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Regeneration, the complex process of restoring damaged or absent cells,

tissues, and organs, varies considerably between species. The zebrafish is a

remarkable model organism for its impressive regenerative abilities, partic-

ularly in organs such as the heart, fin, retina, spinal cord, and brain.

Unlike mammals, zebrafish can regenerate with limited or absent scarring,

a phenomenon closely linked to the activation of stem cells and immune

cells. This review examines the unique roles played by the immune response

and inflammation in zebrafish and mouse during regeneration, highlighting

the cellular and molecular mechanisms behind their divergent regenerative

capacities. By focusing on zebrafish telencephalic regeneration and compar-

ing it to that of the rodents, this review highlights the importance of a

well-controlled, acute, and non-persistent immune response in zebrafish,

which promotes an environment conducive to regeneration. The knowledge

gained from understanding the mechanisms of zebrafish regeneration holds

great promises for the treatment of human neurodegenerative diseases and

brain damage (stroke and traumatic brain injuries), as well as for the

advancement of regenerative medicine approaches.

Introduction

Regeneration is a widespread phenomenon in the ani-

mal kingdom, yet various organisms exhibit differing

capacities for it. Zebrafish, in contrast to many

mammals, display exceptional regenerative abilities [1].

For instance, in adult zebrafish, organs like the heart,

fin, retina, spinal cord, and several brain regions can
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regenerate without scarring [2–6]. Many factors con-

tribute to this enhanced regenerative capacity in zebra-

fish compared to mammals: (a) Activation of quiescent

neural stem cells (NSCs) distributed within the central

nervous system (CNS, such as brain, spinal cord, or

retina), which generate new neurons to replace missing

ones [3,5,7–12], (b) Ability to generate stem cells

through dedifferentiation after injury, observed in fin

and retina regeneration [13–16], (c) Activation of spe-

cific genes through cis-regulatory modules or differen-

tial chromatin accessibility, such as the leptin [17,18]

or genes like hif1ab, nrf1, tbx2b, and zbtb7a, which are

involved in regeneration through epigenomic regula-

tors [19], (d) Positive contribution of the immune sys-

tem to regeneration in zebrafish, unlike its potentially

inhibitory role in mammals due to prolonged activa-

tion [20–23], (e) Capacity to regulate fibrosis processes,

allowing damaged tissue to be replaced by new cells

rather than scar formation [24].

Zebrafish has emerged as a prominent vertebrate

model for studying regeneration due to its high regener-

ative capacity in both embryo and adult stages, its

genetic resemblance to humans (> 70%) [25], and

its amenability to genetic manipulation, including gene

knockouts and CRISPR/Cas9 (clustered regularly inter-

spaced short palindromic repeats/CRISPR-associated

protein 9) genome editing. These features enable precise

investigations into gene function, regulation, and cell

fate dynamics during regeneration [1,4,25]. The similari-

ties between the physiological and immune system

cells, such as macrophages, neutrophils, and microglia,

in zebrafish and humans make zebrafish a valuable

model for drug discovery, toxicity studies, and high-

throughput drug screening [26–28]. The transparency of

zebrafish embryos and mutant lines like the casper strain

allows real-time, non-invasive observation of organ

development and regeneration [29–31].

This review aims to elucidate the reasons behind the

superior regenerative capacity of zebrafish in compari-

son to mammals. Emerging research indicates that the

microglia/immune system plays a crucial role in success-

ful regeneration of various tissues and this review will

focus on this aspect. In particular, we will compare the

contribution of immune cells and inflammation to telen-

cephalic regeneration in zebrafish and mouse as mam-

malian models. Recent studies have revealed striking

similarities in cellular mechanisms and signaling path-

ways involved in adult constitutive neurogenesis in the

telencephalon of both zebrafish and mouse (Fig. 1).

Consequently, the telencephalon serves as a suitable

model to study and identify factors influencing regener-

ative capacity in zebrafish compared to mouse [3,32].

Understanding these mechanisms in zebrafish may hold

significant implications for potential applications in

treating human neurodegenerative diseases and discov-

ering approaches to enhance regeneration in humans.

Immune response and brain repair
following zebrafish telencephalon
injury

In zebrafish following telencephalic injury, cell death

occurs by apoptosis and necrosis, accompanied by

edema formation [7–9,33]. This triggers the recruitment

and activation of microglia, the resident macrophages

of the CNS, and probably involves the recruitment of

peripheral immune cells (macrophages, leukocytes, and

neutrophils) [9,22,23,33]. The breakdown of the blood–
brain barrier (BBB) allows these immune cells access to

the injured area, initiating an acute local neuroinflam-

matory response [22]. In general, it is considered that

inflammatory signals immediately increase vascular per-

meability, facilitating the arrival of various immune cells

like leukocytes, macrophages, and microglia near the

injury site. These cells aid in eliminating dying cells and

infectious agents, participating in the control of the

inflammatory processes and its gradual resolution in the

days following injury as shown in mammals [34]. Fur-

thermore, studies in zebrafish have demonstrated the

critical role of the immune system and inflammation in

activating the proliferation of radial glial cells (RGCs)

that correspond to bona fide NSCs in the ventricular

zone (VZ) of the injured hemisphere [22,23]. They gener-

ate newborn neurons that repopulate the lesion site

through different mechanisms [7,8,11,35]. Additionally,

there is an increase in oligodendrocyte precursor cells

(OPCs), likely necessary for remyelinating damaged

axons [9,36]. Importantly, unlike in mammals, neither

chronic inflammation nor glial scarring is observed in

zebrafish. Generally, damaged tissue is fully restored

without any visible residual lesions after a few months

[8,23,37,38] (Fig. 2).

Role of microglia in zebrafish
telencephalon regeneration

One of the main challenges in zebrafish research is dis-

cerning the nature and role of CNS immune cells in

regenerative processes, given the absence of unique

and specific markers for each cell type. Typically, mac-

rophages are identified as mpeg1.1+/4C4� and mfap4+

cells, leukocytes/microglia as L-plastin+ cells, and

microglia as mpeg1.1+/4C4+ cells (Table 1) [22,39–41].

Generally, 4C4+ cells are widely recognized as micro-

glia in the literature [40,42–44]. However, it is highly

probable that there is some overlap between these
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markers, with certain “markers” being expressed by

more than one cell type. Additionally, heterogeneity in

the microglia population has also been observed in the

zebrafish brain [33,40,45]. Therefore, in this review, we

opt to refer to microglia/immune cells rather than spe-

cific markers for the sake of clarity and ease of com-

prehension, acknowledging the inherent challenges

posed by the overlapping expression of markers and

the observed heterogeneity within the microglia popu-

lation in the zebrafish brain.

Upon injury, dying cells release endogenous mole-

cules known as DAMPs (damage-associated molecular

patterns) and various ILs (interleukins), which trigger

the upregulation of pro-inflammatory cytokines and

chemokines (Fig. 2). These molecules propagate the

inflammatory response and facilitate the recruitment of

microglia/immune cells (such as leukocytes, including

neutrophils, macrophages, lymphocytes, and other

white blood cells, Fig. 2) [21,48]. In adult zebrafish,

the activation of these cells is swiftly observed within

Fig. 1. Schematic representation of adult neurogenesis: A comparison of the neural stem cell niche in the telencephalic ventricular zone of

zebrafish and mouse. (A) Transverse section through the telencephalon of an adult zebrafish illustrating the different cell types within this

niche. (A0) This panel depicts the differentiation of radial glial cells (RGCs) into neurons and some signaling pathways controlling the activity

of RGCs. In zebrafish, quiescent RGCs (type 1) are activated to become proliferative RGCs (type 2), which can generate proliferative

neuroblasts (type 3), eventually differentiating into mature neurons. (B) Transverse section through the telencephalon of an adult mouse. (B0)
This panel represents the various steps of neural generation starting from slow-dividing neural stem cells (NSCs) referred to as B cells. The

B cells give rise to C cells, corresponding to highly proliferative progenitors also called transient amplifying progenitors (TAPs). The C cells

differentiate into neuroblasts (A cells) that subsequently mature into neurons. Note that in the ventricular zone (VZ) of zebrafish

telencephalon, RGCs correspond to NSCs. Also, the neurogenic niches are highlighted in red in mammals (ventricular-subventricular zone, V-

SVZ) and zebrafish (VZ). Note that in mouse, the NSCs are astrocytes, while in zebrafish, the NSCs are RGCs. Although these two glial cell

populations have different anatomies, they share very similar functions and genetic markers in the ventricular zone of the telencephalon.
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the first 2 h following injury in the lesioned hemi-

sphere. Their recruitment through migratory and pro-

liferative processes seems to peak between 2 and

3 days post-lesion (dpl) [22,23,33,49] (Fig. 2). How-

ever, the increase in the number of microglia and

immune cells persists beyond 5 days in the injured

hemisphere [8,9,22,23,33].

The recruitment of microglia and peripheral immune

cells is correlated with the induction of pro-

inflammatory genes such as il-1b, il-8, and tumor

Fig. 2. Activation of cellular and molecular processes upon injury in the telencephalon of the zebrafish and mouse. In both zebrafish (A) and

mouse (B), injury (Aa and Ba) leads to apoptosis and necrosis (Ab and Bb). As a consequence, inflammatory signals are activated, recruiting

immune cells such as neutrophils, microglia, and macrophages to the injury site (Ac and Bc). In zebrafish, the activation of immune cells

and inflammation is transient (Ac) and plays a positive role in activating RGCs (Ad), leading to neurogenesis without scar formation (Ae).

However, in mouse, inflammation leads to astrocyte proliferation (Bd), and in most cases, astrocytes are involved in glial scar formation

(Be). Additionally, extracellular matrix (ECM) deposition impedes neurogenesis and neurite plasticity, hindering successful regeneration,

unlike in zebrafish. In both models, there is an observed increase in oligodendrocyte recruitment and/or proliferation (Af and Bf), but this

recruitment/proliferation is much more pronounced in mice (Bf) than in zebrafish (Af). Note that direct experimental evidence about the

recruitment of peripheral immune cells to the injury site of the adult zebrafish telencephalon are lacking, and the Fig. 2 data are based on

speculation from data on larval stages.

Table 1. Key innate immune cells and their general markers in

zebrafish telencephalon regeneration.

Cell types Markers References

Macrophages mpeg1.1 [23,41]

mfap4 [39]

Leukocytes L-plastin [8,22,46]

Microglia (resident

macrophages)

L-plastin [22]

4C4 [23,40]

mpeg1.1 [23,40]

Apo-E [9,47]
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necrosis factor-a (tnf-a) from 6 h post-lesion (hpl) to

24 hpl [22] (Fig. 2A, Table 2). In zebrafish, the use of

anti-inflammatory drugs or depletion of microglia dur-

ing brain injury results in a significant reduction in the

gene expression of pro-inflammatory cytokines [22,23]

(Table 2). It suggests that microglia/immune cells are a

crucial component of injury-induced neuroinflamma-

tion and are probably an important source of these

pro-inflammatory cytokines.

Concurrently with microglia activation, oxidative

stress is observed in the brain parenchyma indicated by

increased lipid peroxidation (LPO), overexpression of

genes involved in oxidative stress such as nox2, gsr, and

nrf2a, enhanced superoxide dismutase (SOD) activity,

and decreased glutathione (GSH) level [33,50]. Simi-

larly, the use of DCFH-DA (dichlorodihydrofluorescein

diacetate) probes, which fluoresce when oxidized, dem-

onstrated the generation of oxidative stress as early as

30 min after injury and its persistence at 5 days, particu-

larly in mpeg1.1+ microglia/immune cells [33].

Overall, these findings clearly demonstrate that fol-

lowing brain injury, peripheral, and resident immune

cells are recruited to the injury site, and are involved

in inflammatory processes and oxidative stress.

The role of inflammation and immune
cells during telencephalic injury in
zebrafish

In mammals, persistent inflammation significantly

impedes regeneration processes upon CNS injury

[51,52] (Fig. 2B), often resulting in incomplete regener-

ation and enduring functional impairments, depending

on the size and location of the lesion. However,

contrary to the prevailing understanding in mammals,

where inflammation is perceived as a regeneration

inhibitor, it was initially surprising to find that inflam-

mation and the immune response observed after trau-

matic brain injury are indispensable for initiating the

regenerative process in zebrafish [22,23] (Tables 2 and

3). Work by Kyritsis et al. [22] demonstrated that

acute inflammation is essential to kickstart telence-

phalic repair. In their study, sterile inflammation

induced by intracerebroventricular injection of Zymo-

san yeast particles led to the recruitment of L-plastin+

cells, their transition to an amoeboid morphology, and

an increase in the expression of pro-inflammatory

cytokine genes [22]. This upregulation of pro-

inflammatory cytokines and of immune cells then trig-

gers the proliferation of RGCs, leading to regenerative

neurogenesis [22]. In addition, depleting microglia

using clodronate liposomes or drugs such as PLX3397

after brain injury resulted in limited neuroinflamma-

tion and decreased regenerative neurogenesis [23,53]

[D. Fernezelian and N. Diotel, In press]. Similarly, the

use of mutant fish devoid of microglia (i.e., irf8�/�
and csf1rDM) impaired telencephalic regeneration in

zebrafish [23]. These data clearly demonstrate the role

of inflammation/immune cells in brain regeneration.

Reactive gliosis and scar formation, a
double-edged sword in the control of
neurogenesis during injury

Following any form of brain injury in mammals, such

as stroke or head trauma, microglia and astrocytes

undergo activation, a process known as reactive gliosis

[57]. This process involves the proliferation, migration,

Table 2. Signaling pathways and chemical factors regulating inflammation during the regenerative process of the adult zebrafish

telencephalon.

Signals Possible roles in regeneration References

Natural signals

Upregulation of pro-inflammatory

cytokines after injury:

Interleukins IL-1b, IL-6, IL-8, and

TNF-a

The propagation of the inflammatory response is correlated with microglia activation

(ameboid change) and proliferation. The direct role of these cytokines in RGCs

proliferation is uncertain

[22]

Upregulation of specific receptor

involved in inflammation:

Cysteinyl leukotriene receptor 1

(cysltr1)

Overexpressed in the injured hemisphere, specifically in RGCs. The use of Pranlukast

(an antagonist of Cysltr1) inhibits regenerative neurogenesis after injury. Cysteinyl

leukotriene signaling plays a direct role in injury-induced neurogenesis

[22]

Oxidative stress Increased after brain injury, notably in microglia. Possible roles include involvement in

microglial repair processes, phagocytosis, cell survival, and indirectly, neurogenesis

[33,50]

Pharmacological agents

Dexamethasone (anti-inflammation) Inhibits recruitment of microglia/leukocytes and expression of pro-inflammatory

cytokines

[22]

Clodronate liposomes (microglia/

marcrophage depletion)

Decreases RGCs and/or aIPC proliferation and subsequent neurogenesis [23]
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and morphological changes of microglia and astrocytes,

which become amoeboid and hypertrophic respectively

[58–60]. Furthermore, reactive gliosis is also well char-

acterized by the upregulation of specific cellular markers

such as Iba1 in microglia and glial fibrillary acidic pro-

tein (GFAP) in astrocytes. In mammals, microglia are

activated within minutes after brain injury [61] and par-

ticipate in tissue clearance by phagocytosis [58]. They

are a key component of the post-injury inflammatory

response that facilitates brain recovery [62,63]. How-

ever, unlike zebrafish, inflammation may persists over a

prolonged chronic phase, exacerbating brain damage

[64,65]. Indeed, during this chronic phase (weeks to

months after the initial injury), microglial activation

(pro-inflammatory M1) is associated with pathological

inflammation, neurodegeneration, and impaired neuro-

plasticity [58,66,67]. At the same time, astrocytes are

also activated rapidly after brain injury (within 1–
2 days). They migrate and delineate the boundaries of

infarcted or damaged regions. This physiological pro-

cess is a key event in the formation of the glial scar

around the injured area [68–71]. The process of glial

scarring initially has a fundamentally beneficial effect: it

restricts cerebral edema and cell death, promotes the

restoration of the BBB, and curtails excessive neuroin-

flammation that might propagate to other brain regions

[72–74]. However, concurrently, it triggers the synthesis

of numerous extracellular matrix (ECM) proteins,

including collagen IV, tenascin C, and chondroitin sul-

fate proteoglycans (CSPGs) [75–77]. These ECM pro-

teins, especially CSPGs, are widely recognized for their

ability to inhibit axonal growth and restrict the migra-

tion of newborn neurons [76,77]. Moreover, the

increased number of glial cells during gliosis has an

impact on glial neuron and glial cell interactions, lead-

ing to axonal degeneration and neuronal death [78].

Additionally, astrocytes secrete various cytokines or

proteoglycans that promote neurotoxicity and inhibit

axon regeneration, respectively [79–82]. Recently Weh-

ner and colleagues have identified another mechanisms

in rat and human that leads to inhibition of axon regen-

eration in addition to previously known and chracter-

ized scar components such as myelin-associated factors,

basal lamina components, and CSPGs [83]. Using a

cross-species comparative approach with mass

spectrometry-based quantitative proteomics at different

time points after spinal cord injury in zebrafish and rats,

Kolb et al. [83] found that successful spinal cord regen-

eration in zebrafish is due more to the absence of axon

growth-limiting factors in the injured ECM than to the

presence of specific regenerative factors. Their compara-

tive dataset revealed several small leucine-rich proteo-

glycans (SLRPs) to be exclusively enriched at the injury

site in rat spinal cords but not in zebrafish. Similarly, in

Table 3. Factors and cellular pathways controlling zebrafish telencephalon regeneration.

Factors Cell types Effects/Role Signalings References

Pro-inflammatory

cytokines

Activated by microglia

and likely within the

ventricular niche

Increase number of RGCs and Sox2+ cell

proliferation

Stat3 signaling and

Wnt/b-Catenin

signaling

[23]

Pro-inflammatory

cytokines

Microglia and probably

other cells

Promotes RGC proliferation and subsequent

neurogenesis

Cysteinyl

leukotriene

signaling

[22]

cxcr5 RGCs/Neurons No impact on RGC proliferation but favors

neurogenesis

Chemokine-

mediated signaling

pathway (Cxcl13/

Cxcr5)

[54]

gata3 RGCs/Neurons Required for proliferation of RGCs, reactive

neurogenesis and migration of newborn

neuroblast

Fgf/Fgfr1 pathway [46]

Notch RGCs and possibly

neuroblasts

Involved in neural stem/progenitor cell

proliferation during injury and the migration of

newly generated neuroblasts to the injury site

Notch/Delta

pathway

[12]

id1 Mainly in quiescent

RGCs

Maintain/promote the quiescent state of RGCs BMP/Id1 pathway [38,55,56]

Vegf Neurons and microglia Promote the recruitment of microglia after injury,

indirectly facilitating ventricular proliferation of

RGCs

Vegf/Vegfr [53]

Oxidative stress Microglia and probably

other cells

Might impact cell survival, and neurogenesis H2O2, peroxidation,

reactive oxygen

species

[33,50]

6 The FEBS Journal (2024) ª 2024 The Author(s). The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Successful telencephalon regeneration in zebrafish J. Chen et al.

 17424658, 0, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1111/febs.17231 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



injured human CNS tissue, elevated and abundant

SLRPs were observed, akin to the rat injured spinal

cord. Consistent with the supposed inhibitory role of

SLRPs in CNS regeneration, genetic induction of these

factors in zebrafish led to regeneration failure. Addi-

tionally, further experiments demonstrated that SLRPs

modify the physical properties of the ECM, adversely

affecting axon regrowth and regeneration in the spinal

cord of rodent but not in zebrafish, where SLRPs are

absent.

In conclusion, after brain injury in mammals, reac-

tive gliosis gives rise to a glial scar that delineates the

damaged area, initially limiting neuronal cell death.

However, it subsequently impedes the regeneration

process by restricting axogenesis, neuronal migration,

and the functional integration of new neurons [73],

thereby shifting the healing process away from

regeneration.

In zebrafish, reactive gliosis also occurs after brain

injury, exhibiting features similar to microgliosis and

astrogliosis in mammals. However, it is noteworthy that

adult fish brains lack astrocytes but possess

astroglia-related RGCs [84–86]. It has been suggested

that RGCs could perform some of the functions of

astrocytes found in mammalian brain [3,7–9,11,87–90].

After injury, the astroglia-related RGCs display

increased levels of GFAP and Vimentin, hypertrophy of

glial processes, and a higher proliferation rate, typical of

reactive gliosis (Fig. 3). However, unlike mammals, the

adult zebrafish brain does not show chronic inflamma-

tion or persistent scarring after injury [8,22]. The

absence of glial scarring is particularly intriguing

because it seems to correlate with the remarkable ability

of zebrafish to fully regenerate their brain [11]. Support-

ing this notion, in medaka (Oryzias latipes), a persistent

glial scar is observed 14 days after injury to the optic

tectum, in contrast to the absence of such scarring in

zebrafish at the same neuroanatomical injury site [91].

In both species, these stab wounds activate radial glia

proliferation and new cell generation. However, the

number of new neurons detected 7 days after injury in

the medaka brain is substantially lower than in zebrafish

[91]. These data demonstrate that medaka and mouse,

which form a persistent glial scar structure, are unable

to fully regenerate their brain, unlike zebrafish. The

absence of glial scarring as observed in zebrafish

appears to be crucial for the success of the regeneration

process and the activation of neurogenic programs.

Interestingly, inhibition of microglia during brain injury

results in a persistent lesion without visible scarring and

CSPG deposition [23]. These results raise the question

of why medaka produce ECM components that inhibit

regeneration, while zebrafish do not. One possible

explanation, based on observations of zebrafish during

heart regeneration, is that ECM factors contributing to

scar formation may initially be deposited in zebrafish as

well. However, these factors are later resolved, prevent-

ing scar formation, as observed in heart regeneration

(Fig. 3A‴) [92].

Precise control of inflammation,
astrogliosis, and neurogenesis is the
key to a successful regeneration
process

In the telencephalon of adult zebrafish, as mentioned

earlier, inflammation is precisely controlled and only

transiently activated during the regenerative process.

Similarly, lesion-induced neurogenesis is tightly regu-

lated in the telencephalic region of adult zebrafish.

Studies have revealed that after injury, there is an ini-

tial phase of intense neurogenesis [8,9,12,22,35,46], fol-

lowed by an increase in the expression of id1 (inhibitor

of differentiation 1), a member of HLH (helix loop

helix) family of transcriptional regulator, in RGCs in

the VZ, typically around 5 dpl [38,56]. This gene, a

direct target of the bone morphogenetic protein (BMP)

signaling pathway, is required to limit the proliferation

of RGCs in order to limit excessive neurogenesis that

could lead to a massive depletion in the number of

NSCs [38,55]. Consistent with this finding, zebrafish

mutants lacking the id1 gene are unable to regenerate

their brains properly after consecutive telencephalic

lesions [55]. Furthermore, overexpression of the id1

gene induces NSC quiescence, while knockdown of the

id1 gene using morpholinos increases the number of

proliferating RGCs and promotes neurogenesis [56].

These gain- and loss-of-function studies highlight the

importance of id1 in maintaining the balance between

dividing and quiescent NSCs by promoting RGCs qui-

escence [38,55,56]. It is interesting to note that in

mouse, the Bmp and Id genes are also activated after

injury, but their role seems to be modified, since they

are involved in gliosis and the formation of glial scars.

It has been reported that following traumatic brain

injury and vascular rupture in mouse, fibrinogen coag-

ulation factor is released in the subventricular zone

(SVZ), where it activates BMP signaling and increases

the expression of its direct downstream mediator, Id3

[93]. In contrast to zebrafish, BMP-induced Id3

upregulation in the SVZ promotes astrogenesis over

neurogenesis by upregulating the expression of astrocyte-

specific genes such as GFAP and glutamate aspartate

transporter (GLAST) [94]. Thus, the combined activity

of acute inflammation and signaling pathways such as

BMP and their downstream target genes in zebrafish are
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among the mechanisms that positively control regenera-

tive neurogenesis in the zebrafish telencephalon and facil-

itate a successful regeneration process.

Future lines of research

Similar to observations in zebrafish, studies in mouse

have shown that brain damage can trigger NSCs

proliferation in key neurogenic areas such as the SVZ

and the dentate gyrus (DG) [95–101]. However, despite

this proliferative response, the survival and integration

of the newborn neurons remain limited within the

existing neural circuitry of the mouse brain. This limi-

tation is primarily due to challenges in their migration

to the damaged area, attributed to the dense presence

of astrocytes and the repulsive properties of ECM.

Fig. 3. Comparison of reactive gliosis and scar formation in zebrafish and mouse. In zebrafish, injury leads to gliosis and activation of

microglia (A–A00). GFAP is overexpressed in neural stem cells in zebrafish (A0), while in mammals, such overexpression occurs in astrocytes

(B0). In both species, microglia (mpeg1.1 in zebrafish and Iba1 in mammals) are recruited within and around the damaged area (A00 and B00).
Extracellular matrix (ECM) proteins, such as collagen IV, Tenascin, and CSPGs, are detected in the damaged tissue of mammals but not in

zebrafish. Initially, there is deposition of ECM in zebrafish, but this resolves over time, resulting in no ECM deposits and no scar formation

at the end (A‴). In mice, inflammation and gliosis coincide with ECM deposition (B–B‴), resulting in scar formation, which subsequently

impedes regenerative neurogenesis. Note that immunostainings were performed in the D�eTROI laboratories (N. Diotel, unpublished data).
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Given this evidence and previous findings, it seems

sensible to suggest that strategies aimed at controlling

inflammation, enhancing neurogenesis, addressing

fibrosis, and improving the survival of neuroblasts

could be beneficial. Specifically, inhibiting the expres-

sion of certain ECM factors such as CSPGs and

SLRPs, which are produced as a consequence of injury

and can negatively influence regeneration, could be

crucial. Inspired by the remarkable brain regeneration

observed in zebrafish, these strategies hold promise for

developing drugs or approaches that could facilitate

effective regeneration in rodents and other mammals.

These advancements would not only enhance brain

plasticity but also foster the formation of new connec-

tions among surviving neurons following brain injuries

such as stroke or traumatic brain injury. Moreover,

such strategies might support the seamless integration

of newly generated neurons, potentially paving the

way for successful brain regeneration in mammals.
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