, the search space of our upward search

will be the union of the search spaces of all stops, which is a large portion of the graph.

Efficient Upward Search. In order to improve the efficiency of the upward search, we op-

timize its memory and cache usage. First, we note that only vertices in the upward search space

of a stop are relevant for our algorithm. Because the set of stops does not change between

queries and is known beforehand, we can perform a stop selection analogous to the target

selection in RPHAST: We run a forward BFS on 𝐺↑ from all stops simultaneously and re-

move all vertices that are not visited. The resulting stop-selected upward graph is denoted

as 𝐺↑ [S]. Furthermore, we observe that if the transfer graph is strongly connected, every

query will reach every stop, regardless of the source vertex. Thus, every vertex in the stop-

selected upward graph will be visited during the upward search. We can therefore replace

the Dijkstra search in 𝐺↑ [S], which requires a priority queue, with a more efficient upward

sweep that is done analogously to the downward sweep of PHAST. If the transfer graph is

not strongly connected, such a sweep might scan many unreachable stops. Thus, we modify

the ULTRA query to keep track of the stop with the lowest rank that has been reached and

start the upward sweep at this stop.

AlgorithmOverview. The algorithmic framework for our one-to-many approach, which

we call ULTRA-PHAST, is outlined in Algorithm 6.1. The original ULTRA query explores

initial transfers with a Bucket-CH search from vs, using the results of a backward Bucket-CH
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search from the target vertex to prune the search space. Because this pruning technique is no

longer applicable in a scenario with multiple target vertices, the initial transfer search will

reach all stops that are reachable from vs. In this case, it is more efficient to explore the initial

transfers with an RPHAST search to S instead of Bucket-CH. The RPHAST search consists

of a Dijkstra search from vs in the CH upward graph 𝐺↑ (line 1) and a downward sweep

on the stop-selected downward graph 𝐺↓ [S] (line 2). The public transit network is then

explored using a black-box public transit algorithm without target pruning. This algorithm

is initialized with the arrival times at the stops found by the RPHAST search in line 3 and

then run in line 4. It outputs minimal arrival times for all stops in the network, which are

then propagated to the target set using a final upward and downward sweep in lines 5 and 6.

Because the upward sweep is equivalent to an RPHAST downward sweep in reverse, it has a

similar running time. Thus, the total running time of an ULTRA-PHAST query is roughly

equal to the combined running time of a public transit query without target pruning, two

RPHAST queries to S , and one RPHAST query to 𝑉t.

Optimized Contraction Order. The three sweeps can be further sped up by delaying

the contraction of stops and targets during the CH precomputation. Specifically, delaying

the contraction of stops will reduce the number of vertices in 𝐺↓ [S] and 𝐺↑ [S], whereas
delaying the contraction of targets will reduce the number of vertices in 𝐺↓ [𝑉t]. However,
this is only useful up to a certain point because eventually the quality of the contraction

order will degrade. This will lead to an unreasonable preprocessing time and cause too many

shortcuts to be inserted, which will in turn slow down the sweeps. We take this into account

by introducing tuning parameters 𝑓s and 𝑓t that determine how much the contraction of stops

and targets is delayed, respectively. Initially, only vertices that are neither a stop nor a target

may be contracted. Once fewer than 𝑓t · |S ∪𝑉t | uncontracted vertices remain, we also allow

targets to be contracted. Stops remain uncontractable until fewer than 𝑓s · |S | vertices remain.

Vertex Reordering. As demonstrated by Delling et al. [DGNW13], the order in which

the vertices of a graph are stored in memory can have a significant impact on the performance

of a journey planning algorithm. In particular, the order in which vertices are settled by

a depth-first search (DFS) has been shown to yield a good memory locality for Dijkstra-like

searches. For the PHAST-like sweeps in the upward graph𝐺↑ [S] as well as the downward
graphs 𝐺↓ [S] and 𝐺↓ [𝑉t], the vertices must be scanned in a topological order. We obtain

a topological ordering by performing a DFS on 𝐺↑ and reorder the vertices according to it.

Preliminary experiments have shown that this order performs at least as well as the level

order used by PHAST, which was chosen primarily because it allows for easy parallelization.

Implementation Details. Although the topological ordering of the vertices improves

the performance of the sweeps, it is inefficient for the public transit part of the query. Many

public transit algorithms, including RAPTOR or CSA, achieve a large part of their efficiency

by keeping the stop data consecutive in memory. One way to achieve this in multimodal
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Algorithm 6.2: Downward sweep to target set 𝑉t.

1 timestamp++

2 for v ∈ 𝑉 ↓ [𝑉t] in topological order do
3 if timestamp[v] ≠ timestamp then
4 timestamp[v] ← timestamp

5 𝜏arr [v] ← ∞
6 for each 𝑒 ← (𝑤, v) ∈ 𝐸↓ [𝑉t] do
7 𝜏new

arr
← 𝜏arr [𝑤] + 𝜏tra [𝑒]

8 update← 𝜏new
arr

< 𝜏arr [v]
9 if update then 𝜏arr [v] ← 𝜏new

arr
// conditional move

10 if update then p[v] ← p[𝑤] // conditional move

scenarios is to assign vertex IDs between 0 and |S | − 1 to the stops, and IDs between |S |
and |𝑉 | − 1 to the remaining vertices. However, this conflicts with the topological ordering

used for the RPHAST-like sweeps. Thus, we use different vertex orderings and IDs for the

public transit data structures and the RPHAST data structures, translating between them

whenever we switch between RPHAST and public transit searches. For the public transit data

structures, we assign IDs from 0 to |S | − 1 to the stops in such a manner that their relative

positions according to the topological order are preserved. This ensures that the two orders

are as similar as possible, and that sweeping over one ID range still requires only a single

sweep over the other.

Detailed pseudocode for one of the three sweeps (line 6 of Algorithm 6.1) is given in

Algorithm 6.2. The outer for-loop iterates over the vertices of the target-selected downward

graph 𝐺↓ [𝑉t] in topological order. For each vertex v , the inner loop in lines 6–10 relaxes the

incoming edges. Within the inner loop, parent pointers p[·] (which are required for journey

retrieval) and arrival times are updated frequently, but only if the arrival time of v is improved.

It is crucial for the performance of the sweep that these updates are implemented without

branching operations, since this would cause costly pipeline flushes if the branch prediction

fails. We therefore use conditional move operations to update the arrival time and parent

pointer in lines 9 and 10. To avoid resetting the arrival times of all vertices before each sweep,

the algorithm maintains a global timestamp, which is incremented at the start of each sweep,

and a local timestamp timestamp[v] for each vertex v . Whenever a new vertex v is accessed
in the outer loop, lines 3–5 compare timestamp[v] to the global timestamp. If they are not

equal, the timestamp of v is updated and its arrival time is reset. Note that because the sweep

processes the vertices in topological order, there is no need to check the timestamp of the

vertex 𝑤 in line 7 because it was already processed by the outer loop.
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6.1.2 Optimizing Number of Trips

We proceed with describing how our approach can be extended to find a two-criteria Pareto set

(optimizing arrival time and number of trips) for every target. Because the maximum number

of trips required by any Pareto-optimal journey is usually quite low, it is feasible to simply

perform the final upward and downward sweep of our algorithm once for every possible

number of trips. Furthermore, we can apply an optimization that was originally proposed

for speeding up multiple PHAST searches from different source vertices [DGNW13]: Given

a fixed parameter 𝑘 , we no longer explore the final transfer for journeys using between 0

and 𝑘 − 1 trips with 𝑘 separate upward and downward sweeps. Instead, we perform one

upward and downward sweep that update all 𝑘 arrival time values at once. Note that 𝑘 must be

a fixed value because the sweeps are only efficient if the arrival times are stored consecutively

in arrays of a fixed size 𝑘 .

Journeys using 𝑘 or more trips are not handled by this grouped sweep. However, we observe

that only a few stops are reached by Pareto-optimal journeys that require a high number

of trips. Propagating such journeys via a PHAST sweep, which always explores the entire

graph, is wasteful because it will not improve the arrival times of most vertices. Thus, for

journeys using 𝑘 or more trips, we switch to Dijkstra searches on a contracted transfer graph

that contains all stops and targets, in a similar manner to MR. Similarly to the sweeps, the

Dijkstra searches use timestamps to initialize only the labels of visited vertices. However,

when the label of a vertex is initialized, we do not set its arrival time to ∞, but to the best

arrival time found during the grouped sweeps. This ensures that journeys that are dominated

by journeys with fewer trips are pruned early on.

6.2 Integration with Trip-Based Routing

Combining ULTRA-PHAST with TB requires a one-to-all variant of TB. For CSA and RAPTOR,

supporting one-to-all queries is trivial because they already maintain optimal solutions at

every reached stop. Thus, a one-to-all query can be answered correctly by simply disabling

target pruning. This is not the case for TB because it maintains solutions only for the target

stop. Although a one-to-all variant of TB was previously used in the preprocessing phase of

TB-CST [Wit16], it was not described in detail. We therefore give a thorough description of

UP-TB, which combines one-to-all TB with ULTRA-PHAST.

Whereas the original TB query maintained a set of Pareto-optimal labels only at the target

stop, UP-TB maintains arrival times at every stop. For each stop v and number of trips 𝑛,

the earliest arrival time via a trip is given by 𝜏arr (v, 𝑛). For 𝑛 = 0, it is initialized with ∞.
Following the ULTRA-PHAST framework, initial transfers are explored with an RPHAST

search (cf. lines 1–3 of Algorithm 6.1). Initial trip segments are then collected using the same

approach described for the ULTRA-TB query in Chapter 5.2.2: for each route visited by an

initial transfer, the earliest reachable trip segments are identified and collected in a FIFO

queue 𝑄1. Afterward, the algorithm proceeds in rounds: In round 𝑛, the arrival time 𝜏arr (v, 𝑛)
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Algorithm 6.3: Modified trip scanning procedure for the UP-TB query algorithm.

1 Procedure ScanTrips(𝑄𝑛, 𝑄𝑛+1)
2 for each 𝑇 [ 𝑗, 𝑘] ∈ 𝑄𝑛 do
3 for 𝑖 from 𝑗 to 𝑘 do
4 v ← v (𝑇 [𝑖])
5 if 𝜏arr (𝑇 [𝑖]) ≥ 𝜏arr (v, 𝑛) then continue
6 𝜏arr (v, 𝑛) ← 𝜏arr (𝑇 [𝑖])
7 for each 𝑇 [ 𝑗, 𝑘] ∈ 𝑄𝑛 do
8 𝑘 ′ ← 𝑗 − 1
9 for 𝑖 from 𝑗 to 𝑘 do

10 v ← v (𝑇 [𝑖])
11 if 𝜏arr (𝑇 [𝑖]) > 𝜏arr (v, 𝑛) then continue
12 𝑘 ′ ← 𝑖

13 𝑘 ← 𝑘 ′

14 for each 𝑇 [ 𝑗, 𝑘] ∈ 𝑄𝑛 do
15 for 𝑖 from 𝑗 to 𝑘 do
16 for each (𝑇 [𝑖],𝑇 ′ [𝑖′]) ∈ 𝐸s do
17 Enqueue(𝑇 ′ [𝑖′ + 1], 𝑄𝑛+1)

of each stop v is initialized with the arrival time 𝜏arr (v, 𝑛 − 1) from the previous round. Then

the trip segments in 𝑄𝑛 are scanned by invoking the ScanTrips procedure. Newly reached

trip segments are collected in the queue 𝑄𝑛+1 for the next round. This is repeated until 𝑄𝑛 is

empty. Then, final transfers are explored with upward and downward sweeps (cf. lines 5–6 of

Algorithm 6.1), using the arrival times 𝜏arr (·, ·) as input.
The ScanTrips procedure must be modified to support one-to-all search; pseudocode is

given in Algorithm 6.3. Each enqueued trip segment 𝑇 [ 𝑗, 𝑘] is scanned three times. The

first scan (lines 2–6) updates the arrival times for all stops visited by the trip segment. The

second scan (lines 7–13) then uses the updated arrival times to apply local pruning. Consider

a stop event 𝑇 [𝑖] with 𝑗 ≤ 𝑖 ≤ 𝑘 and its visited stop v = v (𝑇 [𝑖]). If the arrival time of 𝑇 [𝑖] is
later than the stop arrival time 𝜏arr (v, 𝑛), then 𝑇 [𝑖] is not the fastest way to reach v with 𝑛

trips, so its outgoing transfers do not need to be relaxed. The second scan identifies the last

stop event 𝑇 [𝑘 ′] that cannot be discarded with local pruning and shortens the trip segment

to 𝑇 [ 𝑗, 𝑘 ′]. The third scan (lines 14–17) then relaxes the outgoing intermediate transfers of

all stop events𝑇 [𝑖] with 𝑗 ≤ 𝑖 ≤ 𝑘 ′ by iterating over the set 𝐸s of ULTRA shortcuts. This step

is unchanged from the original TB algorithm.

Note that this approach does not apply local pruning to its full extent. It only removes the

longest suffix of irrelevant stop events from 𝑇 [ 𝑗, 𝑘]; the outgoing transfers of irrelevant stop

events between 𝑇 [ 𝑗] and 𝑇 [𝑘 ′] are still relaxed. Although this slightly increases the search

space, it allows the third scan to be implemented with a single for-loop instead of two nested
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ones, as in the original TB algorithm (cf. Section 4.2.4). Because the outgoing shortcuts of

consecutive stop events are stored consecutively in memory, the shortcuts that are relaxed in

lines 15–17 form a continuous range that can be processed with a single for-loop.

6.3 Experiments
We evaluate our algorithms on the four benchmark networks, using walking with a constant

speed of 4.5 km/h as the transfer mode. All experiments were conducted on the Xeon machine.

The ULTRA shortcuts were computed using the same settings as in Chapter 5.3: The transfer

graph was contracted up to an average vertex degree of 20 for Germany and 14 for the other

networks. The shortcut computation was performed in parallel on all 16 cores with a witness

limit of 0.

Baseline Algorithms. Because no multimodal algorithms that support one-to-many

queries have yet been proposed, we create baseline algorithms for comparison by adapting

the ideas of MR and MCSA (the latter of which was introduced in Chapter 5.3.2) to a scenario

with multiple target vertices. MR and MCSA handle initial and final transfers by running

forward and backward searches on the partial upward and downward graph constructed by

Core-CH, followed by Dijkstra searches in the core graph. When adapting MR and MCSA to

a one-to-many scenario, the forward search can be run unchanged, but the backward search

is no longer feasible. Instead, we modify the Core-CH precomputation such that vertices

in S ∪𝑉t may not be contracted, rather than just stops. The backward search then becomes

unnecessary because the Dijkstra searches in the core graph already reach all targets. For our

experiments, we contracted up to an average vertex degree of 14, except for very large target

sets with 4|𝑉t | ≥ |𝑉 |, for which we used a vertex degree of 10 instead.

Target Sets. For our experiments, we consider three types of target sets: all vertices,

all stops, and randomly generated target sets. For the randomly generated target sets, we

follow the approach by Delling et al. [DGW11]: We pick a center vertex 𝑐 ∈ 𝑉 uniformly

at random and then run a Dijkstra search from 𝑐 to find a ball B ⊆ 𝑉 consisting of the |B |
nearest neighbors of 𝑐 . From that ball, we then pick target vertices uniformly at random. We

evaluate our algorithms for different combinations of ball size |B | and target set size |𝑉t |, to
study the impact of both the number of targets and the distribution of the targets in the graph.

6.3.1 UP-CSA
For the earliest arrival problem, we compare UP-CSA, a combination of ULTRA-PHAST and

CSA, to our one-to-many adaptation of MCSA.

Contraction Order. In Figure 6.1 (left), we evaluate the impact of the tuning param-

eters 𝑓t and 𝑓s on the performance of the three sweeps performed by ULTRA-PHAST: the



Experiments Section 6.3

97

1.5 2 3 4 5 6 7 8 9

0

1

2

3

4

5

𝑓t

Q
u
e
r
y
t
i
m
e
[
m
s
]

10 40 90 160 250

0

30

60

90

120

150

180

Number of targets |𝑉t | [k]

Q
u
e
r
y
t
i
m
e
[
m
s
]

𝑓s 1.5 5.0 10.0

Stop sweeps

Target sweeps

|B |/|𝑉t | 1 4 16

MCSA

UP-CSA

Figure 6.1: Impact of delayed contraction (left) and number of targets (right), measured

on the Switzerland network. All running times are averaged over 1 000 queries each on 10

randomly chosen ball target sets. Left: Performance of the three ULTRA-PHAST sweeps

depending on 𝑓t and 𝑓s, for ball target sets with |𝑉t | = 2
16
and |B | = 2

18
. Right: Performance

of MCSA and UP-CSA for different values of |𝑉t | and |B |. Configurations with |B | > |𝑉 | were
omitted.

downward sweeps in𝐺↓ [S] and𝐺↓ [𝑉t], and the upward sweep in𝐺↑ [S]. The contraction of

stops and targets is prohibited until 𝑓t · |S ∪𝑉t | vertices are left, whereas stops are further left
uncontracted until 𝑓s · |S | vertices remain. We observe that delaying the target contraction

speeds up the target-related sweep by up to a factor of 1.6 without impacting the performance

of the stop-related sweeps. Delaying the contraction of stops slightly increases the running

time of the sweep in𝐺↓ [𝑉t], but this is offset by the significant performance gains for the stop-

related sweeps. For all following experiments involving ball target sets, we set both 𝑓t and 𝑓s
to 1.5. The CH precomputation time for this configuration is 2:27 minutes, approximately

three times as long as a CH precomputation without delayed contraction.

Target Set Size. Figure 6.1 (right) shows how the size and distribution of the target

set impacts the performance of MCSA and UP-CSA. For both algorithms, the exploration

of transfers becomes more costly as the target set, and thus the size of the search graphs,

increases. The effect is much more pronounced for MCSA, for which the Dijkstra searches

quickly start to dominate the overall running time. By contrast, UP-CSA spends a much

smaller portion of the running time on exploring transfers. Accordingly, we only observe
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Table 6.1: Preprocessing performance of MCSA and ULTRA-PHAST for three types of

target sets: all vertices (𝑉 ), all stops (S), and vertices randomly chosen from a ball (B). For
the ball configuration, measurements are averaged over 10 randomly generated target sets

with |𝑉t | = 2
17
for Germany, |𝑉t | = 2

14
for the other networks, and |B |/|𝑉t | = 2 for all networks.

All times are in (m)m:ss format. Preprocessing times for ULTRA-PHAST exclude the ULTRA

shortcut computation.

Network 𝑉t Core-CH time

ULTRA-PHAST

CH time |𝑉 ↓ [𝑉t] | |𝐸↓ [𝑉t] |

Stuttgart

𝑉 – 4:10 1 166 604 4 599 303

S 1:45 4:10 19 376 266 130

B 2:47 7:35 22 280 242 493

London

𝑉 – 0:17 181 642 697 593

S 0:19 0:17 29 478 166 170

B 0:32 0:32 19 940 126 424

Switzerland

𝑉 – 1:28 603 691 2 360 885

S 1:09 1:28 37 669 284 328

B 1:39 2:18 19 662 148 182

Germany

𝑉 – 29:04 6 870 496 27 700 776

S 20:16 29:01 364 689 3 535 769

B 18:35 47:23 152 845 1 304 285

a 30% increase in the running time between the fastest and slowest configuration. Increasing

the ball size causes the stop and target selection to become less effective, as the targets are

spread over a wider area of the graph. However, this only has a small effect on the overall

performance of UP-CSA.

Detailed Performance. Tables 6.1 and 6.2 give a detailed overview of the performance

of MCSA and UP-CSA for three types of target sets: all stops, all vertices, and a ball target set

of moderate size. For the ball target sets, we use contraction delay factors of 𝑓s = 𝑓t = 1.5. For

the other two sets, for which delaying the contraction of targets is pointless, we achieve the

best performance with 𝑓s = 1.5. Preprocessing times and graph sizes are reported in Table 6.1.

Unlike MCSA, UP-CSA requires a target-independent preprocessing phase to compute the

ULTRA shortcuts. For most configurations, this phase dominates the overall preprocessing

time. Once the target set is chosen, MCSA performs a Core-CH precomputation, whereas

UP-CSA performs a stop- and target-delayed CH precomputation, reorders the vertices and

performs the stop and target selection. The time required for the latter steps is negligible

(about a second on the smaller networks and 15 seconds on Germany). The delayed CH
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Table 6.2: Query performance of MCSA and UP-CSA, using the same experimental setup as

in Table 6.2. Measurements are averaged over 10 000 random queries, which are distributed

evenly among the 10 target sets for the ball configuration. Query times are divided into

phases: initialization, including initial transfers (Init.), connection scan (Scan), final upward
sweep (Up), and final downward sweep (Down).

Net-

work

𝑉t Algorithm

Query time [ms]

Init. Scan Up Down Total

S
t
u
t
t
g
a
r
t

𝑉
MCSA 205.9 269.5 – – 475.4

UP-CSA 0.7 4.8 0.7 18.9 25.2

S MCSA 7.3 13.4 – – 20.8

UP-CSA 0.7 4.3 0.7 0.5 6.3

B MCSA 8.5 15.0 – – 23.5

UP-CSA 0.9 4.1 0.9 0.7 6.5

L
o
n
d
o
n

𝑉
MCSA 18.7 36.2 – – 55.1

UP-CSA 0.6 9.2 0.6 2.4 12.8

S MCSA 4.0 17.3 – – 21.3

UP-CSA 0.6 8.6 0.6 0.4 10.2

B MCSA 6.1 19.8 – – 26.0

UP-CSA 0.7 8.4 0.7 0.4 10.2

S
w
i
t
z
e
r
l
a
n
d

𝑉
MCSA 79.1 161.0 – – 240.1

UP-CSA 0.9 17.5 1.0 9.6 29.0

S MCSA 7.3 33.2 – – 40.5

UP-CSA 0.9 17.2 1.0 0.7 19.7

B MCSA 9.5 36.5 – – 46.1

UP-CSA 1.1 16.4 1.1 0.5 19.1

G
e
r
m
a
n
y

𝑉
MCSA 1 892.0 4 295.2 – – 6 187.2

UP-CSA 11.4 343.9 12.9 185.5 553.7

S MCSA 117.1 670.7 – – 787.9

UP-CSA 11.8 391.5 13.0 8.1 424.4

B MCSA 163.9 791.4 – – 955.3

UP-CSA 12.6 338.1 15.2 5.5 371.5

precomputation is slower than the Core-CH precomputation in most configurations, but

never by more than a factor of three. In terms of space consumption, both algorithms are

lightweight: MCSA requires the core graph and the upward and downward graph generated

by the Core-CH precomputation, which are similar in size to the original graph. ULTRA-

PHAST requires the set of shortcuts and the three sweep graphs 𝐺↓ [S], 𝐺↑ [S] and 𝐺↓ [𝑉t].
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Table 6.3: Performance of the UP-RAPTOR final transfer exploration depending on the

number 𝑘 of grouped sweeps. Running times are averaged over 10 000 random queries with

the set S of stops as the target set.

Network

Sweep [ms] Dijkstra [ms] Total [ms]

𝑘 = 4 6 8 4 6 8 4 6 8

Stuttgart 2.9 4.5 6.3 3.7 1.5 0.5 6.6 6.0 6.8

London 2.1 3.1 4.1 3.0 0.5 0.0 5.0 3.5 4.1

Switzerland 3.5 5.4 7.4 5.2 0.6 0.0 8.7 5.9 7.4

Germany 45.5 69.6 101.4 166.9 29.0 2.2 212.4 98.6 103.6

The size of the latter is listed in Table 6.1, whereas the size of the former two can be inferred

from the 𝑉t = S configuration, in which case all three graphs are of nearly identical size.

Query performance is detailed in Table 6.2. On the smaller target sets, UP-CSA is roughly

two to three times faster than MCSA. On all networks except for Stuttgart, the connection

scanning phase takes up more than 80% of the running time. This indicates that the perfor-

mance of UP-CSA is close to the optimum that can be achieved with CSA. If all vertices are

chosen as targets, MCSA is particularly inefficient because its main optimization (contracting

the transfer graph) is no longer possible. By substituting the Dijkstra searches with memory-

efficient sweeps, UP-CSA reduces the share of the transfer graph exploration in the overall

query time to 30–40% on most networks. This results in a speedup over MCSA of 4.3 on

London, 8.3 on Switzerland and 11.2 on Germany. Again, the Stuttgart network is an outlier

because its transfer graph is very large in comparison to the public transit network. Thus,

although the transfer graph exploration still takes up 80% of the running time, the speedup

over MCSA is particularly high at 18.9.

We also evaluate how the RPHAST downward sweep for the initial transfers compares to a

Bucket-CH search, which is used by the original ULTRA algorithm: On Switzerland, a Bucket-

CH search takes 1.8ms compared to 0.9ms for RPHAST. On Germany, it takes 46.4ms, which

is more than the forward and backward Bucket-CH searches performed by ULTRA combined,

whereas RPHAST requires only 11.4ms. This demonstrates that although Bucket-CH is more

efficient in a one-to-one scenario because it allows for target pruning, RPHAST is clearly

superior in a one-to-many context.

6.3.2 UP-RAPTOR and UP-TB
For the Pareto optimization problem, we combine ULTRA-PHAST with RAPTOR as well as

our implementation of one-to-many TB. We compare the resulting algorithms, UP-RAPTOR

and UP-TB, to one-to-many MR. The Dijkstra searches for the non-grouped rounds operate on

the same core graph that is also used by MCSA, MR and the ULTRA shortcut computation. To

determine the best choice for the number 𝑘 of grouped sweeps, we evaluate the performance
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of UP-RAPTOR for random queries with the target set S . The results are shown in Table 6.3.

The best tradeoff is achieved for 𝑘 = 6. For 𝑘 = 4, the Dijkstra searches for the later rounds still

take up the majority of the running time. For 𝑘 = 8, the time for the Dijkstra searches becomes

negligible, but this is outweighed by the increased cost for the sweeps. For all subsequent

experiments, we choose 𝑘 = 6 unless otherwise noted.

Detailed performance measurements for MR, UP-RAPTOR and UP-TB are presented in

Table 6.4. For𝑉t = 𝑉 , UP-RAPTOR achieves a speedup between 3.8 and 7.8 compared with MR.

As expected, this is lower than the speedup of UP-CSA over MCSA. As the search space of

the Dijkstra searches performed by MR becomes smaller in the later rounds, the performance

gains of the RPHAST sweeps decline. Grouping the sweeps helps counteract this effect:

although UP-RAPTOR performs eight or more rounds on average, exploring the final transfers

only takes three to five times as long compared with UP-CSA. Because the share of the final

transfer phase in the overall running time is very high (55–85%), UP-TB is only able to achieve

a small speedup over UP-RAPTOR.

For 𝑉t = S , UP-RAPTOR achieves a speedup between 2.7 and 5.7 over MR and reduces the

share of the final transfer phase in the running time to 13–29%. UP-TB improves the speedup

further to 3.4–9.7 and increases the share to 32–49%. For this target set, the performance gains

are much stronger than those observed for UP-CSA. This is mainly for two reasons: Firstly,

MR makes no distinction between intermediate and final transfers, whereas UP-RAPTOR

only explores intermediate transfers for which there is an ULTRA shortcut. Accordingly,

UP-RAPTOR reaches fewer stops in each intermediate transfer phase, which in turn speeds

up the route collection phase. This search space reduction has a stronger effect on RAPTOR

than on CSA, which iterates over all connections, regardless of whether they are reachable.

The second reason is that one-to-all MR has a high overhead due to the initialization of data

structures. One-to-one MR maintains one arrival label per vertex, which is overwritten in

each round. The only exception is the target vertex, at which one label is maintained for each

round in order to store all Pareto-optimal journeys. In one-to-all MR, however, every vertex

is a target, so it must maintain one label per vertex and round. At the start of each round, a

significant amount of time is spent allocating these labels. By contrast, UP-RAPTOR mostly

avoids this overhead. Because intermediate transfers are explored via direct stop-to-stop

shortcuts, vertex arrival labels are only required for the initial and final transfers. For the 𝑘

grouped rounds, these labels are allocated in advance and reset on demand using timestamps.

6.4 Conclusion
We adapted ULTRA for one-to-many and one-to-all queries. Because ULTRA explores initial

and final transfers with a bidirectional search, which is not feasible for a large number of

target vertices, we developed a new final transfer search that incorporates ideas from RPHAST.

We replaced the upward CH search of RPHAST with an efficient upward sweep, taking into

account that all stops that are reachable via a trip act as potential source vertices for the

final transfer search. We also extended our approach to two-criteria Pareto optimization,
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Table 6.4: Query performance of MR, UP-RAPTOR and UP-TB, using the same experimental

setup as in Table 6.2. Query times are divided into phases: Init. includes the initialization of

data structures and the exploration of initial transfers. Collect consists of the CollectRoutes
procedure for the RAPTOR-based algorithms and CollectInitialTrips for UP-TB. Inter.
represents the exploration of intermediate transfers (for the RAPTOR-based algorithms

only). Final encompasses the exploration of final transfers, which consists of an upward

and downward sweep for the grouped rounds and Dijkstra searches for the remainder. The

number of grouped sweeps is set to 𝑘 = 6 for all configurations except 𝑉t = 𝑉 on Germany,

for which 𝑘 = 8 performs better.

Net-

work

𝑉t Algorithm

Time [ms]

Init. Collect Scan Inter. Final Total

S
t
u
t
t
g
a
r
t 𝑉

MR 220.1 16.0 9.9 576.5 – 820.8

UP-RAPTOR 1.2 8.1 7.2 2.3 102.7 121.4

UP-TB 0.7 1.9 5.6 – 102.3 110.5

S
MR 77.1 10.7 8.4 20.5 – 116.7

UP-RAPTOR 1.0 6.5 5.4 1.7 6.0 20.6

UP-TB 0.7 1.4 4.0 – 5.9 12.0

L
o
n
d
o
n

𝑉

MR 21.8 4.4 4.7 62.3 – 92.9

UP-RAPTOR 1.1 3.1 4.2 2.9 13.5 24.6

UP-TB 0.5 1.4 6.2 – 13.0 21.2

S
MR 18.7 4.0 4.1 12.5 – 38.6

UP-RAPTOR 1.1 2.9 3.8 2.6 3.5 13.9

UP-TB 0.5 1.3 5.9 – 3.6 11.3

S
w
i
t
z
e
r
l
a
n
d 𝑉

MR 115.4 16.9 16.3 327.4 – 476.0

UP-RAPTOR 1.6 9.0 14.2 4.5 48.9 78.2

UP-TB 0.9 2.7 10.5 – 48.2 62.4

S
MR 48.1 12.0 14.3 24.9 – 99.3

UP-RAPTOR 1.6 7.4 12.5 4.1 5.9 31.5

UP-TB 0.8 2.4 8.7 – 5.7 17.8

G
e
r
m
a
n
y 𝑉

MR 2 302.9 511.7 275.4 10 610.9 – 13 701.0

UP-RAPTOR 19.5 313.9 264.9 91.7 1 061.6 1 751.6

UP-TB 11.1 42.7 142.0 – 1 043.6 1 240.0

S
MR 653.7 512.5 278.1 656.7 – 2 101.1

UP-RAPTOR 18.4 309.2 256.3 89.9 98.6 772.4

UP-TB 10.5 41.3 141.4 – 98.8 292.5
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which requires multiple final transfer searches. The resulting algorithmic framework, ULTRA-

PHAST, yields the first algorithms specifically designed for one-to-all and one-to-many

searches in multimodal networks. We evaluated ULTRA-PHAST versions of CSA, RAPTOR

and TB on the networks of Switzerland and Germany. For small and moderately sized target

sets, the share of the transfer exploration in the overall running time is reduced to 10–20%,

with the rest being equivalent to an unimodal public transit query. For large target sets, we

achieved a speedup of up to an order of magnitude over naive adaptations of MR and MCSA.

Regarding possible applications, UP-CSA could serve as an ingredient in algorithms for

extended one-to-many problems that require single-criterion optimization. Note that in some

of these applications, including POI queries and isochrones, the set of target vertices is not

known in advance but discovered during the query. Existing algorithms for these problems

on road networks build on hierarchical speedup techniques, such as CRP and CH, in order to

restrict the search space compared to a full one-to-all query [EP14, DW15, BBDW19]. Similar

techniques could be applied to the final transfer sweep that is performed by ULTRA-PHAST.

A potential drawback of our approach is that it requires a full search on the public transit

network before the final transfers are explored. In order to restrict the search space in the

public transit network as well, integrated approaches would need to be developed.

For problems that require two-criteria Pareto optimization, UP-RAPTOR or UP-TB are

potential building blocks. The grouped sweeps used to optimize the number of trips could

be sped up further by using SIMD (single instruction, multiple data) instructions, such as

SSE or AVX. Finally, ULTRA-PHAST could serve as an ingredient in a multimodal speedup

technique that, unlike ULTRA, also accelerates the search in the public transit network. This

would likely require ULTRA-PHAST to be combined with profile search.
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7 Optimizing Transfer Time

In Chapter 5, we presented ULTRA for the Pareto optimization problem with the two criteria

arrival time and number of trips. For pure public transit journey planning, this is the most

commonly studied problem setting. The reason for including the number of trips as a criterion

is that it serves as a measure of the discomfort associated with a journey: passengers will

often accept a longer travel time if it saves a transfer between vehicles. However, especially in

multimodal networks, this is not the only source of discomfort. In a scenario with unrestricted

walking, Delling et al. [Del+13] have previously considered the walking duration as a proxy

for discomfort. To generalize this to arbitrary transfer modes, we argue that the transfer time,

i.e., the time spent using the transfer mode, should be considered as a discomfort criterion. In

networks with restricted transfers, this is not as important because journeys will generally

have a low transfer time anyway. With an unlimited transfer mode, however, journeys that

are optimal according to the other two criteria often require an excessive amount of transfer

time. As our experiments in Section 7.3 will show, there are often alternatives that reduce the

transfer time considerably, at only a slight additional expense in the other two criteria. Such

alternatives are missed by existing two-criteria algorithms, regardless of whether they allow

unlimited transfers or not. Hence, we argue that in order to compute satisfactory journeys in

a multimodal setting, it is necessary to minimize the transfer time as a third criterion. In this

chapter, we investigate how this can be done efficiently.

State of the Art. Adding a third criterion poses algorithmic challenges. The fastest

two-criteria algorithms, RAPTOR and TB, achieve their low query times in part by avoiding

the explicit representation of Pareto sets. Both algorithms handle the number of trips by

splitting their data structures per round. Within each round, RAPTOR maintains the earliest

arrival time at each stop. Since the data structures required for this have a fixed size, they
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can be preallocated at the start of each round. If more criteria are added, however, there may

be multiple Pareto-optimal solutions per stop and round. McRAPTOR stores these in a bag,

whose size may grow and shrink throughout the execution of the algorithm. In practice, the

bags are implemented as dynamic arrays, which may require reallocations once they exceed

the available space in memory. These reallocations are one of two reasons why McRAPTOR

is much slower than RAPTOR.

The second reason is that Pareto sets become impractically large for three or more cri-

teria [Del+13, BBS13, DDP19]. Many of these journeys are slight variations of each other

with unattractive tradeoffs, such as adding an hour of transfer time to save one minute of

travel time. Our goal is to present a small selection of journeys with favorable tradeoffs to

the user. Several definitions for a filtered Pareto set have been proposed in a multimodal

context [Del+13, BBS13], but so far no efficient algorithms are known for computing them

exactly. For our use case, restricted Pareto sets [DDP19] are of particular interest because they

limit the amount of extra arrival time or additional trips compared to the two-criteria Pareto

set. In networks with one-hop transfers, they can be computed quickly and exactly with

BM-RAPTOR (Bounded McRAPTOR), a query algorithm based on (Mc)RAPTOR. However, so

far restricted Pareto sets have not been applied to multimodal journey planning.

Chapter Outline. To obtain efficient algorithms that optimize transfer time as a third

criterion, we take a two-step approach. In Section 7.1, we develop efficient approaches for

computing full three-criteria Pareto sets. While we mainly consider transfer time as the third

criterion, we also discuss the degree to which these results carry over to other criteria.

In Section 7.1.1, we show that the problem can be solved in polynomial time for this

particular combination of criteria. Using this insight, we develop a three-criteria extension of

TB called McTB (Multicriteria Trip-Based Routing) in Section 7.1.3. In contrast to RAPTOR,

TB does not maintain arrival times for each stop. Instead, it exploits the observation that

every stop event is already associated with a particular arrival time. For each round and trip,

the reached index keeps track of the earliest reachable stop event along the trip. When a

third criterion is added, this is no longer sufficient: it may be possible to reach a later stop

event with a better value for the third criterion. However, for each round and stop event, the

journey with the lowest value for the third criterion still dominates all others. McTB exploits

this observation by tracking the currently best value for the third criterion at each stop event.

Combined with the round-based approach that is already part of TB, this makes the third

criterion the only one whose value must be tracked explicitly. Consequently, McTB is the

first algorithm that optimizes a third criterion without requiring dynamic arrays to represent

the Pareto sets, except for a single set of solutions at the target vertex.

TB requires a preprocessing phase that computes transfers between stop events. As shown

in Chapter 5, unlimited transfers can be enabled by replacing this phase with the event-to-

event variant of ULTRA. To apply this to McTB, we develop McULTRA (Multicriteria ULTRA),

a three-criteria extension of ULTRA, in Section 7.1.2. Analogously to ULTRA, McULTRA can

be combined with any three-criteria public transit algorithm that requires one-hop transfers.
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Combining McULTRA with McTB already yields a fairly efficient algorithm, but its per-

formance is still hampered by the large size of the computed Pareto sets. In Section 7.2, we

therefore integrate our approaches with restricted Pareto sets. We define restricted Pareto sets

and outline the BM-RAPTOR algorithm for computing them in Section 7.2.1. In Section 7.2.2,

we show that only minor changes are necessary to make BM-RAPTOR utilize McULTRA

shortcuts, thus enabling fast computation of restricted Pareto sets in a multimodal network.

To achieve even faster query times, we re-engineer the pruning scheme of BM-RAPTOR to

support (Mc)TB as the underlying query algorithm in Section 7.2.3.

In Section 7.3, we evaluate our algorithms on the four benchmark networks. We show that

the shortcut hypothesis holds in the three-criteria setting if the speed of the transfer mode is

low to moderate. Combining McULTRA and McTB yields a speedup of five to ten compared

with MCR, the fastest previously known multimodal algorithm for three criteria. UBM-

TB (Bounded ULTRA-McTB), our new algorithm for restricted Pareto sets, offers interactive

query times even on large networks, achieving a speedup of 30–90 compared with MCR.

7.1 Three-Criteria Pareto Optimization
In this section, we investigate the one-to-one, fixed departure time, Pareto optimization

problem for a specific combination of three criteria. The first two, as usual, are arrival time

and number of trips. The third criterion must fulfill two requirements:

(R1) In the time-expanded graph representation of the network, there must be an edge cost

function with scalar values and the following property: the value of a journey according

to the third criterion is the sum of the edge costs along the associated path.

(R2) A shortest path in the transfer graph according to arrival time is also a shortest path

according to the third criterion.

Transfer time fulfills both requirements because its edge cost is 0 for all trip edges and equal

to the travel time for all transfer edges. Requirement (R1) ensures that there is a single optimal

value for the third criterion. An example of a criterion for which this is not the case is the

set of visited fare zones, which has been considered by Delling et al. [Del+13] as a proxy for

fare. Requirement (R2) ensures that if we ignore the public transit network entirely and only

consider the transfer graph, the problem reduces to finding the shortest path according to a

single criterion (i.e., travel time). Without this requirement, the number of Pareto-optimal

solutions with zero trips may already be exponential [Han80]. In Section 7.1.1, we show that

this problem can be solved in polynomial time. Afterward, we develop efficient algorithms

for it by adapting ULTRA in Section 7.1.2 and TB in Section 7.1.3.

7.1.1 Problem Complexity
The key observation that allows this problem to be solved efficiently is that the arrival time

of a Pareto-optimal journey is fully determined by its final stop event.
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Lemma 7.1. Consider a three-criteria query with source vertex vs, target vertex vt and departure
time 𝜏dep in which the third criterion fulfills requirements (R1) and (R2). Given a fixed number
of trips 𝑛 and a fixed stop event 𝜀, a Pareto set J for this query contains at most one journey
with 𝑛 trips that uses 𝜀 as the final stop event.

Proof. Let 𝐽 and 𝐽 ′ be two Pareto-optimal journeys that both use 𝑛 trips and have 𝜀 as their

final stop event. Due to requirement (R2), the final transfers of both journeys are shortest

paths in the transfer graph. Accordingly, their arrival time is 𝜏arr (𝜀) + 𝜏tra (v (𝜀), vt). Since the
two journeys are equivalent in the first two criteria and both are Pareto-optimal, they must

dominate each other weakly in the third criterion. Due to requirement (R1), this means that

they have the same value for the third criterion and are in fact entirely equivalent. Because a

Pareto set is minimal by definition, J includes only one of the two journeys. □

A consequence of this observation is that the number of distinct possible values for the

arrival time is bounded by the number of stop events. Because the same is true for the number

of trips, the size of the Pareto set is also bounded.

Lemma 7.2. Consider a three-criteria query with source vertex vs, target vertex vt and departure
time 𝜏dep in which the third criterion fulfills requirements (R1) and (R2). A Pareto set J for this
query contains at most |E |2 + 1 journeys.
Proof. Because the time-expanded graph is acyclic, no stop event can be visited more than

once by the same journey. Accordingly, the number of trips used by a Pareto-optimal journey

is at most |E |. For each number of trips 1 ≤ 𝑛 ≤ |E |, it follows from Lemma 7.1 that J
contains at most |E | different journeys with 𝑛 trips. Overall, this yields at most |E |2 journeys
with at least one trip. Additionally, due to requirement (R2), J contains at most one journey

with zero trips, which is a shortest vs-vt-path in the transfer graph. □

Depending on which third criterion is used, the upper bound of |E | on the number of used

trips may be improved. For many criteria, it can be shown that it is never necessary to use

the same trip twice or visit the same stop twice. In this case, the number of trips |T | or the
number of stops |S | are tighter upper bounds. However, for some criteria these bounds do

not hold: If the third criterion penalizes the time spent in a trip in some way, then there may

be Pareto-optimal journeys that use the same trip 𝑇 multiple times. This can occur if it is

possible to exit 𝑇 , transfer to a later stop along 𝑇 and re-enter it there. Similarly, if the third

criterion penalizes the waiting time at a stop, then there may be Pareto-optimal journeys

that reduce the waiting time by travelling in a circle and visiting the same stop twice. Hence,

Lemma 7.2 uses |E | as an upper bound because it holds regardless of the criterion.

Theorem 7.3 shows that the Pareto set can be computed in polynomial time. Note that the

query algorithm used in our proof is not efficient in practice. We present a more practical

algorithm in Section 7.1.3.

Theorem7.3. Consider a three-criteria query with source vertex vs, target vertex vt and departure
time 𝜏dep in which the third criterion fulfills requirements (R1) and (R2). A Pareto set for this
query can be found in polynomial time.
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Proof. To prove the claim, we use a modified time-expanded graph that incorporates un-

restricted transfers and “unrolls” the number of trips in the same manner as previously

suggested by Pyrga et al. for time-dependent graphs [PSWZ08]. The modifications can be

made in polynomial time: For each pair v, 𝑤 of stops such that 𝑤 is reachable from v via a
transfer, and for each transfer node v𝑖 of v , identify the earliest reachable transfer node 𝑤𝑗

of 𝑤 and insert an edge (v𝑖 , 𝑤𝑗 ). To represent initial transfers, insert a source node vs. For
each stop v , insert an edge from vs to the earliest reachable transfer node of v . Final transfers
are not represented in the graph; they are handled on the fly by the query algorithm. To

encode the number of trips, create |E | + 1 copies of the graph. For each edge from an arrival

node v to a transfer node 𝑤 and for each copy 0 ≤ 𝑖 < |E |, connect the 𝑖-th copy of v to

the (𝑖 + 1)-th copy of 𝑤. All other types of edges stay within the same copy. Thus, the copy

in which a node is located corresponds to the number of trips used to reach it. Overall, this

graph has O( |E |2) nodes and O( |E |2 |S |) edges.
A Pareto set can be found in polynomial time as follows. First, run an all-to-one Dijkstra

search on the transfer graph to identify the shortest path from each stop (as well as vs) to vt.
Afterward, run a Dijkstra search on the modified time-expanded graph to find the shortest

path from vs to each transfer node according to the edge cost function that represents the

third criterion. The result set J is constructed as follows. First, add a journey representing

the direct transfer from vs to vt. Then, for each reached transfer node belonging to a stop v ,
append the shortest v-vt-path to the found journey and add the result to J . By Lemma 7.2, J
contains a Pareto set. To extract it, perform pairwise comparisons of the elements in J to

eliminate dominated journeys. □

Our proof relies on the fact that the number of distinct values is bounded for two of the three

criteria. Both bounds were previously known and are in fact already exploited by the reached

index data structure of TB: Since the arrival time of all journeys to a stop event 𝜀 is equal

to 𝜏arr (𝜀), it is sufficient to track whether 𝜀 has been reached before. Because the number of

trips is bounded, this can be done individually for each possible number of trips. Thereby, TB

transforms the two-criteria Pareto optimization problem into a series of reachability queries.

The new observation is that we can handle a third criterion by replacing the reachability

queries with shortest-path queries that optimize the third criterion.

In the following, we propose algorithms that exploit this observation. Our algorithms

employ route-based pruning rules, which assume that it is never useful to enter a later trip

than the earliest reachable one of a route. Our proof of Theorem 7.3 does not require this

assumption, and as discussed in Chapter 4.2.3, some criteria (e.g., vehicle occupancy) are not

compatible with it. However, since our primary goal is to optimize transfer time as a third

criterion, we include route-based pruning in our algorithms.

7.1.2 McULTRA Shortcut Computation
To enable unlimited transfers when optimizing a third criterion, we propose McULTRA,

an adaptation of ULTRA. As with the original ULTRA, McULTRA can be configured to
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output either stop-to-stop or event-to-event shortcuts. The former can be combined with any

algorithm that requires one-hop transfers, using the same query framework as ULTRA. The

latter is intended for combination with McTB, which we present in Section 7.1.3. The shortcut

computation is nearly identical for both variants and only differs in how the shortcuts for

undominated candidates are retrieved.

Due to requirement (R2) for the third criterion, initial and final transfers can still be

explored with single-criterion Bucket-CH searches. However, the shortcut computation must

be adjusted. Its basic outline remains unchanged from ULTRA: For every stop vs ∈ S , the
algorithm collects all departure times of trips at vs and then performs a run of MCR for

each departure time in descending order. The MCR runs are restricted to two rounds (each

consisting of route scans followed by transfer relaxations), and vertex bags are not emptied

between the runs. During the final transfer relaxation phase of each run, labels representing

undominated candidates are extracted and shortcuts are inserted for them. Adding a third

criterion requires the use of MCR instead of MR, and therefore vertex bags instead of mere

arrival times. In the following, we adapt the running time optimizations included in the

original ULTRA shortcut computation and describe additional ones for the three-criteria

setting.

Route Scans. When scanning a route, MR maintains a single active trip along the route,

which is the earliest trip that can be entered so far. In MCR, the active trip is replaced with a

route bag containing all Pareto-optimal labels, each of which has its own active trip. Note

that Lemma 7.1 implies that no two labels can have the same active trip: When exiting at any

stop along the route, both labels will share the same final stop event and therefore the same

arrival time. Hence, the label that is better (or equal) in the third criterion will dominate the

other one.

Bags are always required in the second route scanning phase of each MCR run. If the

third criterion only affects the transfer graph (which is the case for transfer time), then the

simpler MR variant with a single active trip is sufficient for the first route scan. In this setting,

all candidate labels have value 0 in the third criterion during the first route scan because

candidates do not have an initial transfer. Therefore, the candidate with the earliest arrival

time dominates all others. Although the same is not true for witnesses, it is not necessary

to find all witnesses. Failing to find one may lead to superfluous shortcuts, but the query

algorithm will remain correct.

Dijkstra Searches. The single-criterion Dijkstra searches of ULTRA are replaced with

a standard multicriteria Dijkstra search. Given an arrival weight 𝜔arr ≥ 0 and a transfer
weight 𝜔tra ≥ 0 (assuming the third criterion is transfer time), the key of a label representing

a journey 𝐽 in the priority queue is the sequence

𝜅 (𝐽 ) :=
〈
𝜔arr · 𝜏arr (𝐽 ) + 𝜔tra · 𝜏tra (𝐽 )

𝜔arr + 𝜔tra
, 𝜏arr (𝐽 ), 𝜏tra (𝐽 )

〉
.
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Sequences are compared lexicographically. The second and third elements are included as

tiebreakers in case one of the two weights is 0. This ensures that the order in which labels

are settled does not conflict with Pareto dominance, i.e., if the label for journey 𝐽 is settled

before the label for journey 𝐽 ′, then 𝐽 ′ may strongly not dominate 𝐽 . The stopping criteria

for the Dijkstra searches used by the original ULTRA shortcut computation can be carried

over to McULTRA: The final Dijkstra search of each run is stopped once all candidates have

been extracted from the queue. The stopping criterion for the intermediate Dijkstra search

is based on the intermediate witness limit 𝜆w
1
. If 𝜅c is the key of the last candidate extracted

from the queue, the search is stopped once the key of the queue head exceeds 𝜅c + 𝜆w1 .

Canonical Journeys. To make a consistent choice between multiple equivalent Pareto-

optimal journeys, we introduced the notion of the canonical journey in Chapter 5.1. The

correctness of ULTRA relies on the fact that every subjourney of a canonical journey is itself

canonical (cf. Lemma 5.1). This ensures that a query algorithm can always find a Pareto-

optimal journey that can be decomposed into canonical candidates, for which ULTRA is

guaranteed to generate a shortcut.

The addition of a third criterion in McULTRA necessitates a small modification to this

definition. As before, we define total orderings on the sets of routes and vertices with a route

index function idR : R→ N and a vertex index function id𝑉 : 𝑉 → N. For a journey 𝐽 with

vertex sequence 𝑉 (𝐽 ) = ⟨vs = v1, . . . , v𝑘 = vt⟩ and 𝑘 > 1, the route tiebreaking sequence is
given by

𝑋r (𝐽 ) :=
{
⟨idR (𝑅(𝑇 )), 𝑖 ⟩ if 𝐽 ends with a trip segment 𝑇 [𝑖, 𝑗],
⟨∞ ,∞⟩ if 𝐽 ends with an edge (v𝑘−1, v𝑘 ),

which is unchanged from Chapter 5.1. However, the edge tiebreaking sequence is redefined as

𝑋e (𝐽 ) :=
{
⟨∞,∞,∞,∞⟩ if 𝐽 ends with a trip segment 𝑇 [𝑖, 𝑗],
𝜅 (𝐽 [vs, v𝑘−1]) ◦ ⟨id𝑉 (v𝑘−1)⟩ if 𝐽 ends with an edge (v𝑘−1, v𝑘 ).

As before, these are combined into the local tiebreaking sequence

𝑋ℓ (𝐽 ) := ⟨𝜏arr (𝐽 )⟩ ◦ 𝑋r (𝐽 ) ◦ 𝑋e (𝐽 ).

The overall tiebreaking sequence is the concatenation of the local sequences in reverse order:

𝑋 (𝐽 ) := 𝑋ℓ (𝐽 [vs, v𝑘 ]) ◦ · · · ◦ 𝑋ℓ (𝐽 [vs, v2]) .

The only difference to the original definitions is that the arrival time is replaced with the

queue key in the edge tiebreaking sequence. This ensures that, all other factors being equal,

journeys with a lower transfer time are preferred. Because the tiebreaking sequence is unique

among all vs-vt-journeys, replacing arrival time with the tiebreaking sequence as a criterion
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for Pareto optimality ensures that there is only one Pareto set for each query. The proof of

Lemma 5.1 is oblivious to the particular definition of the edge tiebreaking sequence, so it

carries over to McULTRA without modifications.

To compute canonical journeys, ULTRA uses a modification of MR called canonical MR.

The differences to MR are that the routes are sorted according to idR before they are scanned

and that the edge tiebreaking sequence is used as the queue key during the Dijkstra searches.

We apply the same modifications to MCR and use the resulting canonical MCR algorithm for

McULTRA. The proof of correctness for McULTRA (cf. Lemma 5.2 and Theorem 5.3) then

carries over from ULTRA in a straightforward manner.

Parent Pointers. Two-criteria ULTRA uses per-stop parent pointers to extract shortcuts

and to distinguish between candidates and witnesses. This is no longer sufficient for three

criteria because a stop may now have multiple candidate labels that represent different

shortcuts. However, by Lemma 7.1, each stop event may have at most one candidate. Thus,

McULTRA maintains two pointers p
1
[𝜀] and p

2
[𝜀] per stop event 𝜀, where p𝑘 [𝜀] is the parent

stop event for reaching 𝜀 with 𝑘 trips. Each candidate label includes a pointer to the last stop

event at which a trip was entered or exited. To distinguish them from candidates, witness

labels set this pointer to ⊥. When a candidate journey with final stop event 𝜀t is found, the

corresponding shortcut can be extracted as (p
1
[p

2
[𝜀t]], p2 [𝜀t]).

Final Transfer Pruning. In the original ULTRA, a candidate is discarded if it is strongly

dominated by a witness or weakly dominated by a journey found in a previous run. This rule

is carried over to McULTRA. Preliminary experiments showed that the final Dijkstra search of

each run takes up a much larger share of the overall running time than in the original ULTRA.

The reason for this is that the stopping criterion is applied later due to undominated candidate

labels with a very high key. These labels are only weakly dominated by equivalent labels that

were found in previous runs. To remedy this, we distinguish between proper candidates, which
are not dominated by any journey, and improper candidates, which are weakly dominated

by a journey found in a previous run. We make the stopping criterion of the final Dijkstra

search stricter by introducing a final witness limit 𝜆w
2
. Let 𝜅c be the key of the last proper

candidate extracted from the queue. The search is stopped once the key of the queue head

exceeds 𝜅c + 𝜆w2 . Afterward, all remaining improper candidates are removed from the queue

and shortcuts are inserted for them.

7.1.3 McTBQuery Algorithm

As a faster alternative to McRAPTOR, we propose McTB, a new three-criteria query algorithm

based on TB. The original preprocessing phase of TB computes event-to-event transfers

based on a one-hop transfer graph. Because we focus on a multimodal scenario, we use the

set 𝐸s of event-to-event McULTRA shortcuts instead and obtain a multimodal algorithm,

ULTRA-McTB. Pseudocode for the trip enqueuing and scanning procedures of McTB is given
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Algorithm 7.1: Trip enqueuing and scanning procedures of McTB.

1 Procedure Enqueue(𝑇 [ 𝑗], 𝑄, 𝜏)
2 if 𝑟tra (𝑇, 𝑗) ≤ 𝜏 then return
3 𝑘 ← max{𝑖 ∈ { 𝑗, . . . , |𝑇 | − 1} | 𝑟tra (𝑇, 𝑖) > 𝜏}
4 𝑄 ← 𝑄 ∪ {(𝑇 [ 𝑗, 𝑘], 𝜏)}
5 for each 𝑇 ′ ⪰ 𝑇 do
6 for 𝑖 from 𝑗 to |𝑇 | − 1 do
7 𝑟tra (𝑇 ′, 𝑖) ← min(𝜏, 𝑟tra (𝑇 ′, 𝑖))

8 Procedure ScanTrips(𝑄𝑛, 𝑄𝑛+1)
9 for each (𝑇 [ 𝑗, 𝑘], 𝜏) ∈ 𝑄𝑛 do

10 for 𝑖 from 𝑗 + 1 to 𝑘 do
11 if 𝑟tra (𝑇, 𝑖) < 𝜏 then 𝑘 ← 𝑖 − 1
12 else if 𝑟tra (𝑇, 𝑖) = 𝜏 and pred(𝑇 ) ≠ ⊥ and 𝑟tra (pred(𝑇 ), 𝑖) ≤ 𝜏 then

𝑘 ← 𝑖 − 1
13 for each (𝑇 [ 𝑗, 𝑘], 𝜏) ∈ 𝑄𝑛 do
14 for 𝑖 from 𝑗 to 𝑘 do
15 𝜏f ← 𝜏tra (v (𝑇 [𝑖]), vt)
16 L← L ∪ {(𝜏arr (𝑇 [𝑖]) + 𝜏f, 𝑛, 𝜏 + 𝜏f)}, removing dominated entries

17 for each (𝑇 [ 𝑗, 𝑘], 𝜏) ∈ 𝑄𝑛 do
18 if L dominates (𝜏arr (𝑇 [ 𝑗]), 𝑛 + 1, 𝜏) then continue
19 for 𝑖 from 𝑗 to 𝑘 do
20 for each 𝑒 = (𝑇 [𝑖],𝑇 ′ [𝑖′]) ∈ 𝐸s do
21 Enqueue(𝑇 ′ [𝑖′ + 1], 𝑄𝑛+1, 𝜏 + 𝜏tra (𝑒))

in Algorithm 7.1 (cf. Algorithms 4.4, 4.5 and 4.6 in Chapter 4.2.4 for the original TB algorithm).

For ease of exposition, we assume that the third criterion is transfer time. However, McTB

supports any third criterion that fulfills requirements (R1) and (R2) and is compatible with

route-based pruning rules.

McTB replaces the reached indices 𝑟 (·) used by TB with a reached transfer time 𝑟tra (𝑇, 𝑖) for
each stop event 𝑇 [𝑖]. This represents the minimum transfer time that is needed to reach 𝑇 [𝑖]
(or ∞ if 𝑇 [𝑖] is not reachable). By Lemma 7.1, the journey represented by 𝑟tra (𝑇, 𝑖) is not
dominated by any other journeys ending at 𝑇 [𝑖] found so far. Two invariants are upheld

for 𝑟tra (𝑇, 𝑖): For each later trip 𝑇 ′ ≻ 𝑇 , 𝑟tra (𝑇 ′, 𝑖) ≤ 𝑟tra (𝑇, 𝑖) holds because a passenger can
reach 𝑇 ′ [𝑖] by traveling to 𝑇 [𝑖] and then waiting for 𝑇 ′. Similarly, remaining seated in a trip

does not increase the transfer time, so 𝑟tra (𝑇, 𝑗) ≤ 𝑟tra (𝑇, 𝑖) holds for each 𝑖 < 𝑗 < |𝑇 |.

Initial Transfer Evaluation. Like every ULTRA-based algorithm, ULTRA-McTB ex-

plores initial and final transfers with a Bucket-CH search. This yields the minimal source

transfer time 𝜏tra (vs, v) for each stop v reachable via an initial transfer, and the minimal
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target transfer time 𝜏tra (𝑤, vt) for each stop 𝑤 from which vt is reachable via a final transfer.
Afterward, the proceduce CollectInitialTrips identifies trip segments that can be entered

via an initial transfer. This is done as in the original TB algorithm: For each stop v reachable
via an initial transfer and each route visiting v , the earliest reachable trip at v is found via a

binary search. Then, the Enqueue procedure is called to collect the corresponding trip segment.

Note that two-criteria ULTRA-TB replaces this step with RAPTOR-like route scans, exploiting

the fact that the earliest reachable trip cannot increase along the stop sequence of a route

(cf. Algorithm 5.3 in Chapter 5.2.2). However, once a third criterion is introduced, this is no

longer the case: entering the route at a later stop may decrease the value of the third criterion,

which is beneficial even if it means using a later trip. Therefore, McTB reverts back to the

original TB implementation of CollectInitialTrips.

Trip Enqueuing. Like the original TB algorithm, McTB operates in rounds, in which

round 𝑛 scans trip segments that were collected in queue 𝑄𝑛 during round 𝑛 − 1. A queue

element is a tuple (𝑇 [ 𝑗, 𝑘], 𝜏) consisting of a trip segment 𝑇 [ 𝑗, 𝑘] and the transfer time 𝜏

with which 𝑇 [ 𝑗] was reached in the previous round. Trip segments are inserted into the

queue by the Enqueue procedure (lines 1–7). When a trip 𝑇 is entered with transfer time 𝜏

at index 𝑖 , the first index at which it may be exited is 𝑗 := 𝑖 + 1. If 𝑟tra (𝑇, 𝑗) ≤ 𝜏 holds

(line 2), then 𝑇 does not improve the transfer time at 𝑇 [ 𝑗] or any later stop event, so the trip

segment is discarded. Otherwise, the end of the trip segment is set to the last index 𝑘 for

which 𝑟tra (𝑇, 𝑘) > 𝜏 holds (line 3). Finally, the trip segment is added to the queue (line 4) and

the transfer time labels of later stop events along the route are updated to 𝜏 , satisfying the

two invariants (lines 5–7).

Trip Scanning. To prevent redundant scans, the trip scanning phase starts with a new

pruning step (lines 9–12). Between enqueuing a tuple 𝑎 = (𝑇𝑎 [ 𝑗, 𝑘], 𝜏𝑎) and extracting it

from 𝑄𝑛 , another tuple 𝑏 = (𝑇𝑏 [p, 𝑞], 𝜏𝑏) with 𝑇𝑏 ⪯ 𝑇𝑎 , 𝑗 ≤ p ≤ 𝑘 and 𝜏𝑏 ≤ 𝜏𝑎 may have

been enqueued. In this case, scanning the segment 𝑇𝑎 [p, 𝑘] is redundant because it overlaps
with 𝑇𝑏 [p, 𝑞]. The pruning step identifies redundant portions of 𝑇𝑎 [ 𝑗, 𝑘] and adjusts the end

index 𝑘 accordingly. If such a tuple 𝑏 exists, either𝑇𝑏 ≺ 𝑇𝑎 or 𝜏𝑏 < 𝜏𝑎 must hold; otherwise, the

check in line 2 would have discarded 𝑏. If 𝜏𝑏 < 𝜏𝑎 , then enqueuing 𝑏 ensures 𝑟tra (𝑇𝑎, p) < 𝜏𝑎 ,

which is checked in line 11. If 𝑇𝑏 ≺ 𝑇𝑎 , the trip pred(𝑇𝑎) that immediately precedes 𝑇𝑎 in the

route must have 𝑟tra (pred(𝑇𝑎), p) ≤ 𝑟tra (𝑇𝑏, p) ≤ 𝜏𝑏 ≤ 𝜏𝑎 . This is checked in line 12.

Following the pruning step, final transfers are evaluated for all stops along the trip seg-

ment 𝑇 [ 𝑗, 𝑘] with transfer time 𝜏 . Line 16 adds new labels to the set L of Pareto-optimal

labels at vt, which is the only dynamic data structure maintained by the algorithm. Outgoing

transfers to other trips are then relaxed in lines 17–21 and the reached trips are enqueued.

Before this is done, target pruning is applied in line 18. Any journey with an intermediate

transfer from𝑇 [ 𝑗, 𝑘] to another trip has an arrival time of at least 𝜏arr (𝑇 [ 𝑗]), uses at least 𝑛 + 1
trips and has a transfer time of at least 𝜏 . If a label with the smallest possible value for all

three criteria is dominated by the current Pareto set L, outgoing transfers do not need to be
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relaxed. Note that we do not apply target pruning for each index 𝑗 ≤ 𝑖 ≤ 𝑘 separately by

substituting 𝜏arr (𝑇 [𝑖]) for 𝜏arr (𝑇 [ 𝑗]). Preliminary experiments showed that this saves only

a few Enqueue calls but leads to worse memory locality during the transfer relaxations. We

make the dominance check more efficient by exploiting the fact that all labels added to L by

round 𝑛 use at most 𝑛 trips. This makes it possible to maintain a set L∗ ⊆ L of best labels that
are Pareto-optimal according to arrival time and transfer time (ignoring the number of trips).

Then, line 18 only has to check if the label is dominated by L∗ instead of L.

7.2 Restricted Pareto Sets
To extract relevant solutions from the full Pareto set, we follow the approach by Delling

et al. [DDP19] of computing restricted Pareto sets. In Section 7.2.1, we give a definition of

the restricted Pareto set and present BM-RAPTOR, the algorithm for computing it in pure

public transit networks. Afterward, we show how restricted Pareto sets can be adapted for

multimodal networks by integrating them with the algorithms developed in Section 7.1. We

discuss the integration with McULTRA and McRAPTOR in Section 7.2.2. Finally, we introduce

a new TB-based algorithm for computing restricted Pareto sets in Section 7.2.3.

7.2.1 Definition
Consider a one-to-one, fixed departure time, Pareto optimization query with an arbitrary

number of criteria in addition to arrival time and number of trips. Let J be a full Pareto set

for this query and J A
a Pareto set for the two criteria arrival time and number of trips. The

set J A
is called the anchor set. Each journey 𝐽 in the full Pareto set J has a corresponding

anchor journey 𝐴(𝐽 ), which is the journey in J A
with the highest number of trips not greater

than |𝐽 |. Given a trip slack 𝜎tr ≥ 0 and an arrival slack 𝜎arr ≥ 0, Delling et al. define the

restricted Pareto set as

J̃ R
:=

{
𝐽 ∈ J | |𝐽 | ≤ |𝐴(𝐽 ) | + 𝜎tr and 𝜏arr (𝐽 ) ≤ 𝜏arr (𝐴(𝐽 )) + 𝜎arr

}
.

The idea is that J̃ R
contains every journey from the full Pareto set that does not exceed the

arrival or trip slack compared to its anchor journey. An illustration is given in Figure 7.1.

To compute restricted Pareto sets, Delling et al. present BM-RAPTOR, an extension of

RAPTOR. They propose three variants of the algorithm with increasingly tight pruning rules;

we focus on the fastest one (Tight-BMRAP). We observe that the restricted Pareto set as

computed by BM-RAPTOR actually conforms to a slightly different definition than the one

given above. Instead of a single anchor journey, each journey 𝐽 ∈ J is compared to the set

J A (𝐽 ) :=
{
𝐽 ′ ∈ J A | |𝐽 ′ | ≥ |𝐴(𝐽 ) |

}
of possible anchor journeys, i.e., all journeys in the anchor set that do not use fewer trips

than 𝐴(𝐽 ). Then the restricted Pareto set is defined as

J R
:=

{
𝐽 ∈ J | ∃𝐽 ′ ∈ J A (𝐽 ) : |𝐽 | ≤ |𝐽 ′ | + 𝜎tr and 𝜏arr (𝐽 ) ≤ 𝜏arr (𝐽 ′) + 𝜎arr

}
.
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Figure 7.1: An example of a restricted Pareto set for slack values 𝜎arr = 20min and 𝜎tr = 2.

Circles represent journeys from the full Pareto set J . Journeys in the anchor set J A
are

drawn as red circles. Journeys excluded from the restricted Pareto set are drawn as empty

circles. The area shaded in red cannot contain any journeys because they would be part of

the anchor set. The area covered by the restricted Pareto set is shaded in blue. The hatched

area is excluded from the original definition J̃ R
of the restricted Pareto set but included in

the set J R
computed by BM-RAPTOR.

Thus, a journey 𝐽 is in the restricted Pareto set if it does not exceed the slack values compared

to at least one possible anchor journey. In Figure 7.1, the difference can be seen in the hatched

area. In the original definition, this area is not included because it exceeds the trip slack of the

corresponding anchor journey with one trip and a travel time of 15 minutes. The modified

definition also considers the anchor journey with five trips and a travel time of 5 minutes, for

which the area is within slack.

To obtain an equivalent definition that is easier to handle algorithmically, we introduce the

notion of labels. A label is a tuple ℓ = (𝜏, 𝑛) consisting of an arrival time 𝜏arr (ℓ) := 𝜏 and a

number of trips |ℓ | := 𝑛. The definitions of (two-criteria) dominance and Pareto optimality

carry over from journeys to labels. Let J A = ⟨𝐽1, . . . , 𝐽𝑘⟩ be the sequence of anchor journeys
sorted from fewest trips to most. To simplify the following definitions, we additionally

define 𝐽𝑘+1 := (−∞,∞). For each anchor journey 𝐽𝑖 , we define the label

ℓ𝑖 :=
(
𝜏arr (𝐽𝑖 ) + 𝜎arr,min( |𝐽𝑖 | + 𝜎tr, |𝐽𝑖+1 | − 1)

)
.

This yields a sequence LR
:= ⟨ℓ1, . . . , ℓ𝑘⟩ of labels. In Figure 7.1, these labels represent the

upper right corners of the blue boxes surrounding the anchor journeys. Theorem 7.4 shows

that the restricted Pareto set consists of all journeys in J that weakly dominate at least one

label in LR
.
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Theorem 7.4. Let J be the full Pareto set, J A the anchor set and 𝜎arr, 𝜎tr slack values. The
restricted Pareto set J R consists of all journeys in J that weakly dominate at least one label
in LR.

Proof. For a journey 𝐽 ∈ J , let 𝑎 be the index of its anchor journey in J A
, i.e., the index

with 𝐴(𝐽 ) = 𝐽𝑎 . For 1 ≤ 𝑖 ≤ 𝑘 + 1, it follows from the definition of 𝐴(𝐽 ) that |𝐽 | ≥ |𝐽𝑖 | iff 𝑖 ≤ 𝑎.

Furthermore, for 1 ≤ 𝑖 ≤ 𝑘 , it follows from the definition of J A (𝐽 ) that 𝐽𝑖 ∈ J A (𝐽 ) iff 𝑖 ≥ 𝑎.

Hence, 𝐽𝑖 ∈ J A (𝐽 ) iff |𝐽 | ≤ |𝐽𝑖+1 | − 1. Then it follows that

J R =
{
𝐽 ∈ J | ∃𝐽 ′ ∈ J A (𝐽 ) : |𝐽 | ≤ |𝐽 ′ | + 𝜎tr and 𝜏arr (𝐽 ) ≤ 𝜏arr (𝐽 ′) + 𝜎arr

}
=

{
𝐽 ∈ J | ∃𝐽𝑖 ∈ J A

: |𝐽 | ≤ min( |𝐽𝑖 | + 𝜎tr, |𝐽𝑖+1 | − 1) and 𝜏arr (𝐽 ) ≤ 𝜏arr (𝐽𝑖 ) + 𝜎arr
}

=
{
𝐽 ∈ J | ∃ℓ𝑖 ∈ LR

: 𝐽 weakly dominates ℓ𝑖
}
. □

BM-RAPTOR. To compute the restricted Pareto set, BM-RAPTOR performs three phases:

The forward pruning search is a two-criteria RAPTOR search that computes the earliest arrival
time −−→𝜏arr (v, 𝑛) per stop v and round 𝑛, and thereby the anchor set J A

. Then, a backward
pruning search is run for each label in LR

. Collectively, these compute a latest departure
time←−−𝜏dep (v, 𝑛) for each stop v and round 𝑛. This is the latest time at which a journey with 𝑛

trips must reach v such that it can be extended to a journey to vt that weakly dominates at

least one label in LR
. Finally, amain McRAPTOR search is run, using the latest departure times

to prune the search space.

The forward pruning search is identical to a regular RAPTOR search except for a change

in the target pruning rule. Normally, an arrival with arrival time 𝜏 in round 𝑛 is discarded

if 𝜏 > −−→𝜏arr (vt, 𝑛) because such an arrival cannot be extended to an optimal solution at vt. In
BM-RAPTOR, the arrival can only be discarded if it cannot be extended to a solution that

weakly dominates a label in LR
. Hence, the condition is changed to 𝜏 > −−→𝜏arr (vt, 𝑖) + 𝜎arr.

After the forward pruning search,
←−−𝜏dep (v, 𝑛) is initialized with −∞ for each stop v and

round 0 ≤ 𝑛 ≤ |ℓ𝑘 |. Then, a backward pruning search is run for each label ℓ ∈ LR
, in

order of most used trips to fewest. This is a reverse RAPTOR search that starts at vt with
the arrival time 𝜏arr (ℓ) and is run for |ℓ | rounds. During round 𝑛, departure times are read

from
←−−𝜏dep (·, |ℓ | − (𝑛 − 1)) and written to

←−−𝜏dep (·, |ℓ | − 𝑛). When the search finds a departure

at a stop v in round 𝑛 with departure time 𝜏 , it is discarded if 𝜏 < −−→𝜏arr (v, |ℓ | − 𝑛). Otherwise,
for each round 𝑛 ≤ 𝑛′ ≤ |ℓ |, the latest departure time

←−−𝜏dep (v, |ℓ | − 𝑛′) is set to the maximum

of itself and 𝜏 . The latest departure times
←−−𝜏dep (·, ·) are not reinitialized between backward

searches. During the main search, the latest departure times are used for pruning: if the search

arrives at a stop v in round 𝑛 with arrival time 𝜏 , the arrival is discarded if 𝜏 >←−−𝜏dep (v, 𝑛).

Discussion. As previously noted by Delling et al. [DDP19], the main advantage of

restricted Pareto sets is that BM-RAPTOR offers a way to compute them both quickly and

exactly. This is in contrast to previous approaches, such as the one originally proposed

alongside MCR [Del+13], which is based on tightening the dominance rules. This approach
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only yields exact results if the dominance rules are applied to the full Pareto set once it has

already been computed. If they are applied every time a vertex is reached during the query,

relevant solutions will be lost.

The manner in which restricted Pareto sets limit the solution space is particularly well

suited to our multimodal scenario, in which transfer time serves as a measure of discomfort.

Our aim is to find journeys beyond the anchor set that save a significant amount of transfer

time without investing too much in the other two criteria. Restricted Pareto sets ensure the

latter via the arrival and trip slacks. Although they may still contain undesirable journeys

that only save a minuscule amount of transfer time, these can easily be filtered out in a

post-processing step.

We observed that the set J R
computed by BM-RAPTOR does not precisely match the

original definition J̃ R
of the restricted Pareto set. Because J R

considers more potential

anchor journeys, it holds that J R ⊇ J̃ R
. The definition of the set J A (𝐽 ) of possible anchor

journeys for a journey 𝐽 may seem arbitrary at first glance. It is unclear why journeys

with more trips than 𝐽 should be considered as anchor journeys, but those with fewer trips

than 𝐴(𝐽 ) (which itself may have fewer trips than 𝐽 ) should be ignored. However, this

eliminates a potentially undesirable feature of J̃ R
. In Figure 7.1, consider the journey with

the label (20min, 4), which we denote as 𝐽1, and the journey with the label (21min, 5), which
we denote as 𝐽2. According to the original definition, 𝐽1 is not included in J̃ R

, but 𝐽2 is, even

though it is strongly dominated by 𝐽1. Note that this issue can only occur if the anchor set has

a gap in the number of trips that is wider than the trip slack. This gap is excluded from J̃ R
,

but J R
fills it in.

Delling et al. define restricted Pareto sets using additive arrival and trip slacks. We argue

that it is more natural to use relative slacks, which depend on the length of the anchor journey.

Intuitively, passengers are more willing to take long detours if the journey is already long,

whereas a 60-minute detour on a 15-minute journey is not attractive. Accordingly, we redefine

the restricted Pareto set based on multiplicative slacks 𝜎arr, 𝜎tr ≥ 1:

J R
:=

{
𝐽 ∈ J | ∃𝐽 ′ ∈ J A (𝐽 ) : |𝐽 | ≤ |𝐽 ′ | · 𝜎tr and 𝜏arr (𝐽 ) − 𝜏dep ≤ (𝜏arr (𝐽 ′) − 𝜏dep) · 𝜎arr

}
.

Note that the arrival slack is relative to the overall travel time of the journey, not the arrival

time. The label corresponding to an anchor journey 𝐽𝑖 is now given by

ℓ𝑖 :=
(
𝜏dep + (𝜏arr (𝐽𝑖 ) − 𝜏dep) · 𝜎arr,min( |𝐽𝑖 | · 𝜎tr, |𝐽𝑖+1 | − 1)

)
.

The proof of Theorem 7.4 carries over in a straightforward manner. With the set LR
of labels

redefined accordingly, BM-RAPTOR can now be applied with one additional change to the

target pruning rule of the forward pruning search: an arrival with arrival time 𝜏 in round 𝑛 is

now discarded if 𝜏 − 𝜏dep > (−−→𝜏arr (vt, 𝑖) − 𝜏dep) · 𝜎arr. Note that our choice to use multiplicative

slacks is merely made to improve the solution quality. All algorithms that are presented in

the following section can be easily modified to use additive slacks instead.
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7.2.2 UBM-RAPTOR
We now discuss how BM-RAPTOR can be adapted to multimodal networks by integrating it

with McULTRA shortcuts. We note that merely using McULTRA shortcuts in BM-RAPTOR is

not sufficient. BM-RAPTOR requires that the forward and backward pruning searches find

optimal arrival or departure times at each stop. However, because ULTRA-RAPTOR explores

final transfers with a backward Bucket-CH search from vt, optimal journeys to stops other

than vt may not be found if they end with a non-empty transfer.

To solve this issue, we use a slightly modified version of ULTRA-RAPTOR, which we call

pRAPTOR, for the pruning searches. Aside from using the three-criteria McULTRA shortcuts

for the intermediate transfers, the only difference is in the transfer relaxation phase. Normally,

ULTRA-RAPTOR relaxes the outgoing shortcut edges of all stops whose arrival time was

improved during the preceding route scanning phase. pRAPTOR additionally relaxes the

edges of stops whose arrival time was improved during the previous transfer relaxation phase.

This allows pRAPTOR to find journeys that use multiple shortcut edges in a row. However,

each additional edge is counted as an additional trip.

Theorem 7.5 shows that pRAPTOR can be used to perform the forward pruning search.

The proof for the backward search is analogous. By combining pRAPTOR pruning searches

with ULTRA-McRAPTOR for the main search, we obtain UBM-RAPTOR (Bounded ULTRA-

McRAPTOR), an algorithm for computing restricted Pareto sets in multimodal networks.

Theorem7.5. Consider a three-criteria query with source vertex vs, target vertex vt and departure
time 𝜏dep. Let 𝜏arr (v, 𝑛) denote the arrival time at v found by pRAPTOR in round 𝑛 for this
query. Let 𝐽 be a Pareto-optimal journey found by ULTRA-McRAPTOR for this query. Given
a stop v visited by 𝐽 , let 𝜏arr (𝐽 , v) denote the arrival time of 𝐽 at v . For 1 ≤ 𝑛 ≤ |𝐽 |, let 𝑇𝑛
be the 𝑛-th trip of 𝐽 , v𝑛 the stop at which 𝑇𝑛 is entered and 𝑤𝑛 the stop at which 𝑇𝑛 is exited.
Then 𝜏arr (v𝑛, 𝑛 − 1) ≤ 𝜏arr (𝐽 , v𝑛) and 𝜏arr (𝑤𝑛, 𝑛) ≤ 𝜏arr (𝐽 , 𝑤𝑛).

Proof. First we show that 𝜏arr (v𝑛, 𝑛 − 1) ≤ 𝜏arr (𝐽 , v𝑛) implies 𝜏arr (𝑤𝑛, 𝑛) ≤ 𝜏arr (𝐽 , 𝑤𝑛). If

pRAPTOR arrives at v𝑛 no later than 𝐽 , it will scan𝑇𝑛 or an earlier trip of the same route during

the route scanning phase of round 𝑛 and thereby reach 𝑤𝑛 with an arrival time of 𝜏arr (𝐽 , 𝑤𝑛) or
earlier. For 𝑛 < |𝐽 |, we show that this in turn implies 𝜏arr (v𝑛+1, 𝑛) ≤ 𝜏arr (𝐽 , v𝑛+1): If the arrival
via the route of 𝑇𝑛 in round 𝑛 improves the previous value of 𝜏arr (𝑤𝑛, 𝑛), then the following

transfer phase in round 𝑛 will relax the shortcut (𝑤𝑛, v𝑛+1) and find a suitable arrival at v𝑛+1.
Otherwise, 𝜏arr (𝑤𝑛, 𝑛

′) ≤ 𝜏arr (𝐽 , 𝑤𝑛) must hold for some prior round 𝑛′ < 𝑛. Then the transfer

phase of round 𝑛′ + 1 ≤ 𝑛 will relax (𝑤𝑛, v𝑛+1) and arrive at v𝑛+1 in time. Because the base

case 𝑛 = 1 follows from the correctness of Bucket-CH and RAPTOR, the claim is proven by

induction. □

7.2.3 UBM-TB
To achieve even faster query times, we introduce UBM-TB, a TB-based algorithm for com-

puting restricted Pareto sets. UBM-TB follows the same query framework as BM-RAPTOR
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but uses a variant of ULTRA-TB for the pruning searches and ULTRA-McTB for the main

search. Switching to TB-based algorithms necessitates using different data structures for

pruning. The main search of BM-RAPTOR relies on earliest arrival times
−−→𝜏arr (·, 𝑛) and latest

departure times
←−−𝜏dep (·, 𝑛) for each round 𝑛, which are computed by the pruning searches. A

natural adaptation of these data structures for TB is to replace them with a forward reached
index −→𝑟 (𝑇, 𝑛) and a backward reached index←−𝑟 (𝑇, 𝑛) for each trip𝑇 and round 𝑛. The forward

reached index
−→𝑟 (𝑇, 𝑛) is the first stop index along𝑇 that is reachable from vs with 𝑛 trips. The

backward reached index
←−𝑟 (𝑇, 𝑛) is the last stop index 𝑖 along 𝑇 with the following property:

if𝑇 [𝑖] is reached with 𝑛 trips, then vt is reachable from there while still weakly dominating at

least one label in LR
. These reached indices can be used for pruning in the Enqueue procedure:

When entering a trip 𝑇 at the stop event 𝑇 [𝑖] in round 𝑛, a backward pruning search for a

label ℓ does not enqueue the corresponding trip segment if 𝑖 < −→𝑟 (𝑇, |ℓ | − 𝑛). Likewise, the
main search does not enqueue the trip segment if 𝑖 >←−𝑟 (𝑇, 𝑛).

Computing Per-Round Reached Indices. The presented pruning scheme requires the

pruning searches to output one reached index per stop and round, whereas the original TB

query only maintains one reached index per stop across all rounds. For the forward pruning

search, this can be changed by simply initializing
−→𝑟 (v, 𝑛) with −→𝑟 (v, 𝑛 − 1) for each stop v at

the start of round 𝑛. The backward pruning searches require a different approach because

they do not access the rounds of
←−𝑟 (·, ·) in order. Before the first backward search is started,

the backward reached indices for all rounds are initialized with −∞. Whenever a backward

reached index
←−𝑟 (𝑇, 𝑛) is set to a value 𝑖 , this value is propagated to the preceding rounds by

setting
←−𝑟 (𝑇, 𝑛′) to max(←−𝑟 (𝑇, 𝑛′), 𝑖) for all 0 ≤ 𝑛′ < 𝑛.

ShortcutAugmentation. To establish a correct pruning scheme, the TB pruning searches

must fulfill a condition analogous to that of Theorem 7.5: Let 𝑇 [𝑖] be a stop event at which a

Pareto-optimal journey found by ULTRA-McTB exits its 𝑛-th trip. To ensure that UBM-TB can

also find this journey,
−→𝑟 (𝑇, 𝑛) ≤ 𝑖 must hold after the forward pruning search. Unfortunately,

simply using the set 𝐸s of event-to-event McULTRA shortcuts for the pruning searches is

not enough to guarantee this. Consider a shortcut 𝑒 = (𝑇𝑐 [𝑖],𝑇𝑏 [ 𝑗]) ∈ 𝐸s that is relaxed

by an ULTRA-McTB search in round 𝑛. If there is an earlier trip 𝑇𝑎 ≺ 𝑇𝑐 such that 𝑇𝑎 [𝑖] is
reachable by round 𝑛 (albeit with a higher transfer time than 𝑇𝑐 [𝑖]), then the two-criteria

forward pruning search will not scan 𝑇𝑐 [𝑖] and therefore not relax 𝑒 . Because there is no

guarantee that the shortcut (𝑇𝑎 [𝑖],𝑇𝑏 [ 𝑗]) exists, the search may not reach 𝑇𝑏 [ 𝑗].
To solve this problem, we introduce the set 𝐸s

aug
of augmented shortcuts. An illustration is

given in Figure 7.2. A simple solution is to insert the shortcut (𝑇𝑎 [𝑖],𝑇𝑏 [ 𝑗]) if it is missing,

which yields the shortcut set

𝐸s
full

:=
{
(𝑇𝑎 [𝑖],𝑇𝑏 [ 𝑗]) | ∃𝑇𝑐 ⪰ 𝑇𝑎 : (𝑇𝑐 [𝑖],𝑇𝑏 [ 𝑗]) ∈ 𝐸s

}
.

However, this is wasteful: If there is another shortcut (𝑇𝑎 [𝑘],𝑇𝑑 [ℓ]) ∈ 𝐸s
full

with 𝑇𝑑 ⪯ 𝑇𝑏 ,

𝑘 ≥ 𝑖 and ℓ ≤ 𝑗 , then the search will relax this shortcut and
−→𝑟 (𝑇𝑏, 𝑛) ≤ −→𝑟 (𝑇𝑑 , 𝑛) ≤ ℓ ≤ 𝑗 will
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Figure 7.2: Shortcut augmentation in an example network. Trips 𝑇𝑎 , 𝑇𝑐 and 𝑇𝑑 belong to

the blue route, which visits stop v at index 𝑖 and then 𝑤 at index 𝑘 . Trips 𝑇𝑏 and 𝑇𝑒 belong

to the green route, which visits 𝑥 at index ℓ and then 𝑦 at index 𝑗 . Earlier trips are drawn

below later trips of the same route. Solid shortcuts are included in 𝐸s, whereas dashed

shortcuts are added to 𝐸s
full

. The gray shortcut (𝑇𝑐 [𝑘],𝑇𝑒 [ℓ]) is retained for 𝐸s
aug

, but the two

red ones are removed because they are dominated. In particular, (𝑇𝑑 [𝑖],𝑇𝑏 [ 𝑗]) is dominated

by (𝑇𝑑 [𝑘],𝑇𝑒 [ℓ]) and (𝑇𝑐 [𝑖],𝑇𝑏 [ 𝑗]) is dominated by (𝑇𝑐 [𝑘],𝑇𝑒 [ℓ]).

hold afterward. In this case, the shortcut (𝑇𝑎 [𝑖],𝑇𝑏 [ 𝑗]) is superfluous. We therefore define

the set of dominating shortcuts for (𝑇𝑎 [𝑖],𝑇𝑏 [ 𝑗]) as

𝐸s
dom
((𝑇𝑎 [𝑖],𝑇𝑏 [ 𝑗])) :=

{
(𝑇𝑎 [𝑘],𝑇𝑑 [ℓ]) ∈ 𝐸sfull | 𝑇𝑑 ⪯ 𝑇𝑏, 𝑘 ≥ 𝑖, ℓ ≤ 𝑗

}
.

We omit all shortcuts that are dominated by another shortcut, which yields the set

𝐸s
aug

:=
{
𝑒 ∈ 𝐸s

full
| 𝐸s

dom
(𝑒) = {𝑒}

}
.

The following lemmas and Theorem 7.9 prove that using an ULTRA-TB query with per-

round reached indices and augmented McULTRA shortcuts for the pruning searches yields a

correct pruning scheme.

Lemma 7.6. For any shortcut (𝑇𝑐 [𝑖],𝑇𝑏 [ 𝑗]) ∈ 𝐸s and all trips𝑇𝑎 ⪯ 𝑇𝑐 , there exist a trip𝑇𝑑 ⪯ 𝑇𝑏
and indices 𝑘 ≥ 𝑖 , ℓ ≤ 𝑗 such that (𝑇𝑎 [𝑘],𝑇𝑑 [ℓ]) ∈ 𝐸saug.
Proof. For every trip 𝑇𝑎 ⪯ 𝑇𝑐 , the shortcut 𝑒 = (𝑇𝑎 [𝑖],𝑇𝑏 [ 𝑗]) is included in 𝐸s

full
. If 𝑒 ∈ 𝐸s

aug
,

the claim follows. Otherwise, there must be another shortcut 𝑒′ = (𝑇𝑎 [𝑘],𝑇𝑑 [ℓ]) in 𝐸s
dom
(𝑒)

besides 𝑒 itself. Note that 𝐸s
dom
(𝑒′) ⊂ 𝐸s

dom
(𝑒) holds because 𝑒 ∉ 𝐸s

dom
(𝑒′). Hence, we can

choose 𝑒′ such that 𝐸s
dom
(𝑒′) = {𝑒′} without loss of generality. Then 𝑒′ ∈ 𝐸s

aug
. □

For a shortcut 𝑒 = (𝑇𝑐 [𝑖],𝑇𝑏 [ 𝑗]) ∈ 𝐸s and each trip 𝑇𝑎 ⪯ 𝑇𝑐 , let 𝑘 (𝑇𝑎, 𝑒) denote the last stop
index 𝑘 such that a shortcut (𝑇𝑎 [𝑘],𝑇𝑑 [ℓ]) ∈ 𝐸saug exists with 𝑘 ≥ 𝑖 , ℓ ≤ 𝑗 and 𝑇𝑑 ⪯ 𝑇𝑏 . Note
that such an index must exist by Lemma 7.6.
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Lemma 7.7. Let 𝑒 = (𝑇𝑐 [𝑖],𝑇𝑏 [ 𝑗]) ∈ 𝐸s be a shortcut. Then for each pair of trips 𝑇𝑎 ⪯ 𝑇𝑒 ⪯ 𝑇𝑐 ,
it holds that 𝑘 (𝑇𝑎, 𝑒) ≥ 𝑘 (𝑇𝑒 , 𝑒).

Proof. Let 𝑘1 := 𝑘 (𝑇𝑒 , 𝑒). By definition of 𝑘1, a shortcut (𝑇𝑒 [𝑘1],𝑇𝑑 [ℓ1]) ∈ 𝐸s
aug

with ℓ1 ≤ 𝑗

and 𝑇𝑑 ⪯ 𝑇𝑏 exists. By definition of 𝐸s
aug

, there must be a shortcut (𝑇𝑓 [𝑘1],𝑇𝑑 [ℓ1]) ∈ 𝐸s

with 𝑇𝑓 ⪰ 𝑇𝑒 ⪰ 𝑇𝑎 . Lemma 7.6 implies the existence of a shortcut (𝑇𝑎 [𝑘2],𝑇𝑔 [ℓ2]) ∈ 𝐸s
aug

with 𝑘2 ≥ 𝑘1 ≥ 𝑖 , ℓ2 ≤ ℓ1 ≤ 𝑗 and 𝑇𝑔 ⪯ 𝑇𝑑 ⪯ 𝑇𝑏 . It follows that 𝑘 (𝑇𝑎, 𝑒) ≥ 𝑘2 ≥ 𝑘1 =

𝑘 (𝑇𝑒 , 𝑒). □

Lemma 7.8. Consider a shortcut 𝑒 = (𝑇𝑎 [𝑖],𝑇𝑏 [ 𝑗]) ∈ 𝐸s. Assume that 𝑟 (𝑇𝑎, 𝑛) ≤ 𝑖 holds
after the 𝑛-th round of an ULTRA-TB search using 𝐸saug as the set of shortcuts. Then there is a
shortcut (𝑇𝑐 [𝑘],𝑇𝑑 [ℓ]) ∈ 𝐸saug with 𝑇𝑐 ⪯ 𝑇𝑎 , 𝑇𝑑 ⪯ 𝑇𝑏 , 𝑘 ≥ 𝑖 and ℓ ≤ 𝑗 that is relaxed by the
search in some round 𝑛′ ≤ 𝑛.

Proof. For each stop index 𝑥 ≥ 𝑟 (𝑇𝑎, 𝑛), let 𝑇 (𝑥) be the earliest trip of 𝑅(𝑇𝑎) such that 𝑇 [𝑥]
is scanned in some round 𝑛′ ≤ 𝑛. Note that for each index 𝑦 ≥ 𝑥 , it holds that 𝑇 (𝑦) ⪯ 𝑇 (𝑥).
Furthermore, if 𝑥 ≥ 𝑟 (𝑇, 𝑛) for some trip 𝑇 , then it follows that 𝑇 ⪰ 𝑇 (𝑥).
To simplify notation, we write 𝑘 (𝑇 ) instead of 𝑘 (𝑇, 𝑒) for a trip 𝑇 . Let 𝑘min := 𝑘 (𝑇𝑎). It

holds that 𝑘min ≥ 𝑖 ≥ 𝑟 (𝑇𝑎, 𝑛). Hence, we know that 𝑇𝑎 ⪰ 𝑇 (𝑘min). By Lemma 7.7, this yields

that 𝑘min ≤ 𝑘 (𝑇 (𝑘min)). Conversely, because 𝑘max = |𝑇𝑎 | − 1 is the highest possible index, it
must hold that 𝑘max ≥ 𝑘 (𝑇 (𝑘max)). There must be some index 𝑘 with 𝑘min ≤ 𝑘 ≤ 𝑘max for

which 𝑘 = 𝑘 (𝑇 (𝑘)) because 𝑘 (𝑇 (𝑘)) cannot decrease as 𝑘 increases by Lemma 7.7. Let 𝑇𝑐 :=

𝑇 (𝑘). It follows from 𝑘 ≥ 𝑘min that 𝑇𝑐 ⪯ 𝑇𝑎 . By the definition of 𝑘 (·), we know that there is

a shortcut (𝑇𝑐 [𝑘],𝑇𝑑 [ℓ]) ∈ 𝐸saug with 𝑇𝑑 ⪯ 𝑇𝑏 and ℓ ≤ 𝑗 . By the definition of 𝑇 (·), we know
that 𝑇𝑐 [𝑘] is scanned in some round 𝑛′ ≤ 𝑛 and the shortcut is subsequently relaxed. □

Theorem7.9. Consider a three-criteria query with source vertex vs, target vertex vt and departure
time 𝜏dep. Let 𝐽 be a Pareto-optimal journey found by ULTRA-McTB for this query and 1 ≤ 𝑛 ≤ |𝐽 |
a number of trips. Let 𝑇𝑛 denote the 𝑛-th trip of 𝐽 and 𝑇𝑛 [ 𝑗𝑛] the stop event at which 𝐽 exits 𝑇𝑛 .
Then 𝑟 (𝑇𝑛, 𝑛) ≤ 𝑗𝑛 holds for the reached index of an ULTRA-TB search using 𝐸saug as the set of
shortcuts.

Proof. By induction over 𝑛. The base case 𝑛 = 1 follows from the correctness of Bucket-CH

and TB. Assume the claim is true for 𝑛 − 1, i.e., 𝑟 (𝑇𝑛−1, 𝑛 − 1) ≤ 𝑗𝑛−1. We know that the

shortcut (𝑇𝑛−1 [ 𝑗𝑛−1],𝑇𝑛 [𝑖𝑛]) ∈ 𝐸s exists for the stop event 𝑇𝑛 [𝑖𝑛] at which 𝐽 enters 𝑇𝑛 . By

Lemma 7.8, there is a shortcut (𝑇 ′𝑛−1 [𝑘],𝑇 ′𝑛 [ℓ]) ∈ 𝐸saug with 𝑇 ′𝑛−1 ⪯ 𝑇𝑛−1, 𝑇 ′𝑛 ⪯ 𝑇𝑛 , 𝑘 ≥ 𝑗𝑛−1
and ℓ ≤ 𝑖𝑛 that is relaxed in some round 𝑗 ≤ 𝑛. Thus,

𝑟 (𝑇𝑛, 𝑛) ≤ 𝑟 (𝑇 ′𝑛, 𝑛) ≤ ℓ + 1 ≤ 𝑖𝑛 + 1 ≤ 𝑗𝑛 . □

Optimizations. As described thus far, the pruning scheme causes unnecessary work

during the backward searches: The initial transfer phase of a backward search collects all

routes from which vt is reachable and scans them to find trip segments to enqueue. This is

efficient for a normal ULTRA-TB query because vt is typically reachable from most stops. In a
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bounded query, however, most stops are not reachable from vs in time to produce an optimal

journey when transferring from there to vt. For such stops, the Enqueue procedure will be

called, but no trip segments will be enqueued because they will be pruned by the forward

reached indices.

To avoid unnecessary Enqueue calls at these stops, we replace the forward reached in-

dices
−→𝑟 (·, ·) with earliest arrival times at stops. As in the RAPTOR-based algorithm, the

forward pruning search now computes an arrival time
−−→𝜏arr (v, 𝑛) per stop v and round 𝑛. This is

the earliest arrival time among all found journeys to v with 𝑛 trips that end with a trip. A corol-

lary of Theorem 7.9 is that after round 𝑛, the arrival time
−−→𝜏arr (v, 𝑛) is not later than the arrival

time of a Pareto-optimal journey to v with 𝑛 trips that ends with a trip, allowing the backward

search to use it for pruning. When entering a trip𝑇 at stop event𝑇 [𝑖] in round 𝑛, a backward

search for a label ℓ does not enqueue the trip segment if
−−→𝜏arr (v (𝑇 [𝑖]), |ℓ | −𝑛) > 𝜏dep (𝑇 [𝑖]). To

explore initial transfers, a backward search for a label ℓ first collects all stops v from which vt
is reachable and for which

−−→𝜏arr ( |ℓ |) + 𝜏tra (v, vt) ≤ 𝜏arr (ℓ) holds. For each such stop v and each

route visiting v , the latest reachable trip is found via binary search and Enqueue is called.

To compute
−−→𝜏arr (·, ·), the forward pruning search adds an extra operation during the trip

scanning phase. Before relaxing the outgoing transfers of a stop event 𝑇 [𝑖] in round 𝑛, the

arrival time
−−→𝜏arr (v (𝑇 [𝑖]), 𝑛) is now set to the minimum of itself and 𝜏arr (𝑇 [𝑖]). When starting

a new round 𝑛, the arrival time
−−→𝜏arr (v, 𝑛) for each stop v is initialized with

−−→𝜏arr (v, 𝑛 − 1).
A final optimization concerns the main search. Normally, the reached transfer times 𝑟tra (·, ·)

maintained by McTB are reset at the start of each query. In the context of UBM-TB, which

prunes most of the search space, this is often more expensive than the main search itself.

Hence, we mark each reached transfer time 𝑟tra (𝑇, 𝑖) with a timestamp. When 𝑟tra (𝑇, 𝑖) is
accessed and its timestamp does not match that of the current query, the value is reset to∞.

7.3 Experiments
We begin our experimental evaluation by analyzing the impact that optimizing transfer

time has on the solution quality in Section 7.3.1. Section 7.3.2 evaluates the McULTRA

shortcut computation and the algorithms for computing full Pareto sets on the four benchmark

networks. As in Chapter 5.3, we test the shortcut hypothesis for different transfer speeds.

Finally, we evaluate the algorithms for computing restricted Pareto sets in Section 7.3.3.

Shortcut computations were run on the Epyc machine, all other experiments on the Xeon

machine. Unless otherwise noted, walking with a constant speed of 4.5 km/h is used as the

transfer mode.

7.3.1 Impact of Optimizing Transfer Time
To study the impact of optimizing transfer time on the solution quality, we compare minimal

transfer times in the two-criteria Pareto set to those in restricted three-criteria Pareto sets

for varying slack values. We choose restricted Pareto sets instead of a full one because they
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Figure 7.3: Comparison of optimal transfer times in the two-criteria Pareto set J A
versus a

restricted three-criteria Pareto set J R
on the Switzerland and London networks for different

transfer speeds. 10 000 random queries were run for each choice of slack values. We then

calculated the transfer time savings as Δtra = (𝜏𝐴 − 𝜏𝑅)/𝜏𝐴, where 𝜏𝑅 is the lowest transfer

time in J R
and 𝜏𝐴 the lowest transfer time in J A

. Shown is the percentage of queries for

which Δtra exceeds the specified threshold.
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exclude undesirable journeys with a low transfer time but excessive costs in the other criteria.

Figure 7.3 shows the results on Switzerland and London for different transfer speeds. With

walking as the transfer mode, more than 25% of the transfer time can be saved for most

queries, even with small slack values. In up to 50% of all queries, more than half of the

transfer time can be saved. This confirms that adding transfer time as a third criterion often

significantly improves the quality of the found journeys. The savings become even more

pronounced as the transfer speed increases. For 10 km/h (e.g., slow cycling), the vast majority

of queries allow at least a moderate improvement in transfer time. Often, improvements are

possible even without allowing a trip slack. This underscores that optimizing the transfer time

becomes especially crucial as the transfer speed increases. Fast transfer modes are frequently

competitive with public transit in terms of travel time, but not necessarily in terms of comfort.

If the transfer time is not considered, optimal journeys will often avoid trips altogether in

favor of long transfers.

For walking as the transfer mode, both networks behave similarly. London has a slightly

larger share of queries with savings above 25%, whereas very large savings are more frequent

on the Switzerland network. The impact of the transfer speed is more drastic for the London

network, in which large savings are more common for a transfer speed of 10 km/h than on

the Switzerland network. This can be explained by the different network topologies: The

London network consists of a dense metropolitan area. Here, public transit is common, but

the average travel speed is fairly low across long distances because the trips halt frequently.

Thus, even moderately fast transfer modes quickly become competitive in terms of travel time.

By contrast, long-distance journeys in Switzerland often involve high-speed trains, against

which only cars are competitive.

7.3.2 Full Pareto Sets
For the purpose of computing full three-criteria Pareto sets, we evaluate the McULTRA

shortcut computation and the McULTRA-based query algorithms.

Shortcut Computation. For the Core-CH precomputation required by the McULTRA

shortcut computation algorithm, we used the same settings as in Chapter 5.3: the transfer

graphs were contracted up to an average vertex degree of 20 for Germany and 14 for the other

networks. As mentioned in Section 7.1.2, the first route scanning phase of each MCR run

may use simplified MR-like route scans, but this may lead to superfluous shortcuts. On the

Switzerland network with both witness limits set to∞, using MCR-like route scans yields 4%

fewer shortcuts for the stop-to-stop variant and 1% for the event-to-event variant. However,

this increases the shortcut computation time by 23% and 11%, respectively. Hence, MR-like

route scans are used for all subsequent experiments. Similarly, the intermediate witness limit

is always set to 𝜆w
1
= 0 because this reduces the event-to-event computation time by 64%

while only producing 0.4% more shortcuts.

Figure 7.4 shows the impact of the Dijkstra label key and the final witness limit 𝜆w
2
on

the computation time and the number of shortcuts in the event-to-event variant. Especially
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Figure 7.4: Impact of key choice and final witness limit 𝜆w
2
on the shortcut computation

time and the number of shortcuts of event-to-event McULTRA, measured on the Switzerland

network. For a label with arrival time 𝜏arr and transfer time 𝜏tra, a key ratio of 𝜔arr : 𝜔tra
indicates a key value of (𝜔arr · 𝜏arr + 𝜔tra · 𝜏tra)/(𝜔arr + 𝜔tra). A weight of 0 indicates that the

criterion is only used as a tiebreaker.

Table 7.1: Shortcut computation results for ULTRA and McULTRA. Times are formatted

as hh:mm:ss. For event-to-event McULTRA, |−−→𝐸s
aug
| and |←−−𝐸s

aug
| are the number of augmented

shortcuts for the forward and backward pruning search, respectively.

Network Variant

ULTRA McULTRA

Time # Shortcuts Time # Shortcuts |−−→𝐸s
aug
| |←−−𝐸s

aug
|

Stuttgart

Stop 00:00:54 83 086 00:02:43 121 251 – –

Event 00:01:00 1 973 321 00:03:41 5 865 012 12 212 838 12 492 437

London

Stop 00:03:44 190 388 00:16:32 135 395 – –

Event 00:04:17 8 576 120 00:25:56 18 955 051 38 202 817 43 439 278

Switzerland

Stop 00:01:57 170 713 00:04:23 218 899 – –

Event 00:02:11 6 938 012 00:05:35 14 077 529 40 231 588 40 416 364

Germany

Stop 02:53:57 2 907 691 04:07:03 2 919 962 – –

Event 02:55:12 77 515 291 05:55:29 197 690 344 580 541 220 590 717 058
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when the arrival time is weighted heavily, imposing a final witness limit saves considerable

computation time, at the cost of producing noticeably more shortcuts. The latter can be

mitigated by weighting the transfer time more heavily, but this increases the computation

time for strict final witness limits. This is explained by the fact that improper candidates, which

are weakly dominated by journeys found in previous MCR runs, tend to have higher arrival

times than proper candidates. Increasing the arrival time weight moves proper candidates

toward the front of the queue, allowing the stopping criterion to be applied earlier. To strike a

balance between computation time and the number of shortcuts, we choose weights 𝜔arr = 1

and 𝜔tra = 0 as well as a final witness limit 𝜆w
2
= 60min for all subsequent experiments.

Table 7.1 shows overall results for the shortcut computation on all networks. Compared

with two-criteria ULTRA, the number of shortcuts increases by less than a factor of two for the

stop-to-stop variant, and between two and three for the event-to-event variant. Computing

the shortcuts takes two to four times longer on the Stuttgart, Switzerland and Germany

networks, and four to six times longer on London. By contrast, three-criteria MCR has a

slowdown of about 20 compared with its two-criteria variant, MR. This shows that the shortcut

computation scales much better for the additional criterion than a regular one-to-one query.

A remarkable observation is that the growth in the number of stop-to-stop shortcuts is very

low compared with the event-to-event shortcuts. In fact, McULTRA even manages to reduce

the number of stop-to-stop shortcuts on the London network. This may be surprising at first,

as adding a third criterion should lead to more Pareto-optimal candidates and thereby more

shortcuts. However, it also affects the way ties are broken between journeys that have the

same arrival time and number of trips. Among equivalent candidates with the same second

trip, two-criteria ULTRA prefers the one that enters the trip at the earliest stop, whereas

McULTRA prefers the one with the shortest intermediate transfer.

To examine the influence of the tiebreaking rule on the number of shortcuts, we imple-

mented a variant of McULTRA that does not consider transfer time as a proper third criterion

but uses it as a tiebreaker between equivalent journeys. Figure 7.5 shows the transfer time

distribution for all three ULTRA variants on the London network. We observe that using

transfer time as a tiebreaker increases the number of event-to-event shortcuts overall but

skews the distribution toward lower transfer times. Pareto-optimizing it as a third criterion

adds more shortcuts across the board, but the increase is stronger for low transfer times. As

already observed for ULTRA (cf. Section 5.3.1), event-to-event shortcuts with a low transfer

distance are more likely to share the same stop pair as those with a higher distance, simply

because there are fewer pairs to choose from. Thus, if we switch from the event-based rep-

resentation to the stop-based one, the growth in the number of shortcuts for low transfer

times is dampened, whereas the loss for high transfer times is amplified. On the London

network, which is very dense, this effect is strong enough to overcome the overall increase in

the number of shortcuts.

Query Algorithms. We evaluate two query algorithms for computing full Pareto sets:

ULTRA-McRAPTOR (combining McRAPTOR with stop-to-stop McULTRA shortcuts) and



Chapter 7 Optimizing Transfer Time

128

2
0

2
3

2
6

2
9

2
12

2
15

0

1 000

2 000

3 000

4 000

5 000

Transfer time [s]

E
v
e
n
t
-
t
o
-
e
v
e
n
t
s
h
o
r
t
c
u
t
s
[
k
]

2
0

2
3

2
6

2
9

2
12

2
15

0

10

20

30

40

Transfer time [s]

S
t
o
p
-
t
o
-
s
t
o
p
s
h
o
r
t
c
u
t
s
[
k
]

Two criteria Two criteria + tiebreaking Three criteria

Figure 7.5: Transfer time distribution of the (Mc)ULTRA shortcuts for the London network.

The blue bars correspond to the original ULTRA shortcuts for the two criteria arrival time

and number of trips. The red bars add transfer time as a tiebreaker in the case of equality,

whereas the yellow bars represent McULTRA, which Pareto-optimizes transfer time as a

third criterion. The bars for 2
0
represent all shortcuts with a transfer time below one second.

For 𝑖 > 0, the bars for 2
𝑖
correspond to the number of shortcuts with a transfer time in the

interval [2𝑖−1, 2𝑖 ).
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Table 7.2: Performance of full Pareto set algorithms, averaged over 10 000 random queries.

RAPTOR query times are divided into phases: initialization, including clearing vertex bags

and exploring initial/final transfers (Init.), collecting (Collect) and scanning (Scan) routes, and
relaxing intermediate transfers (Relax). Also reported are the number of rounds (Rnd.) and
the number of found journeys (Jrn.). McRAPTOR

∗
only supports stop-to-stop queries with

transitive transfers.

Network Algorithm
Full

graph

Rnd. Jrn.

Time [ms]

Init. Collect Scan Relax Total

Stuttgart

McRAPTOR
∗ ◦ 22.7 34.7 16.7 9.2 133.0 136.4 295.2

MCR • 28.9 34.2 55.2 18.4 235.2 662.2 955.2

ULTRA-McRAPTOR • 28.9 34.2 30.9 14.6 232.3 82.9 360.7

ULTRA-McTB • 28.5 34.2 – – – – 100.5

London

McRAPTOR
∗ ◦ 12.6 21.8 13.0 2.0 101.2 152.6 268.7

MCR • 14.6 30.5 30.2 3.4 128.0 296.9 458.1

ULTRA-McRAPTOR • 14.6 30.5 21.0 3.0 125.4 50.0 199.4

ULTRA-McTB • 14.8 30.5 – – – – 78.6

Switzerland

McRAPTOR
∗ ◦ 24.3 20.8 23.9 8.4 144.2 130.4 306.9

MCR • 32.8 30.5 62.2 15.3 233.1 420.7 731.3

ULTRA-McRAPTOR • 32.8 30.5 40.6 14.4 231.2 59.2 345.3

ULTRA-McTB • 33.6 30.5 – – – – 147.5

Germany

McRAPTOR
∗ ◦ 30.9 38.3 494.1 300.4 5 043.0 3 422.5 9 260.0

MCR • 36.6 58.0 1 213.4 474.6 7 628.0 20 694.5 30 010.6

ULTRA-McRAPTOR • 36.6 58.0 1 078.3 591.9 8 761.6 2 168.1 12 600.0

ULTRA-McTB • 36.3 58.0 – – – – 4 780.7

ULTRA-McTB (combining McTB with event-to-event McULTRA shortcuts). Query times

are reported in Table 7.2. Compared with MCR, the fastest previously known algorithm,

ULTRA-McRAPTOR is about two to three times as fast and ULTRA-McTB achieves a speedup

of five to ten. As in the two-criteria scenario, ULTRA-McRAPTOR achieves its speedup mostly

by significantly reducing the transfer relaxation time. This results in similar query times

to McRAPTOR on a transitively closed transfer graph. The slight slowdown compared to

transitive McRAPTOR on most networks is explained by the significantly higher number of

found journeys.

Impact of Transfer Speed. Figure 7.6 shows how McULTRA is affected by the speed of

the transfer mode. For two-criteria ULTRA, we observed in Chapter 5.3.1 that the number

of shortcuts declines once the transfer speed becomes competitive with public transit. This
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Figure 7.6: Impact of transfer speed for the Switzerland network. Left: Ratio of McULTRA

shortcuts compared with a transfer speed of 4.5 km/h. Speed limits in the network were obeyed

for the lines with filled circles and ignored for the lines with empty circles. Right: Query
performance of MCR and ULTRA-based algorithms, averaged over 1 000 random queries.

Speed limits were obeyed. For the RAPTOR-based algorithms, query times are divided into

route collecting/scanning, transfer relaxation, and remaining time.

is because with arrival time and number of trips as criteria, there is no reason to use public

transit unless it saves travel time. For high transfer speeds, a direct transfer from source to

target is often the only Pareto-optimal journey, so fewer shortcuts for intermediate transfers

are required. This is no longer the case when adding transfer time as a criterion because

making a public transit detour can save transfer time. Consequently, the number of shortcuts

increases for high transfer speeds. This effect is much stronger for the stop-to-stop variant

than for the event-to-event variant, which indicates that most of the additional shortcuts are

only required at a few specific times during the day. All query algorithms become slower

for higher transfer speeds as the search space increases. ULTRA-McRAPTOR is practical

for transfer speeds up to 20 km/h (which is faster than the average travel speed via bicycle

or e-scooter) but loses its advantage over MCR above 30 km/h. By contrast, ULTRA-McTB

maintains a speedup of up to five even for transfer speeds up to 40 km/h, due to the slower

increase in the number of shortcuts.

Overall, we observe that the shortcut hypothesis only holds under the assumption that we

outlined in Chapter 1: public transit is the main transportation mode and the transfer mode

is mostly used for bridging gaps in poorly serviced areas. If the transfer mode is competitive
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Table 7.3: Performance of the bounded query algorithms with 𝜎arr = 𝜎tr = 1.25, averaged

over 10 000 random queries. Query times are divided into forward and backward pruning

searches and main search. Also reported are the number of rounds performed by the main

search (Rnd.) and the number of found journeys (Jrn.). The performance of the two-criteria

algorithms is shown for comparison. (BM-)RAPTOR
∗
only supports stop-to-stop queries with

transitive transfers.

Network Algorithm
Full

graph

Rnd. Jrn.

Time [ms]

Forward Backward Main Total

Stuttgart

RAPTOR
∗ ◦ 7.1 1.8 – – – 6.8

ULTRA-RAPTOR • 7.5 4.0 – – – 10.9

ULTRA-TB • 7.7 4.0 – – – 4.0

BM-RAPTOR
∗ ◦ 5.2 5.4 13.8 3.7 10.9 28.3

UBM-RAPTOR • 4.2 9.8 16.5 4.2 9.9 30.6

UBM-TB • 4.2 9.8 10.6 2.0 3.9 16.5

London

RAPTOR
∗ ◦ 7.6 2.3 – – – 10.5

ULTRA-RAPTOR • 7.2 4.3 – – – 6.5

ULTRA-TB • 7.1 4.3 – – – 3.6

BM-RAPTOR
∗ ◦ 5.3 8.0 21.8 4.7 17.6 44.1

UBM-RAPTOR • 4.6 12.4 10.8 2.9 7.9 21.6

UBM-TB • 4.6 12.4 9.8 1.7 4.1 15.6

Switzerland

RAPTOR
∗ ◦ 7.9 2.0 – – – 14.5

ULTRA-RAPTOR • 7.3 4.6 – – – 13.7

ULTRA-TB • 7.6 4.6 – – – 4.7

BM-RAPTOR
∗ ◦ 5.7 4.8 23.2 4.0 11.8 39.0

UBM-RAPTOR • 4.8 9.2 21.8 3.4 9.2 34.4

UBM-TB • 4.8 9.2 13.4 1.5 2.7 17.6

Germany

RAPTOR
∗ ◦ 10.3 2.3 – – – 326.0

ULTRA-RAPTOR • 9.4 5.3 – – – 389.3

ULTRA-TB • 9.9 5.3 – – – 86.7

BM-RAPTOR
∗ ◦ 7.0 8.0 462.3 47.7 159.8 669.8

UBM-RAPTOR • 5.9 13.9 567.7 41.3 130.2 739.2

UBM-TB • 5.9 13.9 260.9 24.0 39.4 324.2

with public transit in terms of speed and also widely available, then it may become the main

mode instead. If it is also more cumbersome to use than public transit and therefore transfer

time should be penalized, then our assumption no longer holds and ULTRA is not a suitable

approach.
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Table 7.4: Performance of the bounded query algorithms for different slack values on the

Switzerland network, averaged over 10 000 random queries. Query times are divided into

forward and backward pruning searches and main search. Also reported are the number

of rounds performed by the main search (Rnd.) and the number of found journeys (Jrn.).
BM-RAPTOR

∗
only supports stop-to-stop queries with transitive transfers.

Algorithm 𝜎tr 𝜎arr
Full

graph

Rnd. Jrn.

Time [ms]

Forward Backward Main Total

BM-RAPTOR
∗

1.25 1.2 ◦ 5.7 4.5 22.5 3.2 9.0 34.7

1.25 1.25 ◦ 5.7 4.8 23.2 4.0 11.8 39.0

1.25 1.3 ◦ 5.7 5.1 24.0 4.9 14.6 43.5

1.25 1.5 ◦ 5.7 5.8 25.4 7.8 25.1 58.4

1.5 1.2 ◦ 6.5 5.1 23.0 4.9 15.9 43.8

1.5 1.25 ◦ 6.5 5.5 23.5 6.2 20.6 50.4

1.5 1.3 ◦ 6.6 5.9 24.0 7.3 25.2 56.6

1.5 1.5 ◦ 6.6 6.9 25.6 11.6 43.5 80.7

UBM-RAPTOR

1.25 1.2 • 4.8 8.7 20.9 2.9 7.7 31.5

1.25 1.25 • 4.8 9.2 21.8 3.4 9.2 34.4

1.25 1.3 • 4.8 9.6 22.7 4.0 10.7 37.4

1.25 1.5 • 4.9 10.6 25.2 6.4 16.9 48.5

1.5 1.2 • 5.6 9.4 21.1 3.4 9.2 33.7

1.5 1.25 • 5.6 10.0 21.9 4.1 11.0 37.1

1.5 1.3 • 5.7 10.5 22.7 4.8 13.0 40.5

1.5 1.5 • 5.7 11.9 25.1 7.7 21.6 54.4

UBM-TB

1.25 1.2 • 4.8 8.7 12.4 1.1 1.9 15.4

1.25 1.25 • 4.8 9.2 13.4 1.5 2.7 17.6

1.25 1.3 • 4.8 9.6 14.1 1.8 3.7 19.6

1.25 1.5 • 4.8 10.6 17.1 3.6 8.0 28.8

1.5 1.2 • 5.5 9.4 12.5 1.4 2.6 16.5

1.5 1.25 • 5.5 10.0 13.2 1.9 3.8 18.9

1.5 1.3 • 5.6 10.5 14.1 2.3 5.2 21.6

1.5 1.5 • 5.7 11.9 17.1 4.5 11.4 32.9

7.3.3 Restricted Pareto Sets

We conclude by evaluating our bounded query algorithms. As shown in Table 7.1, shortcut

augmentation increases the number of shortcuts by a factor of two to three. The augmentation

takes a few seconds for the three smaller networks and eight minutes for Germany, which

is negligible compared with the shortcut computation time. Query times for the bounded
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algorithms are shown in Table 7.3. Based on the results from Figure 7.3, we choose slack

values 𝜎arr = 𝜎tr = 1.25 as a good tradeoff between solution quality and query speed. The

bounded algorithms are a factor of two to four slower than their two-criteria counterparts.

This is consistent with the slowdown observed for BM-RAPTOR compared with RAPTOR

on transitively closed transfer graphs. Most of the running time is taken up by the forward

pruning search, which indicates that the pruning scheme is highly effective. Due to weaker

target pruning and the algorithmic changes discussed in Section 7.2, the forward pruning

search is slower than a two-criteria query, particularly for UBM-TB. Nevertheless, UBM-TB

is about twice as fast as UBM-RAPTOR. Compared with the ULTRA-based algorithms for

full Pareto sets, the bounded variants achieve a speedup of around an order of magnitude.

Compared with MCR, which was previously the fastest algorithm for this problem setting,

UBM-TB achieves a speedup of 30–90.

Table 7.4 shows the performance of the bounded query algorithms for different slack values

on the Switzerland network. The forward pruning search is not significantly impacted by the

trip slack, and only moderately by the arrival slack, due to the weaker target pruning. The

backward pruning searches and main search take significantly longer for higher slack values

and start to dominate the running time for 𝜎tr = 1.5 and 𝜎arr = 1.5. However, even for high

slack values, the bounded algorithms remain much faster than their unbounded counterparts.

7.4 Conclusion
We showed that in order to obtain high-quality solutions in the presence of unlimited transfers,

it is necessary to optimize transfer time as a third criterion. In contrast to multicriteria

optimization in general, we showed that this problem can be solved in polynomial time. To

exploit this, we developed McTB, a fast three-criteria algorithm that avoids costly dynamic

data structures. To enable unlimited transfers, we proposed McULTRA, a three-criteria

extension of ULTRA. By adapting the optimizations of ULTRA and introducing additional

ones, we obtained a shortcut computation algorithm that runs in reasonable time and produces

less than twice as many shortcuts as two-criteria ULTRA. The combination of McULTRA and

McTB achieves a speedup of five to ten over the state of the art and remains practical even for

fast transfer modes. Finally, we developed RAPTOR- and TB-based algorithms for computing

restricted Pareto sets in a multimodal network. The latter is up to 90 times faster than MCR,

the fastest previously known algorithm for three-criteria multimodal queries.

Although we focused on optimizing transfer time, our algorithms can be used to optimize

any third criterion that fulfills requirements (R1) and (R2) and is compatible with route-based

pruning rules. An example would be a criterion that represents passenger preferences between

different types of public transit vehicle (e.g., preferring regional trains over more expensive

high-speed trains). To ensure compatibility with route-based pruning, all trips within a route

must be equivalent according to this criterion, which can be enforced by grouping the trips

into routes accordingly. In particular, our algorithms may be useful for three-criteria problem

settings in pure public transit networks, in which optimizing transfer time is not necessarily
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important. In this context, the event-to-event variant McULTRA can serve as a three-criteria

replacement for the transfer generation step of TB. It may also be interesting to generalize

McTB to criteria that are not compatible with route-based pruning, such as vehicle occupancy.

Outlook. The results of our experimental evaluation provide further insights into the

limits of the shortcut hypothesis. If public transit is the faster and more comfortable mode

and the transfer mode is used for bridging gaps, then the shortcut hypothesis holds and can

be successfully exploited with McULTRA. If the transfer mode is comfortable enough that

its usage does not need to be penalized, then regardless of its speed it can be handled with

two-criteria ULTRA. However, if the transfer mode is competitive in terms of speed and its

usage is penalized, then the shortcut hypothesis no longer holds. The reason for this is that

the modes switch places: the transfer mode becomes the “main” mode and public transit is

only useful as a backup for reducing discomfort.

Most common transfer modes, including, walking, cycling and e-scooters, are slow enough

to fit the shortcut hypothesis. The main exception is cars. If car usage is not penalized and

cars are available for all parts of the journey, then a direct car journey dominates all solutions

that include public transit, so there is no need for multimodal journey planning. However,

there are still valid multimodal scenarios that include cars. We outline three examples:

Scenario 1: Taxi. Taxis are widely available and transfer time acts as a proxy for fare. Since

taxis are the fastest mode and their usage is penalized, many solutions will interrupt

taxi rides with public transit in order to reduce the fare. This leads to a combinatorial

explosion in the number of optimal journeys, as previously observed by Delling et

al. [Del+13] when they included taxis in a multimodal network. The polynomial upper

bound on the number of Pareto-optimal solutions that we established in Section 7.1.1

still holds in this scenario. However, because this bound is based on the number of

stop events, which is typically in the millions, the Pareto set may still be enormous.

Nevertheless, it is intuitively clear that Pareto-optimal journeys that combine long

car rides with short public transit detours are not interesting to passengers. The TNT

approach by Bast et al. [BBS13] is an attempt to filter the Pareto set by removing such

undesirable journeys, but so far no efficient algorithm has been proposed for computing

the filtered set exactly. Thus, quickly identifying a small, representative subset in a

scenario with unlimited car availability remains an open problem.

Scenario 2: Park and ride. A private car is available for the initial and/or final transfer but

not for intermediate transfers. In this case, precomputed shortcuts are not required,

whereas the initial and final transfers can be handled with Bucket-CH, as in ULTRA.

Scenario 3: Ridesharing. If public transit is combined with ridesharing services, then lim-

ited availability of the ridesharing mode may potentially offset the fact that its speed is

competitive with public transit. Whether or not the shortcut hypothesis holds in this

case is an open question. If so, then a more complex shortcut computation algorithm

may be required to incorporate the special constraints of the ridesharing mode.
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8 Multiple Transfer Modes

So far, we have only considered scenarios with a single transfer mode. In reality, there are

often multiple transfer modes available, with different advantages and drawbacks. In this

chapter, we therefore extend our results for bimodal networks to a more general setting with

multiple competing transfer modes. As we discussed in the previous chapter, ULTRA is not a

suitable approach for car-based modes, so we exclude these here. This leaves modes such as

walking, private or rented bicycles, and rented e-scooters.

Chapter Outline. Allowing multiple transfer modes requires us to revisit some of our

modeling assumptions. In Section 8.1, we establish and discuss a realistic model for fully

multimodal journey planning with an arbitrary number of transfer modes, which we call

the multimodal discomfort scenario. In addition to arrival time and number of trips, we

Pareto-optimize the time spent in each transfer mode as an individual criterion. To ensure

reasonable results, we exclude certain types of undesirable solutions, such as journeys that

switch between transfer modes in the middle of a transfer.

The multimodal discomfort scenario requires algorithms that support an arbitrary number

of criteria. In Section 8.2, we show that transfer shortcuts can be generated by running

the three-criteria McULTRA preprocessing for each transfer mode individually, which only

requires linear preprocessing effort in the number of modes. We adapt existing RAPTOR-based

query algorithms to our scenario in Section 8.3. This enables the use of ULTRA-McRAPTOR

to compute full Pareto sets and UBM-RAPTOR for restricted Pareto sets. We do not adapt

UBM-TB because there is no apparent way to extend it to more than three criteria. Instead,

Section 8.4 introduces HydRA (Hybrid Routing Algorithm), which combines the advantages

of McRAPTOR and TB in scenarios with an arbitrary number of criteria. We combine our

algorithm with ULTRA and restricted Pareto sets, which yields UB-HydRA (Bounded ULTRA-
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HydRA). In Section 8.5, we evaluate the performance of our algorithms on the networks of

Stuttgart, London and Switzerland, using walking and e-scooters as the transfer modes. On

these networks, UB-HydRA achieves query times of 20–30ms, which is faster than the state

of the art by more than two orders of magnitude and enables interactive applications.

8.1 Multimodal Discomfort Scenario
Based on the findings from Chapter 7, we establish a model for multimodal journey planning

with multiple competing transfer modes, which we call the multimodal discomfort scenario. It
is based on the assumption outlined in Chapter 1: Public transit is generally the fastest and

most comfortable available mode. Its main disadvantage is limited availability in rural areas

and outside of peak hours. The transfer modes can bridge gaps in poorly serviced areas, but

using them incurs discomfort, either because they are cumbersome (e.g., walking) or costly

(e.g., e-scooter, bike-sharing). Accordingly, passengers prefer to use public transit unless

using a transfer mode improves the arrival time or reduces the number of trips.

Optimization Criteria. As usual, the first two optimization criteria are arrival time and

number of trips. In Chapter 7, which considered scenarios with a single transfer mode, we

added transfer time as a third criterion to measure the discomfort associated with using the

mode. The simplest way to extend this to multiple transfer modes is to optimize the combined

transfer time across all transfer modes as a single criterion. However, this would imply that it

is always preferable to use the fastest available mode. In reality, the different transfer modes

have competing advantages and drawbacks, and preferences vary between users. For example,

some passengers may prefer to rent a bicycle in order to be faster, whereas others may want

to save money and walk instead. For others still, the decision may depend on situational

factors, such as the distance traveled or the waiting time before the next trip departs. It is

often difficult for users to express these considerations in precise mathematical terms that

can be used algorithmically. Therefore, a common approach is to provide the users with a

small, diverse selection of reasonable journeys to choose from [Del+13, BFP21]. To achieve

this, we consider the transfer time for each mode as a separate criterion, independently of the

other modes. This ensures that the query algorithm makes no assumptions about the user’s

preferences between different modes. However, this does not mean that the objective is to

compute the full Pareto set, which may be extremely large and contain many uninteresting

journeys that are small variations of other solutions. As in Chapter 7, we use the restricted

Pareto set because it can be computed quickly and excludes some, but not necessarily all

undesirable journeys. If the restricted Pareto set is still too large or contains unattractive

journeys, it can be filtered in a post-processing step.

Mode Independence. To exclude a very common type of undesirable journey, we impose

the following restriction: the transfer mode may not be switched in the middle of a transfer.

To see why this is necessary, consider a journey that includes a bicycle ride as a transfer. If
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we swap out the first edge of the transfer with walking, we obtain a second journey such

that neither dominates the other because one has a lower bicycle time and the other has a

lower walking time. If we repeat this for each subsequent edge along the path, none of the

resulting journeys will dominate any of the others. Thus, allowing mode changes within a

transfer would lead to a combinatorial explosion of nearly identical Pareto-optimal journeys.

In practice, these journeys are undesirable because they disregard the fact that switching

between modes takes time and incurs discomfort.

We argue that mode changes within a transfer are only useful in one circumstance: When

renting a bicycle or e-scooter, passengers first have to walk to the pickup location, and

after dropping it off, they have to walk to the next public transit stop. We do not treat

these access/egress patterns as proper mode changes but rather as a part of the overall e-

scooter/bicycle transfer. If needed, footpaths between public transit stops and pickup/dropoff

points can be modeled directly in the transfer graph. The time spent using them is counted

towards the e-scooter/bicycle time rather than the walking time. For our experiments, we

assume that rented vehicles can be picked up and dropped off at any location. While this is

a simplification, it is the most challenging scenario for the purpose of testing the shortcut

hypothesis because it maximizes the availability of the rental modes. To represent the time

required for access and egress, we add a fixedmode overhead to every transfer in the respective

mode. This prevents solutions with unrealistically short scooter or bicycle transfers. For

modes without rented vehicles, such as walking, we set the mode overhead to zero.

By prohibiting mode changes within a transfer, the multimodal discomfort scenario gains

a crucial property that we call mode independence: a journey that uses a particular transfer

mode for any length of time can never dominate a journey that does not. As we will show in

Section 8.2, this allows us to apply ULTRA independently for each transfer mode. However, it

has a side effect: Often, an illegal mode change can be circumvented by inserting a public

transit trip in between as a detour. If Pareto-optimal journeys with mode changes are prohib-

ited, these undesirable detour journeys may become Pareto-optimal in their place. However,

because they incur an additional trip, they are more likely to be dominated by other, more

reasonable journeys, so this choice reduces the number of undesirable solutions overall. If

any such journeys are included in the restricted Pareto set, they can be removed during the

post-processing step.

Free Transfers. Another side effect is caused by the way mode overheads interact with

the modeling of the public transit network. Due to mode independence, if we disable a certain

subset of transfer modes, the resulting Pareto set is still contained in the Pareto set that allows

all modes. For the most part, this is beneficial because individual modes can be toggled on

and off without having to rerun the entire query. However, it also means that the Pareto

set includes journeys that avoid all modes without an overhead, including walking. There

are two ways to model platforms belonging to the same station, both of which are used in

real-world datasets: The first is to model each platform as its own stop and connect the stops

via footpaths. The other option is to model them as a combined stop and represent the time
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needed to transfer between them via the departure buffer time. Consider a scenario with two

transfer modes: walking and rented e-scooters. If walking is disabled, then the only way to

transfer between platforms modeled as different stops is to rent a scooter and incur the mode

overhead. Especially in tightly scheduled networks (e.g., metropolitan areas), this means that

a lot of crucial transfers become impossible. However, if the station is modeled as a combined

stop, then the transfer is possible because no walking is required.

If this issue is not addressed, then the Pareto set will often contain unrealistic journeys that

take detours to avoid multi-stop stations. This is especially problematic if we use ULTRA as a

preprocessing technique, since these detour journeys produce many superfluous shortcuts

that are merely artifacts of the way the network is modeled. To prevent this, we include an

extra transfer mode consisting of free transfers. These include intra-station footpaths and

other “unavoidable” transfers, e.g., connecting a train station to an adjacent bus stop. Free

transfers cannot be disabled and their (negligible) transfer time is not penalized, in the same

way that the departure buffer time is not counted towards the transfer time. This allows them

to be used to dominate undesirable detour journeys even if all other modes are disabled.

Definitions. We denote the number of transfer modes as𝑚. The different modes can

be modeled either with𝑚 individual transfer graphs or with𝑚 edge cost functions applied

to the same graph 𝐺 . To simplify notation, we choose the latter option. Traveling along an

edge 𝑒 = (v, 𝑤) in mode 𝑖 requires the transfer time 𝜏tra (𝑒, 𝑖). If an edge 𝑒 cannot be traversed

with mode 𝑖 , we set 𝜏tra (𝑒, 𝑖) = ∞. The free transfers are represented by the edge set 𝐹 ⊆ S×S ,
separately from the transfer graph. These must be one-hop transfers, i.e., we require that the

graph (S, 𝐹 ) is transitively closed and fulfills the triangle inequality. We also refer to the set

of free transfers as mode 0 but do not count it as one of the𝑚 transfer modes. The transfer

time for a free transfer 𝑒 ∈ 𝐹 is denoted by 𝜏tra (𝑒, 0).
We redefine the notion of transfers within a journey to account for free transfers: a transfer

is either a path in the transfer graph that is traversed in some mode 𝑖 or a free transfer that is

traversed in mode 0. The time required for a transfer in mode 𝑖 ≠ 0 is the transfer time of the

corresponding path in the transfer graph plus the mode overhead 𝜇 (𝑖). For a free transfer, it is
simply the transfer time of the corresponding edge in 𝐹 . A journey 𝐽 is evaluated with respect

to𝑚 + 2 criteria: the arrival time 𝜏arr (𝐽 ) at the target vertex, the number of used trips |𝐽 |, and
for each transfer mode 𝑖 , the sum over the transfer times of all transfers using mode 𝑖 in 𝐽 .

8.2 Adapting McULTRA
MCR can be easily adapted for the multimodal discomfort scenario, as we will show in

Section 8.3. In order to obtain faster algorithms, we omit the costly Dijkstra searches by

adapting McULTRA. So far, McULTRA only supports three criteria. A naive solution would be

to extend this to an arbitrary number of criteria. However, this is not necessary due to mode

independence. Consider a candidate 𝐽 c processed by McULTRA. By definition, 𝐽 c includes at

most one transfer and therefore uses at most one transfer mode 𝑖 . Witnesses with non-zero



Adapting McULTRA Section 8.3

139

5

5

v 𝑤

𝜇 (𝑖) 0 𝜇 (𝑖) 0

v𝑟 𝑤𝑟

v𝑡 𝑤𝑡

⇒

Figure 8.1: Construction of the virtual transfer graph for mode 𝑖 .

transfer time in any mode besides 0 or 𝑖 cannot dominate 𝐽 c. This means we can decompose

the preprocessing into one three-criteria McULTRA shortcut computation per transfer mode,

making the overall preprocessing effort linear in𝑚. The McULTRA shortcut computation

for mode 𝑖 only considers transfers in modes 0 and 𝑖 . It is guaranteed to find all relevant

candidates, as well as all witnesses except those that use transfers of length zero in a mode

other than 0 or 𝑖 . It is reasonable to assume that if a transfer of length zero exists in any

transfer mode, then a corresponding free transfer also exists in 𝐹 . However, even if this is

not the case, McULTRA will fail to find some witnesses and potentially generate superfluous

shortcuts, but queries will remain correct.

To explore mode 0, McULTRA relaxes the outgoing free transfers of all updated stops

before each Dijkstra search. Because 𝐹 is already transitively closed, no stop-to-stop shortcuts

need to be computed for it. Accordingly, journeys with free intermediate transfers are

considered witnesses. Event-to-event shortcuts for 𝐹 can be computed with two-criteria

ULTRA using (S, 𝐹 ) as the transfer graph. Mode overheads are incorporated by constructing

a virtual transfer graph, as shown in Figure 8.1. Each stop v is split into a route vertex v𝑟
and a transfer vertex v𝑡 . The two vertices are connected by directed edges

−→𝑒v = (v𝑟 , v𝑡 )
with 𝜏tra (−→𝑒v , 𝑖) = 𝜇 (𝑖) and←−𝑒v = (v𝑡 , v𝑟 ) with 𝜏tra (←−𝑒v , 𝑖) = 0. Each edge (v, 𝑤) ∈ 𝐸 in the original

transfer graph is replaced with an edge (v𝑡 , 𝑤𝑡 ) between the respective transfer vertices.

As discussed in Chapter 5.1.1, the correctness of (Mc)ULTRA relies on subjourney decom-

position: every query can be answered with a Pareto-optimal journey 𝐽 such that every

candidate subjourney of 𝐽 is also Pareto-optimal. As shown in Figure 8.2, this is no longer

the case if mode changes within a transfer are prohibited. In this example, the candidate 𝐽 c

is dominated by a witness 𝐽w that begins with an initial transfer in some mode 𝑖 . However,

adding a transfer in another mode 𝑗 ≠ 𝑖 as a prefix induces a mode change in 𝐽w, making it

infeasible and leaving 𝐽 c as the only alternative. McULTRA will not generate a shortcut for

the intermediate transfer of 𝐽 c and therefore fail to find journeys that include this transfer.

However, note that this only affects journeys that would not be Pareto-optimal if mode

changes were allowed. As discussed in Section 8.1, these are undesirable journeys that insert

a trip detour to circumvent the forbidden mode change. Hence, although McULTRA in the

multimodal discomfort scenario cannot guarantee to find all Pareto-optimal journeys, the

missed journeys are known to be undesirable.
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𝑇𝑏 𝑇𝑟

𝑇𝑔 𝑇𝑦

vs
v1 v2 v3 vt

v4 v5 v6 v7

0 1 0 1

0 1 0 1

Figure 8.2: An example in which McULTRA misses an optimal shortcut in

the multimodal discomfort scenario. Transfers of two different modes are

drawn as dashed and solid lines, respectively. Assume that the candidate 𝐽 c =〈
⟨v1⟩,𝑇𝑏 [0, 1], ⟨v2, v3⟩,𝑇𝑟 [0, 1], ⟨vt⟩

〉
for the shortcut (v2, v3) is strongly dominated by

the witness 𝐽w =
〈
⟨v1, v4⟩,𝑇𝑔 [0, 1], ⟨v5, v6⟩,𝑇𝑦 [0, 1], ⟨v7, vt⟩

〉
. If we prepend the edge (vs, v1) to

both journeys, then 𝐽 c becomes the only valid journey because 𝐽w now includes a prohibited

mode change at v1.

8.3 RAPTOR-BasedQuery Algorithms
RAPTOR-based algorithms (MCR, ULTRA-McRAPTOR and UBM-RAPTOR) can be applied in

the multimodal discomfort scenario with some minor changes. First, because mode changes

within a transfer are prohibited, the pruning rules of McRAPTOR must be adjusted. Journeys

that end with a trip may dominate journeys that end with a transfer, but not vice versa. This

is because a transfer in mode 𝑖 cannot be followed by a transfer in any mode other than 𝑖 ,

whereas a trip can always be followed by a transfer. McRAPTOR can take this into account

by maintaining two bags per stop v and round 𝑛: a trip bag 𝐵𝑛
trip
(v) for labels ending with a

trip, and a transfer bag 𝐵𝑛
trans
(v) for labels ending in a transfer. Accordingly, the algorithm

also maintains two best bags 𝐵∗
trip
(v) and 𝐵∗

trans
(v) per stop v . When a route scan in round 𝑛

generates a new label ℓ at a stop v , it is compared with 𝐵∗
trip
(v) but not 𝐵∗

trans
(v). If ℓ is not

dominated by 𝐵∗
trip
(v), it is merged into 𝐵𝑛

trip
(v). At the start of the transfer phase, 𝐵𝑛

trip
(v)

is merged into 𝐵𝑛
trans
(v) for each updated stop v . This represents a direct transfer between

trips at v without using a transfer mode. Finally, when a label at a stop v is generated in the

transfer phase, it is compared with both 𝐵∗
trip
(v) and 𝐵∗

trans
(v). If it is not dominated by either

bag, it is merged into 𝐵𝑛
trans
(v).

MCR additionally maintains a Dijkstra bag 𝐵𝑖
D
(v) for each transfer mode 𝑖 and vertex v in

order to conduct the Dijkstra searches. When a label is inserted into the trip bag 𝐵𝑛
trip
(v) of

a stop v in round 𝑛, a copy of the label is also merged into the Dijkstra bag 𝐵𝑖
D
(v) for each

mode 𝑖 . Likewise, when a label is added to a Dijkstra bag 𝐵𝑖
D
(v) of a stop v during round 𝑛, a

copy of it is merged into the transfer bag 𝐵𝑛
trans
(v).

Incorporating free transfers and mode overheads is straightforward. Because the set 𝐹 of

free transfers is transitively closed, no Dijkstra or Bucket-CH searches are required. It can be

explored simply by relaxing the outgoing transfers of all updated stops in each round, as done
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by McRAPTOR. In ULTRA-based queries, the shortcuts already include the overheads. For

the initial and final transfers, they are added when evaluating the results of the Bucket-CH

searches. In MCR, the overhead is added when labels are copied from the trip bags into the

Dijkstra bags.

UBM-RAPTOR. Computing restricted Pareto sets requires adapting the pruning searches

of UBM-RAPTOR to multiple transfer modes. Because they only optimize the arrival time

and the number of trips, a transfer is always traversed using the fastest available mode.

Due to overheads and limited availability of some modes, this is not necessarily the same

mode for all transfers. The pruning searches therefore identify the fastest mode for each

transfer individually. For initial and final transfers, this is done by merging the results of

the Bucket-CH searches for each mode, choosing the minimum distance for each stop. For

the intermediate transfers, the shortcut sets of all modes are merged, keeping the shortest

shortcut in case of duplicates.

As explained in Chapter 7.2.2, the pruning searches of UBM-RAPTOR are allowed to relax

multiple shortcuts in a row, at the cost of counting an additional trip for each shortcut. In a

scenario with multiple competing transfer modes, this can cause the anchor set to include

journeys with prohibited mode changes. In this case, journeys that exceed the slack compared

to them are discarded, even if they are within slack for the actual anchor set without mode

changes. This issue could be solved by maintaining individual earliest arrival times for

each mode and ensuring that only shortcuts of the same mode can be used consecutively.

However, we argue once again that the journeys that are discarded due to this phenomenon

are undesirable, since they would not be part of the solution if mode changes were allowed.

Therefore, we choose not to adjust the algorithm.

8.4 HydRA
In a scenario with one transfer mode and three criteria, event-to-event shortcuts enable

the use of McTB, which is faster than RAPTOR. McTB avoids maintaining Pareto sets by

representing the arrival time and the number of trips implicitly, which leaves transfer time

as the only remaining criterion. In the multimodal discomfort scenario with an arbitrary

number of criteria, this approach is no longer applicable. We therefore propose HydRA,

a new algorithm that is based on McRAPTOR but incorporates some aspects of McTB. In

particular, it uses event-to-event shortcuts to reduce the search space and performs simpler,

more cache-efficient route scans. Because HydRA is intended for scenarios with four or

more criteria, in which full Pareto sets are impractically large, we only present a variant

that computes restricted Pareto sets, called UB-HydRA. High-level pseudocode is shown in

Algorithm 8.1.

Initialization and Pruning Searches. Like every ULTRA-based algorithm, UB-HydRA

starts by exploring the initial and final transfers in lines 1 and 2. For the free transfer mode,
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Algorithm 8.1: UB-HydRA query algorithm.

Input: Public transit network (S,Π, E, T ,R,𝐺),
source vertex vs, departure time 𝜏dep, target vertex vt

Output: Bags 𝐵trip (vt, 𝑛) and 𝐵trans (vt, 𝑛) at vt for each number of trips 𝑛

1 for each mode 𝑖 from 0 to𝑚 do
2 𝜏tra (vs, ·, 𝑖), 𝜏tra (·, vt, 𝑖) ← Explore initial and final transfers

3 −→𝑟 (·, ·),−−→𝜏arr (·, ·), 𝑘 ← UBM-TB forward pruning search

4 ←−𝑟 (·, ·),←−−𝜏dep (·, ·) ← UBM-TB backward pruning searches

5 for each v ∈ S ∪ {vt} do
6 for each 𝑛 from 0 to 𝑘 do
7 𝐵𝑛

trip
(v) ← ∅

8 𝐵𝑛
trans
(v) ← ∅

9 𝐵∗
trip
(v) ← ∅

10 𝐵∗
trans
(v) ← ∅

11 Strans ← RelaxInitialTransfers()
12 R′ ← CollectRoutes(Strans)
13 Strip ← ScanInitialRoutes(R′)
14 Strans ← RelaxTransfers(Strip, 1)
15 for 𝑛 ← 2, 3, . . . , 𝑘 do
16 if Strans = ∅ then break
17 Strip ← ScanRoutes(Strans, 𝑛)
18 Strans ← RelaxTransfers(Strip, 𝑛)

this is done by relaxing the outgoing edges of the source vertex vs and the incoming edges of

the target vertex vt, provided they coincide with stops. All other modes are explored with

Bucket-CH searches. Afterward, the forward and backward pruning searches are performed

in lines 3 and 4. Like UBM-TB (cf. Chapter 7.2.3), UB-HydRA uses two-criteria TB for these.

For each trip 𝑇 and round 𝑛, they compute a forward reached index
−→𝑟 (𝑇, 𝑛) and a backward

reached index
←−𝑟 (𝑇, 𝑛). The forward reached index

−→𝑟 (𝑇, 𝑛) indicates the index of the first

stop along 𝑇 that is reachable from vs with 𝑛 trips. The backward reached index
←−𝑟 (𝑇, 𝑛)

is the last stop index 𝑖 along 𝑇 with the following property: if 𝑇 [𝑖] is reached with 𝑛 trips,

then vt is reachable from there without exceeding the trip or arrival slack of an anchor

journey. Additionally, for each stop v and round 𝑛, the forward search computes the earliest

arrival time
−−→𝜏arr (v, 𝑛) among all journeys that arrive at v via a trip and use 𝑛 trips. Unlike

the UBM-TB backward search, the UB-HydRA backward search also computes an analogous

latest departure time
←−−𝜏dep (v, 𝑛). The forward pruning search also computes the maximum

number of rounds 𝑘 that need to be performed by the main search.
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Main Search. The overall scheme of the main search remains identical to McRAPTOR:

it operates in rounds, each of which consists of a route scanning step followed by a transfer

relaxation step. Each step yields a set of marked stops that are scanned in the next step; we

denote these as Strip for the route scanning phase and Strans for the transfer relaxation phase.

As in McRAPTOR, labels are maintained in a trip bag 𝐵𝑛
trip
(v) and a transfer bag 𝐵𝑛

trans
(v)

for each vertex v and round 𝑛, as well as best bags 𝐵∗
trip
(v) and 𝐵∗

trans
(v) encompassing the

already performed rounds. These are initialized in lines 5–10. A label ℓ = (𝜏arr, 𝜏tra [·], 𝜀)
consists of the arrival time 𝜏arr, an array 𝜏tra [·] of length𝑚 that represents the transfer times

for all modes, and a stop event 𝜀. For labels in the trip bags, 𝜀 is the exit event, i.e., the stop
event at which the last trip was exited. This information is used in the transfer relaxation

phase: whereas McRAPTOR relaxes the outgoing stop-to-stop shortcuts of the corresponding

stop v (𝜀), HydRA only relaxes the outgoing event-to-event shortcuts of 𝜀. This already yields

the stop event at which the next trip will be entered, which is stored as the entry event in the

corresponding transfer bag label. This allows the route scanning phase to skip the step of

finding the earliest reachable trip for the label. Starting with the transfer relaxation phase

of round 1, HydRA uses redesigned procedures that make use of the entry and exit events.

For the initial transfers and the first route scanning phase, however, these events are not yet

known, so the algorithm falls back on McRAPTOR-like procedures.

Pseudocode for the transfer relaxation procedures is shown in Algorithm 8.2. Two auxiliary

procedures are used: LinkTransfer (lines 23–26) adds a transfer in mode 𝑖 with transfer

time 𝜏newtra to an existing label ℓ , creating a new label ℓ ′. This is done by adding 𝜏newtra to the

arrival time of ℓ and to the transfer time in mode 𝑖 . Additionally, if the transfer represents

an event-to-event shortcut (𝜀out, 𝜀in), then the stop event of ℓ is replaced with the entry

event 𝜀in. The procedure MergeTransferLabel (lines 27–33) merges a label ℓ into the transfer

bag 𝐵𝑛
trans
(v) of a stop v for round 𝑛. As in UBM-RAPTOR, ℓ is discarded if its arrival

time exceeds the latest departure time
←−−𝜏dep (v, 𝑛) computed by the backward pruning search.

Otherwise, target pruning is performed by testing whether ℓ is dominated by the best trip

and transfer bags of vt. If not, it is merged into the best bag 𝐵∗
trans
(v) and finally 𝐵𝑛

trans
(v). The

dominance rules for the merge operation are slightly adjusted: if two labels are equivalent in

all criteria but have different exit/entry events, then both are kept. Finally, the stop is marked

for the next round by adding it to the set Strans.

In round 0, transfers are relaxed with the RelaxInitialTransfers procedure (lines 1–11).

For each transfer mode 𝑖 and each stop v that is reachable with an initial transfer from vs
in mode 𝑖 , a label ℓ ′ is created via LinkTransfer and merged into the transfer bag 𝐵0

trans
(v)

via MergeTransferLabel. Lines 9 and 10 do the same for a potential direct transfer to vt. For
later rounds 𝑛 > 0, transfers are handled by the procedure RelaxTransfers (lines 12–22). For

each transfermode 𝑖 , each updated stop v ∈ Strip and each label in the previous trip bag𝐵
𝑛−1
trip
(v)

with exit event 𝜀out, all outgoing shortcuts of 𝜀out in the set 𝐸s𝑖 of shortcuts for mode 𝑖 are

relaxed. For each shortcut (𝜀out, 𝜀in), a new label ℓ is created that stores 𝜀in as its entry event

and MergeTransferLabel is called to merge it into the transfer bag 𝐵𝑛
trans
(v (𝜀in)). A potential

final transfer from v to vt is handled in the same manner as in RelaxInitialTransfers.
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Algorithm 8.2: HydRA transfer relaxation procedures.

1 Procedure RelaxInitialTransfers()

2 Strans ← ∅
3 ℓ = (𝜏dep, 0,⊥)
4 for each mode 𝑖 from 0 to𝑚 do
5 for each v ∈ S do
6 if 𝜏tra (vs, v, 𝑖) = ∞ then continue
7 ℓ ′ ← LinkTransfer(ℓ, 𝜏tra (vs, v, 𝑖), 0,⊥)
8 MergeTransferLabel(v, ℓ ′, 0,Strans)
9 ℓt ← LinkTransfer(ℓ, 𝜏tra (vs, vt, 𝑖), 𝑖,⊥)

10 MergeTransferLabel(v, ℓ ′, 0,⊥)
11 return Strans

12 Procedure RelaxTransfers(Strip, 𝑛)

13 Strans ← ∅
14 for each mode 𝑖 from 0 to𝑚 do
15 for each v ∈ Strip do
16 for each ℓ = (𝜏arr, 𝜏tra [·], 𝜀out) ∈ 𝐵𝑛

trip
(v) do

17 for each 𝑒 = (𝜀out, 𝜀in) ∈ 𝐸s𝑖 do
18 ℓ ′ ← LinkTransfer(ℓ, 𝜏tra (𝑒), 𝑖, 𝜀in)
19 MergeTransferLabel(v (𝜀in), ℓ ′, 𝑛,Strans)
20 ℓt ← LinkTransfer(ℓ, 𝜏tra (v, vt, 𝑖), 𝑖,⊥)
21 MergeTransferLabel(vt, ℓt, 𝑛,⊥)
22 return Strans

23 Procedure LinkTransfer(ℓ = (𝜏arr, 𝜏tra [·], 𝜀out), 𝜏newtra , 𝑖, 𝜀in)

24 ℓ ′ ← (𝜏arr + 𝜏newtra , 𝜏tra [·], 𝜀in)
25 𝜏tra (ℓ ′) [𝑖] ← 𝜏tra (ℓ ′) [𝑖] + 𝜏newtra
26 return ℓ ′

27 Procedure MergeTransferLabel(v, ℓ = (𝜏arr, 𝜏tra [·], 𝜀in), 𝑛,Strans)

28 if 𝜏arr >←−−𝜏dep (v, 𝑛) then return
29 if 𝐵∗

trip
(vt).dominates(ℓ) then return

30 if 𝐵∗
trans
(vt).dominates(ℓ) then return

31 if not 𝐵∗
trans
(v).merge(ℓ) then return

32 if not 𝐵𝑛
trans
(v).merge(ℓ) then return

33 Strans ← Strans ∪ {v}
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Algorithm 8.3: HydRA route scanning procedures.

1 Procedure ScanInitialRoutes(R′)
2 Strip ← ∅
3 for each (𝑅, 𝑗) ∈ R′ do
4 𝐵route ← ∅
5 for 𝑖 from 𝑗 to |𝑅 | − 1 do
6 v ← 𝑖-th stop of 𝑅

7 for each ℓ = (𝜏arr, 𝜏tra [·],𝑇 ) ∈ 𝐵route do
8 if 𝑖 − 1 >←−𝑟 (𝑇, 0) then continue
9 ℓ ′ ← (𝜏arr, 𝜏tra [·],𝑇 [𝑖])

10 MergeTripLabel(v, ℓ ′, 1,Strip)
11 for each ℓ = (𝜏arr, 𝜏tra [·],⊥) ∈ 𝐵0

trans
(v) do

12 𝑇 ← FindEarliestTrip(𝑅, 𝑖, 𝜏arr)
13 if 𝑇 = ⊥ then continue
14 if 𝑖 >←−𝑟 (𝑇, 0) then continue
15 ℓ ′ ← (𝜏arr, 𝜏tra [·],𝑇 )
16 𝐵route.merge(ℓ

′)
17 return Strip

18 Procedure ScanRoutes(Strans, 𝑛)

19 Strip ← ∅
20 for each v ∈ Strans do
21 for each ℓ = (𝜏arr, 𝜏tra [·],𝑇 [𝑖]) ∈ 𝐵𝑛−1trans

(v) do
22 for 𝑘 from 𝑖 + 1 to←−𝑟 (𝑇, 𝑛) + 1 do
23 ℓ ′ ← (𝜏arr (𝑇 [𝑘]), 𝜏tra [·],𝑇 [𝑘])
24 MergeTripLabel(v (𝑇 [𝑘]), ℓ ′, 𝑛,Strip)
25 return Strip

26 Procedure MergeTripLabel(v, ℓ = (𝜏arr, 𝜏tra [·],𝑇 [𝑖]), 𝑛,Strip)

27 if 𝐵∗
trip
(vt).dominates(ℓ) then return

28 if 𝐵∗
trans
(vt) .dominates(ℓ) then return

29 if not 𝐵∗
trip
(v).merge(ℓ) then return

30 if not 𝐵𝑛
trip
(v).merge(ℓ) then return

31 Strip ← Strip ∪ {v}

The route scanning procedures are depicted in Algorithm 8.3. The MergeTripLabel proce-

dure (lines 26–31) is analogous to MergeTransferLabel but omits the check for the backward

pruning search. For the first round, the procedure ScanInitialRoutes (lines 1–17) closely

resembles McRAPTOR. Given as input are the routesR′ that are visited by at least one updated
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stop, which were previously collected in CollectRoutes. Each route 𝑅 is scanned by iterating

over its stop sequence from the first marked index 𝑗 onwards, maintaining a route bag 𝐵route.

At each index 𝑖 , two steps are performed for the visited stop v : merging 𝐵route into the trip

bag 𝐵1

trip
(v) (lines 7–10) and merging the transfer bag 𝐵0

trans
(v) from the previous round

into 𝐵route (lines 11–16). For each label ℓ ∈ 𝐵route with active trip 𝑇 , the former step creates a

corresponding label ℓ ′ with exit event𝑇 [𝑖]. If 𝑖−1 exceeds the backward reached index←−𝑟 (𝑇, 0)
holds, then 𝑇 cannot be entered at any of the preceding stops without exceeding the slack

values, so ℓ ′ is discarded. Otherwise, MergeTripLabel is called to merge it into 𝐵1

trip
(v). For

each label ℓ in the transfer bag 𝐵0

trans
(v), the second step adds a corresponding label ℓ ′ to the

route bag. The active trip of ℓ ′ is set to the earliest reachable trip 𝑇 of 𝑅, which is found with

a binary search via FindEarliestTrip. If 𝑖 >←−𝑟 (𝑇, 0) holds, the label is discarded by the same

argument as above. Otherwise, it is merged into the route bag 𝐵route.

For the following rounds 𝑛 > 1, the procedure ScanRoutes (lines 18–25) makes use of the

entry events. For each updated stop v and each label in the previous transfer bag 𝐵𝑛−1
trans
(v)

with entry event𝑇 [𝑖], the relevant segment of𝑇 is identified and scanned. The last stop index

at which 𝑇 can be entered without exceeding the slack is
←−𝑟 (𝑇, 𝑛). Accordingly, 𝑇 can be

exited at all indices 𝑘 with 𝑖 + 1 ≤ 𝑘 ≤ ←−𝑟 + 1. For each such index 𝑘 , a new label with exit

event 𝑇 [𝑘] is created and MergeTripLabel is called to merge it into the trip bag of v (𝑇 [𝑘]).

8.5 Experiments
We evaluate our algorithms in a scenario with two competing transfer modes: walking and

e-scooter. We use the same OSM transfer graph for both modes, assuming a constant speed of

4.5 km/h for walking and 15 km/h for scooter. The mode overheads are set to 0 s for walking

and 300 s for scooter. We limit our experiments to the networks of London, Switzerland

and Stuttgart because MCR is too slow on the Germany network (approximately 100 s per

query) to evaluate 10 000 queries within a reasonable timeframe. To create the free transfer

graphs, we connect all pairs of stops within a geographical distance of up to 100 meters and

then build the transitive closure. This yields 35 308 edges for London, 19 128 for Switzerland,

and 11 354 for Stuttgart. All shortcut computations were run on the Epyc machine, all other

experiments on the Xeon machine. We evaluate the performance of the shortcut computation

in Section 8.5.1. Afterward, we compare the solutions computed by the different algorithms

in Section 8.5.2. Finally, we evaluate the query performance in Section 8.5.3.

8.5.1 Preprocessing
Table 8.1 reports the performance of the McULTRA shortcut computation, using the same

settings as in Chapter 7.3.2. Because many short transfers are now covered by the free

transfer mode, the number of shortcuts per mode is slightly lower than in the bimodal setting

(cf. Table 7.1). For comparison, we also ran the shortcut computation for the scooter mode

without free transfers; depending on the network, this increased the number of shortcuts



Experiments Section 8.5

147

Table 8.1: Multimodal McULTRA shortcut computation results. Times are formatted as

h:mm:ss. Listed are the numbers of original shortcuts |𝐸s |, augmented forward shortcuts |−−→𝐸s
aug
|

and augmented backward shortcuts |←−−𝐸s
aug
|.

Network Variant Mode Time

Shortcuts

|𝐸s | |−−→𝐸s
aug
| |←−−𝐸s

aug
|

London

Stop

Walking 0:31:23 112 710 – –

Scooter 2:56:11 8 439 533 – –

Event

Free 0:04:39 12 920 623 21 725 937 24 219 405

Walking 0:38:26 11 201 513 29 725 151 33 192 796

Scooter 3:15:54 132 281 208 456 663 147 491 434 923

Switzerland

Stop

Walking 0:11:54 203 691 – –

Scooter 0:25:08 973 810 – –

Event

Free 0:00:50 7 896 506 17 917 277 18 776 547

Walking 0:12:35 10 565 545 31 610 293 31 060 835

Scooter 0:27:48 22 108 243 92 291 000 91 230 189

Stuttgart

Stop

Walking 0:08:18 112 406 – –

Scooter 0:13:59 728 042 – –

Event

Free 0:00:23 3 547 427 6 182 903 6 592 774

Walking 0:07:29 4 086 469 9 520 628 9 596 946

Scooter 0:15:28 9 460 813 35 238 616 35 247 514

Table 8.2: Impact of transfer time discretization on the McULTRA shortcut computation for

e-scooters on the London network. Times are formatted as h:mm:ss.

Variant Disc. Time

Shortcuts

|𝐸s | |−−→𝐸s
aug
| |←−−𝐸s

aug
|

Stop ◦ 2:56:11 8 439 533 – –

Stop • 0:56:04 4 055 105 – –

Event ◦ 3:15:54 132 281 208 456 663 147 491 434 923

Event • 1:02:20 50 517 017 255 781 401 253 857 743

by a factor between 1.5 and 1.8. The preprocessing times are higher than in the bimodal

case because exploring the free transfers takes additional time and incorporating the mode

overheads increases the size of the network. As reported in Chapter 7.3.2, the shortcut

augmentation time is negligible compared with the shortcut computation time.



Chapter 8 Multiple Transfer Modes

148

For e-scooters on the London network, the preprocessing time and the number of shortcuts

are extremely high due to the immense number of Pareto-optimal labels in each vertex bag.

To reduce the bag sizes, we implemented a heuristic version of McULTRA that discretizes

the transfer time criterion into buckets for the purpose of testing dominance. Let 𝜏tra be

the transfer time of a label. Instead of using 𝜏tra as the criterion for testing dominance, we

use ⌊ 𝜏tra
𝑥
⌋, where 𝑥 is the bucket size. For our experiments, we set 𝑥 = 300 s. As shown in

Table 8.2, discretization reduces the preprocessing time by a factor of three and the number

of shortcuts by a factor of two to three.

8.5.2 Result Coverage
As discussed in Section 8.2, McULTRA-based algorithms fail to find some undesirable journeys

that are Pareto-optimal but dominated by journeys with prohibited mode changes. To quantify

this effect, we evaluate the degree to which the exact Pareto set is covered by our algorithms.

We consider two coverage metrics: exact coverage is the percentage of journeys in the (full or

restricted) Pareto set that are found by the algorithm, whereas fuzzy coverage also accounts for

similarity between journeys. If the algorithm does not find a journey 𝐽 but another journey 𝐽 ′

that is almost as good or better in all criteria, we consider 𝐽 well covered. Like Delling

et al. [Del+13], we measure similarity using fuzzy logic. Given two parameters 𝜒 ∈ (0, 1)
and 𝜖 > 0, the fuzzy coverage of a journey 𝐽 by another journey 𝐽 ′ for a criterion 𝑐 is

cov(𝐽 , 𝐽 ′) :=
{
exp

(
ln(𝜒 )
𝜖2
(𝑐 (𝐽 ) − 𝑐 (𝐽 ′))2

)
if 𝑐 (𝐽 ) < 𝑐 (𝐽 ′),

1 else.

The overall fuzzy coverage cov(𝐽1, 𝐽2) is the minimum coverage across all criteria. The fuzzy

coverage of a journey 𝐽 by a set of journeys J is the maximum across J , i.e., cov(𝐽 ,J ) :=
max𝐽 ′∈J cov(𝐽 , 𝐽 ′). Finally, the fuzzy coverage cov(J ,J ′) of a set of journeys J by another

set of journeys J ′ is the mean coverage by J ′ across all journeys in J . Following [Del+13],

the fuzzy parameters (𝜒, 𝜖) are set to (0.8, 60 s) for the arrival time, (0.1, 1) for the number of

trips, and (0.8, 300 s) for the transfer time.

Exact and fuzzy coverages are reported in Table 8.3. We observe that the vast majority

of journeys in the full Pareto set is found by ULTRA-McRAPTOR. The mean percentage of

missed journeys ranges from 0.54% on London to 6.08% on Stuttgart. Furthermore, a mean

fuzzy coverage of 99% and above shows that the missed journeys are well covered by others.

The Stuttgart network, which has a particularly large transfer graph and therefore more

opportunities for mode changes, exhibits the lowest coverage overall. The coverage values

for UBM-RAPTOR and UB-HydRA are significantly higher, which indicates that the missed

journeys tend to fall outside the restricted Pareto set. In particular, the fuzzy coverage is

near-perfect on all networks, even in the 5th percentile.

In most cases, UB-HydRA exhibits a slightly lower coverage than UBM-RAPTOR. This

is because the event-to-event shortcuts are more fine-grained and therefore more prone to

missing journeys. In stop-to-stop ULTRA, even if a candidate is missed, its shortcut is often
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Table 8.3: Coverage of the exact Pareto sets by our algorithms for 10 000 random queries.

ULTRA-McRAPTOR is compared with the full Pareto set, all others with the restricted Pareto

set for slack values 𝜎arr = 𝜎tr = 1.25. For each metric, we report the mean coverage across all

queries and the coverage of the 5th percentile. Disc. indicates whether shortcut discretization
is enabled (•) or not (◦).

Network Algorithm Disc.

Exact coverage [%] Fuzzy coverage [%]

5th perc. Mean 5th perc. Mean

London

ULTRA-McRAPTOR ◦ 96.95 99.46 99.99 99.97

ULTRA-McRAPTOR • 91.55 98.16 99.94 99.97

BM-RAPTOR ◦ 61.53 92.70 91.80 98.57

UBM-RAPTOR ◦ 100.00 99.84 100.00 99.99

UBM-RAPTOR • 91.91 98.92 99.97 99.98

UB-HydRA ◦ 96.87 99.43 99.99 99.96

UB-HydRA • 83.67 97.27 99.76 99.91

Switzerland

ULTRA-McRAPTOR ◦ 87.73 97.90 98.99 99.67

BM-RAPTOR ◦ 55.55 92.51 80.73 97.10

UBM-RAPTOR ◦ 94.59 99.12 99.98 99.83

UB-HydRA ◦ 93.33 99.07 99.96 99.92

Stuttgart

ULTRA-McRAPTOR ◦ 81.36 95.92 93.79 98.95

BM-RAPTOR ◦ 52.38 91.42 79.26 96.94

UBM-RAPTOR ◦ 98.03 99.33 99.99 99.92

UB-HydRA ◦ 94.11 96.10 99.97 99.92

represented by another candidate that is found. This is less likely to occur in the event-to-

event variant. A notable exception is the mean fuzzy coverage on Switzerland, which is higher

for UB-HydRA. This is due to the phenomenon discussed in Section 8.3. Because the pruning

search of UBM-RAPTOR is allowed to relax multiple shortcuts in a row, it may find anchor

journeys that include mode changes, which is not the case for the TB-based pruning search

used by UB-HydRA. Altogether, these results justify our choice of prohibiting mode changes

in order to reduce the number of irrelevant solutions. Although doing so introduces some

new, undesirable journeys, they are often discarded by McULTRA and our experiments show

that they are rare and similar to other, more relevant solutions.

Another possibility to reduce the Pareto set would be to use the transitively closed transfer

graphs presented in Chapter 4.3 to explore the intermediate transfers. This would remove

the need for ULTRA as a preprocessing step. To demonstrate that this negatively impacts

the solution quality, we evaluate the coverage of BM-RAPTOR using transitive intermediate

transfers but unlimited initial and final transfers. The exact coverage is still above 90% because

most optimal journeys do not include long intermediate transfers. However, the low coverage
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Table 8.4: Query performance for full Pareto sets, averaged over 10 000 random queries. Rnd.
is the number of performed rounds, whereas Jrn. refers to the number of computed journeys.

Network Algorithm Rnd. Jrn.

Time [ms]

Routes

Transfers

Total

Free Walking Scooter

London

MCR 10.6 129.4 272.1 82.9 1 455.1 2 226.9 4 064.1

ULTRA-McRAPTOR 10.6 128.8 217.6 94.3 118.6 2 666.2 3 115.8

Switzerland

MCR 12.3 86.8 403.0 41.7 1 613.9 1 598.4 3 700.0

ULTRA-McRAPTOR 12.3 84.2 308.1 39.6 113.2 361.2 847.9

Stuttgart

MCR 11.6 158.9 828.9 94.8 5 059.2 5 497.3 11 520.8

ULTRA-McRAPTOR 11.6 151.4 641.1 93.4 332.4 1 366.2 2 451.0

in the 5th percentile shows that a significant portion of optimal journeys are missed and that

many of these are not well covered by other solutions with limited transfers.

On the London network, we observed that discretizing transfer time when testing domi-

nance significantly reduces the preprocessing time and the number of shortcuts. As expected,

this noticeably reduces the exact coverage, although it remains much higher than with

transitive intermediate transfers. On the other hand, the fuzzy coverage is hardly affected

because missing shortcuts caused by discretization are guaranteed to have similar alternatives.

This shows that discretization is a useful tool for limiting the preprocessing effort while

maintaining a high solution quality.

8.5.3 Query Performance
Table 8.4 reports the running times of the algorithms that compute full Pareto sets. On

Switzerland and Stuttgart, ULTRA-McRAPTOR achieves a speedup of four to five over MCR.

Because the performance gain of ULTRA comes from speeding up the transfer phases, this is

higher than the speedup of two observed in the bimodal scenario, in which the transfer phase

takes up a smaller share of the running time. In the scooter mode, the performance gains

are limited due to the high number of stop-to-stop shortcuts. For London, relaxing scooter

shortcuts is in fact slower than a Dijkstra search, causing the overall speedup to be marginal.

Regardless of the algorithm, we observe that the running times are far from practical due to

the extremely high number of Pareto-optimal journeys.

We therefore investigate the performance of the algorithms for restricted Pareto sets, which

is shown in Table 8.5. The number of computed journeys is reduced to less than 25, which is

manageable for the algorithm but still more than what can reasonably be shown to users. The

speedup of UBM-RAPTOR over MCR ranges from 35 on London to 225 on Stuttgart. HydRA

speeds up the main search by a factor between 2.5 and 4 due to its more efficient route scans.
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Table 8.5: Query performance for restricted Pareto sets with slack values 𝜎arr = 𝜎tr = 1.25,

averaged over 10 000 random queries. Rnd. is the number of performed rounds, whereas Jrn.
refers to the number of computed journeys. Disc. refers to shortcut discretization.

Network Algorithm Disc. Rnd. Jrn.

Time [ms]

Forward Backward Main Total

London

UBM-RAPTOR ◦ 2.1 24.2 61.3 11.5 42.0 114.8

UBM-RAPTOR • 2.1 24.2 35.1 7.0 26.2 68.3

UB-HydRA ◦ 2.1 24.1 18.4 8.4 9.9 36.7

UB-HydRA • 2.1 23.8 13.6 5.3 8.0 26.9

Switzerland

UBM-RAPTOR ◦ 3.5 21.9 32.2 4.4 19.1 55.8

UB-HydRA ◦ 3.5 21.7 15.1 1.9 6.9 23.8

Stuttgart

UBM-RAPTOR ◦ 2.7 15.1 24.2 5.9 21.0 51.2

UB-HydRA ◦ 2.7 15.0 10.2 2.4 8.2 20.8

Additionally, by using the more fine-grained event-to-event shortcuts, the search space is

significantly reduced. Switching from RAPTOR to TB also speeds up the pruning search by a

factor of two to three. On London, the performance of both algorithms is still hampered by

the high number of shortcuts. Shortcut discretization mitigates this at a slight loss in solution

quality, improving the query times by 41% for UBM-RAPTOR and 27% for UB-HydRA. Overall,

the speedup of UB-HydRA over MCR ranges from around 150 for London and Switzerland to

over 500 for Stuttgart. With query times of 20–30ms, the performance is good enough for

interactive applications and only slightly higher than for the bimodal, three-criteria setting

studied in Chapter 7 (cf. Table 7.3).

8.6 Conclusion
We extended our previous results to fully multimodal networks with an arbitrary number of

competing transfer modes. To ensure reasonable solutions, we established the multimodal

discomfort scenario, which optimizes one discomfort criterion per transfer mode and prohibits

mode changes within a transfer. We showed that McULTRA can be adapted to this scenario

in a scalable fashion by preprocessing each transfer mode independently. Besides adapting

existing query algorithms, we proposed HydRA, which carries over some of the advantages

of TB into a setting with an arbitrary number of criteria. Our experimental evaluation shows

that our algorithms achieve query times that are fast enough for interactive applications.

Future work could involve incorporating more complex transfer modes such as bike-sharing,

which require additional modeling [SWZ20b]. Furthermore, HydRA is a promising approach

for journey planning problems that consider other criteria, such as fare or vehicle occupancy.
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9 Delay-Robustness

So far, ULTRA assumes that all trips run according to schedule. However, the set of required

shortcuts may change in the presence of delays: A candidate may become infeasible if its first

trip is delayed so much that the second trip can no longer be entered. On the other hand, if

the second trip is delayed too much, the candidate may no longer be optimal. Furthermore,

delays can allow passengers to catch trips that usually depart too early. This creates new

witnesses that may dominate previously optimal candidates. For these reasons, the shortcuts

computed by ULTRA may no longer be sufficient if trips are delayed.

Delays are an everyday occurrence in real-world public transit networks. In order to

be usable in practice, journey planning algorithms must be able to account for them. In

this chapter, we therefore extend ULTRA to handle delays. As we will see, this is a highly

challenging problem, so we return to the simple problem setting of Chapter 5, with one

transfer mode and two criteria.

Related Work. We distinguish between two types of delay-robust algorithms: Delay-
anticipating algorithms aim to find journeys that are robust regarding potential future delays

that are not known at query time. By contrast, delay-responsive algorithms aim to find

journeys that are optimal in the currently known delay scenario. These algorithms receive a

continuous stream of delay updates, which they need to periodically incorporate into their

query data structures in an update phase. This phase needs to be fast (ideally no more than a

few seconds) to ensure that the query algorithm runs on reasonably up-to-date information.

In this chapter, we focus on delay-responsive algorithms. Nevertheless, we give a brief

overview of research on delay-anticipating algorithms. A natural approach is to assume a

stochastic delay distribution and search for journeys that are likely to be feasible under this

distribution. Disser et al. [DMS08] and Delling et al. [DPW15a] compute a reliability value



Chapter 9 Delay-Robustness

154

for each journey based on this distribution and use it as a criterion for Pareto optimization.

MEAT (MinimumExpected Arrival Time) [DPSW18] extends CSA to compute backup journeys

in case the optimal journey becomes infeasible. An alternative to using a stochastic delay

distribution is to rely on past observations. Böhmová et al. [Böh+13] find journeys that are

reliable in the sense that they were feasible in many delay scenarios recorded in the past.

Goerigk et al. [Goe+14] study formal definitions of robustness. They only consider delay

scenarios that do not exceed a specified maximum delay. A journey is strictly robust if every
intermediate transfer is feasible in every such delay scenario. Finding strictly robust journeys

is an NP-complete problem, and the found journeys often have unacceptably high travel times.

To solve this problem, the authors bound the travel time compared to the fastest journey

in the undelayed scenario. Among journeys within this bound, the one that minimizes the

number of intermediate transfers that are infeasible in at least one possible delay scenario

is called lightly robust. An alternative is to consider recoverable robustness [Goe+13]. In a

recoverably robust journey, an intermediate transfer does not need to be feasible in every

possible delay scenario. Instead, for all possible delays that can make the transfer infeasible,

there must be a recovery path that allows passengers to still reach their target in time.

By comparison, delay-responsive algorithms have been studied more extensively. Both

types of graph-based models for public transit networks can be made delay-responsive.

In time-dependent graphs, incorporating a delay merely requires updating the travel time

functions [DGWZ08], whereas time-expanded graphs require changes to the graph topol-

ogy [DGWZ08, MS09]. The dynamic time-expanded model [Cio+17] is specifically engineered

to allow for faster delay updates. Queries can be answered with a variant of Dijkstra’s

algorithm that incorporates node blocking and A
∗
on the lower-bound graph, similar to

the approach of Delling et al. [DPW09b]. Among the timetable-based algorithms, the data

structures of CSA and RAPTOR are lightweight enough that they can be rebuilt from scratch

during the update phase.

Speedup techniques are more challenging to make delay-responsive because their pre-

processing steps are usually too expensive to be rerun in the update phase. An exception

to this is TB: When a trip 𝑇 receives a delay update, it is sufficient to rerun the transfer

generation step for 𝑇 and all trips that are connected to 𝑇 via a footpath. This only takes

a few milliseconds [Wit21]. Bast et al. [BSS13] show that Transfer Patterns answer almost

all queries correctly even if the precomputed DAGs are not adjusted to incorporate delays.

However, the queries selected in their experiments are biased towards large stations and

rush hours; it is unclear whether the error rate is also low for queries selected uniformly at

random. For Public Transit Labeling, D’Emidio and Khan [DK19] propose a dynamic version

with update times of a few seconds on metropolitan networks. However, their approach only

optimizes the arrival time.

Common to all these techniques is that they require a transitively closed transfer graph.

In particular, they assume that the set of potential transfers that are incident to a trip is

small and local, which makes it easy to enumerate when handling a delay update. This is no

longer the case with an unrestricted transfer graph. For multimodal networks, the fastest

delay-responsive algorithm so far is MR. As with RAPTOR, updates can be incorporated by
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simply rebuilding the query data structures. The dynamic time-expanded model has been

extended to multimodal networks [GPZ19], but query times are not competitive with MR.

Chapter Outline. In this chapter, we present Delay-ULTRA, a variant of ULTRA that

anticipates possible delays during the shortcut computation phase. Doing this for arbitrarily

high delays poses a conceptual challenge: Nearly every journey is optimal in at least one

theoretically possible delay scenario (e.g., one that applies extreme delays to all competitors).

Thus, almost every possible shortcut is required in theory. In realistic scenarios, however,

most vehicles are delayed by no more than a few minutes and only a few are affected by higher

delays. Delay-ULTRA exploits this with a three-phase approach: The first preprocessing

phase, which does not receive any delay information, computes a set of shortcuts that is

provably sufficient for all delays below a specified threshold (e.g., five minutes). During the

update phase, when delays are known, irrelevant shortcuts are discarded and missing ones

for higher delays are computed in a second step. Finding all required shortcuts is not feasible

within the few seconds allowed by the update phase, since this would require enumerating all

potential incident shortcuts of the delayed trips. Instead, we propose a heuristic replacement
search for shortcuts that have become infeasible due to delays. Finally, the query phase uses

the filtered set of precomputed shortcuts as well as the replacement shortcuts.

Unlike in previous chapters, we only propose an event-to-event variant of Delay-ULTRA,

for combination with TB.We refrain from evaluating a stop-to-stop variant (e.g., for combining

Delay-ULTRA with RAPTOR). Recall that the combination of ULTRA with TB yields the

fastest query algorithm, whereas ULTRA-RAPTOR is only two to three times faster than MR

on most networks. When incorporating delays, we expect the number of required stop-to-stop

shortcuts to grow significantly. Thus, we do not expect a RAPTOR-based algorithm to be

much faster than MR, whereas a TB-based algorithm could still offer a significant speedup.

The remainder of this chapter is organized as follows. Section 9.1 introduces the necessary

notation and definitions. In Section 9.2, we establish a characterization of the shortcuts that

are required for delays up to a certain limit. While this characterization is compact, it does

not immediately imply an efficient algorithm for enumerating all such shortcuts. Section 9.3

therefore develops formulas for computing them efficiently. Based on these results, Section 9.4

outlines the Delay-ULTRA shortcut computation algorithm. Section 9.5 describes the update

phase, including the replacement search. In Section 9.6, we evaluate our algorithms on the

four benchmark networks, using a synthetic delay model based on real-world punctuality

data. Our experiments show that the original ULTRA-TB is already fairly delay-robust, failing

to find at most 1% of optimal journeys. Delay-ULTRA reduces the error rate by a factor

of 4–15, yielding less than 0.02% suboptimal journeys for metropolitan and mid-sized country

networks, and 0.16% for the much larger Germany network. If we take into account that the

delay information is never perfectly accurate or up to date in realistic applications, these

error rates are negligible. Our query algorithm, Delay-ULTRA-TB, retains a speedup of up to

eight compared to MR, and is at most two times slower than ULTRA-TB. Finally, Section 9.7

summarizes our results and gives an outlook on future work.
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9.1 Definitions

The addition of delays requires us to introduce some new notation and adapt some of the

definitions from Chapter 2. We assume throughout this chapter that all transfers are shortest

paths in the transfer graph. This allows us to disregard irrelevant corner cases, since transfers

that are not shortest paths are never required to construct optimal journeys, even in the

presence of delays. For a stop event 𝑇 [𝑖], we denote the sets of stop events preceding and

succeeding 𝑇 [𝑖] in its trip 𝑇 by

←−
E (𝑇 [𝑖]) and −→E (𝑇 [𝑖]), respectively.

Delays. A delay scenario Δ assigns to every stop event 𝜀 ∈ E an arrival delay Δarr (𝜀) ∈ N0

and a departure delay Δdep (𝜀) ∈ N0. This yields delayed arrival and departure times 𝜏arr (Δ, 𝜀) =
𝜏arr (𝜀) + Δarr (𝜀) and 𝜏dep (Δ, 𝜀) = 𝜏dep (𝜀) + Δdep (𝜀). Note that this definition considers the

delays of all stop events independently of each other. This allows impossible delay scenarios

in which vehicles travel faster than is possible, or even backward in time. We permit these to

avoid introducing dependencies between stop events (cf. Section 9.3.4).

Given a journey 𝐽 = ⟨𝑃0,𝑇0 [𝑖, 𝑗], . . . ,𝑇𝑘−1 [𝑚,𝑛], 𝑃𝑘⟩ and a delay scenario Δ, the latest

possible departure time of 𝐽 at the source vertex is 𝜏dep (Δ, 𝐽 ) := 𝜏dep (Δ,𝑇0 [𝑖]) − 𝜏tra (𝑃0) and
the arrival time at the target vertex is 𝜏arr (Δ, 𝐽 ) := 𝜏arr (Δ,𝑇𝑘−1 [𝑛]) + 𝜏tra (𝑃𝑘 ). We redefine the

notion of feasibility to take delays into account. We call 𝐽 feasible for a departure time 𝜏dep
if 𝜏dep (Δ, 𝐽 ) ≥ 𝜏dep and all of its intermediate transfers are feasible. An intermediate transfer

between stop events 𝜀o and 𝜀d is feasible if 𝜏dep (Δ, 𝜀d) ≥ 𝜏arr (Δ, 𝜀o) + 𝜏tra (v (𝜀o), v (𝜀d)).

Problem Statement. A delay update 𝜇 represents changes in the delays of a single trip𝑇 ,

starting at some index 𝑖 . For each stop event 𝑇 [ 𝑗] with 𝑗 ≥ 𝑖 , the update 𝜇 specifies a new

departure and arrival delay. A delay-responsive algorithm receives a stream ⟨𝜇1, 𝜇2, . . . ⟩ of
delay updates and a stream ⟨𝑞0, 𝑞1, . . . ⟩ of queries. In the initial delay scenario Δ0, all stop

events are punctual. After receiving update 𝜇𝑖 , its new delays are applied to the previous

scenario Δ𝑖−1 to obtain the current scenario Δ𝑖 . A query 𝑞 consists of source and target

vertices vs, vt ∈ 𝑉 , an earliest departure time 𝜏dep and an execution time 𝜏ex ≤ 𝜏dep. It must

be answered with a Pareto set of vs-vt-journeys departing no later than 𝜏dep in the delay

scenario Δ that is current at the execution time 𝜏ex.

Partial Journeys. To keep the number of shortcuts as low as possible, ULTRA only

enumerates canonical journeys. The definition of canonical journeys (cf. Chapter 5.1.1) breaks

all ties between equivalent journeys. This ensures that there is only one canonical Pareto

set for each query. However, this definition is fairly unwieldy and complicated to use. For

Delay-ULTRA, we switch to a less strict definition that still allows for some ties while breaking

others. We are only interested in enumerating journeys for which all prefixes are Pareto-

optimal. Additionally, we want to preserve the pruning rule of MR that ensures that trips are

entered at the earliest possible stop event.
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To formalize this rule, we introduce partial journeys, which start or end midway through a

trip segment, and redefine the notion of prefixes to include them. A trip segment prefix 𝑇 [𝑖, ·]
represents a passenger entering the trip𝑇 at𝑇 [𝑖] but not yet exiting it, whereas a trip segment
suffix 𝑇 [·, 𝑗] represents a passenger entering𝑇 at an unspecified stop event and exiting at𝑇 [ 𝑗].
A journey prefix is either a journey or a journey followed by a trip segment prefix. Likewise,

a journey suffix is either a journey or a journey preceded by a trip segment suffix. In both

cases, the incomplete trip segment counts as a used trip. Journey prefixes and suffixes are

collectively called partial journeys. Two (partial) journeys 𝐽1 and 𝐽2 can be concatenated into

a (partial) journey 𝐽1 ◦ 𝐽2 if one of two conditions is fulfilled:

1. 𝐽1 ends with a final transfer 𝑃1 to a vertex v and 𝐽2 starts with an initial transfer 𝑃2 from

the same vertex v . Then 𝐽1 ◦ 𝐽2 is obtained by replacing 𝑃1 and 𝑃2 with the intermediate

transfer 𝑃1 ◦ 𝑃2.

2. 𝐽1 ends with a trip segment prefix 𝑇 [𝑖, ·], 𝐽2 starts with a trip segment suffix 𝑇 [·, 𝑗],
and 𝑖 < 𝑗 . Then 𝐽1 ◦ 𝐽2 contains the proper trip segment 𝑇 [𝑖, 𝑗] in their place.

A journey 𝐽 = ⟨𝑃0, . . . ,𝑇𝑘 [𝑖, 𝑗], 𝑃𝑘+1, . . . ⟩ has two standard prefixes with 𝑘 trips: the jour-

ney prefix ⟨𝑃0, . . . ,𝑇𝑘 [𝑖, ·]⟩ and the proper journey ⟨𝑃0, . . . ,𝑇𝑘 [𝑖, 𝑗], 𝑃𝑘+1⟩. Additionally, each
journey ⟨𝑃0, . . . ,𝑇𝑘 [𝑖, 𝑗], 𝑃 ′𝑘+1⟩ where 𝑃

′
𝑘+1 is a prefix of 𝑃𝑘+1 is a non-standard prefix of 𝐽 . This

is equivalent to the definition of journey prefixes in Chapter 2, except that it also includes

partial journeys.

We extend the notion of dominance to journey prefixes 𝐽p and 𝐽 ′p: If 𝐽p and 𝐽 ′p are both
proper journeys, i.e., end with final transfers, the original definition applies. If 𝐽p ends with a

trip segment prefix 𝑇 [𝑖, ·] and 𝐽 ′p with a trip segment prefix 𝑇 [ 𝑗, ·] of the same trip 𝑇 , then 𝐽 ′p
weakly dominates 𝐽p if |𝐽 ′p | ≤ |𝐽p | and 𝑗 ≤ 𝑖 . If |𝐽 ′p | < |𝐽p | or 𝑗 < 𝑖 also holds, then 𝐽 ′p strongly
dominates 𝐽p. In all other cases, 𝐽 ′p does not strongly or weakly dominate 𝐽p. The definition of

Pareto optimality carries over from proper journeys. We call a journey prefix-optimal if all of
its prefixes are Pareto-optimal. Note that if a standard prefix that ends with a final transfer 𝑃

is Pareto-optimal, then so are all non-standard prefixes ending with a prefix 𝑃 ′ of 𝑃 . Thus, a
journey is prefix-optimal iff all of its standard prefixes are Pareto-optimal.

Candidate Notation. A candidate is a journey of the form

𝐽 c =
〈
⟨vs⟩,𝑇1 [s, o], ⟨vo, . . . , vd⟩,𝑇2 [d, t], ⟨vt⟩

〉
.

An example is shown in Figure 9.1. We define the source event 𝜀s := 𝑇1 [s], origin event 𝜀o :=
𝑇1 [o], destination event 𝜀d := 𝑇2 [d] and target event 𝜀t := 𝑇2 [t]. Corresponding to these are

the source vertex vs := v (𝜀s), origin vertex vo := v (𝜀o), destination vertex vd := v (𝜀d) and target
vertex vt := v (𝜀t). In this chapter, we use a more compact notation to represent candidates and

witnesses: We write [𝜀𝑎, 𝜀𝑏] for a trip segment from 𝜀𝑎 to 𝜀𝑏 , whereas a trip segment prefix

starting at 𝜀𝑎 is simply denoted as 𝜀𝑎 . Since we assume that all transfers are shortest paths,

they are uniquely determined by their endpoints. We therefore omit all transfers from the
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𝜀s 𝜀o

𝜀1

𝜀d 𝜀2 𝜀t

𝜀′s 𝜀′o 𝜀′d 𝜀′t

vs vo vd vt

Figure 9.1: A network with a candidate 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ and various witness types.

notation except for non-empty initial or final transfers, which are represented by the source or

target vertex, respectively. Thus, a candidate is notated as 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩. Its standard
prefixes are the source prefix 𝐽 cs = ⟨𝜀s⟩, the origin prefix 𝐽 co = ⟨[𝜀s, 𝜀o], vd⟩, the destination
prefix 𝐽 cd = ⟨[𝜀s, 𝜀o], 𝜀d⟩, and 𝐽 c itself. The non-standard prefix that ends at a vertex v is

denoted as 𝐽 co (v) = ⟨[𝜀s, 𝜀o], v⟩. In particular, we call 𝐽 co (vo) the origin stop prefix. For a

journey (prefix) 𝐽 , we denote by E (𝐽 ) the sequence of stop events in 𝐽 at which a trip is

entered or exited. For the candidate 𝐽 c, this sequence is E (𝐽 c) = ⟨𝜀s, 𝜀o, 𝜀d, 𝜀t⟩. Standard
prefixes of 𝐽 c are uniquely identified by their stop event sequence. The standard prefix that

ends with a stop event 𝜀 ∈ E (𝐽 c) is called the 𝜀-prefix.

9.2 Characterizing Required Shortcuts
Since a set of shortcuts that is sufficient for all possible delay scenarios would be too large, we

limit the precomputation to scenarios in which no delay exceeds a given delay limit 𝛿max
. Our

goal is to enumerate all candidates that are prefix-optimal in at least one such delay scenario.

For the purpose of the shortcut computation, which we discuss throughout the following

sections, we assume that all delay scenarios conform to this delay limit. We discuss how to

handle scenarios beyond the delay limit in Section 9.5.

Switching from canonical candidates to prefix-optimal candidates means that we potentially

enumerate more journeys than necessary for a particular delay scenario. However, this is

not an issue because the additional candidates are likely to be canonical in another delay

scenario that also conforms to the delay limit. To illustrate why this is the case, consider two

candidates 𝐽 c
1
and 𝐽 c

2
with different target events 𝜀1 and 𝜀2 that have the same arrival time in

some delay scenario Δ. If we increase the delay of 𝜀1 by one second compared to Δ, then 𝐽 c
1
is

no longer optimal, but 𝐽 c
2
still is. Decreasing the delay by one second has the opposite effect:

𝐽 c
2
is no longer optimal, but 𝐽 c

1
still is. Unless the delay of 𝜀1 in Δ is 0 or 𝛿max

, these changes

result in valid delay scenarios that also conform to the delay limit. Hence, it is very likely

that both candidates need to be enumerated anyway.

Even with the delay limit, the number of possible delay scenarios is still astronomical, so it

is not feasible to consider each one individually. Instead, we develop a more succinct charac-

terization of candidates that are prefix-optimal in at least one delay scenario. Section 9.2.1
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establishes a simple characterization under the assumption that candidates and witnesses

do not have any stop events in common. In Section 9.2.2, we generalize this result to allow

for shared stop events. Based on our findings, Section 9.2.3 formally defines the shortcut

computation problem in the presence of delays.

9.2.1 Best-Case and Virtual Delay Scenarios

To simplify proofs, we define a partial order ⪯eval on delay scenarios. For two delay scenar-

ios Δ1,Δ2
, we write Δ1 ⪯eval Δ2

if Δ1

dep
(𝜀) ≥ Δ2

dep
(𝜀) and Δ1

arr
(𝜀) ≤ Δ2

arr
(𝜀) holds for every

stop event 𝜀 ∈ E . Then Δ1
is “better” than Δ2

in the following sense: a journey 𝐽 that is

feasible in Δ1
for a departure time 𝜏dep is also feasible for 𝜏dep in Δ2

, and its arrival time

in Δ1
is not higher than in Δ2

. Consider the global best-case delay scenario Δbest
, in which all

arrivals have delay 0 and all departures have delay 𝛿max
. The other extreme is the worst-case

scenario Δworst
, which assumes that all departures are punctual and all arrivals have maximal

delay. Then Δbest ⪯eval Δ ⪯eval Δworst
holds for every delay scenario Δ.

For a journey prefix 𝐽p, the best-case scenario Δbest (𝐽p) assumes the best case for all stop

events in E (𝐽p) and the worst case otherwise. Consider a candidate 𝐽 c and a witness 𝐽w that

does not use any stop events in E (𝐽 c). If 𝐽w strongly dominates a prefix of 𝐽 c in Δbest (𝐽 c),
then it does so in every delay scenario. Thus, if we (wrongly) assume that witnesses do not

share stop events with 𝐽 c, we obtain the very simple condition that 𝐽 c is prefix-optimal in at

least one delay scenario iff it is prefix-optimal in Δbest (𝐽 c). We formalize this assumption by

introducing virtual delay scenarios. A virtual delay scenario Δvirt = (Δcan,Δwit) consists of a
candidate scenario Δcan

and awitness scenario Δwit
. A candidate prefix 𝐽 cp is strongly dominated

by a witness 𝐽w in Δvirt
if 𝐽w as evaluated in Δwit

strongly dominates 𝐽 cp as evaluated in Δcan
.

Thus, stop events that are shared between both journeys can act as if they were not shared by

assuming different delays in Δcan
and Δwit

.

We define another partial order ⪯dom specifically for virtual delay scenarios. Given two

virtual delay scenarios Δvirt

1
= (Δcan

1
,Δwit

1
) and Δvirt

2
= (Δcan

2
,Δwit

2
), we write Δvirt

1
⪯dom Δvirt

2

if Δcan

1
⪯eval Δcan

2
and Δwit

1
⪰eval Δwit

2
. If a witness 𝐽w strongly dominates a candidate prefix 𝐽 cp

in Δvirt

1
, it also does so in Δvirt

2
. Thus, if 𝐽 cp is prefix-optimal in Δvirt

2
, it is also prefix-optimal

in Δvirt

1
. Since each proper delay scenario Δ has an equivalent virtual delay scenario (Δ,Δ),

virtual delay scenarios are a superset of proper delay scenarios. We therefore extend the

definition of ⪯dom to proper delay scenarios as well.

For a candidate prefix 𝐽 cp , the virtual best-case scenario Δ
virt (𝐽 cp) := (Δbest,Δbest (𝐽 cp)) assumes

the best case for 𝐽 cp and for all witness events that are shared with it, and the worst case for

everything else. For a full candidate 𝐽 c, Δvirt (𝐽 c) is equivalent to Δbest (𝐽 c). For the empty

prefix 𝐽 cp = ⟨⟩, the scenario Δvirt (⟨⟩) = (Δbest,Δworst) assumes the best case for 𝐽 c and the

worst case for all witnesses. Theorem 9.1 shows that we can use Δvirt (⟨⟩) to obtain a simple

characterization of prefix-optimal candidates.
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Theorem 9.1. A candidate 𝐽 c is prefix-optimal in at least one virtual delay scenario iff it is
prefix-optimal in Δvirt (⟨⟩) = (Δbest,Δworst).

Proof. Let Δvirt = (Δcan,Δwit) be a virtual delay scenario. With

Δwit ⪯eval Δworst = Δbest (⟨⟩) and

Δcan ⪰eval Δbest,

it follows that Δvirt ⪰dom Δvirt (⟨⟩). Hence, if 𝐽 c is prefix-optimal in Δvirt
, it is also prefix-

optimal in Δvirt (⟨⟩). □

9.2.2 Shared Stop Events
Theorem 9.1 implies that a straightforward adaptation of ULTRA that explores candidates

in Δbest
and witnesses in Δworst

will generate a sufficient set of shortcuts. However, this set

will be impractically large because many of the shortcuts are only required in a virtual delay

scenario, but not in any proper delay scenarios. To avoid this, we investigate the effects of

shared stop events.

Hook Witnesses. In Figure 9.1, consider the witness 𝐽w = ⟨[𝜀s, 𝜀o], [𝜀′d, 𝜀
′
t]⟩. If the

origin event 𝜀o is delayed, this may cause 𝐽w to miss its intermediate transfer, even as the

candidate 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ remains feasible. This shows that it is not sufficient to

consider the best case for shared stop events. In the following, we will show that 𝜀o is the

only stop event of 𝐽 c where this is an issue. For this purpose, we introduce the concept of

hook witnesses. We call a witness 𝐽w for a journey (prefix) 𝐽 a hook witness if E (𝐽w) can be

divided into a prefix that is shared with E (𝐽 ) (the handle) and a suffix that is not (the hook). In
Figure 9.1, ⟨[𝜀s, 𝜀o], 𝜀1⟩ is a hook witness for 𝐽 cd while ⟨[𝜀s, 𝜀o], [𝜀1, 𝜀t]⟩ is a non-hook witness

for 𝐽 c. Note that if E (𝐽w) includes a stop event 𝜀 ∈ E (𝐽 ), it includes the entire 𝜀-prefix of 𝐽 .
Lemma 9.2 shows that it is sufficient to consider hook witnesses, because every non-hook

witness has an equivalent hook witness that replaces everything up to the last shared stop

event 𝜀 with the 𝜀-prefix of 𝐽 .

Lemma 9.2. A candidate 𝐽 c is prefix-optimal iff no prefix of 𝐽 c is strongly dominated by a hook
witness.

Proof. Let 𝐽w be a non-hook witness for a prefix 𝐽 cp of 𝐽 c. We construct a hook witness 𝐽 ′ that
strongly dominates 𝐽 cp as follows: Since 𝐽w is not a hook witness, it must share at least one

stop event with 𝐽 cp . Let 𝜀 be the last shared stop event, and let 𝐽 c
1
and 𝐽w

1
be the 𝜀-prefixes of 𝐽 cp

and 𝐽w, respectively. Then there is a suffix 𝐽w
2
such that 𝐽w = 𝐽w

1
◦ 𝐽w

2
. Because 𝐽w

1
and 𝐽 c

1
end

with the same stop event, 𝐽 ′ := 𝐽 c
1
◦ 𝐽w

2
is a valid and feasible journey (prefix). By construction,

𝐽 ′ is a hook witness and strongly dominates 𝐽 cp . □

A simple observation about hook witnesses is that they never use the last stop event of the

journey (prefix) they strongly dominate:
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Lemma 9.3. Let 𝐽p be a journey prefix with stop event sequence E (𝐽p) = ⟨𝜀1, . . . , 𝜀𝑘⟩, Δ a delay
scenario, and 𝐽w a hook witness that strongly dominates 𝐽p in Δ. Then 𝜀𝑘 ∉ E (𝐽w).

Proof. Assume that 𝜀𝑘 ∈ E (𝐽w). Because 𝐽w is a hook witness, this implies that the non-

shared suffix of 𝐽w is empty, and thus 𝐽w = 𝐽p. This contradicts the fact that 𝐽
w
strongly

dominates 𝐽p. □

Parameterized Scenarios. Let 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ be a candidate and 𝐽w a hook

witness. In order to evaluate whether 𝐽w strongly dominates a prefix of 𝐽 c in any delay

scenario, we can assume the best case for 𝜀s, 𝜀d and 𝜀t: If 𝐽
w
includes 𝜀t, then 𝐽w is identical

to 𝐽 c, which cannot strongly dominate itself. If it includes 𝜀d, it must also include 𝜀o and thus

have the same intermediate transfer as 𝐽 c. If it includes 𝜀s, then it has the same initial transfer.

Thus, changing the delay of 𝜀s or 𝜀d to make 𝐽w infeasible will also make 𝐽 c infeasible. We

formalize this by defining the parameterized best-case scenario Δbest (𝐽 cp , 𝛿) for a candidate
prefix 𝐽 cp with origin event 𝜀o and a delay 𝛿 . It is identical to the best-case scenario Δbest (𝐽 cp),
except that the arrival delay of 𝜀o is 𝛿 . Note that Δ

best (𝐽 cp) = Δbest (𝐽 cp , 0).
It is only necessary to consider parameterized scenarios in which the candidate is feasible.

For this purpose, we define the slack sl(𝜀o, 𝜀d) of an intermediate transfer between two stop

events 𝜀o and 𝜀d as the waiting time at v (𝜀d) before 𝜀d departs, assuming both events are

punctual. Note that the slack may be negative; in this case, the transfer is only feasible if 𝜀d is

sufficiently delayed. The feasibility limit

𝜆f (𝐽 c) := min

(
0, sl(𝜀o, 𝜀d)

)
+ 𝛿max

of a candidate 𝐽 c is the maximal delay 𝛿 ≤ 𝛿max
such that 𝐽 c is feasible in Δbest (𝐽 c, 𝛿).

Lemma 9.4 shows that it is sufficient to consider parameterized scenarios in which the

delay of 𝜀o does not exceed 𝜆f (𝐽 c).

Lemma 9.4. A candidate 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ is prefix-optimal in at least one delay scenario
iff there is a delay 𝛿 ∈ [0, 𝜆f (𝐽 c)] such that 𝐽 c is prefix-optimal in Δbest (𝐽 c, 𝛿).

Proof. Assume that for every delay 𝛿 ∈ [0, 𝜆f (𝐽 c)], a prefix of 𝐽 c is strongly dominated by a

witness in Δbest (𝐽 c, 𝛿). Let Δ be a delay scenario. By Lemma 9.2, there is a prefix 𝐽 cp of 𝐽 c that

is strongly dominated by a hook witness 𝐽w in Δo
:= Δbest (𝐽 c,Δarr (𝜀o)). We show that 𝐽w is

feasible and strongly dominates 𝐽 cp in Δ. Consider the delay scenario Δmax
with

Δmax

dep
(𝜀) = min(Δo

dep
(𝜀),Δdep (𝜀)),

Δmax

arr
(𝜀) = max(Δo

arr
(𝜀),Δarr (𝜀))

for each stop event 𝜀 ∈ E . This scenario differs from Δo
only in the arrival delay of 𝜀t and

in the departure delays of 𝜀s and 𝜀d. By Lemma 9.3, 𝐽w cannot use 𝜀t. The departure delays

of 𝜀s and 𝜀d, as well as the arrival delay of 𝜀o, are identical in Δ and Δmax
. Accordingly, the

departure and intermediate transfer of 𝐽 c are feasible in Δmax
. If 𝐽w contains an intermediate
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transfer between some stop event 𝜀′o and 𝜀d, then 𝜀′o = 𝜀o because 𝐽
w
is a hook witness. Thus,

the intermediate transfer is feasible in Δmax
. Likewise, if 𝐽w uses 𝜀s, then its departure is

feasible in Δmax
. Therefore, 𝐽w is feasible in Δmax

and its arrival time remains unchanged

from Δo
. Accordingly, 𝐽w strongly dominates 𝐽 cp in the virtual delay scenario (Δo,Δmax).

Since Δmax ⪰eval Δo
and Δ ⪯eval Δmax

, this is still the case in (Δmax,Δ) ⪰dom (Δo,Δmax).
Since Δ and Δmax

are equivalent for 𝐽 c, this implies that 𝐽w strongly dominates 𝐽 cp in (Δ,Δ),
which is equivalent to Δ. □

HookWitness Classification. Lemmas 9.2 and 9.4 significantly narrow the scope of

the shortcut computation problem. To determine whether a candidate 𝐽 c is prefix-optimal in

at least one delay scenario, it is enough to consider hook witnesses and to keep the delays of

all stop events except for the origin event 𝜀o fixed. To make further progress, we examine

the effect that the delay of 𝜀o has on different types of hook witnesses. For this purpose,

we introduce the following classification: Given a candidate 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ and stop

events 𝜀𝑎, 𝜀𝑏 ∈ E (𝐽 c), we call a (partial) journey 𝐽w an (𝜀𝑎, 𝜀𝑏)-witness if it is a hook witness

for the 𝜀𝑏-prefix of 𝐽
c
whose handle is the 𝜀𝑎-prefix of 𝐽

c
. If 𝐽w does not share any stop events

with 𝐽 c, we call it a (⊥, 𝜀𝑏)-witness. Overall, this yields ten different hook witness types,

which are illustrated in Figure 9.2.

Consider a parameterized delay scenario Δbest (𝐽 c, 𝛿) with origin delay 𝛿 . The arrival time of

the origin prefix 𝐽 co = ⟨[𝜀s, 𝜀o], vd⟩ increases with 𝛿 , whereas the arrival time of hook witnesses

for 𝐽 co is unaffected. Accordingly, they only strongly dominate 𝐽 c if 𝛿 is high enough. We call

these witnesses, which have the type (⊥, 𝜀o) or (𝜀s, 𝜀o), join witnesses. Split witnesses are
hook witnesses of the types (𝜀o, 𝜀d) or (𝜀o, 𝜀t), whose handle ends with 𝜀o. If 𝛿 is too high,

their intermediate transfer becomes infeasible. All other hook witnesses are not affected

by 𝛿 and are therefore called full witnesses. Lemma 9.5 characterizes the effect of each hook

witness type on the values of 𝛿 for which 𝐽 c is prefix-optimal: If there is a full witness that

strongly dominates 𝐽 c for any value of 𝛿 , then it does so for all values and 𝐽 c is not needed.

Otherwise, join witnesses establish an upper bound on 𝛿 , whereas split witnesses establish a

lower bound.

Lemma 9.5. Let 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ be a candidate and 𝛿 ∈ [0, 𝜆f (𝐽 c)] a delay such that a
prefix 𝐽 cp of 𝐽

c is strongly dominated by a witness 𝐽w in Δbest (𝐽 c, 𝛿). Then 𝐽w strongly dominates 𝐽 cp
in every delay scenario Δbest (𝐽 c, 𝛿 ′) with

𝛿 ′ ∈

[0, 𝜆f (𝐽 c)] if 𝐽w is a full witness,
[𝛿, 𝜆f (𝐽 c)] if 𝐽w is a join witness,
[0, 𝛿] if 𝐽w is a split witness.

Proof. W.l.o.g., we assume that 𝐽 cp is a standard prefix of 𝐽 c. We show that 𝐽w is feasible and

strongly dominates 𝐽 cp in Δbest (𝐽 c, 𝛿 ′). Only the delay of 𝜀o differs between the two scenarios.

This can have two effects:
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𝜀s 𝜀o 𝜀d 𝜀t

(a) A (⊥, 𝜀s)-witness (full).

𝜀s 𝜀o 𝜀d 𝜀t

(b) A (⊥, 𝜀o)-witness (join).

𝜀s 𝜀o 𝜀d 𝜀t

(c) A (⊥, 𝜀d)-witness (full).

𝜀s 𝜀o 𝜀d 𝜀t

(d) A (⊥, 𝜀t)-witness (full).

𝜀s 𝜀o 𝜀d 𝜀t

(e) An (𝜀s, 𝜀o)-witness (join).

𝜀s 𝜀o 𝜀d 𝜀t

(f) An (𝜀s, 𝜀d)-witness (full).

𝜀s 𝜀o 𝜀d 𝜀t

(g) An (𝜀s, 𝜀t)-witness (full).

𝜀s 𝜀o 𝜀d 𝜀t

(h) An (𝜀o, 𝜀d)-witness (split).

𝜀s 𝜀o 𝜀d 𝜀t

(i) An (𝜀o, 𝜀t)-witness (split).

𝜀s 𝜀o 𝜀d 𝜀t

(j) An (𝜀d, 𝜀t)-witness (full).

Figure 9.2: Examples of the different hook witness types for a candidate 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩.
An (𝜀𝑎, 𝜀𝑏)-witness is a hook witness for the 𝜀𝑏-prefix of 𝐽 c whose shared prefix is the 𝜀𝑎-prefix
of 𝐽 c. If the shared prefix is empty, we write 𝜀𝑎 = ⊥. The suffix that follows after the witness

rejoins the candidate is grayed out. Also listed are the types according to the join/split/full

classification. Witnesses of the form (·, 𝜀o) are join witnesses, whereas witnesses of the

form (𝜀o, ·) are split witnesses. All other hook witnesses are full witnesses.
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1. If 𝛿 ′ > 𝛿 and 𝐽w includes an intermediate transfer from 𝜀o to some other stop event 𝜀′d,
this intermediate transfer can become infeasible. If 𝜀′d = 𝜀d, the intermediate transfer is

the same as that of 𝐽 c, which is feasible in Δbest (𝐽 c, 𝛿 ′). Otherwise, 𝐽w is a split witness,

which contradicts 𝛿 ′ > 𝛿 .

2. If 𝛿 ′ < 𝛿 and 𝐽 cp is the origin prefix ⟨[𝜀s, 𝜀o], vd⟩, then the arrival time of 𝐽 cp decreases

in Δbest (𝐽 c, 𝛿 ′). If 𝐽w does not use 𝜀o as well, it may no longer strongly dominate 𝐽 cp .

However, in this case 𝐽w is a join witness, which contradicts 𝛿 ′ < 𝛿 . □

Final Characterization. Given a set 𝑋 of witnesses, a delay scenario Δ is called 𝑋 -
avoiding for 𝐽 c if no prefix of 𝐽 c is strongly dominated by an 𝑋 -witness in Δ. A delay 𝛿

is called 𝑋 -avoiding if the parameterized scenario Δbest (𝐽 c, 𝛿) is 𝑋 -avoiding. We call the

lowest split-avoiding delay in [0, 𝛿max + 1] the split limit 𝜆s (𝐽 c), and the highest join-avoiding
delay in (−∞, 𝛿max] the join limit 𝜆j (𝐽 c). The minimum and maximum origin delay 𝛿o

min
(𝐽 c)

and 𝛿o
max
(𝐽 c) additionally take full witnesses into account:

𝛿o
min
(𝐽 c) :=

{
𝛿max + 1 if Δbest (𝐽 c) is not full-avoiding,
𝜆s (𝐽 c) otherwise.

𝛿o
max
(𝐽 c) :=

{
−∞ if Δbest (𝐽 c) is not full-avoiding,
min(𝜆f (𝐽 c), 𝜆j (𝐽 c)) otherwise.

Together, they form the origin delay interval 𝐼 o
𝛿
(𝐽 c) := [𝛿o

min
(𝐽 c), 𝛿o

max
(𝐽 c)]. Figure 9.3 gives

an example of how it is calculated. Based on this, Theorem 9.6 establishes our final character-

ization of candidates that are prefix-optimal in at least one delay scenario.

Theorem 9.6. A candidate 𝐽 c is prefix-optimal in at least one delay scenario iff 𝐼 o
𝛿
(𝐽 c) ≠ ∅.

Proof. By Lemma 9.4, 𝐽 c is prefix-optimal in at least one delay scenario iff there is a delay 𝛿 ∈
[0, 𝜆f (𝐽 c)] such that 𝐽 c in Δbest (𝐽 c, 𝛿). By Lemma 9.2, this is the case iff Δbest (𝐽 c, 𝛿) is hook-
avoiding for 𝐽 c. By Lemma 9.5, this is the case iff 𝛿 ∈ 𝐼 o

𝛿
(𝐽 c). Hence, 𝐽 c is prefix-optimal in at

least one delay scenario iff 𝐼 o
𝛿
(𝐽 c) ≠ ∅. □

9.2.3 Problem Definition
Based on the condition established by Theorem 9.6, we formally define the shortcut com-

putation problem. For a potential shortcut 𝑒 = (𝜀o, 𝜀d), let J c (𝑒) be the set of candidates
with an intermediate transfer from 𝜀o to 𝜀d. The shortcut is necessary if the union of the

origin delay intervals for all candidates in J c (𝑒) is not empty. For the sake of simplicity, we

do not consider the union (which may not form an interval itself) but rather the smallest

interval containing all origin delay intervals. Let 𝛿o
min
(𝑒) and 𝛿o

max
(𝑒) be the lowest min-

imum and highest maximum origin delays among J c (𝑒), respectively. Then the interval
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1

1

1

1

1

0→ 20 19→ 50

6→ 17

24→ 40

(5→ 20 + 𝛿) (24→ 50)

(6→ 22)

(24→ 45)

𝜀s 𝜀o 𝜀d 𝜀t

𝜀′s 𝜀′o

𝜀′d 𝜀′t

Figure 9.3: An example of how the origin delay interval is calculated for the candidate 𝐽 c =

⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩, assuming a delay limit of 𝛿max = 5. Trips are labeled with the scheduled

departure and arrival times. The departure and arrival times in the parameterized delay

scenarioΔbest (𝐽 c, 𝛿) are given below in parentheses. The intermediate transfer from 𝜀o to 𝜀d has

a slack of sl(𝜀o, 𝜀d) = −2, which yields a feasibility limit is 𝜆f (𝐽 c) = 3. There are two witnesses

to consider: the join witness 𝐽 j = ⟨[𝜀′s, 𝜀′o], vd⟩ and the split witness 𝐽 s = ⟨[𝜀s, 𝜀o], [𝜀′d, 𝜀
′
t]⟩. The

join witness 𝐽 j has an arrival time of 23 at vd, whereas the origin prefix 𝐽 co = ⟨[𝜀s, 𝜀o], vd⟩ has
an arrival time of 21 + 𝛿 . This yields a join limit of 𝜆j (𝐽 c) = 2. The split witness 𝐽 s strongly

dominates 𝐽 c. It is feasible if the arrival time at v (𝜀′d) is at most 24, which corresponds to

a split limit of 𝜆s (𝐽 c) = 3. Because there are no full witnesses, the minimum origin delay

is 𝛿o
min
(𝐽 c) = 𝜆s (𝐽 c) = 3 and the maximum origin delay is 𝛿o

max
(𝐽 c) = min(𝜆f (𝐽 c), 𝜆j (𝐽 c)) = 2.

Thus, the origin delay interval 𝐼 o
𝛿
(𝐽 c) = [3, 2] is empty, which means that there is no delay

scenario in which 𝐽 c is prefix-optimal.

is given by 𝐼 o
𝛿
(𝑒) := [𝛿o

min
(𝑒), 𝛿o

max
(𝑒)]. We will see in Section 9.3 that computing 𝛿o

min
(𝑒)

exactly is expensive, so we only ask for a lower bound 𝛿o
min
(𝑒). If the corresponding inter-

val 𝐼 o
𝛿
(𝑒) := [𝛿o

min
(𝑒), 𝛿o

max
(𝑒)] is empty, then 𝑒 is not required in any delay scenario. While

the converse is not necessarily true, superfluous shortcuts only affect the performance of the

query algorithm, not its correctness.

Given a network (S,Π, E, T ,R,𝐺) and a delay limit 𝛿max
, the DelayShortcut problem

asks for the set

𝐸s =
{
𝑒 ∈ E × E | 𝐼 o

𝛿
(𝑒) ≠ ∅

}
of relevant shortcuts, as well as the origin delay interval 𝐼 o

𝛿
(𝑒) for each shortcut 𝑒 ∈ 𝐸s. The

latter can be used to discard irrelevant shortcuts when the delay scenario is revealed in the

update phase: a shortcut 𝑒 = (𝜀o, 𝜀d) can be discarded in a delay scenario Δ if Δarr (𝜀o) ∉ 𝐼 o
𝛿
(𝑒).
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9.3 Efficient Candidate Testing

Theorem 9.6 implies an algorithmic framework for solving the DelayShortcut problem:

generate all possible candidates and test for each candidate 𝐽 c whether the origin delay

interval 𝐼 o
𝛿
(𝐽 c) is empty. To perform this test, the algorithm needs to search for witnesses that

strongly dominate a prefix of 𝐽 c in one of the relevant delay scenarios. These scenarios are

different for each candidate, so a naive approach would perform a new search each time. To

obtain a more efficient algorithm, we exploit the fact that candidates with a common prefix

share the same set of witnesses for this prefix.

Given an origin stop prefix 𝐽 co (vo) = ⟨[𝜀s, 𝜀o], vo⟩, we define the subproblem DelayShort-

cut-𝐽 co (vo), which only allows candidates that begin with 𝐽 co (vo). The overall DelayShort-

cut problem can be broken down into solving DelayShortcut-𝐽 co (vo) for every possible

origin stop prefix 𝐽 co (vo) and merging the results. This has the advantage that the origin

event 𝜀o is now fixed by the input, which means that a shortcut 𝑒 = (𝜀o, 𝜀d) is uniquely
identified by 𝜀d. Thus, the set J c (𝑒) of candidates containing 𝑒 becomes the set J c (𝜀d)
of candidates with destination prefix 𝐽 cd . Likewise, the minimum and maximum origin de-

lays 𝛿o
min
(𝑒) = 𝛿o

min
(𝜀d) and 𝛿omax

(𝑒) = 𝛿o
max
(𝜀d), the origin delay interval 𝐼 o

𝛿
(𝑒) = 𝐼 o

𝛿
(𝜀d) and

their lower bounds also depend only on 𝜀d.

In this section, we show how an individual DelayShortcut-𝐽 co (vo) problem can be

solved with only two witness searches: one in Δbest (𝐽 cs ) and one in Δbest (𝐽 co ). For this purpose,
we define various arrival times:

• For a vertex v , the candidate arrival time of 𝐽 co (v) = ⟨[𝜀s, 𝜀o], v⟩ in Δbest
is given

by 𝜏c
arr
(v) := 𝜏arr (𝜀o) + 𝜏tra (vo, v).

• For a candidate prefix 𝐽 cp , a vertex v and a number of trips 𝑛 ≤ 2, the witness arrival
time 𝜏w

arr
(𝐽 cp , v, 𝑛) is the earliest arrival time among vs-v-journeys with at most 𝑛 trips

that depart no earlier than 𝜏dep (𝜀s) + 𝛿max
in Δbest (𝐽 cp).

In the following, we establish formulas for the various components of the origin delay interval

that depend only on 𝜏c
arr
(·), 𝜏w

arr
(𝐽 cs , ·, ·), 𝜏warr (𝐽 co , ·, ·) and derived values. This is done in three

steps: calculating the join and feasibility limits (Section 9.3.1), examining full witnesses

(Section 9.3.2), and calculating the split limits (Section 9.3.3). Additionally, Section 9.3.4

discusses how to exclude impossible delay scenarios in which trips travel backward in time.

Throughout this section, we assume that the source prefix 𝐽 cs = ⟨𝑇1 [s]⟩ is Pareto-optimal

in every delay scenario Δ. To see why this assumption is realistic, consider the example in

Figure 9.2a. A witness that strongly dominates 𝐽 cs can only be a (⊥, 𝜀s)-witness. This means it

must have the form 𝐽w = ⟨𝑇1 [𝑖]⟩ with 𝑖 < s, i.e., it takes a transfer to an earlier stop along 𝑇

and enters the trip there. If 𝐽w is feasible in Δ, then 𝜏dep (𝑇1 [𝑖],Δ) ≥ 𝜏dep (𝑇1 [s],Δ) must hold.

This requires that the trip moves from index 𝑖 to s instantaneously (or even backward in time),

which is physically impossible.
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9.3.1 Join and Feasibility Limit
The join limit 𝜆j (𝐽 c) of a candidate 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ is the highest delay 𝛿 ∈ [−∞, 𝛿max]
such that Δbest (𝐽 c, 𝛿) is join-avoiding. Since join witnesses are witnesses for the origin pre-

fix 𝐽 co = ⟨[𝜀s, 𝜀o], vd⟩, they do not use 𝜀d or 𝜀t. Accordingly, we can consider the parameterized

scenario Δbest (𝐽 cs , 𝛿) for the source prefix 𝐽 cs instead of Δbest (𝐽 c, 𝛿). We define the join limit

for a vertex v as
𝜆j (v) := 𝜏w

arr
(𝐽 cs , v, 1) − 𝜏carr (v). (9.1)

Lemma 9.7 shows the relation to the join limit of a candidate.

Lemma 9.7. For a candidate 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩, 𝜆j (𝐽 c) = 𝜆j (vd).

Proof. Let Δ := Δbest (𝐽 cs ) = Δbest (𝐽 cs , 𝛿max) and let 𝐽w be a vs-vd-journey with at most one

trip such that 𝜏arr (𝐽w,Δ) = 𝜏w
arr
(𝐽 cs , vd, 1). Since 𝜏carr (vd) = 𝜏arr (𝐽 co ,Δbest) and 𝐽w has minimal

arrival time among journeys with at most one trip, it follows that

𝜆j (vd) = 𝜏arr (𝐽w,Δ) − 𝜏arr (𝐽 co ,Δbest) ≤ 𝜏arr (𝐽 co ,Δ) − 𝜏arr (𝐽 co ,Δbest) = 𝛿max.

There are two possible cases:

1. If 𝐽w uses 𝜀o, then 𝜏arr (𝐽w,Δ) = 𝜏arr (𝐽 co ,Δ), so it follows that 𝜆j (vd) = 𝛿max
. Since no

join witness for 𝐽 co has an earlier arrival time than 𝐽w in Δ, it follows that 𝛿max
is

join-avoiding.

2. If 𝐽w does not use 𝜀o, it is a join witness. Consider the delay scenarioΔ
best (𝐽 cs , 𝛿) for some

delay 𝛿 . The arrival time of 𝐽w is equal to 𝜏arr (𝐽w,Δ) = 𝜏w
arr
(𝐽 cs , vd, 1) and the arrival time

of 𝐽 co is 𝜏c
arr
(vd) + 𝛿 . Thus, the scenario is join-avoiding iff 𝛿 ≤ 𝜏w

arr
(𝐽 cs , vd, 1) − 𝜏carr (vd) =

𝜆j (vd).

In both cases, the highest join-avoiding delay in [−∞, 𝛿max] is 𝜆j (vd). □

The following two lemmas establish pruning rules based on the join limit of a vertex.

Lemma 9.8. Let 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ be a candidate with 𝜆j (𝐽 c) ≥ 0. For each vertex v ∈ 𝑉
visited by the intermediate transfer of 𝐽 c, it holds that 𝜆j (v) ≥ 0.

Proof. Assume that 𝜆j (v) < 0, i.e., 𝜏w
arr
(𝐽 cs , v, 1) < 𝜏c

arr
(v). The transfer time between v and vd is

given by 𝜏tra (v, vd). By the triangle inequality, 𝜏warr (𝐽 cs , vd, 1) ≤ 𝜏w
arr
(𝐽 cs , v, 1) +𝜏tra (v, vd). Since v

is visited by the intermediate transfer of 𝐽 c, it lies on a shortest vo-vd-path. Hence, 𝜏carr (vd) =
𝜏c
arr
(v) + 𝜏tra (v, vd). It follows that 𝜏warr (𝐽 cs , vd, 1) < 𝜏c

arr
(vd) and therefore 𝜆j (𝐽 c) = 𝜆j (vd) < 0, a

contradiction. □

Lemma 9.9. Let v ∈ 𝑉 be a vertex. If 𝜆j (v) ≥ 0, then 𝐽 co (v) = ⟨[𝜀s, 𝜀o], v⟩ is prefix-optimal
in Δvirt (𝐽 cs ).
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Proof. By our assumption at the beginning of Section 9.3, the source prefix 𝐽 cs is Pareto-

optimal in every delay scenario. It remains to be shown that there is no witness 𝐽w that

strongly dominates 𝐽 co (v) in Δvirt (𝐽 cs ) = (Δbest,Δbest (𝐽 cs )). The arrival time of 𝐽 co (v) in Δbest

is given by 𝜏c
arr
(v). The arrival time of 𝐽w in Δbest (𝐽 cs ) is at most 𝜏w

arr
(𝐽 cs , v, 1). Since 𝜆j (v) =

𝜏w
arr
(𝐽 cs , v, 1) − 𝜏carr (v) ≥ 0, it follows that 𝐽w does not strongly dominate 𝐽 co (v). □

For the feasibility limit 𝜆f (𝐽 c), applying the definition of 𝜏c
arr
(·) yields

𝜆f (𝜀d) = min

(
0, 𝜏dep (𝜀d) − 𝜏carr (v (𝜀d))

)
+ 𝛿max. (9.2)

From this point onwards, we can restrict the set of relevant destination events to those

with non-negative feasibility and join limits:

E j/f
:=

{
𝜀d ∈ E | min

(
𝜆f (𝜀d), 𝜆j (v (𝜀d))

)
≥ 0

}
.

All other destination events can be discarded because they cannot occur in prefix-optimal

candidates.

9.3.2 Examining Full Witnesses
For each destination event 𝜀d ∈ E j/f

, we need to determine the minimum and maximum

origin delay 𝛿o
min
(𝜀d) and 𝛿o

max
(𝜀d). These depend on the minimum and maximum origin

delays of the candidates that use 𝜀d, which are contained in J c (𝜀d). Candidates 𝐽 c for

which Δbest (𝐽 c) is not full-avoiding do not contribute to 𝛿o
min
(𝜀d) or 𝛿omax

(𝜀d), so the next

step is to examine full witnesses in order to discard these candidates. Unfortunately, the

witness arrival times 𝜏w
arr
(·, ·, ·) do not distinguish between split and full witnesses. We

can circumvent this issue by considering the set J c
opt
(𝜀d) of candidates 𝐽 c ∈ J c (𝜀d) for

which 𝛿o
min
(𝐽 c) ≤ 𝛿max

holds, i.e., Δbest (𝐽 c) is full-avoiding and Δbest (𝐽 c, 𝛿max) is split-avoiding.
Consider a candidate 𝐽 c ∈ J c (𝜀d). If 𝐽 c is not contained in J c

opt
(𝜀d), we know that 𝐼 o

𝛿
(𝐽 c) = ∅,

so we can discard 𝐽 c. Otherwise, we can calculate 𝛿o
min
(𝐽 c) and 𝛿o

max
(𝐽 c) from the split,

feasibility and join limits.

Using Virtual Delay Scenarios. Our objective is to compute the set

Eopt

d :=
{
𝜀d ∈ E j/f | J c

opt
(𝜀d) ≠ ∅

}
.

For a destination event 𝜀d ∈ E j/f
, it is difficult to computeJ c

opt
(𝜀d) exactly. Instead, we compute

the set J c
virt
(𝜀d) of candidates in J c (𝜀d) that are prefix-optimal in Δvirt (𝐽 cs ). This allows us

to use the witness arrival times for Δbest (𝐽 cs ). Lemma 9.10 shows that J c
virt
(𝜀d) is a superset

of J c
opt
(𝜀d).

Lemma 9.10. For every destination event 𝜀d ∈ E j/f, it holds that J c
opt (𝜀d) ⊆ J c

virt (𝜀d).
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Proof. Consider a candidate 𝐽 c ∉ J c
virt
(𝜀d). By definition, there must be a prefix 𝐽 cp of 𝐽 c is

strongly dominated by a witness 𝐽w in Δvirt (𝐽 cs ). Since Δvirt (𝐽 cs ) ⪯dom Δbest (𝐽 c, 𝛿) holds for
every delay 𝛿 ∈ [0, 𝛿max], 𝐽 cp is also strongly dominated by 𝐽w in Δbest (𝐽 c) and Δbest (𝐽 c, 𝛿max).
Since 𝜆j (v (𝜀d)) ≥ 0, 𝐽w is not a join witness. If 𝐽w is a split witness, then Δbest (𝐽 c, 𝛿max) is not
split-avoiding, so 𝜆s (𝐽 c) > 𝛿max

. If 𝐽w is a full witness, then Δbest (𝐽 c) is not full-avoiding. In
both cases, it follows that 𝐽 c ∉ J c

opt
(𝜀d). □

The reason why the two sets are not equal is that Δbest (𝐽 cs ) assumes the worst case for 𝜀d.

This underestimates (𝜀d, 𝜀t)-witnesses, which are the onlywitnesses that use 𝜀d (see Figure 9.2j).
Lemma 9.11 shows that this is the only difference between J c

opt
(𝜀d) and J c

virt
(𝜀d).

Lemma 9.11. Let 𝜀d ∈ E j/f be a destination event and 𝐽 c a candidate in J c
virt (𝜀d) \ J c

opt (𝜀d).
Then 𝐽 c is strongly dominated by an (𝜀d, 𝜀t)-witness in Δbest (𝐽 c).

Proof. Since 𝐽 c is not contained in J c
opt
(𝜀d), we know that 𝛿o

min
(𝐽 c) > 𝛿max

. There are two

possible reasons for this:

1. There is a split witness 𝐽w that strongly dominates a prefix 𝐽 cp of 𝐽 c in Δbest (𝐽 c, 𝛿max).
Since 𝐽w does not use 𝜀d or 𝜀t, it also strongly dominates 𝐽 cp in Δvirt (𝐽 cs ), which contra-

dicts 𝐽 c ∈ J c
virt
(𝜀d).

2. There is a full witness 𝐽w that strongly dominates a prefix 𝐽 cp of 𝐽 c in Δbest (𝐽 c). If 𝐽w is

a (⊥, ·)- or (𝜀s, ·)-witness, it does not use 𝜀o, 𝜀d or 𝜀t. Then it still strongly dominates 𝐽 cp

in Δvirt (𝐽 cs ), which contradicts 𝐽 c ∈ J c
virt
(𝜀d). Hence, 𝐽w is a (𝜀d, 𝜀t)-witness. □

In order to evaluate (𝜀d, 𝜀t)-witnesses exactly, we would need to perform an additional

witness search in Δbest (𝐽 cd). Because this would have to be done individually for each possible

destination event in E j/f
, this would be expensive. However, Lemma 9.12 shows that this is

unnecessary for the purpose of computing Eopt

d . Intuitively, (𝜀d, 𝜀t)-witnesses are themselves

candidates with a different target event than 𝐽 c. If there is a (𝜀d, 𝜀t)-witness that is not strongly
dominated in Δvirt (𝐽 cs ), then it is also a candidate in J c

opt
(𝜀d). Thus, if J c

virt
(𝜀d) is not empty,

then neither is J c
opt
(𝜀d), which means we can compute Eopt

d as

Eopt

d =
{
𝜀d ∈ E j/f | J c

virt
(𝜀d) ≠ ∅

}
.

Lemma 9.12. For every destination event 𝜀d ∈ E j/f, J c
virt (𝜀d) = ∅ iff J c

opt (𝜀d) = ∅.

Proof. By Lemma 9.10, J c
opt
(𝜀d) ⊆ J c

virt
(𝜀d). It therefore remains to be shown that if J c

opt
(𝜀d)

is empty, then so is J c
virt
(𝜀d). Assume that J c

opt
(𝜀d) is empty but there is at least one candi-

date 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ ∈ J c
virt
(𝜀d). By Lemma 9.11, 𝐽 c is strongly dominated by an (𝜀d, 𝜀t)-

witness 𝐽w = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀′t]⟩ in Δbest (𝐽 c). W.l.o.g., choose 𝐽w such that it is not strongly

dominated by another (𝜀d, 𝜀t)-witness in Δbest (𝐽 c). Since such a witness would not use 𝜀′t , it
follows that 𝐽w is also not strongly dominated by an (𝜀d, 𝜀′t)-witness in Δbest (𝐽w).
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𝜏w
arr
(𝐽 cs , v𝑖 , 2): 8:50 8:54 9:12 9:03 9:21 9:07

𝜏arr (𝜀𝑖 ): 9:00 9:05 9:08 9:15 9:20 9:24

𝜏dep (𝜀𝑖 ): 9:02 9:06 9:10 9:16 9:21 9:25

𝜏w
arr
(𝐽 cs , v𝑖 , 1): 9:30 8:54 9:12 9:18 9:21 9:07

↑ ↑
𝑟in (𝐽 cs ,𝑇 ) = 𝑟w (𝐽 cs ,𝑇 ) = 2 𝑟out (𝐽 cs ,𝑇 ) = 4

Eout

c (𝐽 cs ,𝑇 ) = {𝜀2, 𝜀4}

E in

w (𝐽 cs ,𝑇 ) = {𝜀1, 𝜀4, 𝜀5}

9:12 9:21

9:08 9:20

9:06 9:21 9:25

8:54 9:21 9:07

𝜀0 𝜀1 𝜀2 𝜀3 𝜀4 𝜀5

v0 v1 v2 v3 v4 v5

Figure 9.4: A trip 𝑇 with entry index 2, exit index 4 and witness index 2.

Note that 𝐽w ∈ J c (𝜀d) is itself a candidate. However, 𝐽w is not included in J c
opt
(𝜀d), which

is empty by our assumption, and therefore not in J c
virt
(𝜀d) by Lemma 9.10. Thus, 𝐽w is

strongly dominated by another witness 𝐽w in Δvirt (𝐽 cs ). Hence, 𝐽w as evaluated in Δbest (𝐽 cs )
strongly dominates 𝐽w as evaluated in Δbest (𝐽w), which in turn dominates 𝐽w as evaluated

in Δbest (𝐽 c). Since 𝐽w strongly dominates 𝐽 c in Δbest (𝐽 c), it follows that 𝐽w strongly domi-

nates 𝐽 c in Δvirt (𝐽 cs ). This contradicts 𝐽 c ∈ J c
virt
(𝜀d). □

Witness Indices. To compute J c
virt
(𝜀d) efficiently, we adapt the concept of reached in-

dices from TB. Consider a stop event 𝜀. If 𝜏dep (𝜀) ≥ 𝜏w
arr
(𝐽 cs , v (𝜀), 1), we call 𝜀 a w-in event since

there is a witness inΔbest (𝐽 cs ) that is able to enter its second trip at 𝜀. If 𝜏arr (𝜀) ≤ 𝜏w
arr
(𝐽 cs , v (𝜀), 2),

we call 𝜀 a c-out event since candidates ending with 𝜀 are not strongly dominated by a witness

in Δvirt (𝐽 cs ). For a trip 𝑇 , let E in

w (𝐽 cs ,𝑇 ) denote the set of w-in events and Eout

c (𝐽 cs ,𝑇 ) the set of
c-out events in 𝑇 . We define the entry index 𝑟in (𝐽 cs ,𝑇 ) and exit index 𝑟out (𝐽 cs ,𝑇 ) as

𝑟in (𝐽 cs ,𝑇 ) :=

|𝑇 | if E in

w (𝐽 cs ,𝑇 ) = ∅,
min

𝑇 [𝑖 ]∈E in

w ( 𝐽 cs ,𝑇 )
𝑖 + 1 otherwise,

𝑟out (𝐽 cs ,𝑇 ) :=

|𝑇 | if Eout

c (𝐽 cs ,𝑇 ) = ∅,
max

𝑇 [𝑖 ]∈Eout

c ( 𝐽 cs ,𝑇 )
𝑖 otherwise.

The entry and exit indices are combined into the witness index

𝑟w (𝐽 cs ,𝑇 ) := min

(
𝑟in (𝐽 cs ,𝑇 ), 𝑟out (𝐽 cs ,𝑇 )

)
.

An example of how the indices are calculated is shown in Figure 9.4. Based on these defi-

nitions, we can make two observations for a destination event 𝑇 [𝑖] ∈ E j/f
: The destination
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prefix 𝐽 cd = ⟨[𝜀s, 𝜀o],𝑇 [𝑖]⟩ is Pareto-optimal in Δvirt (𝐽 cs ) iff 𝑇 [𝑖] is not preceded by any w-in

events in 𝑇 , i.e., 𝑖 < 𝑟in (𝐽 cs ,𝑇 ). Furthermore, at least one candidate in J c (𝑇 [𝑖]) is Pareto-
optimal in Δvirt (𝐽 cs ) iff 𝑇 [𝑖] is succeeded by at least one c-out event, i.e., 𝑖 < 𝑟out (𝐽 cs ,𝑇 ). It
follows that 𝑇 [𝑖] is contained in Eopt

d iff 𝑖 < 𝑟w (𝐽 cs ,𝑇 ), as shown by Lemma 9.13.

Lemma 9.13. The set Eopt
d is equal to

{
𝑇 [𝑖] ∈ E j/f | 𝑖 < 𝑟w (𝐽 cs ,𝑇 )

}
.

Proof. Consider a destination event𝑇 [𝑖] ∈ E j/f
. By Lemma 9.9, it follows from 𝜆j (v (𝑇 [𝑖])) ≥ 0

that the origin prefix 𝐽 co is prefix-optimal in Δvirt (𝐽 cs ). Hence, a candidate 𝐽 c ∈ J c (𝑇 [𝑖]) is
prefix-optimal in Δvirt (𝐽 cs ) iff 𝐽 c and the destination prefix ⟨[𝜀s, 𝜀o],𝑇 [𝑖]⟩ are Pareto-optimal

in Δvirt (𝐽 cs ). It follows that J c
virt
(𝑇 [𝑖]) ≠ ∅ iff 𝑖 < 𝑟w (𝐽 cs ,𝑇 ). By Lemma 9.12, this is equivalent

to J c
opt
(𝑇 [𝑖]) ≠ ∅. □

For a destination event 𝑇 [𝑖], let J c
virt
(𝑇 [𝑖]) denote the set of target events that occur in

the candidates from Evirt

t (𝑇 [𝑖]). Lemma 9.14 shows that these are exactly the c-out events

succeeding 𝑇 [𝑖] in 𝑇 .

Lemma 9.14. For a destination event 𝑇 [𝑖] ∈ Eopt
d , Evirt

t (𝑇 [𝑖]) = Eout
c (𝐽 cs ,𝑇 ) ∩

−→
E (𝑇 [𝑖]).

Proof. Consider a target event 𝑇 [ 𝑗] ∈ −→E (𝑇 [𝑖]) and the corresponding candidate 𝐽 c =

⟨[𝜀s, 𝜀o],𝑇 [𝑖, 𝑗]⟩. Since 𝑇 [𝑖] ∈ Eopt

d , the destination prefix 𝐽 cd = ⟨[𝜀s, 𝜀o], 𝜀d⟩ is prefix-optimal

in Δvirt (𝐽 cs ). Thus, 𝑇 [ 𝑗] ∈ Evirt

t (𝑇 [𝑖]) iff 𝐽 c is Pareto-optimal in Δvirt (𝐽 cs ). By definition, this is

the case iff 𝑇 [ 𝑗] ∈ Eout

c (𝐽 cs ,𝑇 ). □

9.3.3 Split Limit
The split limit 𝜆s (𝐽 c) of a candidate 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ is the lowest delay 𝛿 ∈ [0, 𝛿max + 1]
such that Δbest (𝐽 c, 𝛿) is split-avoiding. Since split witnesses do not use the destination event 𝜀d
or target event 𝜀t, we can replace Δbest (𝐽 c, 𝛿) with the parameterized scenario Δbest (𝐽 cs , 𝛿) for
the source prefix 𝐽 cs . As shown in Figures 9.2h and 9.2i, split witnesses are either (𝜀o, 𝜀d)-
witnesses for the destination prefix 𝐽 cd or (𝜀o, 𝜀t)-witnesses for the candidate 𝐽

c
itself. We divide

the latter further into direct (𝜀o, 𝜀t)-witnesses, which use only one trip, and indirect (𝜀o, 𝜀t)-
witnesses, which use two. The three split witness types are shown in Figure 9.5.

Because each split witness type has a different effect on the split limit, we divide it into three

components. The d-split limit 𝜆d.s (𝜀d) considers (𝜀o, 𝜀d)-witnesses, the 1t-split limit 𝜆1t.s (𝜀t)
considers direct (𝜀o, 𝜀t)-witnesses, and the 2t-split limit 𝜆2t.s (𝜀t) considers indirect (𝜀o, 𝜀t)-
witnesses. The overall split limit 𝜆s (𝐽 c) is the maximum of all three. In the following, we

establish individual formulas for the three split limits.

Direct (𝜀o, 𝜀t)-witnesses differ from the other two types in the effect that the arrival delay

of the origin event 𝜀o has on them: For a direct (𝜀o, 𝜀t)-witness 𝐽w, the origin delay does not

affect whether 𝐽w is feasible because it does not have an intermediate transfer, but it directly

influences the arrival time and therefore whether 𝐽w strongly dominates 𝐽 c. Thus, the 1t-split
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𝜀s 𝜀o

𝜀1 𝜀d 𝜀t

𝜀′d 𝜀′t

vs vo

vd vt

Figure 9.5: An example network showcasing the three split witness types for a candi-

date 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩. The partial journey ⟨[𝜀s, 𝜀o], 𝜀1⟩ is a (𝜀o, 𝜀d)-witness. The jour-
ney ⟨[𝜀s, 𝜀o], vt⟩ that takes a direct transfer from vo to vt is a direct (𝜀o, 𝜀t)-witness, whereas
the journey ⟨[𝜀s, 𝜀o], [𝜀′d, 𝜀

′
t]⟩ that takes a second trip is an indirect (𝜀o, 𝜀t)-witness.

limit is the lowest delay 𝛿 ∈ [0, 𝛿max +1] such that no direct (𝜀o, 𝜀t)-witness has a lower arrival
time than 𝐽 c in Δbest (𝐽 c, 𝛿).
For witnesses 𝐽w of the other two types, the origin delay does not affect whether 𝐽w

strongly dominates 𝐽 c or 𝐽 cd , but it determines whether the intermediate transfer is feasible.

To quantify this effect, we define the maximum witness delay 𝛿w
max
(𝐽w). This is the highest

delay 𝛿 ∈ [0, 𝛿max] such that 𝐽w is feasible in Δbest (𝐽 cs , 𝛿), or −1 if 𝐽w is not feasible in any

of these scenarios. If 𝐽w contains an intermediate transfer from 𝜀o to a destination event 𝜀′d,
then 𝛿w

max
(𝐽w) is given by

𝛿w
max
(𝜀′d) := max

(
− 1,min

(
𝜏dep (𝜀′d) − 𝜏

c
arr
(v (𝜀′d)), 𝛿

max
) )
. (9.3)

Otherwise, 𝛿w
max
(𝐽w) = 𝛿max

. Let𝑋 be a type of split witness (either (𝜀o, 𝜀d)- or indirect (𝜀o, 𝜀t)-
witnesses) and letJ𝑋 be the set of𝑋 -witnesses that strongly dominate the respective candidate

prefix (either 𝐽 cd or 𝐽
c
) in Δbest (𝐽 cs ), assuming they are feasible. If J𝑋 is empty, then the 𝑋 -split

limit is 0. Otherwise, it is the highest maximum witness delay among J𝑋 plus 1.

d-Split Limit. The set of strongly dominating (𝜀o, 𝜀d)-witnesses is given by

Jd =
{
⟨[𝜀s, 𝜀o], 𝜀′d⟩ | 𝜀

′
d ∈
←−
E (𝜀d)

}
.

Accordingly, the d-split limit can be calculated as

𝜆d.s (𝜀d) =

0 if

←−
E (𝜀d) = ∅,

max

𝜀′d∈
←−
E (𝜀d )

𝛿w
max
(𝜀′d) + 1 otherwise.

This requires iterating over the preceding stop events of 𝜀d and evaluating the maximum

witness delay. Additionally, Lemma 9.15 shows that stop events that are not in Eopt

d can be

skipped.
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Lemma 9.15. Let 𝜀d = 𝑇 [𝑖] ∈ Eopt
d be a destination event. Then

𝜆d.s (𝜀d) =

0 if

←−
E (𝜀d) ∩ Eopt

d = ∅,
max

𝑇 [ 𝑗 ]∈←−E (𝜀d )∩Eopt
d

𝛿wmax (𝑇 [ 𝑗]) + 1 otherwise.

Proof. If
←−
E (𝜀d) = ∅ or 𝜆d.s (𝜀d) = 0, the claim is trivially true. We therefore assume that 𝑖 > 0

and 𝜆d.s (𝜀d) ≥ 1. Let 𝑗 < 𝑖 be the smallest index such that 𝜆d.s (𝜀d) = 𝛿w
max
(𝑇 [ 𝑗]) + 1.

We define 𝜀′d := 𝑇 [ 𝑗] and v ′d := v (𝜀′d). We show that 𝜀′d ∈ Eopt

d in two steps: 𝜀′d ∈ E j/f

and J c
virt
(𝜀′d) ≠ ∅ (which is equivalent to J c

opt
(𝜀′d) ≠ ∅ by Lemma 9.12).

Step 1: A comparison of Equations 9.2 and 9.3 shows that 𝜆f (𝜀′d) ≥ 𝛿w
max
(𝜀′d). Since we

know that 𝛿w
max
(𝜀′d) = 𝜆d.s (𝜀d) − 1 ≥ 0, it follows that 𝜆f (𝜀′d) ≥ 0. By Lemma 9.13,

𝜀d ∈ Eopt

d implies that 𝑟in (𝐽 cs ,𝑇 ) > 𝑖 . Because 𝑗 < 𝑖 , this means that 𝜀′d = 𝑇 [ 𝑗] is
not a w-in event, i.e., 𝜏dep (𝜀′d) < 𝜏w

arr
(𝐽 cs , v ′d, 1). Furthermore, 𝛿w

max
(𝜀′d) ≥ 0 implies

that 𝜏dep (𝜀′d) ≥ 𝜏c
arr
(v ′d). With Lemma 9.7, this yields

𝜆j (v ′d) = 𝜏w
arr
(𝐽 cs , v ′d, 1) − 𝜏

c
arr
(v ′d) > 𝜏dep (𝜀′d) − 𝜏

c
arr
(v ′d) ≥ 0.

It follows from 𝜆f (𝜀′d) ≥ 0 and 𝜆j (v ′d) ≥ 0 that 𝜀′d ∈ E j/f
.

Step 2: Because 𝜀d is contained in Eopt

d , the set J c
virt
(𝜀d) must contain at least one candi-

date 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩, which is prefix-optimal in Δvirt (𝐽 cs ). We show that 𝐽 c =

⟨[𝜀s, 𝜀o], [𝜀′d, 𝜀t]⟩ ∈ J c (𝜀′d) is also prefix-optimal in Δvirt (𝐽 cs ) by considering the pre-

fixes individually:

Origin prefix: It follows from 𝜆j (v ′d) ≥ 0 and Lemma 9.9 that the origin pre-

fix ⟨[𝜀s, 𝜀o], v ′d⟩ is prefix-optimal in Δvirt (𝐽 cs ).

Destination prefix: Assume that the destination prefix 𝐽 cd = ⟨[𝜀s, 𝜀o],𝑇 [ 𝑗]⟩ is
not Pareto-optimal in Δvirt (𝐽 cs ). Then there is a witness 𝐽w = ⟨[𝜀s, 𝜀o],𝑇 [𝑘]⟩
with 𝑘 < 𝑗 that strongly dominates it. However, if 𝐽w is feasible in Δbest (𝐽 cs ),
it follows that 𝛿w

max
(𝑇 [𝑘]) = 𝛿max ≥ 𝛿w

max
(𝑇 [ 𝑗]), which contradicts our choice

of 𝑗 .

Candidate: The candidate 𝐽 c itself is Pareto-optimal in Δvirt (𝐽 cs ) since it shares the
same target event as 𝐽 c.

Because J c
virt
(𝜀′d) contains at least 𝐽 c, it is not empty. □

1t-Split Limit. Lemma 9.16 establishes a simple formula for the 1t-split limit.

Lemma 9.16. Let 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ ∈ J c
virt (𝜀d) be a candidate. Then

𝜆1t.s (𝜀t) = min(𝛿max + 1, 𝜏arr (𝜀t) − 𝜏 carr (vt)).
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Proof. The only possible direct (𝜀o, 𝜀t)-witness for 𝐽 c is the journey 𝐽w = ⟨[𝜀s, 𝜀o], vt⟩ that
takes a final transfer directly from vo to vt. Since 𝐽w does not use an intermediate transfer,

it is feasible in Δbest (𝐽 cs , 𝛿) for any 𝛿 ∈ [0, 𝛿max + 1]. Its arrival time in Δbest (𝐽 cs , 𝛿) is given
by 𝜏c

arr
(vt) +𝛿 , while the arrival time of 𝐽 c is given by 𝜏arr (𝜀t). Hence, 𝐽 c is strongly dominated

by a direct (𝜀o, 𝜀t)-witness iff 𝛿 < 𝜏arr (𝜀t)−𝜏carr (vt). Since 𝐽 c ∈ J c
virt
(𝜀d), it follows that 𝐽 c is not

strongly dominated by 𝐽w in Δvirt (𝐽 cs ). Since Δvirt (𝐽 co ) ⪯dom Δvirt (𝐽 cs ), it follows that 𝜏arr (𝜀t) −
𝜏c
arr
(vt) ≥ 0. □

2t-Split Limit. Determining the set of all indirect (𝜀o, 𝜀t)-witnesses that strongly dom-

inate 𝐽 c in Δbest (𝐽 cs ) is challenging because not all of them are Pareto-optimal in Δbest (𝐽 cs ).
Finding all of them would potentially require examining many different delay scenarios,

which would be expensive. To avoid this, we do not compute the 2t-split limit 𝜆2t.s (𝜀t) exactly.
Instead, we compute a lower bound 𝜆2t.s (𝜀t) that only considers the indirect (𝜀o, 𝜀t)-witness
with the lowest arrival time Δbest (𝐽 cs ). Other indirect (𝜀o, 𝜀t)-witnesses, which may have a

higher arrival time but a lower maximum witness delay, are ignored. For a vertex v , let 𝐽w (v)
be the journey that minimizes the arrival time 𝜏w

arr
(𝐽 co , v, 2) in Δbest (𝐽 co ) and let 𝛿w

max
(v) be its

maximum witness delay. Given destination and target events 𝜀d ∈ Eopt

d and 𝜀t ∈ Evirt

t (𝜀d),
Lemma 9.17 shows that a lower bound for the 2t-split limit is given by

𝜆2t.s (𝜀t) =
{
0 if 𝜏arr (𝜀t) ≤ 𝜏w

arr
(𝐽 co , v (𝜀t), 2),

𝛿w
max
(v (𝜀t)) + 1 otherwise.

(9.4)

Lemma 9.17. Let 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ be a candidate for which Δbest (𝐽 c) is full-avoiding.
Then

𝜆2t.s (𝜀t) ≤ 𝜆2t.s (𝜀t).

Proof. If 𝜏arr (𝜀t) ≤ 𝜏w
arr
(𝐽 co , v (𝜀t), 2), then 𝜆2t.s (𝜀t) = 0 and the claim is trivially true. We there-

fore assume that 𝜏w
arr
(𝐽 co , v (𝜀t), 2) < 𝜏arr (𝜀t). The former is the arrival time of 𝐽w inΔbest (𝐽 co ) and

the latter the arrival time of 𝐽 c inΔbest
, so it follows that 𝐽w strongly dominates 𝐽 c inΔvirt (𝐽 co ) =

(Δbest,Δbest (𝐽 co )). Since Δbest ⪯eval Δbest (𝐽 c) ⪯eval Δbest (𝐽 co ), it follows that Δvirt (𝐽 co ) ⪯dom
Δbest (𝐽 c). Hence, 𝐽w also strongly dominates 𝐽 c in Δbest (𝐽 c). Since Δbest (𝐽 c) is full-avoiding,
𝐽w must be an indirect (𝜀o, 𝜀t)-witness. By definition of 𝛿w

max
(v (𝜀t)) = 𝛿w

max
(𝐽w), 𝐽w is still

feasible in Δbest (𝐽 cs , 𝛿wmax
(v (𝜀t))) and strongly dominates 𝐽 c. Hence, 𝜆2t.s (𝜀t) > 𝛿w

max
(v (𝜀t)). □

Aggregating the Split Limits. The formulas established for the split limits allow us to

calculate a lower bound for the minimum origin delay 𝛿o
min
(𝐽 c) of a candidate 𝐽 c. To obtain

a lower bound for the minimum origin delay 𝛿o
min
(𝜀d) of a destination event 𝜀d ∈ Eopt

d , the

values for all candidates in J c
opt
(𝜀d) must be aggregated. For this purpose, we define the

aggregated t-split limit

𝜆
agg

t.s (𝜀d) := min

𝜀t∈Evirt

t (𝜀d )
max

(
𝜆1t.s (𝜀t), 𝜆2t.s (𝜀t)

)
. (9.5)
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Lemma 9.18 shows that 𝛿o
min
(𝜀d) := max

(
𝜆d.s (𝜀d), 𝜆aggt.s (𝜀d)

)
is a lower bound for 𝛿o

min
(𝜀d).

Lemma 9.18. For a destination event 𝜀d ∈ Eopt
d , 𝛿omin (𝜀d) ≤ 𝛿omin (𝜀d).

Proof. Let Eopt

t (𝜀d) be the set of target events that occur in J c
opt
(𝜀d). We observe that

𝛿o
min
(𝜀d) = min

𝐽 c∈J c
opt
(𝜀d )

𝛿o
min
(𝐽 c) = max

(
𝜆d.s (𝜀d), min

𝜀t∈Eopt

t (𝜀d )
max

(
𝜆1t.s (𝜀t), 𝜆2t.s (𝜀t)

))
.

It remains to be shown that

𝜆
agg

t.s (𝜀d) = min

𝜀t∈Evirt

t (𝜀d )
max

(
𝜆1t.s (𝜀t), 𝜆2t.s (𝜀t)

)
≤ min

𝜀t∈Eopt

t (𝜀d )
max

(
𝜆1t.s (𝜀t), 𝜆2t.s (𝜀t)

)
.

This is the case because Evirt

t (𝜀d) ⊇ Eopt

t (𝜀d) by Lemma 9.10 and 𝜆2t.s (𝜀t) ≤ 𝜆2t.s (𝜀t) by
Lemma 9.17. □

9.3.4 Preventing Time Travel
So far, we have focused on finding shortcuts that are required in at least one delay scenario.

However, many delay scenarios cannot occur in reality because they require vehicles to travel

faster than their maximum speed, or even backward in time. Unfortunately, prohibiting time

travel introduces dependencies between the delays of stop events. This makes it much more

complicated to characterize the conditions under which a candidate is prefix-optimal. We

therefore eschew a full characterization and limit ourselves to two optimizations that prevent

some types of time travel within the two candidate trips.

First Trip. Let 𝐽 co = ⟨[𝜀s, 𝜀o], vd⟩ be an origin prefix with 𝜀o = 𝑇 [𝑖]. By Lemma 9.9, the

join limit 𝜆j (vd) is non-negative iff 𝐽 co is not strongly dominated by a join witness in the virtual

delay scenario Δvirt (𝐽 cs ). Consider a join witness of the form 𝐽w = ⟨[𝜀s,𝑇 [ 𝑗]], vd⟩ with 𝑗 < 𝑖 .

Then Δvirt (𝐽 cs ) assumes maximum arrival delay for 𝑇 [ 𝑗], but no arrival delay for 𝑇 [𝑖]. If the
difference in the arrival times of both stop events is less than 𝛿max

, this is physically impossible

because 𝑇 would have to travel backward in time. To avoid this type of time travel, we define

the time travel delay scenario Δtt (𝑇 [𝑖]). For stop events 𝑇 [𝑖] and 𝑇 [ 𝑗] of the same trip 𝑇 , we

define the arrival time difference

𝜏diff
arr
(𝑇, 𝑖, 𝑗) := min

(
𝛿max, 𝜏arr (𝑇 [𝑖]) − 𝜏arr (𝑇 [ 𝑗])

)
.

Then the departure and arrival delay of a stop event 𝜀 in Δtt (𝑇 [𝑖]) are given by

Δtt
dep
(𝑇 [𝑖]) (𝜀) = Δbest

dep
(𝐽 cs ) (𝜀)

Δtt
arr
(𝑇 [𝑖]) (𝜀) =

{
𝜏diff
arr
(𝑇, 𝑖, 𝑗) if 𝜀 = 𝑇 [ 𝑗] with 𝑗 < 𝑖,

𝛿max
otherwise.

(9.6)
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For each vertex v , let 𝜏tt
arr
(𝑇 [𝑖], v) be the earliest arrival time at v among journeys with at

most one trip that depart no earlier than 𝜏dep (𝐽 cs ,Δbest) in Δtt (𝑇 [𝑖]).

Lemma 9.19. Let 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ be a candidate and v ∈ S a vertex visited by the
intermediate transfer of 𝐽 c. If 𝜏 carr (v) > 𝜏ttarr (𝑇 [𝑖], v), then 𝐽 c is not prefix-optimal in any delay
scenario without time travel.

Proof. If 𝜏c
arr
(v) > 𝜏w

arr
(𝐽 cs , v, 1), i.e., 𝜆j (v) < 0, then 𝜆j (𝐽 c) < 0 by Lemma 9.8 and there-

fore 𝐽 c is not prefix-optimal in any delay scenario. Since Δtt (𝑇 [𝑖]) ⪯eval Δbest (𝐽 cs ), we
know that 𝜏tt

arr
(𝑇 [𝑖], v) ≤ 𝜏w

arr
(𝐽 cs , v, 1). Assume therefore that 𝜏tt

arr
(𝑇 [𝑖], v) < 𝜏c

arr
(v) ≤

𝜏w
arr
(𝐽 cs , v, 1). Let 𝑇 [𝑖] := 𝜀o and let 𝐽w be a vs-v-journey with at most one trip and ar-

rival time 𝜏tt
arr
(𝑇 [𝑖], v) at v that departs no later than 𝐽 c in Δtt (𝑇 [𝑖]). Since the arrival time

of 𝐽w is earlier in Δtt (𝑇 [𝑖]) than in Δbest (𝐽 cs ), the final stop event of 𝐽w must be some 𝑇 [ 𝑗]
with 𝑗 < 𝑖 and 𝜏arr (𝑇 [𝑖]) − 𝜏arr (𝑇 [ 𝑗]) < 𝛿max

must hold. In any delay scenario Δ without time

travel, 𝜏arr (Δ,𝑇 [ 𝑗]) ≤ 𝜏arr (Δ,𝑇 [𝑖]) must hold. This is equivalent to Δarr (𝑇 [ 𝑗]) − Δarr (𝑇 [𝑖]) ≤
𝜏arr (𝑇 [𝑖]) − 𝜏arr (𝑇 [ 𝑗]) = Δtt

arr
(𝑇 [𝑖]) (𝑇 [ 𝑗]). It follows that

𝜏arr (Δ, 𝐽w) = 𝜏arr (Δtt (𝑇 [𝑖]), 𝐽w) + Δarr (𝑇 [ 𝑗]) − Δtt
arr
(𝑇 [𝑖]) (𝑇 [ 𝑗])

= 𝜏tt
arr
(𝑇 [𝑖], v) + Δarr (𝑇 [ 𝑗]) − Δtt

arr
(𝑇 [𝑖]) (𝑇 [ 𝑗])

< 𝜏c
arr
(v) + Δarr (𝑇 [ 𝑗]) − Δtt

arr
(𝑇 [𝑖]) (𝑇 [ 𝑗])

≤ 𝜏c
arr
(v) + Δarr (𝑇 [𝑖])

= 𝜏arr (Δ, 𝐽 co (v)).

Thus, 𝐽 c is not prefix-optimal in Δ because the prefix 𝐽 co (v) is strongly dominated by 𝐽w. □

Lemma 9.19 shows that if 𝜏c
arr
(v) > 𝜏tt

arr
(𝑇 [𝑖], v), then no candidate startingwith 𝐽 co (v) can be

prefix-optimal in any delay scenario without time travel. Because 𝜏tt
arr
(𝑇 [𝑖], v) ≤ 𝜏w

arr
(𝐽 cs , v, 1)

holds, this also implies 𝜆j (v) < 0, so Lemma 9.19 is a stronger version of Lemma 9.8.

Second Trip. Consider a candidate 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩. If 𝐽 c is Pareto-optimal in a

delay scenario Δ, the arrival time of the earliest witness at vt in Δ is an upper bound for the

arrival time of 𝜀t. Because the second trip of 𝐽 c cannot travel backward in time, this is also an

upper bound for the arrival time of the origin prefix 𝐽 co at vd. We define the time travel limit

𝜆tt (𝜀d, 𝜀t) := 𝜏w
arr
(𝐽 cs , v (𝜀t), 2) − 𝜏carr (v (𝜀d)) .

Lemma 9.20. Let 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ be a candidate and Δ a delay scenario without time
travel. If 𝐽 c is prefix-optimal in Δ, then 𝜏arr (Δ, 𝜀o) ≤ 𝜆tt (𝜀d, 𝜀t).

Proof. Assume that 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ is prefix-optimal in Δ. Then 𝐽 c ∈ J c
opt
(𝜀d) ⊆

J c
virt
(𝜀d) and therefore 𝜏arr (Δ, 𝜀t) ≤ 𝜏w

arr
(𝐽 cs , vt, 2) must hold. Since no time travel occurs in Δ,

it follows that 𝜏dep (Δ, 𝜀d) ≤ 𝜏arr (Δ, 𝜀t). Finally, since 𝐽 c is feasible, 𝜏arr (Δ, 𝐽 co ) = 𝜏c
arr
(vd) +

Δarr (𝜀o) ≤ 𝜏dep (Δ, 𝜀d) must hold. Altogether, this yields Δarr (𝜀o) ≤ 𝜏w
arr
(𝐽 cs , vt, 2) − 𝜏carr (vd) =

𝜆tt (𝜀d, 𝜀t). □
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For a destination event 𝜀d ∈ Eopt

d , we define the maximum witness time

𝜏w
max
(𝜀d) := max

𝜀t∈Evirt

t (𝜀d )
𝜏w
arr
(𝐽 cs , v (𝜀t), 2) (9.7)

and the aggregated time travel limit

𝜆
agg

tt (𝜀d) := max

𝜀t∈Evirt

t (𝜀d )
𝜆tt (𝜀d, 𝜀t) = 𝜏w

max
(𝜀d) − 𝜏carr (v (𝜀d)) . (9.8)

If the delay of 𝜀o in a delay scenarioΔwithout time travel exceeds 𝜆
agg

tt (𝜀d), then by Lemma 9.20

the shortcut (𝜀o, 𝜀d) is not required in Δ. We therefore redefine the maximum origin delay as

𝛿o
max
(𝜀d) := min

{
𝜆f (𝜀d), 𝜆j (v (𝜀d)), 𝜆aggtt (𝜀d)

}
.

9.4 Delay-ULTRA Shortcut Computation
The Delay-ULTRA shortcut computation retains the basic outline of ULTRA: For each source

stop vs (in parallel), it enumerates all prefix-optimal candidates originating at vs. For each
possible candidate departure time 𝜏 𝑗 at vs (in descending order), candidates departing at 𝜏 𝑗
and witnesses departing within [𝜏 𝑗 , 𝜏 𝑗+1) are explored. ULTRA does this with an MR run

that is limited to the first two rounds. Delay-ULTRA must additionally take different delay

scenarios into account. Section 9.3 showed that three delay scenarios are sufficient to examine

a candidate 𝐽 c: The candidate itself is explored in Δbest
. Witnesses are explored in Δbest (𝐽 cs )

and Δbest (𝐽 co ), yielding arrival times 𝜏w
arr
(𝐽 cs , ·, ·) and 𝜏warr (𝐽 co , ·, ·), respectively. While Δbest

is

the same for all candidates, the witness delay scenarios depend on the candidate prefixes.

Thus, instead of a single witness search per run, Delay-ULTRA performs one for each source

and origin prefix.

Self-Pruning. To avoid redundant work, Delay-ULTRA performs the witness searches

in a staggered manner and extends the self-pruning approach used by rRAPTOR and ULTRA.

A run with departure time 𝜏 𝑗 begins with a two-round MR witness search in Δworst
. For each

vertex v and round 𝑛 ≤ 2, this finds the earliest arrival time 𝜏w
arr
(𝜏 𝑗 , v, 𝑛) among journeys to v

with at most 𝑛 trips that depart no earlier than 𝜏 𝑗 . The original self-pruning rule is applied

here: Because 𝜏w
arr
(𝜏 𝑗 , v, 𝑛) ≤ 𝜏w

arr
(𝜏 𝑗+1, v, 𝑛) holds for each vertex v and round 𝑛, the search

for 𝜏 𝑗 initializes the former with the latter and only explores journeys departing before 𝜏 𝑗+1.
Since 𝜏w

arr
(𝐽 cs , v, 𝑛) ≤ 𝜏w

arr
(𝜏 𝑗 , v, 𝑛) holds as well, the witness search in Δbest (𝐽 cs ) reuses the

results for Δworst
in the same manner. Moreover, since the two scenarios only differ in the

departure delay of 𝜀s, the witness search in Δbest (𝐽 cs ) only explores journeys starting with 𝐽 cs .

By the same argument, the witness search for Δbest (𝐽 co ) reuses the results for Δbest (𝐽 cs ) and
only explores journeys starting with 𝐽 co . Thus, each witness search is pruned with results

from the previous ones.
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Algorithm 9.1: Delay-ULTRA shortcut computation.

Input: Public transit network (S,Π, E, T ,R,𝐺), source stop vs ∈ S
Output: Shortcuts 𝐸s

1 D← Collect departures of trips at vs
2 for each (𝜏dep, Es) ∈ D in descending order of 𝜏dep do
3 𝜏w

arr
(𝜏dep, ·, ·), 𝑟in (𝜏dep, ·) ← Find witnesses in Δworst

4 for each 𝜀s ∈ Es do
// Solve DelayShortcut-𝐽 co (v (𝜀o))

5 𝜏w
arr
(𝐽 cs , ·, ·), 𝑟in (𝐽 cs , ·) ← Find witnesses in Δbest (𝐽 cs )

6 for each 𝜀o ∈
−→
E (𝜀s) do

7 𝜏c
arr
(·), 𝜆j (·) ← Explore intermediate transfers of candidates

8 𝑟out (𝐽 cs , ·) ← Compute exit indices

9 Eopt

d , 𝜆f (·) ← Find destination events

10 𝜆d.s (·) ← Compute d-split limits

11 𝜏w
arr
(𝐽 co , ·, ·), 𝛿wmax

(·) ← Find witnesses in Δbest (𝐽 co )
12 𝐸s

new
, 𝛿o

min
(·), 𝛿o

max
(·) ← Scan second trips of candidates

13 Merge 𝐸s
new

into 𝐸s

A similar approach is used for the entry index 𝑟in (𝐽 cs ,𝑇 ) of each trip 𝑇 . Whereas 𝑟in (𝐽 cs ,𝑇 )
is based on witness arrival times in Δbest (𝐽 cs ), we define 𝑟in (𝜏 𝑗 ,𝑇 ) as the entry index based

on witnesses in Δworst
that depart no earlier than 𝜏 𝑗 . To compute it, we augment the MR

witness search as follows: whenever a stop event𝑇 [𝑖] is entered during a route scan, 𝑟in (𝜏 𝑗 ,𝑇 ′)
is updated to min(𝑟in (𝜏 𝑗 ,𝑇 ′), 𝑖) for all trips 𝑇 ⪯ 𝑇 ′. Based on the inequalities 𝑟in (𝐽 cs ,𝑇 ) ≥
𝑟in (𝜏 𝑗 ,𝑇 ) ≥ 𝑟in (𝜏 𝑗+1,𝑇 ), self-pruning is applied to the entry indices as well.

9.4.1 Overview
Algorithm 9.1 shows a high-level overview of the shortcut computation for a source stop vs.
Further details are provided in Section 9.4.2. Line 1 collects all stop events departing at vs
in a set D, grouped by their departure time. For a tuple (𝜏dep, Es) ∈ D, Es contains all

stop events departing at vs with scheduled departure time 𝜏dep − 𝛿max
. These tuples are

processed in descending order of departure time. Line 3 computes 𝜏w
arr
(𝜏dep, ·, ·) and 𝑟in(𝜏dep, ·)

with a witness search in Δworst
. For each source event 𝜀s ∈ Es, the algorithm then explores

candidates beginningwith the source prefix 𝐽 cs = ⟨𝜀s⟩. Line 5 computes 𝜏w
arr
(𝐽 cs , ·, ·) and 𝑟in (𝐽 cs , ·)

with a self-pruned witness search in Δbest (𝐽 cs ). For each event 𝜀o succeeding 𝜀s in 𝑇 (𝜀s),
the algorithm now solves the subproblem DelayShortcut-𝐽 co (vo) for the origin stop

prefix 𝐽 co (vo) = ⟨[𝜀s, 𝜀o], vo⟩ with origin stop vo = v (𝜀o).
Line 7 performs a Dijkstra search from vo in Δbest

. For each vertex v , this computes the

candidate arrival time 𝜏c
arr
(v) and the join limit 𝜆j (v) by Equation 9.1. For each trip𝑇 that can
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be entered by a candidate, line 8 computes the exit index 𝑟out (𝐽 cs ,𝑇 ). For each event 𝜀d := 𝑇 [𝑖]
with 𝑖 < 𝑟w (𝐽 cs ,𝑇 ), line 9 computes the feasibility limit 𝜆f (𝜀d) by Equation 9.2. If it is non-

negative, then 𝜀d is added to Eopt

d . Line 10 computes the d-split limits for the events in Eopt

d by

Lemma 9.15. For the t-split limits, line 11 computes the witness arrival times 𝜏w
arr
(𝐽 co , ·, ·) and the

maximum witness delays 𝛿w
max
(·) with a modified MR search in Δbest (𝐽 co ). For each destination

event 𝜀d ∈ Eopt

d , line 12 calculates the aggregated t-split limit 𝜆
agg

t.s (𝜀d) by Equation 9.5 and

the aggregated time travel limit 𝜆
agg

tt (𝜀d) by Equation 9.8. From these, the maximum origin

delay 𝛿o
max
(𝜀d) and a lower bound 𝛿o

min
(𝜀d) for the minimum origin delay are computed.

If 𝛿o
min
(𝜀d) ≤ 𝛿o

max
(𝜀d), the shortcut (𝜀o, 𝜀d) is generated and merged into the result set 𝐸s in

line 13.

9.4.2 Details
We now discuss further details that are not shown in Algorithm 9.1.

Exploring Intermediate Transfers. Line 7 of Algorithm 9.1 explores the intermediate

transfers of candidates beginning with the origin stop prefix 𝐽 co (vo). This is done with a

Dijkstra search starting from vo in the best-case delay scenario Δbest
. For each vertex v

visited by the search, this yields the candidate arrival time 𝜏c
arr
(v) and the join limit 𝜆j (v)

by Equation 9.1. By Lemma 9.8, if 𝜆j (v) < 0, then all candidates beginning with 𝐽 co (v) are
irrelevant because they have a negative join limit as well. In this case, the search is pruned

at v , i.e., the outgoing edges are not explored. For an even stronger pruning rule, a Dijkstra

search from vo in the time travel delay scenario Δtt (𝜀o) can be performed before line 7 to

compute 𝜏tt
arr
(𝜀o, v) for each vertex v . Then by Lemma 9.19, the candidate search can be pruned

at a vertex v if 𝜏tt
arr
(𝜀o, v) < 0.

Exit Indices. Line 8 of Algorithm 9.1 collects all routes that can be entered by a candidate

and calculates the exit indices of their trips. A route 𝑅 can be entered if its last trip 𝑇max

can be entered, i.e., there is at least one stop event 𝑇max [𝑖] such that 𝜏c
arr
(v (𝑇max [𝑖])) ≤

𝜏dep (𝑇max [𝑖]) + 𝛿max
. For each trip 𝑇 of 𝑅, the exit index 𝑟out (𝐽 cs ,𝑇 ) is then calculated. Since

this value is based on the delay scenario Δbest (𝐽 cs ), which does not depend on the choice

of 𝜀o, the value of 𝑟out (𝐽 cs ,𝑇 ) cannot change between iterations of the loop in line 6. To

avoid unnecessary recalculations, the algorithm maintains a timestamp for each route 𝑅 that

indicates whether the exit indices for the trips of 𝑅 were already calculated for the current

choice of 𝜀s.

Finding Destination Events. Line 9 of Algorithm 9.1 computes the set Eopt

d of relevant

destination events and the feasibility limit 𝜆f (𝜀d) for each destination event 𝜀d ∈ Eopt

d . By

Lemma 9.13, a stop event 𝑇 [𝑖] ∈ E j/f
is contained in Eopt

d iff 𝑖 < 𝑟w (𝐽 cs ,𝑇 ). To find the

stop events fulfilling this condition efficiently, each route collected in line 8 is processed
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Algorithm 9.2: Find destination events.

Input: Route 𝑅, first reachable stop index 𝑗

Output: Destination events Eopt

d , feasibility limits 𝜆f (·)
1 𝑇𝑏 ← first trip of 𝑅

2 𝑇𝑒 ← last trip of 𝑅

3 for 𝑗 ≤ 𝑖 < 𝑟w (𝐽 cs ,𝑇𝑏) in ascending order do
4 while 𝑟w (𝐽 cs ,𝑇𝑒 ) ≤ 𝑖 do
5 𝑇𝑒 ← predecessor of 𝑇𝑒 in 𝑅

6 for 𝑇𝑒 ⪰ 𝑇 ⪰ 𝑇𝑏 in descending order do
7 𝜀d ← 𝑇 [𝑖]
8 vd ← v (𝜀d)
9 𝜆f (𝜀d) ← min(0, 𝜏dep (𝜀d) − 𝜏carr (vd)) + 𝛿max

10 if 𝜆f (𝜀d) < 0 then break
11 Eopt

d ← Eopt

d ∪ {𝜀d}

individually. Detailed pseudocode for the examination of a route 𝑅 is given in Algorithm 9.2.

Lines 1 and 2 initialize the variables𝑇𝑏 and𝑇𝑒 , which initially refer to the first and last trip of 𝑅,

respectively. The algorithm then iterates over the stops of 𝑅, starting at the first stop that was

reached by the Dijkstra search in line 7 of Algorithm 9.1 and ending at 𝑟w (𝐽 cs ,𝑇𝑏) − 1. For each
stop index 𝑖 , line 4 decreases 𝑇𝑒 until 𝑟w (𝐽 cs ,𝑇𝑒 ) > 𝑖 holds. This ensures that the trips after 𝑇𝑒 ,

which contain no further stop events in Eopt

d , are ignored. Then, in descending order from 𝑇𝑒
to 𝑇𝑏 , the algorithm examines for each trip 𝑇 the destination event 𝜀d := 𝑇 [𝑖] departing at the

current stop. Line 9 computes the feasibility limit 𝜆f (𝜀d) according to Equation 9.2. If this is

below 0, then 𝜀d ∉ E j/f
, so it can be discarded. Since the feasibility limit will also be below 0

for all of the trips preceding 𝑇 , the loop is exited altogether. Otherwise, 𝜀d is added to Eopt

d in

line 11.

d-Split Limit. Line 10 of Algorithm 9.1 computes the d-split limits for the events in Eopt

d .

By Equation 9.15, the d-split limit of a destination event 𝑇 [𝑖] depends on the maximum

witness delays of the events in Eopt

d that precede it in 𝑇 . For each trip 𝑇 with at least one

stop event in Eopt

d , the algorithm sweeps over its stop events from first to last and maintains

a value 𝜆d.s (𝑇 ), which is initialized with 0. If a stop event 𝑇 [𝑖] is not in Eopt

d , it is skipped.

Otherwise, its d-split limit 𝜆d.s (𝑇 [𝑖]) is set to 𝜆d.s (𝑇 ). Afterward, the maximum witness

delay 𝛿w
max
(𝑇 [𝑖]) is calculated according to Equation 9.3 and 𝜆d.s (𝑇 ) is set to the maximum of

itself and 𝛿w
max
(𝑇 [𝑖]) + 1.

Modified MR Search for (𝜀o, 𝜀t)-Witnesses. Line 11 of Algorithm 9.1 performs a

witness search in Δbest (𝐽 co ) to calculate the witness arrival times 𝜏w
arr
(𝐽 co , ·, ·) and the maxi-

mum witness delays 𝛿w
max
(·). This is done with an MR search that is modified as follows.
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Since 𝜏w
arr
(𝐽 co , v, 1) = min(𝜏w

arr
(𝐽 cs , v, 1), 𝜏carr (v)) holds for each vertex v , the first MR round is

skipped and 𝜏w
arr
(𝐽 co , v, 1) is initialized accordingly. Afterward, a secondMR round is performed

to find second trips and final transfers. For each vertex v , this search calculates the earliest

arrival time 𝜏w
arr
(𝐽 co , v, 2) at v among journeys with at most two trips in Δbest (𝐽 co ), as well as

the maximum witness delay 𝛿w
max
(v) of the corresponding witness. This search finds exactly

those witnesses that include an intermediate transfer from 𝜀o to a destination event 𝜀′d. Since
all other witnesses have maximum witness delay 𝛿max

, 𝛿w
max
(v) is initialized with 𝛿max

for

each vertex v at the start of the search.

To calculate the maximum witness delays, the scanning procedure for a route 𝑅 is modified

as follows. In addition to the active trip 𝑇min, it maintains an active maximum witness de-
lay 𝛿w

max
(𝑇min), which is initialized with 𝛿max

. If𝑇min is improved by entering 𝑅 at a destination

event 𝜀′d, then 𝛿w
max
(𝑇min) is set to 𝛿wmax

(𝜀′d), which is calculated according to Equation 9.3. If

exiting 𝑅 at a stop v improves the arrival time 𝜏w
arr
(𝐽 co , v, 2), then 𝛿w

max
(v) is set to 𝛿w

max
(𝑇min).

During the Dijkstra search, when an edge (v, 𝑤) is relaxed and 𝜏w
arr
(𝐽 co , 𝑤, 2) is improved,

then 𝛿w
max
(𝑤) is set to 𝛿w

max
(v). When a new iteration of the loop in line 6 is started, i.e., a new

origin event is processed, 𝜏w
arr
(𝐽 co , ·, ·) and 𝛿wmax

(·) are reset.

SecondCandidate Trip Scan. Line 12 of Algorithm 9.1 scans all trips that contain at least

one destination event 𝜀d ∈ Eopt

d . This scan calculates a lower bound 𝛿o
min
(𝜀d) for the minimum

origin delay and the maximum origin delay 𝛿o
max
(𝜀d) and generates the shortcut (𝜀o, 𝜀d) if it is

required. Detailed pseudocode for the scan of a trip𝑇 is given in Algorithm 9.3. For each stop

event 𝑇 [𝑖] ∈ Eopt

d , the algorithm must calculate a lower bound 𝜆
agg

t.s (𝑇 [𝑖]) for the aggregated
target split limit by Equation 9.5 and the aggregated time travel limit 𝜆

agg

tt (𝑇 [𝑖]) by Equation 9.8.
The latter in turn requires the maximum witness time 𝜏w

max
(𝑇 [𝑖]), which is calculated by

Equation 9.7. Computing these values requires aggregating over the set Evirt

t (𝑇 [𝑖]) of relevant
target events. According to Lemma 9.14, this is given by Eout

c (𝐽 cs ,𝑇 ) ∩
−→
E (𝑇 [𝑖]), i.e., the set of

c-out events succeeding 𝑇 [𝑖] in 𝑇 .
In order to consider exactly the set Evirt

t (𝑇 [𝑖]) for each destination event𝑇 [𝑖], the procedure
performs one sweep across the stop events of𝑇 in reverse, starting at the index 𝑟out (𝐽 cs ,𝑇 ) − 1
and ending at the first index 𝑗 for which 𝑇 [ 𝑗] ∈ Eopt

d . The algorithm maintains the val-

ues 𝜆
agg

t.s (𝑇 ) and 𝜏wmax
(𝑇 ), which fulfill the invariants that 𝜆

agg

t.s (𝑇 ) = 𝜆
agg

t.s (𝑇 [𝑖]) and 𝜏wmax
(𝑇 ) =

𝜏w
max
(𝑇 [𝑖]) at the point when 𝑇 [𝑖] is scanned. They are initialized with∞ in line 1 and −∞ in

line 2, respectively. In the step for destination stop index 𝑖 , the target event 𝜀t := 𝑇 [𝑖 + 1] is ex-
amined. Line 7 tests whether 𝜀t is a c-out event. If so, then 𝜆1t.s (𝜀t) and 𝜆2t.s (𝜀t) are calculated
in lines 8–9. Lines 10 and 11 updates 𝜆

agg

t.s (𝑇 ) and 𝜏wmax
(𝑇 ), respectively, to uphold the invari-

ants. Line 14 incorporates 𝜆
agg

t.s (𝑇 ) into 𝛿o
min
(𝜀d). Line 15 calculates 𝜆

agg

tt (𝜀d) from 𝜏w
max
(𝑇 )

and line 16 incorporates this into 𝛿o
max
(𝜀d). If 𝛿o

min
(𝜀d) ≤ 𝛿o

max
(𝜀d), the shortcut (𝜀o, 𝜀d) is

generated in line 18.
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Algorithm 9.3: Scan second candidate trip.

Input: Trip 𝑇 , destination events Eopt

d
Output: New shortcut edges 𝐸s

new
, lower bounds 𝛿o

min
(·) for the minimum origin

delay, maximum origin delays 𝛿o
max
(·)

1 𝜆
agg

t.s (𝑇 ) ← ∞
2 𝜏w

max
(𝑇 ) ← −∞

3 𝑗 ← min

{
𝑖 | 𝑇 [𝑖] ∈ Eopt

d

}
4 for 𝑟out (𝐽 cs ,𝑇 ) > 𝑖 ≥ 𝑗 in descending order do
5 𝜀t ← 𝑇 [𝑖 + 1]
6 vt ← v (𝜀t)
7 if 𝜏arr (𝜀t) ≤ 𝜏w

arr
(𝐽 cs , vt, 2) then

8 Calculate 𝜆1t.s (𝜀t) by Lemma 9.16

9 Calculate 𝜆2t.s (𝜀t) by Equation 9.4

10 𝜆
agg

t.s (𝑇 ) ← min(𝜆aggt.s (𝑇 ),max(𝜆1t.s (𝜀t), 𝜆2t.s (𝜀t)))
11 𝜏w

max
(𝑇 ) ← max(𝜏w

max
(𝑇 ), 𝜏w

arr
(𝐽 cs , vt, 2))

12 𝜀d ← 𝑇 [𝑖]
13 vd ← v (𝜀d)
14 𝛿o

min
(𝜀d) ← max(𝜆d.s (𝜀d), 𝜆aggt.s (𝑇 ))

15 𝜆
agg

tt (𝜀d) ← 𝜏w
max
(𝑇 ) − 𝜏c

arr
(vd)

16 𝛿o
max
(𝜀d) ← min

{
𝜆f (𝜀d), 𝜆j (vd), 𝜆aggtt (𝜀d)

}
17 if 𝛿o

min
(𝜀d) ≤ 𝛿o

max
(𝜀d) then

18 𝐸s
new
← 𝐸s

new
∪

{
(𝜀o, 𝜀d)

}
Merging Shortcuts. Line 13 of Algorithm 9.1 merges the newly generated shortcuts 𝐸s

new

into the result set 𝐸s. If a shortcut 𝑒 = (𝜀o, 𝜀d) ∈ 𝐸snew is already contained in 𝐸s, then 𝛿o
min
(𝑒)

is set to min(𝛿o
min
(𝑒), 𝛿o

min
(𝜀d)) and 𝛿o

max
(𝑒) to max(𝛿o

max
(𝑒), 𝛿o

max
(𝜀d)). Otherwise, they are

initialized with 𝛿o
min
(𝜀d) and 𝛿omax

(𝜀d) and the shortcut is added to 𝐸s.

9.5 Update Phase
The update phase incorporates the delay update stream ⟨𝜇1, 𝜇2, . . . ⟩ into the query data

structures. We present two variants of the update phase: a basic one in Section 9.5.1 that

only updates the data structures and removes irrelevant shortcuts, and an advanced version

in Section 9.5.2 that searches for missing shortcuts. For simplicity, we assume that each

update is processed individually. In practice, this may not be viable because updates arrive

too frequently. Thus, updates that are received while an update phase is running are buffered.

Once it has finished, the buffered updates are combined into a single input for the next phase.
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9.5.1 Basic
For a delay update 𝜇, the basic update phase first computes the new delay scenario Δ by

incorporating 𝜇 into the previous scenario. It then recalculates the set of routes such that no

trips of the same route overtake each other in Δ and rebuilds the TB query data structures

accordingly. Finally, two types of irrelevant shortcuts are removed from the set 𝐸s of Delay-

ULTRA shortcuts: The first is the set

𝐸s
inf
(Δ) :=

{
𝑒 = (𝜀o, 𝜀d) ∈ 𝐸s | 𝜏dep (Δ, 𝜀d) < 𝜏arr (Δ, 𝜀o) + 𝜏tra (𝑒)

}
of shortcuts that are infeasible in Δ. The second type is shortcuts 𝑒 = (𝜀o, 𝜀d) for which the

arrival delay Δarr (𝜀o) is not within the computed origin delay interval 𝐼 o
𝛿
(𝑒).

9.5.2 Advanced
The advanced variant searches for shortcuts that are required due to delays above 𝛿max

but are

not in 𝐸s. An exhaustive search for all missing shortcuts would take too long for the update

phase, so we propose a heuristic replacement search for candidates that were made infeasible

by the last delay update. A candidate with intermediate transfer (𝜀o, 𝜀d) becomes infeasible if

the arrival delay of 𝜀o increases to the point at which 𝜀d is no longer reachable. The update

phase therefore collects the set Edel of stop events whose arrival delay was increased by the

current update. For each stop event in this set, the algorithm collects the affected candidates

and searches for replacements that are prefix-optimal in the current delay scenario Δ.

Replacement Search Routine. The core of the replacement search algorithm is the

routine FindReplacements. It takes as input a set Es of source events, a set 𝑉t of target stops

and an upper bound 𝜏arr (v) for the arrival time at each target stop v ∈ 𝑉t. For each pair of

source event 𝜀s ∈ Es and target stop vt ∈ 𝑉t, it searches for a Pareto-optimal v (𝜀s)-vt-journey
with exactly two trips that departs no earlier than 𝜏dep (𝜀s) and arrives no later than 𝜏arr (vt).
If one exists, a shortcut representing its intermediate transfer is generated.

The routine uses one-to-all MR searches restricted to two rounds as its basic building blocks.

First, a backward MR search establishes a latest departure time
←−−𝜏dep (v, 𝑛) at each vertex v for

each round 𝑛. This is the latest departure time at v such that at least one target stop vt ∈ 𝑉t
can be reached from v with at most 𝑖 trips no later than 𝜏arr (vt). For each target stop vt ∈ 𝑉t,←−−𝜏dep (vt, 0) is initialized with 𝜏arr (vt). The backward MR search is then run with the following

pruning rule: Let 𝜏min be the earliest departure time in Δ of any source event in Es. Whenever

the search improves
←−−𝜏dep (v, 𝑛) for a vertex v in round 𝑛, it checks whether←−−𝜏dep (v, 𝑛) < 𝜏min. If

so, the search is pruned at v since it cannot be reached in time from any source event in Es.

Afterward, for each source event 𝜀s ∈ Es, a forward MR search from v (𝜀s) with departure

time 𝜏dep (𝜀s,Δ) is performed, which computes the earliest arrival time
−−→𝜏arr (v, 𝑛) at each vertex v

for each round 𝑛. Whenever
−−→𝜏arr (v, 𝑛) is improved for a vertex v in round 𝑛, the algorithm

checks whether
−−→𝜏arr (v, 𝑛) > ←−−𝜏dep (v, 2 − 𝑛). If so, the search is pruned at v since no target
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Algorithm 9.4: Replacement search.

Input: Shortcuts 𝐸s, delay scenario Δ, infeasible shortcuts 𝐸s
inf
(Δ),

delayed origin event 𝜀o ∈ Edel

Output: Replacement shortcuts 𝐸sr

1 Es ←
←−
E (𝜀o)

2 Ed ←
{
𝜀d | (𝜀o, 𝜀d) ∈ 𝐸s

inf
(Δ)

}
3 𝑉t ←

{
v (𝜀t) | 𝜀t ∈

−→
E (𝜀d), 𝜀d ∈ Ed

}
4 for each vt ∈ 𝑉t do
5 𝜏o

arr
(vt) ← 𝜏arr (Δ, 𝜀o) + 𝜏tra (vo, vt)

6 𝜏arr (vt) ← 𝜏o
arr
(vt)

7 for each 𝑇 [𝑖] ∈ Ed do
8 𝑇 ′ ← FindEarliestTrip(𝑇, 𝑖,Δ)
9 for each 𝜀t ∈

−→
E (𝑇 ′ [𝑖]) do

10 𝜏arr (v (𝜀t)) ← min(𝜏arr (v (𝜀t)), 𝜏arr (𝜀t))
11 𝐸sr ← FindReplacements(Es,𝑉t, 𝜏arr (·))

stop vt ∈ 𝑉t can be reached from there without exceeding 𝜏arr (vt). Finally, all journeys with
exactly two trips that have been found at a target stop vt ∈ 𝑉t are extracted and shortcuts for

their intermediate transfers are added to the set 𝐸sr of replacement shortcuts.

Calling the Routine. The replacement search for an origin event 𝜀o ∈ Edel is depicted in

Algorithm 9.4. The set Es of potential source events consists of all stop events preceding 𝜀o
in 𝑇 (𝜀o). For each shortcut (𝜀o, 𝜀d) that is infeasible in Δ, the destination event 𝜀d is added

to Ed and the stops visited by its successor events in 𝑇 (𝜀d) are added to the set 𝑉t of target

stops. Lines 4–10 compute the upper bounds 𝜏arr (·). Two alternatives are considered for an

infeasible candidate 𝐽 c = ⟨[𝜀s, 𝜀o], [𝜀d, 𝜀t]⟩ with v (𝜀t) = vt. One is the journey ⟨[𝜀s, 𝜀o], vt⟩
that transfers directly from vo to vt. Line 6 initializes 𝜏arr (vt) with the arrival time 𝜏o

arr
(vt) :=

𝜏arr (Δ, 𝜀o) + 𝜏tra (vo, vt) of this journey. The other option is to wait at vd for the next trip

with the same stop sequence as 𝑇 (𝜀d). For each destination event 𝑇 [𝑖] ∈ Ed, line 8 calls the

subroutine FindEarliestTrip(𝑇, 𝑖,Δ) to find the earliest trip 𝑇 ′ with the same stop sequence

as 𝑇 such that 𝜏o
arr
(v (𝑇 [𝑖])) ≤ 𝜏dep (Δ,𝑇 ′ [𝑖]). Then, for each stop event 𝜀t succeeding 𝑇

′ [𝑖]
in 𝑇 ′, line 10 incorporates 𝜏arr (𝜀t) into 𝜏arr (v (𝜀t)). Finally, the FindReplacements routine is

invoked in line 11.

Algorithm 9.4 can be sped up further by batching the FindReplacements calls. For all

delayed stop events belonging to the same trip, the computed inputs are merged and the

routine is called just once on the merged inputs. This reduces the number of MR searches, at

the cost of worse upper bounds 𝜏arr (·). Furthermore, the individual FindReplacements calls

are independent of each other and can be run in parallel.
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Figure 9.6: Delay distribution in our synthetically generated delay scenarios. There are eight

delay intervals, ranging from 0 to 60 minutes. The percentage of stop events whose delay

falls within each interval is shown in blue, and the percentage of delay updates is shown in

red. Within an interval, delays are distributed uniformly.

9.6 Experiments
To generate delay scenarios for our experimental evaluation, we use a synthetic delay model.

In Section 9.6.1, we describe the model in detail, discuss how we generate test queries and

analyze the impact of delays on the four benchmark networks. Afterward, we evaluate

the performance of Delay-ULTRA, the update phases and the resulting query algorithms in

Section 9.6.2. For all experiments, we use walking with a constant speed of 4.5 km/h as the

transfer mode. Shortcut computations were run on the Epyc machine, all other experiments

on the Xeon machine.

9.6.1 Delay Model
Since we do not have access to proper real-world delay data, we generate synthetic delay

scenarios using the model by Bast et al. [BSS13]: We create one delay update per trip 𝑇 , with

the index 𝑖 of the first affected event chosen uniformly at random and the delay 𝛿 chosen at

random according to the probability distribution outlined below. The arrival and departure

delays of each stop event𝑇 [ 𝑗] with 𝑗 ≥ 𝑖 are set to 𝛿 ; updates with 𝛿 = 0 are discarded. For the

reveal time, we choose the arrival time 𝜏arr (𝑇 [𝑖]) of the first affected event. The distribution

for the expected delay of a stop event is shown in blue in Figure 9.6; it is roughly based on

aggregated real-world punctuality data for London
1
. Note that since our model divides each

trip into an undelayed first portion and a second portion with delay 𝛿 , half of all stop events

remain unaffected by delays in expectation. To obtain the desired expected delay distribution,

we reduce the probability of delay 0 to 50% and double all other probabilities; the resulting

probability distribution is shown in red in Figure 9.6. To allow for a reasonably fast simulation

1https://www.raildeliverygroup.com/punctuality.html. Accessed May 6th, 2022.

https://www.raildeliverygroup.com/punctuality.html
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Table 9.1: Impact of delays on queries in the synthetic delay scenarios. For each network,

random queries were generated until 1 000 affected ones were found. A query is affected if MR

without delay information returns at least one suboptimal or infeasible journey. Also reported

are the number of returned journeys that are suboptimal and infeasible in the synthetic delay

scenarios, respectively. For each infeasible journey, the highest slack among its infeasible

transfers was measured. The reported slack is the median value across all infeasible journeys.

Network

Queries Journeys

Slack [s]

Total Affected Total Affected Infeasible

London 5 572 1 000 (17.94%) 25 532 1 585 (6.20%) 956 (3.74%) 54

Germany 10 182 1 000 ( 9.82%) 54 852 1 699 (3.09%) 783 (1.42%) 68

Stuttgart 102 362 1 000 ( 0.97%) 424 480 1 528 (0.35%) 724 (0.17%) 136

Switzerland 30 375 1 000 ( 3.29%) 143 570 1 601 (1.11%) 894 (0.62%) 120

of the update phase, we limit our delay scenarios to the interval between 12 and 1 PM of the

first covered day. Updates with a reveal time after 1 PM are discarded. For updates with a

reveal time before 12 PM, we omit all affected stop events before 12 PM from the update.

Note that our synthetic model is heavily simplified, for example by assuming that there is

at most one cause of delay along each trip and that this delay is never caught up. However,

most of our simplifications make the synthetic scenarios more challenging than real ones.

Since delays are chosen uniformly at random within each interval, instead of preferring lower

delays, the average delay is overestimated. Delay updates are revealed at the latest possible

moment, which puts more pressure on the update phase to process them in time. Finally, our

model does not reproduce knock-on effects caused by trips waiting for each other or a delayed

train blocking a platform. In practice, these effects make it more likely that precomputed

transfers stay feasible in the presence of delays.

Impact of Delays. To investigate how many queries are affected by delays in each

network, we generate queries until 1 000 affected ones are found. We choose source and target

vertices uniformly at random and departure times uniformly at random between 12 and 1 PM.

For the query execution times, we use the departure times. This maximizes the number of

delays that are already known when a query is executed, making it more likely to be affected

by delays and therefore more challenging to answer correctly. In reality, the execution time

often lies well before the departure time. For each query, we perform one MR search in an

undelayed scenario Δbase and one in the scenario Δdel that incorporates all delay updates

that are known at execution time. This yields Pareto sets Jbase and Jdel, respectively. If any

journey 𝐽 ∈ Jbase is infeasible in Δdel or has a later arrival time than a journey in Jdel with at

most |𝐽 | trips, the query counts as affected. The results are shown in Table 9.1. We observe

that among the affected queries, the share of affected and infeasible journeys is similar across



Experiments Section 9.6

187

[0, 5] (5, 10] (10, 20] (20, 30] (30, 60] (60, 120] (120, 240] (240,∞)
0%

10%

20%

30%

40%

50%

Average headway interval [min]

P
e
r
c
e
n
t
a
g
e
o
f
r
o
u
t
e
s London

Germany

Switzerland

Stuttgart

Figure 9.7: Headway distribution per network. Only trips that depart during the first service

day are counted. Routes with fewer than two trips are ignored.

all networks: around a third are affected and about half of those are infeasible. However, the

share of affected queries varies heavily between networks. In particular, it is much higher for

London and Germany than for Switzerland and Stuttgart.

To explain these differences, we measure the average headway of a route, i.e., the mean

difference in departure time between two consecutive trips of the route. Figure 9.7 shows the

distribution of the average headways for each network. We notice a stark difference between

London, which is a large metropolitan area, and the other networks, which also contain many

rural regions. For London, the distribution centers around headways between 10 and 20

minutes, whereas the other networks mostly contain trips with headways above 30 minutes.

If headways are low, intermediate transfers have low slacks and are therefore more likely

to become infeasible in the presence of delays. To confirm this, we measure the highest

slack among the infeasible transfers of each infeasible journey. As shown in Table 9.1, the

median slack across all infeasible journeys is particularly low for London and Germany.

While the headway distribution of Germany is closer to that of Switzerland and Stuttgart,

it has a comparatively high share of routes with an average headway below five minutes.

This indicates its greater structural diversity: While its overall structure is similar to that of

Switzerland and Stuttgart, it contains some metropolitan areas that are closer in structure

and size to London. Accordingly, journeys that span these areas tend to use routes with lower

headways and are therefore more likely to be affected by delays.

9.6.2 Algorithm Performance
We now evaluate the performance of Delay-ULTRA. First we describe our experimental setup.

For Switzerland, we then analyze how the delay limit affects the algorithm’s performance. For

the other networks, we focus on a smaller selection of delay limits but analyze other aspects

in more detail.
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Figure 9.8: Impact of the delay limit 𝛿max
on the number of precomputed shortcuts (left)

and the running time of the update phase (right), measured on the Switzerland network.

We report the full set of shortcuts and, for an undelayed scenario, the number of infeasible

shortcuts and those remaining after filtering. For the advanced update phase, the running

time is split into updating the data structures, performing the replacement search and merging

the replacement shortcuts.

Experimental Setup. To evaluate the update phase and the result quality of our Delay-

ULTRA-TB query algorithm, we simulate the update algorithm within the interval from 12 PM

to 1 PM and then run the test queries from Section 9.6.1. For a query with execution time 𝜏ex,

we run MR on the delay scenario that is current at 𝜏ex and Delay-ULTRA-TB on the data

produced by the last update phase that was fully finished before 𝜏ex. We then compute two

error rates: The query error rate is the share of queries for which Delay-ULTRA-TB fails to

find at least one Pareto-optimal journey. The journey error rate is the share of Pareto-optimal

journeys (aggregated across all queries) that are not found. Since the update phase takes

non-negligible time, delays do not become known to the query algorithm instantaneously. To

quantify the effect of this on the result quality, we also compute hypothetical error rates: we
repeat the same experiment, but this time we run a query with execution time 𝜏ex on the data

produced by the last update phase started (rather than finished) by 𝜏ex.

While this setup is useful for evaluating the result quality, it is not suitable for measuring

query times because it switches between answering queries and processing delay updates

with a high frequency. Each update entails rebuilding the TB data structures, which effectively

flushes the machine’s cache and thereby distorts the query time measurements. We therefore

use a different setup for measuring query times: We generate 10 000 random queries with the

departure time chosen uniformly at random between 1 and 2 PM. Then we simulate the update

phases within the interval between 12 and 1 PM and run the queries on the output of the last
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Figure 9.9: Impact of the delay limit 𝛿max
on the query algorithm, measured on the Switzerland

network. Left: Journey error rate for various configurations of the update phase, averaged over
the test queries generated in Section 9.6.1. Right: Mean running times of Delay-ULTRA-TB

and MR for 10 000 random queries.

update. Note that this results in a set of queries whose execution time and departure time

do not match: the execution time is always 1 PM while the departure time is up to one hour

later. To quantify the impact that this difference has on the result quality, we also measure

the error rates for this set of queries.

Impact of Delay Limit. Figure 9.8 (left) shows the impact of the delay limit on the

number of shortcuts computed by Delay-ULTRA. For a scenario without any delays, we

also report how many shortcuts are infeasible and how many remain after removing both

infeasible and irrelevant shortcuts. Subsequent experiments (see Table 9.3) show that these

numbers are almost identical in scenarios with delays. The growth in the number of total and

infeasible shortcuts is roughly quadratic. The number of filtered shortcuts, which influences

the speed of the query algorithm, grows more slowly. However, the size of the unfiltered

shortcut set still affects the running time of the update phase, which also grows quadratically,

as shown in Figure 9.8 (right). The advanced update phase takes three to four times longer

than the basic one. This is not primarily due to the replacement search itself, but due to

building the additional data structures required by it and merging the replacement shortcuts.

Note that our implementation of TB is geared towards query performance rather than quick

updates. Hence, we believe that the running time of the update phase could be improved

significantly. To improve cache locality during a query, we assign consecutive IDs to all

trips and stop events belonging to the same route. The set 𝐸s of shortcut edges is stored as a
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Table 9.2: Results for the Delay-ULTRA shortcut computation. Reported are the full set of

shortcuts and the number of infeasible and filtered shortcuts in an undelayed scenario.

Network
𝛿max

[s]

Time

[hh:mm:ss]

# Shortcuts

Full Infeasible Filtered

London

0 00:03:44 8 576 120 0 ( 0.00%) 8 576 120 (100.00%)

120 00:10:26 86 573 982 36 435 150 (42.09%) 39 665 271 ( 45.82%)

180 00:10:41 176 630 627 93 727 958 (53.06%) 57 941 841 ( 32.80%)

300 00:14:37 609 565 189 398 706 627 (65.41%) 114 153 168 ( 18.73%)

Germany

0 02:53:57 77 515 291 0 ( 0.00%) 77 515 291 (100.00%)

180 11:24:36 588 027 879 209 113 002 (35.56%) 327 040 211 ( 55.62%)

300 11:51:22 1 401 861 101 717 161 810 (51.16%) 533 061 808 ( 38.03%)

Stuttgart

0 00:00:54 1 973 321 0 ( 0.00%) 1 973 321 (100.00%)

180 00:02:35 13 388 174 5 632 875 (42.07%) 6 576 102 ( 49.12%)

300 00:02:59 29 236 505 15 106 602 (51.67%) 10 629 297 ( 36.36%)

Switzerland

0 00:01:57 6 938 012 0 ( 0.00%) 6 938 012 (100.00%)

180 00:06:46 48 529 326 21 420 171 (44.14%) 22 481 726 ( 46.33%)

300 00:07:56 119 664 041 67 335 101 (56.27%) 37 552 597 ( 31.38%)

graph in adjacency array representation, where the outgoing edges (v, 𝑤) of a stop event v
are sorted according to the ID of 𝑤. After regrouping the set of routes in order to avoid

overtaking, the update phase must reorder the trips and stop events to ensure that their IDs

are still consecutive. Afterward, 𝐸s must be reordered as well. Our implementations of these

reordering steps are not fully optimized. Furthermore, they could be omitted entirely by using

an implementation of TB that does not rely on consecutive IDs.

Figure 9.9 (left) reports the journey error rate. Original ULTRA-TB with basic updates is

already fairly delay-robust: slightly above 0.2% of optimal journeys are missed, compared

to 1.1% without updates. The replacement search reduces this to 0.1%. Delay-ULTRA shortcuts

offer drastic improvements for low delay limits, but these are eventually offset by the longer

update time. With advanced updates, the real and hypothetical error rates diverge significantly:

the latter reaches near-zero while the former stagnates and then increases again. This shows

that a faster implementation of the update phase would significantly improve the result

quality. The smallest errors are achieved with a limit of 10min for basic updates and 5min

for advanced updates. As shown in Figure 9.9 (right), the latter configuration is preferable

overall since it produces fewer shortcuts and therefore yields lower query times. Overall,

query times exhibit moderate growth with an increasing delay limit: compared to the original

ULTRA-TB, they roughly double for a delay limit of 5min and triple for 10min. Compared to

MR, the speedup is reduced from 7.5 to 4.4 and 2.6, respectively.
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Table 9.3: Results for the update phases. Adv. indicates whether the basic (◦) or advanced
update phase (•) was performed. Updates is the average number of processed delay updates

per phase. For the reported shortcuts, Query is the number of shortcuts given as input to

the query algorithm, averaged across all performed update phases, while Added is the total

number of replacement shortcuts found across all phases. Running times are averaged across

the evaluated one-hour interval.

Network
𝛿max

[s]

Adv. Updates

Shortcuts Time [s]

Query Added Update Search Merge Total

London

0 ◦ 6.0 8 508 656 0 – – – 1.0

0 • 6.0 8 586 763 98 149 2.0 0.5 0.6 3.1

120 ◦ 6.0 39 625 853 0 – – – 3.6

120 • 9.8 39 668 596 54 547 7.6 0.8 2.9 11.2

180 ◦ 6.0 58 051 426 0 – – – 5.6

180 • 15.7 58 082 966 39 714 12.1 0.9 5.1 18.1

Germany

0 ◦ 344.2 77 286 195 0 – – – 10.8

0 • 469.3 77 536 055 314 714 17.7 17.8 5.8 41.2

180 ◦ 344.2 326 591 619 0 – – – 26.0

180 • 1 290.6 326 691 285 131 255 47.1 51.2 18.6 116.9

Stuttgart

0 ◦ 17.9 1 968 084 0 – – – 0.2

0 • 17.9 1 971 959 6 096 0.4 0.3 0.1 0.9

300 ◦ 17.9 10 620 259 0 – – – 0.9

300 • 18.8 10 621 317 1 945 2.1 0.5 0.7 3.3

Switzerland

0 ◦ 13.6 6 920 689 0 – – – 0.8

0 • 22.1 6 934 598 19 407 1.3 0.6 0.4 2.2

300 ◦ 25.7 37 551 717 0 – – – 3.2

300 • 42.1 37 555 783 5 856 6.7 1.0 2.9 10.7

Shortcut Computation. Results for the shortcut precomputation on all networks are

reported in Table 9.2. Compared to the original ULTRA, the preprocessing time is three to four

times longer. For Stuttgart and Germany, the growth in the number of shortcuts depending on

the delay limit is similar to what we observed for Switzerland. By contrast, London exhibits a

much faster growth but also a significantly higher share of infeasible shortcuts. Again, this

is explained by the fact that transfers in the London network have much lower slacks on

average and therefore become infeasible much faster.

Update Phase. Table 9.3 shows statistics for the update phase. We observe that the

number of replacement shortcuts decreases as the delay limit increases, even though there are
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Table 9.4: Query result quality, averaged over the test queries from Section 9.6.1. Adv.
indicates whether the basic (◦) or advanced update phase (•) was performed. We report the

real and hypothetical error rates for queries (Qr.) and journeys (Jrn.), as well as the median

detours (Det.) of suboptimal journeys compared to their optimal counterparts with the same

number of trips. For the real update phase, we also report the number of returned journeys

that are infeasible and the number of queries with at least one infeasible journey.

Network
𝛿max

[s] A
d
v
.

Error rate (real) Error rate (hypo.) Infeasible (real)

Qr. Jrn. Det. Qr. Jrn. Det. Qr. Jrn.

London

0 ◦ 7.54% 2.30% 6.21% 7.54% 2.30% 6.21% 0.00% 0.00%

0 • 0.88% 0.26% 6.53% 0.32% 0.09% 6.80% 0.00% 0.00%

120 ◦ 4.00% 1.18% 5.81% 3.98% 1.18% 5.85% 0.02% 0.00%

120 • 0.50% 0.16% 6.45% 0.14% 0.05% 5.94% 0.14% 0.04%

180 ◦ 3.03% 0.85% 5.90% 3.01% 0.85% 5.93% 0.02% 0.00%

180 • 0.65% 0.20% 7.43% 0.07% 0.02% 5.95% 0.22% 0.06%

Germany

0 ◦ 5.10% 1.51% 8.13% 5.10% 1.51% 8.13% 0.00% 0.00%

0 • 3.11% 0.90% 7.56% 2.28% 0.64% 7.27% 0.09% 0.03%

180 ◦ 2.31% 0.67% 8.90% 2.25% 0.65% 8.87% 0.04% 0.01%

180 • 1.20% 0.37% 11.31% 0.43% 0.13% 8.50% 0.25% 0.08%

Stuttgart

0 ◦ 0.27% 0.09% 10.40% 0.27% 0.09% 10.40% 0.00% 0.00%

0 • 0.15% 0.05% 8.33% 0.13% 0.04% 7.62% 0.00% 0.00%

300 ◦ 0.09% 0.03% 13.85% 0.09% 0.03% 13.85% 0.00% 0.00%

300 • 0.04% 0.01% 14.66% 0.01% 0.00% 10.64% 0.00% 0.00%

Switzerland

0 ◦ 0.85% 0.22% 10.31% 0.85% 0.22% 10.31% 0.00% 0.00%

0 • 0.35% 0.10% 10.81% 0.27% 0.08% 10.45% 0.00% 0.00%

300 ◦ 0.34% 0.09% 10.70% 0.33% 0.08% 10.65% 0.00% 0.00%

300 • 0.15% 0.05% 11.24% 0.05% 0.01% 8.66% 0.02% 0.01%

more infeasible shortcuts that need to be replaced. This indicates that most replacements are

already included in the precomputed shortcut set. Furthermore, the number of replacement

shortcuts is negligible compared to the number of filtered Delay-ULTRA shortcuts. Hence,

even when running the update phase for an entire day, the replacement shortcuts will not

significantly impact the query time. Even in the most expensive configuration, the update

phase takes at most a few seconds on the three smaller networks. This is different for Germany

due to the sheer size of the network. Here, the time required for the replacement search starts

to become a significant factor.
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Table 9.5: Running times of MR and (Delay-)ULTRA-TB for 10 000 random queries. Also

reported are the mean error rates of Delay-ULTRA-TB for these queries, with the basic and

advanced update phases.

Network
𝛿max

[s]

Query times [ms] Error rate (basic) Error rate (adv.)

MR TB Queries Journeys Queries Journeys

London

0 18.4 4.0 1.94% 0.56% 0.28% 0.06%

120 18.4 8.0 1.21% 0.35% 0.11% 0.02%

180 18.4 9.8 0.71% 0.21% 0.05% 0.01%

Germany

0 920.4 78.8 3.57% 1.02% 2.14% 0.60%

180 920.4 113.2 1.34% 0.39% 0.57% 0.16%

Stuttgart

0 36.8 3.8 0.08% 0.02% 0.02% 0.00%

300 36.8 6.1 0.02% 0.00% 0.00% 0.00%

Switzerland

0 36.0 4.8 0.37% 0.11% 0.14% 0.03%

300 36.0 8.2 0.08% 0.02% 0.01% 0.00%

Error Rate. Table 9.4 reports error rates for all networks. ULTRA-TB with basic updates

already answers 50–75% of delay-affected queries correctly. Delay-ULTRA with advanced

updates reduces the error rate by a factor of 4–15, while a hypothetical instant update phase

would reduce it by more than a factor of 10 on all networks. The median detours of suboptimal

journeys compared to their optimal counterparts are not significantly influenced by the delay

limit or the type of update phase; they are between 5% and 15% depending on the network.

The replacement search is particularly effective for London, where it resolves almost 90%

of incorrectly answered queries on its own. This effect narrows the gap in the error rate

compared to the other networks, which have many fewer delay-affected queries to begin with.

Still, London and Germany exhibit higher error rates than the other networks. We observe a

tradeoff between the overall error rate and the number of infeasible journeys: a higher delay

limit reduces the error rate overall, but updates take longer to incorporate, which increases

the risk of returning journeys that are already known to be infeasible at execution time.

Query Performance. Finally, Table 9.5 reports query times. The speedup of Delay-

ULTRA-TB over MR ranges from 2.3 for London to 8.0 for Germany. Compared to ULTRA-TB

without delay information, this corresponds to a slowdown of 1.4–2.0. For this different set of

queries, whose execution time is up to an hour before the departure time, the error rates are

significantly lower. The effect is particularly drastic for London, where trips and journeys are

shorter on average and the impact of an individual delay therefore dissipates more quickly. As

a result, the error rate for 𝛿max = 3min is lower here than for 2min, even though the opposite

was the case in Table 9.4. This shows that incorporating a delay update too late mostly affects
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queries that depart right away, whereas the replacement shortcuts provide a more long-term

benefit. Still, 𝛿max = 2min is the preferable configuration overall since the query time is lower.

With a moderate delay limit and advanced updates, the journey error rate is minuscule on

all networks except for Germany, where it is still very low at 0.16%. Overall, this shows that

Delay-ULTRA offers a significant speedup over MR at near-perfect solution quality.

9.7 Conclusion
We showed that the benefits of ULTRA can be retained in the presence of delays by handling

small delays exactly during the shortcut computation and larger ones heuristically in the

update phase. Together, both steps reduce the error rate for random queries by up to a factor

of 30 compared to an algorithm without any delay information. Hence, Delay-ULTRA offers

near-perfect solution quality while achieving a speedup between two and eight over the

fastest delay-robust competitor. In the future, the replacement search could be applied to trip

cancellations as well. Further insights could also be gained from evaluating our algorithms

on real or more sophisticated synthetic delay scenarios.
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10 Conclusion

In order to close the multimodal performance gap, we identified two main tasks: developing

a preprocessing technique that allows existing public transit algorithms to be applied to

multimodal networks, and generalizing the fastest query algorithms to more complex problem

settings. For the first task, we built on the shortcut hypothesis by Sauer [Sau18], which

states that the intermediate transfers that occur in optimal journeys can be condensed into

a small set of shortcuts. In Chapter 5, we presented ULTRA, a speedup technique based

on the shortcut hypothesis. It can be combined with any public transit algorithm that

requires one-hop transfers, thereby offering a solution for the first task. Following the

cyclical approach of Algorithm Engineering, we then tested the shortcut hypothesis in various

extended multimodal scenarios, adapting ULTRA along the way. These include one-to-many

queries in Chapter 6, additional criteria in Chapter 7, multiple competing transfer modes

in Chapter 8, and delays in Chapter 9. Especially for the multicriteria problems considered

in Chapters 7 and 8, our modeling decisions were informed by the experimental results of

the previous chapters. We saw that optimizing transfer time is important in order to obtain

high-quality solutions. We also identified the limits of the shortcut hypothesis: it holds as

long as public transit is the fastest and more comfortable mode and the transfer modes are

mainly used for bridging gaps. Many, but not all multimodal scenarios fit this assumption. In

particular, ULTRA is a poor fit for most car-based modes, which compete with public transit

in terms of speed.

ULTRA can be configured to generate shortcuts between pairs of stop events, which allows

it to serve as a multimodal replacement for the transfer generation step of TB. This enables the

use of TB in multimodal networks, which made TB a natural candidate for approaching the

second task. We adapted TB to a variety of extended problem settings, including one-to-many

search, additional criteria and restricted Pareto sets. We showed that three-criteria Pareto
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optimization is solvable in polynomial time for particular combinations of criteria because the

solution size is bounded. This was exploited in the design of McTB, which does not require

costly dynamic data structures and retains the performance benefits of TB in a three-criteria

setting. Since there is no apparent way to extend this result to four or more criteria, we

combined the advantages of McRAPTOR and TB into a hybrid algorithm called HydRA.

Overall, the combination of ULTRA and TB-based query algorithms allowed us to close the

performance gap in a variety of multimodal scenarios. In all cases, the achieved query times

are fast enough for interactive applications. In scenarios for which comparable pure public

transit algorithms are available, our algorithms match their performance. Compared to the

previous state of the art for multimodal journey planning, they achieve speedups ranging

from an order of magnitude in the two-criteria setting to nearly three orders of magnitude in

the most complex scenario.

Further Applications. Although multimodal journey planning is a complex problem,

the success of the shortcut hypothesis and ULTRA suggests that a good way to make progress

is to decompose it into modular subproblems. When tackling a new problem, this often allows

us to reuse some of these modules without changes. We observed several examples of this

throughout this thesis: Adapting ULTRA to one-to-many queries in Chapter 6 only required

us to exchange the component that handles the final transfers. When adding transfer time as

a third criterion in Chapter 7, we were able to retain the Bucket-CH searches for the initial

and final transfers. Finally, when considering multiple competing transfer modes in Chapter 8,

we were able to decompose the shortcut computation by mode, which allowed us to reuse the

existing bimodal McULTRA algorithm.

Overall, the algorithms developed in this thesis make up a versatile toolbox that can help

carry over future advances in public transit journey planning to multimodal networks. One

open problem for which this might prove useful is designing an integratedmultimodal speedup

technique that accelerates the exploration of all network parts. So far, such a technique has

proven elusive due to the structural differences between public transit and road networks.

ULTRA potentially offers a way forward by condensing the road-based modes into small sets

of shortcuts, allowing the design to focus on the public transit component.

While this thesis focused on multimodal journey planning, many of the developed tech-

niques also have applications in pure public transit networks. We observed that the exploration

of these networks can be sped up by combining multiple pruning rules to restrict the search

space, but care has to be taken to ensure that these rules are compatible with each other.

For example, in Chapter 5, a conflict arose between the self-pruning rule used by profile

searches and the tiebreaking choices of RAPTOR. Our solution for this problem may be useful

in other settings that involve profile search. For example, Großmann et al. [GSSS23] show

that the combination of Arc-Flags with TB promises to achieve extremely fast query times

with only moderate space consumption. However, due to a conflict between self-pruning and

route-based pruning in the preprocessing phase, some queries are answered incorrectly. A

similar approach to the one used in ULTRA may be able to resolve this issue.
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In Chapters 7 and 8, we showed that the event-based approach of TB can be extended to

scenarios with additional criteria. The resulting query algorithms, McTB and HydRA, are

therefore promising candidates for answering public transit queries with additional criteria,

such as fare or vehicle occupancy. Even though it may seem counterintuitive, the ULTRA

shortcut computation also has applications in scenarios with limited transfers. We saw that

event-to-event ULTRA produces a smaller transfer set than the original TB transfer generation

algorithm because it employs stronger pruning rules. Therefore, a variant of ULTRA that

is tailored towards one-hop transfer graphs could improve the performance of TB in an

unimodal context, whereas McULTRA could serve as a replacement for the TB preprocessing

step in scenarios with additional criteria.

One of the biggest remaining issues with ULTRA is that its preprocessing time is quadratic

in the number of stops, so it does not scale well for larger networks. This is in line with

existing public transit speedup techniques, such as Transfer Patterns. It is unclear whether

anything can be done about this while still computing a provably optimal set of shortcuts.

However, this shortcoming is mitigated in scenarios with limited transfers. For example, we

saw that for faster transfer modes, such as bicycles or e-scooters, the approach of guaranteeing

a few minutes of transfer time and then computing the transitive closure is no longer feasible.

On the other hand, (Mc)ULTRA is slower for these modes than for walking and produces

more shortcuts. A potential solution that represents a compromise between unrestricted and

transitively closed transfers is to allow McULTRA to explore the full transfer graph but limit

the transfer duration. With such a limit, the size of the region that can be reached from a

given stop with at most two trips becomes near-constant in the network size. Hence, we

expect the preprocessing effort to be much closer to linear in this setting.

Open Questions. Although we examined a wide range of multimodal scenarios in this

thesis, there are still more left to study. On the one hand, this includes combinations of

multiple problem extensions. For example, we only considered one-to-many searches and

delay-robustness in the simple scenario with one transfer mode and two criteria. On the other

hand, there are multimodal scenarios that do not fit the assumptions of the shortcut hypothesis

(e.g., taxis) or for which it is unknown whether they do (e.g., ridesharing). These may require

algorithmic approaches that are altogether different. Furthermore, we used simplified models

for the transfer modes, delays and query distributions throughout this thesis. Using more

realistic models would provide further insights into the shortcut hypothesis and the structure

of multimodal networks. Since we designed our models to represent the worst case, it is

possible that ULTRA exhibits even better performance for more realistic models.

Finally, while this thesis provides ample experimental support for the shortcut hypothesis,

the phenomenon is not yet understood from a theoretical perspective. A logical next step

would be to identify structural properties of multimodal networks that explain these results.

Ideally, this would allow us to establish provable bounds on the number of shortcuts. These

could be turned into performance guarantees for public transit algorithms when they are

applied to multimodal networks.
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